SlideShare a Scribd company logo
1 of 66
Download to read offline
Reduction Formula
Reduction Formula
Reduction (or recurrence) formulae expresses a given integral as
the sum of a function and a known integral.
Integration by parts often used to find the formula.
Reduction Formula
   Reduction (or recurrence) formulae expresses a given integral as
   the sum of a function and a known integral.
   Integration by parts often used to find the formula.


e.g. (i) (1987)       

                                                     n  1
    Given that I n   cos n xdx, prove that I n  
                      2

                                                          I n2
                     0                              n 
                                                         
                                                         2
    where n is an integer and n  2, hence evaluate  cos 5 xdx
                                                         0

     2
I n   cos n xdx
     0

     2
I n   cos n xdx
     0
     
     2
    cos n 1 x cos xdx
     0

     2
I n   cos n xdx
     0
     
     2                      u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx   du  n  1 cos n  2 x sin xdx dv  cos xdx
     0

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                         2
   
             2     2
                                     
                                                
                                                 0

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

    n  1I n  2  n  1I n

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

    n  1I n  2  n  1I n
    nI n  n  1I n  2

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

    n  1I n  2  n  1I n
    nI n  n  1I n  2

      In   n  1I
                    n2
             n 

2


0
  cos 5 xdx  I 5

2


0
  cos 5 xdx  I 5
             4
             I3
             5

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0
                      
              8
             sin x 0
                      2
             15

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0
                      
               8
             sin x 0
                      2
              15
               8 
              sin  sin 0 
                            
              15   2       
               8
            
              15
ii  Given that I n   cot n xdx, find I 6
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x
                                                      du  cosec 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x

         u   n2
                      du  I n  2                    du  cosec 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x

         u   n2
                      du  I n  2                    du  cosec 2 xdx

            1 n 1
             u  I n2
          n 1
            1
             cot n 1 x  I n  2
          n 1
 cot 6 xdx  I 6
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
                 1 5     1 3
              cot x  cot x  cot x   dx
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
                 1 5     1 3
              cot x  cot x  cot x   dx
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  x  c
                 5       3
(iii) (2004 Question 8b)
                 
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                4 tan n x sec 2 xdx
                 0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0

                                                         when x  0, u  0
                                                                    
                                                               x       ,u  1
                                                                    4
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
                                                               x       ,u  1
                                                                    4
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                        1
a ) Show that I n  I n2           
                                      n 1
                                       
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0                     0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
               u       n 1   1
                                                               x       ,u  1
                                                                  4
                n  1 0
                      
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                        1
a ) Show that I n  I n2           
                                      n 1
                                       
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0                     0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
               u       n 1   1
                                                               x       ,u  1
                                                                  4
                n  1 0
                      
                  1                       1
                    0               
                n 1                    n 1
 1
                                       n

b) Deduce that J n  J n1                for n  1
                               2n  1
 1
                                       n

b) Deduce that J n  J n1                for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1
 1
                                        n

b) Deduce that J n  J n1                 for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                      n             n
 1
                                          n

b) Deduce that J n  J n1                   for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                       n              n



                 1  I 2 n  I 2 n2 
                       n
 1
                                          n

b) Deduce that J n  J n1                   for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                       n              n



                 1  I 2 n  I 2 n2 
                       n



                    1
                           n

               
                   2n  1
 1
                                        n
                         m
c) Show that J m        
                     4   n 1   2n  1
 1
                                               n
                               m
c) Show that J m             
                          4     n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
 1
                                                n
                                 m
c) Show that J m             
                          4      n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m             m 1

                                       J m2
          2m  1         2m  3
 1
                                                n
                                 m
c) Show that J m             
                          4      n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m             m 1

                                       J m2
          2m  1         2m  3
           1          1                 1
                  m             m 1                    1

                                                        J0
          2m  1         2m  3                     1
 1
                                                     n
                                      m
c) Show that J m                
                             4        n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m                  m 1

                                            J m2
          2m  1             2m  3
           1          1                      1
                  m                  m 1                    1

                                                             J0
          2m  1             2m  3                      1
                  1           
                         n
           m
                             4 dx
          n 1   2n  1          0
 1
                                                     n
                                      m
c) Show that J m                
                             4        n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m                  m 1

                                            J m2
          2m  1             2m  3
           1          1                      1
                  m                  m 1                    1

                                                             J0
          2m  1             2m  3                      1
                  1            
                         n
           m
                             4 dx
          n 1   2n  1          0


                  1
                         n
           m                          
                             x 04
          n 1   2n  1
                  1
                         n
           m
                                 
                           
          n 1   2n  1          4
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
                                                                    du
                                                             dx 
                                                                  1 u2
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
                                                                    du
                                                             dx 
                                                                  1 u2
                                                  when x  0, u  0
                                                               
                                                          x       ,u  1
                                                               4
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                 when x  0, u  0
   In  
         0 1 u2
                                                               
                                                          x       ,u  1
                                                               4
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                 when x  0, u  0
   In  
         0 1 u2
                                                               
                                                          x       ,u  1
                                                            4
                           1
e) Deduce that 0  I n         and conclude that J n  0 as n  
                         n 1
1  un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                  when x  0, u  0
   In  
         0 1 u2
                                                                
                                                           x       ,u  1
                                                              4
                             1
e) Deduce that 0  I n           and conclude that J n  0 as n  
                           n 1
    un
           0, for all u  0
   1 u 2
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                 when x  0, u  0
   In  
         0 1 u2
                                                               
                                                          x       ,u  1
                                                            4
                              1
e) Deduce that 0  I n         and conclude that J n  0 as n  
                            n 1
    un
            0, for all u  0
   1 u 2

              n
          1 u
 In           du  0, for all u  0
         0 1 u2
1
I n  I n 2   
                 n 1
1
I n  I n 2   
                 n 1
       1
In        I n 2
     n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
                   1
 0  In 
                 n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
                  In  0
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
                  In  0

                  J n   1 I 2 n  0
                              n
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In                                  Exercise 2D; 1, 2, 3, 6, 8,
          n 1                                   9, 10, 12, 14
              1
  as n  ,      0
            n 1
                  In  0

                  J n   1 I 2 n  0
                              n

More Related Content

Similar to X2 t04 04 reduction formula (2012)

Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)Nigel Simmons
 
Mathematics presentation trigonometry and circle
Mathematics presentation   trigonometry and circleMathematics presentation   trigonometry and circle
Mathematics presentation trigonometry and circleDewi Setiyani Putri
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeNamit Kotiya
 
Precalc review for calc p pt
Precalc review for calc p ptPrecalc review for calc p pt
Precalc review for calc p ptgregcross22
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14Sanyam Singh
 

Similar to X2 t04 04 reduction formula (2012) (6)

Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
 
Mathematics presentation trigonometry and circle
Mathematics presentation   trigonometry and circleMathematics presentation   trigonometry and circle
Mathematics presentation trigonometry and circle
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulae
 
Precalc review for calc p pt
Precalc review for calc p ptPrecalc review for calc p pt
Precalc review for calc p pt
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 

Recently uploaded (20)

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 

X2 t04 04 reduction formula (2012)

  • 2. Reduction Formula Reduction (or recurrence) formulae expresses a given integral as the sum of a function and a known integral. Integration by parts often used to find the formula.
  • 3. Reduction Formula Reduction (or recurrence) formulae expresses a given integral as the sum of a function and a known integral. Integration by parts often used to find the formula. e.g. (i) (1987)  n  1 Given that I n   cos n xdx, prove that I n   2   I n2 0  n   2 where n is an integer and n  2, hence evaluate  cos 5 xdx 0
  • 4. 2 I n   cos n xdx 0
  • 5. 2 I n   cos n xdx 0  2   cos n 1 x cos xdx 0
  • 6. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx 0
  • 7. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0
  • 8. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0
  • 9. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0
  • 10. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n
  • 11. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n  nI n  n  1I n  2
  • 12. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n  nI n  n  1I n  2 In   n  1I  n2  n 
  • 13.  2  0 cos 5 xdx  I 5
  • 14.  2  0 cos 5 xdx  I 5 4  I3 5
  • 15.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3
  • 16.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0
  • 17.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0  8  sin x 0 2 15
  • 18.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0  8  sin x 0 2 15 8    sin  sin 0   15  2  8  15
  • 19. ii  Given that I n   cot n xdx, find I 6
  • 20. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx
  • 21. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx
  • 22. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx
  • 23. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x du  cosec 2 xdx
  • 24. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x   u n2 du  I n  2 du  cosec 2 xdx
  • 25. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x   u n2 du  I n  2 du  cosec 2 xdx 1 n 1  u  I n2 n 1 1  cot n 1 x  I n  2 n 1
  • 26.  cot 6 xdx  I 6
  • 27.  cot 6 xdx  I 6 1 5   cot x  I 4 5
  • 28.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3
  • 29.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3
  • 30.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3 1 5 1 3   cot x  cot x  cot x   dx 5 3
  • 31.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3 1 5 1 3   cot x  cot x  cot x   dx 5 3 1 5 1 3   cot x  cot x  cot x  x  c 5 3
  • 32. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1
  • 33. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0
  • 34. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0    4 tan n x sec 2 xdx 0
  • 35. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0
  • 36. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 when x  0, u  0  x ,u  1 4
  • 37. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  x ,u  1 4
  • 38. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  u  n 1 1 x ,u  1  4  n  1 0 
  • 39. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  u  n 1 1 x ,u  1  4  n  1 0  1 1  0  n 1 n 1
  • 40.  1 n b) Deduce that J n  J n1  for n  1 2n  1
  • 41.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1
  • 42.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n
  • 43.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n   1  I 2 n  I 2 n2  n
  • 44.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n   1  I 2 n  I 2 n2  n  1 n  2n  1
  • 45.  1 n  m c) Show that J m   4 n 1 2n  1
  • 46.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1
  • 47.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3
  • 48.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1
  • 49.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1  1  n m    4 dx n 1 2n  1 0
  • 50.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1  1  n m    4 dx n 1 2n  1 0  1 n m     x 04 n 1 2n  1  1 n m    n 1 2n  1 4
  • 51. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2
  • 52. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0
  • 53. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u du dx  1 u2
  • 54. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u du dx  1 u2 when x  0, u  0  x ,u  1 4
  • 55. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4
  • 56. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1
  • 57. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1 un  0, for all u  0 1 u 2
  • 58. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1 un  0, for all u  0 1 u 2 n 1 u  In   du  0, for all u  0 0 1 u2
  • 59. 1 I n  I n 2  n 1
  • 60. 1 I n  I n 2  n 1 1 In   I n 2 n 1
  • 61. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1
  • 62. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1
  • 63. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1
  • 64. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1  In  0
  • 65. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1  In  0  J n   1 I 2 n  0 n
  • 66. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  Exercise 2D; 1, 2, 3, 6, 8, n 1 9, 10, 12, 14 1 as n  , 0 n 1  In  0  J n   1 I 2 n  0 n