SlideShare a Scribd company logo
1 of 70
Download to read offline
Equations of the form asinx + bcosx = c
Method 1: Using the t results
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2      0    360
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2      0    360
                    
      let t  tan
                    2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                  0    360
                           1  t 2   2t                    
       let t  tan       3        2 
                                        4     2 
                                                    2     0        180
                   2       1 t  1 t                       2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                  0    360
                           1  t 2   2t                           
       let t  tan       3        2 
                                        4      2 
                                                     2           0        180
                   2       1 t  1 t                              2
                                       3  3t 2  8t  2  2t 2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                   0    360
                           1  t 2   2t                           
       let t  tan       3        2 
                                        4       2 
                                                      2          0        180
                   2       1 t  1 t                              2
                                       3  3t 2  8t  2  2t 2
                                        5t 2  8t  1  0
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                   0    360
                           1  t 2   2t                           
       let t  tan       3        2 
                                        4       2 
                                                      2          0        180
                   2       1 t  1 t                              2
                                       3  3t 2  8t  2  2t 2
                                        5t 2  8t  1  0
                                              8  84
                                          t
                                                  10
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                   0    360
                           1  t 2   2t                           
       let t  tan       3        2 
                                        4       2 
                                                      2          0        180
                   2       1 t  1 t                              2
                                       3  3t 2  8t  2  2t 2
                                        5t 2  8t  1  0
                                              8  84
                                          t
                                                  10
         4  21                          4  21
    tan                 or          tan 
        2        5                        2         5
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                   0    360
                           1  t 2   2t                           
       let t  tan       3        2 
                                        4       2 
                                                      2          0        180
                   2       1 t  1 t                              2
                                       3  3t 2  8t  2  2t 2
                                        5t 2  8t  1  0
                                              8  84
                                          t
                                                  10
         4  21                          4  21
    tan                 or          tan 
        2        5                        2         5
  Q2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                   0    360
                           1  t 2   2t                           
       let t  tan       3        2 
                                        4       2 
                                                      2          0        180
                   2       1 t  1 t                              2
                                       3  3t 2  8t  2  2t 2
                                        5t 2  8t  1  0
                                              8  84
                                          t
                                                  10
         4  21                          4  21
    tan                 or          tan 
        2        5                        2         5
                  21  4
 Q2 tan  
                    5
             639
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                   0    360
                           1  t 2   2t                           
       let t  tan       3        2 
                                        4       2 
                                                      2          0        180
                   2       1 t  1 t                              2
                                       3  3t 2  8t  2  2t 2
                                        5t 2  8t  1  0
                                              8  84
                                          t
                                                  10
         4  21                          4  21
    tan                 or          tan 
        2        5                        2         5
                  21  4
 Q2 tan  
                    5
             639
            
                 173 21
            2
              346 42
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                   0    360
                           1  t 2   2t                           
       let t  tan       3        2 
                                        4       2 
                                                      2          0        180
                   2       1 t  1 t                              2
                                       3  3t 2  8t  2  2t 2
                                        5t 2  8t  1  0
                                              8  84
                                          t
                                                  10
         4  21                          4  21
    tan                 or          tan 
        2        5                        2         5
                  21  4
 Q2 tan                     Q1
                    5
             639
            
                 173 21
            2
              346 42
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                   0    360
                           1  t 2   2t                           
       let t  tan       3        2 
                                        4       2 
                                                      2          0        180
                   2       1 t  1 t                              2
                                       3  3t 2  8t  2  2t 2
                                        5t 2  8t  1  0
                                              8  84
                                          t
                                                  10
         4  21                          4  21
    tan                 or          tan 
        2        5                        2         5
                  21  4                        4  21
 Q2 tan                     Q1 tan  
                    5                                5
             639                        59 47
            
                 173 21
            2
              346 42
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                   0    360
                           1  t 2   2t                           
       let t  tan       3        2 
                                        4       2 
                                                      2          0        180
                   2       1 t  1 t                              2
                                       3  3t 2  8t  2  2t 2
                                        5t 2  8t  1  0
                                              8  84
                                          t
                                                  10
         4  21                          4  21
    tan                 or          tan 
        2        5                        2         5
                  21  4                        4  21
 Q2 tan                     Q1 tan  
                    5                                5
             639                        59 47
                                          
                 173 21                      59 47
            2                              2
              346 42                     11933
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                   0    360
                           1  t 2   2t                        
       let t  tan       3             4         2          0   180
                   2        1 t 2  1 t 2 
                                                                    2
                                       3  3t 2  8t  2  2t 2
                                        5t 2  8t  1  0
                                              8  84
                                          t
                                                  10
         4  21                          4  21
    tan                 or          tan 
        2        5                        2        5            Test :   180
                  21  4                        4  21
 Q2 tan                     Q1 tan  
                    5                               5
             639                        59 47
                                         
                 173 21                     59 47
            2                             2
             346 42                     11933
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                   0    360
                           1  t 2   2t                        
       let t  tan       3             4         2          0   180
                   2        1 t 2  1 t 2 
                                                                    2
                                       3  3t 2  8t  2  2t 2
                                        5t 2  8t  1  0
                                              8  84
                                          t
                                                  10
         4  21                          4  21
    tan                 or          tan 
        2        5                        2        5            Test :   180
                  21  4                        4  21
 Q2 tan                     Q1 tan                      3cos180  4sin180
                    5                               5
             639                        59 47              4  2
                                       
                173 21                     59 47
           2                             2
             346 42                   11933
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos   4sin   2                   0    360
                           1  t 2   2t                        
       let t  tan       3             4         2          0   180
                   2        1 t 2  1 t 2 
                                                                    2
                                       3  3t 2  8t  2  2t 2
                                        5t 2  8t  1  0
                                              8  84
                                          t
                                                  10
         4  21                          4  21
    tan                 or          tan 
        2        5                        2        5            Test :   180
                  21  4                        4  21
 Q2 tan                     Q1 tan                      3cos180  4sin180
                    5                               5
             639                        59 47              4  2
                                       
                173 21                     59 47
           2                             2                 11933,346 42
             346 42                   11933
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360


          3cos   4sin   2
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360
                   sin  cos  cos  sin 

          3cos   4sin   2
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360
                   sin  cos  cos  sin 

          3cos   4sin   2
                                                
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360
                   sin  cos  cos  sin 
                                                                         3
          3cos   4sin   2
                                                        


                                              sin corresponds to 3, so
                                               3 goes on the opposite
                                                        side
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360
                   sin  cos  cos  sin 
                                                    3
          3cos   4sin   2
                                                
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360
                   sin  cos  cos  sin 
                                                                         3
          3cos   4sin   2
                                                        
                                                            4

                                              cos corresponds to 4, so
                                               4 goes on the adjacent
                                                        side
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360
                   sin  cos  cos  sin 
                                                        5
                                                                  3
          3cos   4sin   2
                                                    
                                                         4

                                              by Pythagoras the
                                               hypotenuse is 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360
                      sin  cos  cos  sin 
                                                           5
                                                                     3
            3cos   4sin   2
                                                       
         3 cos   4 sin    2
     5                                                   4
         5         5       
                                                 by Pythagoras the
                                                  hypotenuse is 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360
                      sin  cos  cos  sin 
                                                           5
                                                                     3
            3cos   4sin   2
                                                       
         3 cos   4 sin    2
     5                                                   4
         5         5       
               5sin      2                 by Pythagoras the
                                                  hypotenuse is 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360
                      sin  cos  cos  sin 
                                                           5
                                                                     3
            3cos   4sin   2
                                                       
         3 cos   4 sin    2
     5                                                   4
         5         5       
               5sin      2                 by Pythagoras the
                                                  hypotenuse is 5


   The hypotenuse becomes the
  coefficient of the trig function
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360

                                                    5
                                                            3
            3cos   4sin   2
                                                
         3 cos   4 sin    2
     5                                           4
         5         5                                  3
                                                tan  
               5sin      2                        4
                                2
                 sin     
                                5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360

                                                    5
                                                                 3
            3cos   4sin   2
                                                
         3 cos   4 sin    2
     5                                           4
         5         5                                  3
                                                tan  
               5sin      2                        4
                                2
                 sin                            3652
                                5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360

                                                    5
                                                                 3
            3cos   4sin   2
                                                
         3 cos   4 sin    2
     5                                           4
         5         5                                  3
                                                tan  
               5sin      2                        4
                                2
                 sin                            3652
                                5
                       Q1, Q2
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360

                                                    5
                                                                 3
            3cos   4sin   2
                                                
         3 cos   4 sin    2
     5                                           4
         5         5                                  3
                                                tan  
               5sin      2                        4
                                2
                 sin                            3652
                                5
                       Q1, Q2
                                2
                       sin  
                                5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360

                                                    5
                                                                 3
            3cos   4sin   2
                                                
         3 cos   4 sin    2
     5                                           4
         5         5                                  3
                                                tan  
               5sin      2                        4
                                2
                 sin                            3652
                                5
                       Q1, Q2
                                2
                       sin  
                                5
                              2335
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360

                                                    5
                                                                 3
            3cos   4sin   2
                                                
         3 cos   4 sin    2
     5                                           4
         5         5                                  3
                                                tan  
               5sin      2                        4
                                2
                 sin                            3652
                                5
                       Q1, Q2
                                2
                       sin  
                                5
                              2335
                 3652    2335,156 25
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360

                                                    5
                                                                 3
            3cos   4sin   2
                                                
         3 cos   4 sin    2
     5                                           4
         5         5                                  3
                                                tan  
               5sin      2                        4
                                2
                 sin                            3652
                                5
                       Q1, Q2
                                2
                       sin  
                                5
                              2335
                 3652    2335,156 25
                            1317,11933
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos   4sin   2       0    360

                                                         5
                                                                       3
            3cos   4sin   2
                                                     
         3 cos   4 sin    2
     5                                                 4
         5         5                                        3
                                                      tan  
               5sin      2                              4
                                2
                 sin                                  3652
                                5
                       Q1, Q2
                                2
                       sin  
                                5
                              2335
                 36 52    2335,156 25
                    
                                                  11933,346 43
                            1317,11933
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360


           3cos   4sin   2
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                    cos  cos   sin  sin 

           3cos   4sin   2
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                    cos  cos   sin  sin 

           3cos   4sin   2
                                                  
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                    cos  cos   sin  sin 

           3cos   4sin   2
                                                          
                                                               3

                                                cos corresponds to 3, so
                                                 3 goes on the adjacent
                                                          side
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                    cos  cos   sin  sin 

           3cos   4sin   2
                                                  
                                                      3
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                    cos  cos   sin  sin 
                                                                           4
           3cos   4sin   2
                                                          
                                                               3


                                                cos corresponds to 4, so
                                                 4 goes on the adjacent
                                                          side
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                    cos  cos   sin  sin 
                                                          5
                                                                    4
           3cos   4sin   2
                                                      
                                                              3

                                                by Pythagoras the
                                                 hypotenuse is 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                      cos  cos   sin  sin 
                                                            5
                                                                      4
            3cos   4sin   2
                                                        
         3 cos   4 sin    2
     5                                                       3
         5         5       
                                                  by Pythagoras the
                                                   hypotenuse is 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                      cos  cos   sin  sin 
                                                            5
                                                                      4
            3cos   4sin   2
                                                        
         3 cos   4 sin    2
     5                                                       3
         5         5       
               5cos      2                  by Pythagoras the
                                                   hypotenuse is 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                      cos  cos   sin  sin 
                                                            5
                                                                      4
            3cos   4sin   2
                                                        
         3 cos   4 sin    2
     5                                                       3
         5         5       
               5cos      2                  by Pythagoras the
                                                   hypotenuse is 5


   The hypotenuse becomes the
  coefficient of the trig function
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                      cos  cos   sin  sin 
                                                      5
                                                              4
            3cos   4sin   2
                                                  
         3 cos   4 sin    2
     5                                                 3
         5         5                                    4
                                                  tan  
               5cos      2                          3
                                2
                 cos     
                                5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                      cos  cos   sin  sin 
                                                      5
                                                                  4
            3cos   4sin   2
                                                  
         3 cos   4 sin    2
     5                                                 3
         5         5                                    4
                                                  tan  
               5cos      2                          3
                                2
                 cos                              538
                                5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                      cos  cos   sin  sin 
                                                      5
                                                                  4
            3cos   4sin   2
                                                  
         3 cos   4 sin    2
     5                                                 3
         5         5                                    4
                                                  tan  
               5cos      2                          3
                                2
                 cos                              538
                                5
                       Q1, Q4
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                      cos  cos   sin  sin 
                                                      5
                                                                  4
            3cos   4sin   2
                                                  
         3 cos   4 sin    2
     5                                                 3
         5         5                                    4
                                                  tan  
               5cos      2                          3
                                2
                 cos                              538
                                5
                       Q1, Q4
                                 2
                       cos  
                                5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                      cos  cos   sin  sin 
                                                      5
                                                                  4
            3cos   4sin   2
                                                  
         3 cos   4 sin    2
     5                                                 3
         5         5                                    4
                                                  tan  
               5cos      2                          3
                                2
                 cos                              538
                                5
                       Q1, Q4
                                 2
                       cos  
                                5
                              66 25
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                      cos  cos   sin  sin 
                                                      5
                                                                  4
            3cos   4sin   2
                                                  
         3 cos   4 sin    2
     5                                                 3
         5         5                                    4
                                                  tan  
               5cos      2                          3
                                2
                 cos                              538
                                5
                       Q1, Q4
                                 2
                       cos  
                                5
                              66 25
                     538  66 25, 29335
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
 eg (i) 3cos   4sin   2        0    360
                      cos  cos   sin  sin 
                                                      5
                                                                  4
            3cos   4sin   2
                                                  
         3 cos   4 sin    2
     5                                                 3
         5         5                                    4
                                                  tan  
               5cos      2                          3
                                2
                 cos                              538
                                5
                       Q1, Q4
                                 2
                       cos  
                                5
                              66 25
                     538  66 25, 29335
                          11933,346 43
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   

      3sin 3t  cos3t
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
          sin 3t cos   cos3t sin  
       3sin 3t  cos3t
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
          sin 3t cos   cos3t sin                     2     1
       3sin 3t  cos3t
                                                   
                                                         3
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
          sin 3t cos   cos3t sin                     2     1
       3sin 3t  cos3t  2sin  3t   
                                                   
                                                         3
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
          sin 3t cos   cos3t sin                     2     1
       3sin 3t  cos3t  2sin  3t   
                                                   
                                                            3
                                                                1
                                                       tan  
                                                                 3
                                                             30
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
          sin 3t cos   cos3t sin                        2         1
       3sin 3t  cos3t  2sin  3t   
                           2sin  3t  30             
                                                                3
                                                                    1
                                                           tan  
                                                                     3
                                                                 30
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
          sin 3t cos   cos3t sin                        2         1
       3sin 3t  cos3t  2sin  3t   
                           2sin  3t  30             
                                                                3
                                                                    1
                                                           tan  
                                                                     3
                                                                 30
                                           2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx  cos x in the form R cos  x   
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
          sin 3t cos   cos3t sin                        2         1
       3sin 3t  cos3t  2sin  3t   
                           2sin  3t  30             
                                                                3
                                                                    1
                                                           tan  
                                                                     3
                                                                 30
                                           2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx  cos x in the form R cos  x   

       sin x  cos x
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
          sin 3t cos   cos3t sin                        2         1
       3sin 3t  cos3t  2sin  3t   
                           2sin  3t  30             
                                                                3
                                                                    1
                                                           tan  
                                                                     3
                                                                 30
                                           2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx  cos x in the form R cos  x   
           cos x cos   sin x sin  
        sin x  cos x
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
          sin 3t cos   cos3t sin                        2         1
       3sin 3t  cos3t  2sin  3t   
                           2sin  3t  30             
                                                                3
                                                                    1
                                                           tan  
                                                                     3
                                                                 30
                                            2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx  cos x in the form R cos  x   
           cos x cos   sin x sin  
        sin x  cos x    cos x  sin x 
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
          sin 3t cos   cos3t sin                        2         1
       3sin 3t  cos3t  2sin  3t   
                           2sin  3t  30             
                                                                3
                                                                    1
                                                           tan  
                                                                     3
                                                                 30
                                            2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx  cos x in the form R cos  x   
           cos x cos   sin x sin                     2
        sin x  cos x    cos x  sin x 
                                                                    1
                                                       
                                                            1
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
          sin 3t cos   cos3t sin                        2         1
       3sin 3t  cos3t  2sin  3t   
                           2sin  3t  30             
                                                                3
                                                                    1
                                                           tan  
                                                                     3
                                                                 30
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx  cos x in the form R cos  x   
           cos x cos   sin x sin                      2
        sin x  cos x    cos x  sin x 
                                                                     1
                           2 cos  x                
                                                              1
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
          sin 3t cos   cos3t sin                        2         1
       3sin 3t  cos3t  2sin  3t   
                           2sin  3t  30             
                                                                3
                                                                    1
                                                           tan  
                                                                     3
                                                                 30
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx  cos x in the form R cos  x   
           cos x cos   sin x sin                       2
        sin x  cos x    cos x  sin x 
                                                                     1
                           2 cos  x                
                                                               1
                                                           tan   1
                                                              45
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
          sin 3t cos   cos3t sin                        2         1
       3sin 3t  cos3t  2sin  3t   
                           2sin  3t  30             
                                                                3
                                                                    1
                                                           tan  
                                                                     3
                                                                 30
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx  cos x in the form R cos  x   
           cos x cos   sin x sin                       2
        sin x  cos x    cos x  sin x 
                                                                     1
                           2 cos  x                
                           2 cos  x  45                  1
                                                           tan   1
                                                              45
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t  cos3t in the form R sin  3t   
           sin 3t cos   cos3t sin                        2         1
         3sin 3t  cos3t  2sin  3t   
                            2sin  3t  30             
                                                                 3
                                                                     1
                                                            tan  
                 Exercise 2E;                                         3
   6, 7, 10bd, 11, 13, 14, 16ac, 20a, 23                          30
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx  cos x in the form R cos  x   
           cos x cos   sin x sin                       2
        sin x  cos x    cos x  sin x 
                                                                     1
                           2 cos  x                
                           2 cos  x  45                  1
                                                           tan   1
                                                               45

More Related Content

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...KokoStevan
 

Recently uploaded (20)

Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 

11X1 T08 07 asinx + bcosx = c (2010)

  • 1. Equations of the form asinx + bcosx = c Method 1: Using the t results
  • 2. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360
  • 3. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360  let t  tan 2
  • 4. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3 2   4 2  2 0  180 2 1 t  1 t  2
  • 5. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3 2   4 2  2 0  180 2 1 t  1 t  2 3  3t 2  8t  2  2t 2
  • 6. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3 2   4 2  2 0  180 2 1 t  1 t  2 3  3t 2  8t  2  2t 2 5t 2  8t  1  0
  • 7. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3 2   4 2  2 0  180 2 1 t  1 t  2 3  3t 2  8t  2  2t 2 5t 2  8t  1  0 8  84 t 10
  • 8. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3 2   4 2  2 0  180 2 1 t  1 t  2 3  3t 2  8t  2  2t 2 5t 2  8t  1  0 8  84 t 10  4  21  4  21 tan  or tan  2 5 2 5
  • 9. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3 2   4 2  2 0  180 2 1 t  1 t  2 3  3t 2  8t  2  2t 2 5t 2  8t  1  0 8  84 t 10  4  21  4  21 tan  or tan  2 5 2 5 Q2
  • 10. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3 2   4 2  2 0  180 2 1 t  1 t  2 3  3t 2  8t  2  2t 2 5t 2  8t  1  0 8  84 t 10  4  21  4  21 tan  or tan  2 5 2 5 21  4 Q2 tan   5   639
  • 11. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3 2   4 2  2 0  180 2 1 t  1 t  2 3  3t 2  8t  2  2t 2 5t 2  8t  1  0 8  84 t 10  4  21  4  21 tan  or tan  2 5 2 5 21  4 Q2 tan   5   639   173 21 2   346 42
  • 12. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3 2   4 2  2 0  180 2 1 t  1 t  2 3  3t 2  8t  2  2t 2 5t 2  8t  1  0 8  84 t 10  4  21  4  21 tan  or tan  2 5 2 5 21  4 Q2 tan   Q1 5   639   173 21 2   346 42
  • 13. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3 2   4 2  2 0  180 2 1 t  1 t  2 3  3t 2  8t  2  2t 2 5t 2  8t  1  0 8  84 t 10  4  21  4  21 tan  or tan  2 5 2 5 21  4 4  21 Q2 tan   Q1 tan   5 5   639   59 47   173 21 2   346 42
  • 14. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3 2   4 2  2 0  180 2 1 t  1 t  2 3  3t 2  8t  2  2t 2 5t 2  8t  1  0 8  84 t 10  4  21  4  21 tan  or tan  2 5 2 5 21  4 4  21 Q2 tan   Q1 tan   5 5   639   59 47    173 21  59 47 2 2   346 42   11933
  • 15. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3  4  2 0   180 2  1 t 2  1 t 2   2 3  3t 2  8t  2  2t 2 5t 2  8t  1  0 8  84 t 10  4  21  4  21 tan  or tan  2 5 2 5 Test :   180 21  4 4  21 Q2 tan   Q1 tan   5 5   639   59 47    173 21  59 47 2 2   346 42   11933
  • 16. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3  4  2 0   180 2  1 t 2  1 t 2   2 3  3t 2  8t  2  2t 2 5t 2  8t  1  0 8  84 t 10  4  21  4  21 tan  or tan  2 5 2 5 Test :   180 21  4 4  21 Q2 tan   Q1 tan   3cos180  4sin180 5 5   639   59 47  4  2    173 21  59 47 2 2   346 42   11933
  • 17. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos   4sin   2 0    360   1  t 2   2t   let t  tan 3  4  2 0   180 2  1 t 2  1 t 2   2 3  3t 2  8t  2  2t 2 5t 2  8t  1  0 8  84 t 10  4  21  4  21 tan  or tan  2 5 2 5 Test :   180 21  4 4  21 Q2 tan   Q1 tan   3cos180  4sin180 5 5   639   59 47  4  2    173 21  59 47 2 2   11933,346 42   346 42   11933
  • 18. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360
  • 19. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 3cos   4sin   2
  • 20. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 sin  cos  cos  sin  3cos   4sin   2
  • 21. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 sin  cos  cos  sin  3cos   4sin   2 
  • 22. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 sin  cos  cos  sin  3 3cos   4sin   2  sin corresponds to 3, so 3 goes on the opposite side
  • 23. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 sin  cos  cos  sin  3 3cos   4sin   2 
  • 24. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 sin  cos  cos  sin  3 3cos   4sin   2  4 cos corresponds to 4, so 4 goes on the adjacent side
  • 25. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 sin  cos  cos  sin  5 3 3cos   4sin   2  4 by Pythagoras the hypotenuse is 5
  • 26. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 sin  cos  cos  sin  5 3 3cos   4sin   2   3 cos   4 sin    2 5   4  5 5  by Pythagoras the hypotenuse is 5
  • 27. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 sin  cos  cos  sin  5 3 3cos   4sin   2   3 cos   4 sin    2 5   4  5 5  5sin      2 by Pythagoras the hypotenuse is 5
  • 28. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 sin  cos  cos  sin  5 3 3cos   4sin   2   3 cos   4 sin    2 5   4  5 5  5sin      2 by Pythagoras the hypotenuse is 5 The hypotenuse becomes the coefficient of the trig function
  • 29. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 5 3 3cos   4sin   2   3 cos   4 sin    2 5   4  5 5  3 tan   5sin      2 4 2 sin      5
  • 30. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 5 3 3cos   4sin   2   3 cos   4 sin    2 5   4  5 5  3 tan   5sin      2 4 2 sin        3652 5
  • 31. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 5 3 3cos   4sin   2   3 cos   4 sin    2 5   4  5 5  3 tan   5sin      2 4 2 sin        3652 5 Q1, Q2
  • 32. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 5 3 3cos   4sin   2   3 cos   4 sin    2 5   4  5 5  3 tan   5sin      2 4 2 sin        3652 5 Q1, Q2 2 sin   5
  • 33. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 5 3 3cos   4sin   2   3 cos   4 sin    2 5   4  5 5  3 tan   5sin      2 4 2 sin        3652 5 Q1, Q2 2 sin   5   2335
  • 34. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 5 3 3cos   4sin   2   3 cos   4 sin    2 5   4  5 5  3 tan   5sin      2 4 2 sin        3652 5 Q1, Q2 2 sin   5   2335 3652    2335,156 25
  • 35. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 5 3 3cos   4sin   2   3 cos   4 sin    2 5   4  5 5  3 tan   5sin      2 4 2 sin        3652 5 Q1, Q2 2 sin   5   2335 3652    2335,156 25   1317,11933
  • 36. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos   4sin   2 0    360 5 3 3cos   4sin   2   3 cos   4 sin    2 5   4  5 5  3 tan   5sin      2 4 2 sin        3652 5 Q1, Q2 2 sin   5   2335 36 52    2335,156 25    11933,346 43   1317,11933
  • 37. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360
  • 38. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 3cos   4sin   2
  • 39. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  3cos   4sin   2
  • 40. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  3cos   4sin   2 
  • 41. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  3cos   4sin   2  3 cos corresponds to 3, so 3 goes on the adjacent side
  • 42. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  3cos   4sin   2  3
  • 43. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  4 3cos   4sin   2  3 cos corresponds to 4, so 4 goes on the adjacent side
  • 44. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  5 4 3cos   4sin   2  3 by Pythagoras the hypotenuse is 5
  • 45. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  5 4 3cos   4sin   2   3 cos   4 sin    2 5   3  5 5  by Pythagoras the hypotenuse is 5
  • 46. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  5 4 3cos   4sin   2   3 cos   4 sin    2 5   3  5 5  5cos      2 by Pythagoras the hypotenuse is 5
  • 47. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  5 4 3cos   4sin   2   3 cos   4 sin    2 5   3  5 5  5cos      2 by Pythagoras the hypotenuse is 5 The hypotenuse becomes the coefficient of the trig function
  • 48. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  5 4 3cos   4sin   2   3 cos   4 sin    2 5   3  5 5  4 tan   5cos      2 3 2 cos      5
  • 49. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  5 4 3cos   4sin   2   3 cos   4 sin    2 5   3  5 5  4 tan   5cos      2 3 2 cos        538 5
  • 50. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  5 4 3cos   4sin   2   3 cos   4 sin    2 5   3  5 5  4 tan   5cos      2 3 2 cos        538 5 Q1, Q4
  • 51. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  5 4 3cos   4sin   2   3 cos   4 sin    2 5   3  5 5  4 tan   5cos      2 3 2 cos        538 5 Q1, Q4 2 cos   5
  • 52. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  5 4 3cos   4sin   2   3 cos   4 sin    2 5   3  5 5  4 tan   5cos      2 3 2 cos        538 5 Q1, Q4 2 cos   5   66 25
  • 53. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  5 4 3cos   4sin   2   3 cos   4 sin    2 5   3  5 5  4 tan   5cos      2 3 2 cos        538 5 Q1, Q4 2 cos   5   66 25   538  66 25, 29335
  • 54. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos   4sin   2 0    360 cos  cos   sin  sin  5 4 3cos   4sin   2   3 cos   4 sin    2 5   3  5 5  4 tan   5cos      2 3 2 cos        538 5 Q1, Q4 2 cos   5   66 25   538  66 25, 29335   11933,346 43
  • 55. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t   
  • 56. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t    3sin 3t  cos3t
  • 57. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   3sin 3t  cos3t
  • 58. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   2 1 3sin 3t  cos3t  3
  • 59. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   2 1 3sin 3t  cos3t  2sin  3t     3
  • 60. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   2 1 3sin 3t  cos3t  2sin  3t     3 1 tan   3   30
  • 61. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   2 1 3sin 3t  cos3t  2sin  3t     2sin  3t  30   3 1 tan   3   30
  • 62. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   2 1 3sin 3t  cos3t  2sin  3t     2sin  3t  30   3 1 tan   3   30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx  cos x in the form R cos  x   
  • 63. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   2 1 3sin 3t  cos3t  2sin  3t     2sin  3t  30   3 1 tan   3   30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx  cos x in the form R cos  x    sin x  cos x
  • 64. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   2 1 3sin 3t  cos3t  2sin  3t     2sin  3t  30   3 1 tan   3   30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx  cos x in the form R cos  x     cos x cos   sin x sin   sin x  cos x
  • 65. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   2 1 3sin 3t  cos3t  2sin  3t     2sin  3t  30   3 1 tan   3   30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx  cos x in the form R cos  x     cos x cos   sin x sin   sin x  cos x    cos x  sin x 
  • 66. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   2 1 3sin 3t  cos3t  2sin  3t     2sin  3t  30   3 1 tan   3   30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx  cos x in the form R cos  x     cos x cos   sin x sin   2 sin x  cos x    cos x  sin x  1  1
  • 67. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   2 1 3sin 3t  cos3t  2sin  3t     2sin  3t  30   3 1 tan   3   30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx  cos x in the form R cos  x     cos x cos   sin x sin   2 sin x  cos x    cos x  sin x  1   2 cos  x     1
  • 68. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   2 1 3sin 3t  cos3t  2sin  3t     2sin  3t  30   3 1 tan   3   30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx  cos x in the form R cos  x     cos x cos   sin x sin   2 sin x  cos x    cos x  sin x  1   2 cos  x     1 tan   1   45
  • 69. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   2 1 3sin 3t  cos3t  2sin  3t     2sin  3t  30   3 1 tan   3   30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx  cos x in the form R cos  x     cos x cos   sin x sin   2 sin x  cos x    cos x  sin x  1   2 cos  x       2 cos  x  45  1 tan   1   45
  • 70. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t  cos3t in the form R sin  3t     sin 3t cos   cos3t sin   2 1 3sin 3t  cos3t  2sin  3t     2sin  3t  30   3 1 tan   Exercise 2E; 3 6, 7, 10bd, 11, 13, 14, 16ac, 20a, 23   30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx  cos x in the form R cos  x     cos x cos   sin x sin   2 sin x  cos x    cos x  sin x  1   2 cos  x       2 cos  x  45  1 tan   1   45