SlideShare a Scribd company logo
1 of 42
Download to read offline
Limits & Continuity
Limits & Continuity
A limit describes the behaviour of functions.
Limits & Continuity
A limit describes the behaviour of functions.
lim f  x  :
x a
Limits & Continuity
A limit describes the behaviour of functions.
lim f  x  : as the x value approaches a, what value does f(x) approach?
x a
Limits & Continuity
A limit describes the behaviour of functions.
lim f  x  : as the x value approaches a, what value does f(x) approach?
x a


 lim f  x  :
 x a
Limits & Continuity
A limit describes the behaviour of functions.
lim f  x  : as the x value approaches a, what value does f(x) approach?
x a


 lim f  x  : as the x value approaches a from the negative side,
 x a
                what value does f(x) approach?
Limits & Continuity
A limit describes the behaviour of functions.
lim f  x  : as the x value approaches a, what value does f(x) approach?
x a


 lim f  x  : as the x value approaches a from the negative side,
 x a
                what value does f(x) approach?


             y
                         y  x 1

             1
                 1      x
Limits & Continuity
A limit describes the behaviour of functions.
lim f  x  : as the x value approaches a, what value does f(x) approach?
 x a


 lim f  x  : as the x value approaches a from the negative side,
 x a
                what value does f(x) approach?


                y
                         y  x 1

                1
                    1   x

lim x  1  0
   
x1
Limits & Continuity
A limit describes the behaviour of functions.
lim f  x  : as the x value approaches a, what value does f(x) approach?
 x a


 lim f  x  : as the x value approaches a from the negative side,
 x a
                what value does f(x) approach?


                y                                       y
                         y  x 1                       6
                                                        4       y  f  x
                1
                    1   x                                             x

lim x  1  0
   
x1
Limits & Continuity
A limit describes the behaviour of functions.
lim f  x  : as the x value approaches a, what value does f(x) approach?
 x a


 lim f  x  : as the x value approaches a from the negative side,
 x a
                what value does f(x) approach?


                y                                           y
                         y  x 1                       6
                                                        4       y  f  x
                1
                    1   x                                             x

lim x  1  0
   
                                          lim f  x   4
                                             
x1                                       x0
Limits & Continuity
A limit describes the behaviour of functions.
lim f  x  : as the x value approaches a, what value does f(x) approach?
 x a


 lim f  x  : as the x value approaches a from the negative side,
 x a
                what value does f(x) approach?
 lim f  x  :
 x a

                y                                           y
                         y  x 1                       6
                                                        4       y  f  x
                1
                    1   x                                             x

lim x  1  0
   
                                          lim f  x   4
                                             
x1                                       x0
Limits & Continuity
A limit describes the behaviour of functions.
lim f  x  : as the x value approaches a, what value does f(x) approach?
 x a


 lim f  x  : as the x value approaches a from the negative side,
 x a
                what value does f(x) approach?
 lim f  x  : as the x value approaches a from the positive side,
 x a
                what value does f(x) approach?
                y                                           y
                         y  x 1                       6
                                                        4       y  f  x
                1
                    1   x                                             x

lim x  1  0
   
                                          lim f  x   4
                                             
x1                                       x0
Limits & Continuity
A limit describes the behaviour of functions.
lim f  x  : as the x value approaches a, what value does f(x) approach?
 x a


 lim f  x  : as the x value approaches a from the negative side,
 x a
                what value does f(x) approach?
 lim f  x  : as the x value approaches a from the positive side,
 x a
                what value does f(x) approach?
                y                                           y
                               y  x 1                 6
                                                        4       y  f  x
                1
                    1         x                                       x

lim x  1  0
   
                        lim x  1  0
                           
                                          lim f  x   4
                                             
x1                     x1               x0
Limits & Continuity
A limit describes the behaviour of functions.
lim f  x  : as the x value approaches a, what value does f(x) approach?
 x a


 lim f  x  : as the x value approaches a from the negative side,
 x a
                what value does f(x) approach?
 lim f  x  : as the x value approaches a from the positive side,
 x a
                what value does f(x) approach?
                y                                           y
                               y  x 1                 6
                                                        4             y  f  x
                1
                    1         x                                           x

lim x  1  0
   
                        lim x  1  0
                           
                                          lim f  x   4
                                             
                                                                lim f  x   6
                                                                   
x1                     x1               x0                   x0
Limits & Continuity
A limit describes the behaviour of functions.
lim f  x  : as the x value approaches a, what value does f(x) approach?
 x a


 lim f  x  : as the x value approaches a from the negative side,
 x a
                what value does f(x) approach?
 lim f  x  : as the x value approaches a from the positive side,
 x a
                what value does f(x) approach?
                  y                                              y
                                   y  x 1                   6
                                                              4            y  f  x
                  1
                      1            x                                           x

lim x  1  0
   
                          lim x  1  0
                             
                                               lim f  x   4
                                                  
                                                                     lim f  x   6
                                                                        
x1                       x1                  x0                   x0


        If lim f  x   lim f  x  , then f  x  is continuous at x  a
           x a                 x a
Finding Limits
Finding Limits
(1) Direct Substitution
Finding Limits
(1) Direct Substitution
   e.g. lim x  7
        x5
Finding Limits
(1) Direct Substitution
   e.g. lim x  7  5  7
        x5
                   12
Finding Limits
(1) Direct Substitution
   e.g. lim x  7  5  7
        x5
                   12

(2) Factorise and Cancel
Finding Limits
(1) Direct Substitution
   e.g. lim x  7  5  7
        x5
                   12

(2) Factorise and Cancel
             x2  9
    e.g. lim
         x3 x  3
Finding Limits
(1) Direct Substitution
    e.g. lim x  7  5  7
          x5
                     12

(2) Factorise and Cancel

    e.g. lim
             x2  9
                     lim
                           x  3 x  3
         x3 x  3    x3       x  3
Finding Limits
(1) Direct Substitution
    e.g. lim x  7  5  7
          x5
                     12

(2) Factorise and Cancel

    e.g. lim
             x2  9
                     lim
                           x  3 x  3
         x3 x  3    x3       x  3
                      lim  x  3
                        x3
Finding Limits
(1) Direct Substitution
    e.g. lim x  7  5  7
          x5
                     12

(2) Factorise and Cancel

    e.g. lim
             x2  9
                     lim
                           x  3 x  3
         x3 x  3    x3       x  3
                      lim  x  3
                        x3

                      33
                     6
(3) Special Limit
(3) Special Limit
                        1
                    lim  0
                    x x
(3) Special Limit
                                 1
                             lim  0
                             x x


                 x3  3x 2  2 x  1
e.g.  i    lim
             x      4 x3  1
(3) Special Limit
                               1
                           lim  0
                           x x
                                           x3 3x 2 2 x 1
                 x3  3x 2  2 x  1            3  3 3
e.g.  i 
                                             3
             lim                      lim x     x    x x
             x      4x 1
                         3
                                       x      4 x3 1
                                                   3
                                                      3
                                                 x    x
(3) Special Limit
                                1
                            lim  0
                            x x
                                            x3 3x 2 2 x 1
                 x3  3x 2  2 x  1            3  3 3
e.g.  i 
                                             3
             lim                      lim x     x       x x
             x      4x 1
                         3
                                        x      4 x3 1
                                                    3
                                                         3
                                                  x      x
                                               3 2 1
                                           1  2  3
                                      lim x x x
                                       x            1
                                                4 3
                                                     x
(3) Special Limit
                                1
                            lim  0
                            x x
                                            x3 3x 2 2 x 1
                 x3  3x 2  2 x  1            3  3 3
e.g.  i 
                                             3
             lim                      lim x     x       x x
             x      4x 1
                         3
                                        x      4 x3 1
                                                    3
                                                         3
                                                  x      x
                                               3 2 1
                                           1  2  3
                                      lim x x x
                                       x            1
                                                4 3
                                                     x
                                        1
                                     
                                        4
(3) Special Limit
                                 1
                             lim  0
                             x x
                                             x3 3x 2 2 x 1
                  x3  3x 2  2 x  1            3  3 3
e.g.  i 
                                              3
              lim                      lim x     x       x x
              x      4x 1
                          3
                                         x      4 x3 1
                                                     3
                                                          3
                                                   x      x
                                                3 2 1
                                            1  2  3
                                       lim x x x
                                        x            1
                                                 4 3
                                                      x
                                         1
                                      
                                         4
                  4x  x2
      ii    lim 3
              x x  1
(3) Special Limit
                                 1
                             lim  0
                             x x
                                             x3 3x 2 2 x 1
                  x3  3x 2  2 x  1            3  3 3
e.g.  i 
                                              3
              lim                      lim x     x       x x
              x      4x 1
                          3
                                         x      4 x3 1
                                                     3
                                                          3
                                                   x      x
                                                3 2 1
                                            1  2  3
                                       lim x x x
                                        x            1
                                                 4 3
                                                      x
                                         1
                                      
                                         4
                  4x  x2      0
      ii    lim 3
              x x  1
                             
                               1
                             0
(3) Special Limit
                                  1
                              lim  0
                              x x
                                             x3 3x 2 2 x 1
                  x3  3x 2  2 x  1             3  3 3
e.g.  i 
                                              3
              lim                      lim x       x       x x
              x      4x 1
                          3
                                         x        4 x3 1
                                                       3
                                                            3
                                                     x      x
                                                 3 2 1
                                            1  2  3
                                       lim x x x
                                        x              1
                                                  4 3
                                                        x
                                         1
                                      
                                         4
                  4x  x2      0                            x7  x6  x2
      ii    lim 3
              x x  1
                                             iii  lim 7
                                                       x 3 x  x  974
                               1
                             0
(3) Special Limit
                                  1
                              lim  0
                              x x
                                             x3 3x 2 2 x 1
                  x3  3x 2  2 x  1             3  3 3
e.g.  i 
                                              3
              lim                      lim x       x       x x
              x      4x 1
                          3
                                         x        4 x3 1
                                                       3
                                                            3
                                                     x      x
                                                 3 2 1
                                            1  2  3
                                       lim x x x
                                        x              1
                                                  4 3
                                                        x
                                         1
                                      
                                         4
                  4x  x2      0                            x7  x6  x2   1
      ii    lim 3
              x x  1
                                             iii  lim 7
                                                       x 3 x  x  974
                                                                         
                               1                                           3
                             0
x3  2
 iv    lim 2
         x x  1
x3  2   1
 iv    lim 2
         x x  1
                    
                      0
                    
x3  2   1
 iv    lim 2
         x x  1
                    
                      0
                    
                                            x  3 x  2 
 v  Find the horizontal asymptote of y 
                                            x  1 x  1
x3  2   1
 iv    lim 2
         x x  1
                    
                      0
                    
                                            x  3 x  2 
 v  Find the horizontal asymptote of y 
                                            x  1 x  1
      lim
           x  3 x  2 
      x  x  1 x  1
x3  2   1
 iv    lim 2
         x x  1
                    
                      0
                    
                                              x  3 x  2 
 v  Find the horizontal asymptote of y 
                                              x  1 x  1
           x  3 x  2        x2  x  6
      lim                    lim 2
      x  x  1 x  1    x   x 1
x3  2   1
 iv    lim 2
         x x  1
                    
                      0
                    
                                              x  3 x  2 
 v  Find the horizontal asymptote of y 
                                              x  1 x  1
           x  3 x  2        x2  x  6
      lim                    lim 2
      x  x  1 x  1    x   x 1
                             1
                           
                             1
                           1
x3  2   1
 iv    lim 2
         x x  1
                    
                      0
                    
                                              x  3 x  2 
 v  Find the horizontal asymptote of y 
                                              x  1 x  1
           x  3 x  2        x2  x  6
      lim                    lim 2
      x  x  1 x  1    x   x 1
                            1
                          
                            1
                          1
     horizontal asymptote is y  1
x3  2   1
 iv    lim 2
         x x  1
                    
                      0
                    
                                              x  3 x  2 
 v  Find the horizontal asymptote of y 
                                              x  1 x  1
           x  3 x  2        x2  x  6
      lim                    lim 2
      x  x  1 x  1    x   x 1
                            1
                          
                            1
                          1
     horizontal asymptote is y  1           Exercise 7I; 1a, 2ace, 3ac,
                                                4a, 5ad, 8a, 9ab, 10a

More Related Content

Similar to 11X1 T09 01 limits and continuity (2010)

11X1 T08 01 limits & continuity
11X1 T08 01 limits & continuity11X1 T08 01 limits & continuity
11X1 T08 01 limits & continuityNigel Simmons
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Matthew Leingang
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Mel Anthony Pepito
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivativessahil9100
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating LimitsMatthew Leingang
 
real number presentations
 real number presentations  real number presentations
real number presentations JipukhanAgun
 
Limits richard
Limits richardLimits richard
Limits richardcanalculus
 
11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)Nigel Simmons
 
11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)Nigel Simmons
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)Nigel Simmons
 
11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)Nigel Simmons
 
Applying the derivative
Applying the derivativeApplying the derivative
Applying the derivativeInarotul Faiza
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet AllMoe Han
 
X2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsX2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsNigel Simmons
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)Nigel Simmons
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)Nigel Simmons
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Matthew Leingang
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Mel Anthony Pepito
 
11X1 T10 02 critical points (2011)
11X1 T10 02 critical points (2011)11X1 T10 02 critical points (2011)
11X1 T10 02 critical points (2011)Nigel Simmons
 

Similar to 11X1 T09 01 limits and continuity (2010) (20)

11X1 T08 01 limits & continuity
11X1 T08 01 limits & continuity11X1 T08 01 limits & continuity
11X1 T08 01 limits & continuity
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 
Limmits
LimmitsLimmits
Limmits
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
real number presentations
 real number presentations  real number presentations
real number presentations
 
Limits richard
Limits richardLimits richard
Limits richard
 
11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)
 
11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)
 
11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)
 
Applying the derivative
Applying the derivativeApplying the derivative
Applying the derivative
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet All
 
X2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsX2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functions
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
 
11X1 T10 02 critical points (2011)
11X1 T10 02 critical points (2011)11X1 T10 02 critical points (2011)
11X1 T10 02 critical points (2011)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterMateoGardella
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 

Recently uploaded (20)

Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 

11X1 T09 01 limits and continuity (2010)

  • 2. Limits & Continuity A limit describes the behaviour of functions.
  • 3. Limits & Continuity A limit describes the behaviour of functions. lim f  x  : x a
  • 4. Limits & Continuity A limit describes the behaviour of functions. lim f  x  : as the x value approaches a, what value does f(x) approach? x a
  • 5. Limits & Continuity A limit describes the behaviour of functions. lim f  x  : as the x value approaches a, what value does f(x) approach? x a lim f  x  : x a
  • 6. Limits & Continuity A limit describes the behaviour of functions. lim f  x  : as the x value approaches a, what value does f(x) approach? x a lim f  x  : as the x value approaches a from the negative side, x a what value does f(x) approach?
  • 7. Limits & Continuity A limit describes the behaviour of functions. lim f  x  : as the x value approaches a, what value does f(x) approach? x a lim f  x  : as the x value approaches a from the negative side, x a what value does f(x) approach? y y  x 1 1 1 x
  • 8. Limits & Continuity A limit describes the behaviour of functions. lim f  x  : as the x value approaches a, what value does f(x) approach? x a lim f  x  : as the x value approaches a from the negative side, x a what value does f(x) approach? y y  x 1 1 1 x lim x  1  0  x1
  • 9. Limits & Continuity A limit describes the behaviour of functions. lim f  x  : as the x value approaches a, what value does f(x) approach? x a lim f  x  : as the x value approaches a from the negative side, x a what value does f(x) approach? y y y  x 1 6 4 y  f  x 1 1 x x lim x  1  0  x1
  • 10. Limits & Continuity A limit describes the behaviour of functions. lim f  x  : as the x value approaches a, what value does f(x) approach? x a lim f  x  : as the x value approaches a from the negative side, x a what value does f(x) approach? y y y  x 1 6 4 y  f  x 1 1 x x lim x  1  0  lim f  x   4  x1 x0
  • 11. Limits & Continuity A limit describes the behaviour of functions. lim f  x  : as the x value approaches a, what value does f(x) approach? x a lim f  x  : as the x value approaches a from the negative side, x a what value does f(x) approach? lim f  x  : x a y y y  x 1 6 4 y  f  x 1 1 x x lim x  1  0  lim f  x   4  x1 x0
  • 12. Limits & Continuity A limit describes the behaviour of functions. lim f  x  : as the x value approaches a, what value does f(x) approach? x a lim f  x  : as the x value approaches a from the negative side, x a what value does f(x) approach? lim f  x  : as the x value approaches a from the positive side, x a what value does f(x) approach? y y y  x 1 6 4 y  f  x 1 1 x x lim x  1  0  lim f  x   4  x1 x0
  • 13. Limits & Continuity A limit describes the behaviour of functions. lim f  x  : as the x value approaches a, what value does f(x) approach? x a lim f  x  : as the x value approaches a from the negative side, x a what value does f(x) approach? lim f  x  : as the x value approaches a from the positive side, x a what value does f(x) approach? y y y  x 1 6 4 y  f  x 1 1 x x lim x  1  0  lim x  1  0  lim f  x   4  x1 x1 x0
  • 14. Limits & Continuity A limit describes the behaviour of functions. lim f  x  : as the x value approaches a, what value does f(x) approach? x a lim f  x  : as the x value approaches a from the negative side, x a what value does f(x) approach? lim f  x  : as the x value approaches a from the positive side, x a what value does f(x) approach? y y y  x 1 6 4 y  f  x 1 1 x x lim x  1  0  lim x  1  0  lim f  x   4  lim f  x   6  x1 x1 x0 x0
  • 15. Limits & Continuity A limit describes the behaviour of functions. lim f  x  : as the x value approaches a, what value does f(x) approach? x a lim f  x  : as the x value approaches a from the negative side, x a what value does f(x) approach? lim f  x  : as the x value approaches a from the positive side, x a what value does f(x) approach? y y y  x 1 6 4 y  f  x 1 1 x x lim x  1  0  lim x  1  0  lim f  x   4  lim f  x   6  x1 x1 x0 x0 If lim f  x   lim f  x  , then f  x  is continuous at x  a x a x a
  • 18. Finding Limits (1) Direct Substitution e.g. lim x  7 x5
  • 19. Finding Limits (1) Direct Substitution e.g. lim x  7  5  7 x5  12
  • 20. Finding Limits (1) Direct Substitution e.g. lim x  7  5  7 x5  12 (2) Factorise and Cancel
  • 21. Finding Limits (1) Direct Substitution e.g. lim x  7  5  7 x5  12 (2) Factorise and Cancel x2  9 e.g. lim x3 x  3
  • 22. Finding Limits (1) Direct Substitution e.g. lim x  7  5  7 x5  12 (2) Factorise and Cancel e.g. lim x2  9  lim  x  3 x  3 x3 x  3 x3  x  3
  • 23. Finding Limits (1) Direct Substitution e.g. lim x  7  5  7 x5  12 (2) Factorise and Cancel e.g. lim x2  9  lim  x  3 x  3 x3 x  3 x3  x  3  lim  x  3 x3
  • 24. Finding Limits (1) Direct Substitution e.g. lim x  7  5  7 x5  12 (2) Factorise and Cancel e.g. lim x2  9  lim  x  3 x  3 x3 x  3 x3  x  3  lim  x  3 x3  33 6
  • 26. (3) Special Limit 1 lim  0 x x
  • 27. (3) Special Limit 1 lim  0 x x x3  3x 2  2 x  1 e.g.  i  lim x 4 x3  1
  • 28. (3) Special Limit 1 lim  0 x x x3 3x 2 2 x 1 x3  3x 2  2 x  1  3  3 3 e.g.  i  3 lim  lim x x x x x 4x 1 3 x 4 x3 1 3  3 x x
  • 29. (3) Special Limit 1 lim  0 x x x3 3x 2 2 x 1 x3  3x 2  2 x  1  3  3 3 e.g.  i  3 lim  lim x x x x x 4x 1 3 x 4 x3 1 3  3 x x 3 2 1 1  2  3  lim x x x x 1 4 3 x
  • 30. (3) Special Limit 1 lim  0 x x x3 3x 2 2 x 1 x3  3x 2  2 x  1  3  3 3 e.g.  i  3 lim  lim x x x x x 4x 1 3 x 4 x3 1 3  3 x x 3 2 1 1  2  3  lim x x x x 1 4 3 x 1  4
  • 31. (3) Special Limit 1 lim  0 x x x3 3x 2 2 x 1 x3  3x 2  2 x  1  3  3 3 e.g.  i  3 lim  lim x x x x x 4x 1 3 x 4 x3 1 3  3 x x 3 2 1 1  2  3  lim x x x x 1 4 3 x 1  4 4x  x2  ii  lim 3 x x  1
  • 32. (3) Special Limit 1 lim  0 x x x3 3x 2 2 x 1 x3  3x 2  2 x  1  3  3 3 e.g.  i  3 lim  lim x x x x x 4x 1 3 x 4 x3 1 3  3 x x 3 2 1 1  2  3  lim x x x x 1 4 3 x 1  4 4x  x2 0  ii  lim 3 x x  1  1 0
  • 33. (3) Special Limit 1 lim  0 x x x3 3x 2 2 x 1 x3  3x 2  2 x  1  3  3 3 e.g.  i  3 lim  lim x x x x x 4x 1 3 x 4 x3 1 3  3 x x 3 2 1 1  2  3  lim x x x x 1 4 3 x 1  4 4x  x2 0 x7  x6  x2  ii  lim 3 x x  1   iii  lim 7 x 3 x  x  974 1 0
  • 34. (3) Special Limit 1 lim  0 x x x3 3x 2 2 x 1 x3  3x 2  2 x  1  3  3 3 e.g.  i  3 lim  lim x x x x x 4x 1 3 x 4 x3 1 3  3 x x 3 2 1 1  2  3  lim x x x x 1 4 3 x 1  4 4x  x2 0 x7  x6  x2 1  ii  lim 3 x x  1   iii  lim 7 x 3 x  x  974  1 3 0
  • 35. x3  2  iv  lim 2 x x  1
  • 36. x3  2 1  iv  lim 2 x x  1  0 
  • 37. x3  2 1  iv  lim 2 x x  1  0   x  3 x  2   v  Find the horizontal asymptote of y   x  1 x  1
  • 38. x3  2 1  iv  lim 2 x x  1  0   x  3 x  2   v  Find the horizontal asymptote of y   x  1 x  1 lim  x  3 x  2  x  x  1 x  1
  • 39. x3  2 1  iv  lim 2 x x  1  0   x  3 x  2   v  Find the horizontal asymptote of y   x  1 x  1  x  3 x  2  x2  x  6 lim  lim 2 x  x  1 x  1 x x 1
  • 40. x3  2 1  iv  lim 2 x x  1  0   x  3 x  2   v  Find the horizontal asymptote of y   x  1 x  1  x  3 x  2  x2  x  6 lim  lim 2 x  x  1 x  1 x x 1 1  1 1
  • 41. x3  2 1  iv  lim 2 x x  1  0   x  3 x  2   v  Find the horizontal asymptote of y   x  1 x  1  x  3 x  2  x2  x  6 lim  lim 2 x  x  1 x  1 x x 1 1  1 1  horizontal asymptote is y  1
  • 42. x3  2 1  iv  lim 2 x x  1  0   x  3 x  2   v  Find the horizontal asymptote of y   x  1 x  1  x  3 x  2  x2  x  6 lim  lim 2 x  x  1 x  1 x x 1 1  1 1  horizontal asymptote is y  1 Exercise 7I; 1a, 2ace, 3ac, 4a, 5ad, 8a, 9ab, 10a