SlideShare a Scribd company logo
1 of 70
Equations of the form asinx + bcosx = c
Method 1: Using the t results
Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
let tan
2
t


Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
           

let tan
2
t


Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
           

let tan
2
t


2 2
3 3 8 2 2t t t   
Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
           

let tan
2
t


2 2
3 3 8 2 2t t t   
2
5 8 1 0t t  
Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
           

let tan
2
t


2 2
3 3 8 2 2t t t   
2
5 8 1 0t t  
8 84
10
t


Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
   
        

let tan
2
t


2 2
3 3 8 2 2t t t   
2
5 8 1 0t t  
8 84
10
t


4 21 4 21
tan or tan
2 5 2 5
  
 
Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
   
        

let tan
2
t


2 2
3 3 8 2 2t t t   
2
5 8 1 0t t  
8 84
10
t


4 21 4 21
tan or tan
2 5 2 5
  
 
Q2
Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
   
        

let tan
2
t


2 2
3 3 8 2 2t t t   
2
5 8 1 0t t  
8 84
10
t


4 21 4 21
tan or tan
2 5 2 5
  
 
Q2
21 4
tan
5
6 39




 
Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
   
        

let tan
2
t


2 2
3 3 8 2 2t t t   
2
5 8 1 0t t  
8 84
10
t


4 21 4 21
tan or tan
2 5 2 5
  
 
Q2
21 4
tan
5
6 39




 
173 21
2
346 42






Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
   
        

let tan
2
t


2 2
3 3 8 2 2t t t   
2
5 8 1 0t t  
8 84
10
t


4 21 4 21
tan or tan
2 5 2 5
  
 
Q2
21 4
tan
5
6 39




 
173 21
2
346 42






Q1
Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
   
        

let tan
2
t


2 2
3 3 8 2 2t t t   
2
5 8 1 0t t  
8 84
10
t


4 21 4 21
tan or tan
2 5 2 5
  
 
Q2
21 4
tan
5
6 39




 
173 21
2
346 42






Q1
4 21
tan
5
59 47




 
Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
   
        

let tan
2
t


2 2
3 3 8 2 2t t t   
2
5 8 1 0t t  
8 84
10
t


4 21 4 21
tan or tan
2 5 2 5
  
 
Q2
21 4
tan
5
6 39




 
173 21
2
346 42






Q1
4 21
tan
5
59 47




 
59 47
2
119 33






Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
   
        

let tan
2
t


2 2
3 3 8 2 2t t t   
2
5 8 1 0t t  
8 84
10
t


4 21 4 21
tan or tan
2 5 2 5
  
 
Q2
21 4
tan
5
6 39




 
173 21
2
346 42






Q1
4 21
tan
5
59 47




 
59 47
2
119 33







180: Test
Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
   
        

let tan
2
t


2 2
3 3 8 2 2t t t   
2
5 8 1 0t t  
8 84
10
t


4 21 4 21
tan or tan
2 5 2 5
  
 
Q2
21 4
tan
5
6 39




 
173 21
2
346 42






Q1
4 21
tan
5
59 47




 
59 47
2
119 33







180: Test
3cos180 4sin180
4 2

  
 
Equations of the form asinx + bcosx = c
Method 1: Using the t results

3600 eg (i) 3cos 4sin 2  
2
2 2
1 2
3 4 2 0 180
1 1 2
t t
t t
   
        

let tan
2
t


2 2
3 3 8 2 2t t t   
2
5 8 1 0t t  
8 84
10
t


4 21 4 21
tan or tan
2 5 2 5
  
 
Q2
21 4
tan
5
6 39




 
173 21
2
346 42






Q1
4 21
tan
5
59 47




 
59 47
2
119 33







180: Test
3cos180 4sin180
4 2

  
 
119 33 ,346 42     
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
 sincoscossin 
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
 sincoscossin 

Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
 sincoscossin 

sin corresponds to 3, so
3 goes on the opposite
side
3
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
 sincoscossin 

3
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
 sincoscossin 

3
cos corresponds to 4, so
4 goes on the adjacent
side
4
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
 sincoscossin 

3
4
by Pythagoras the
hypotenuse is 5
5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
 sincoscossin 

3
4
by Pythagoras the
hypotenuse is 5
5
3 4
5 cos sin 2
5 5
     
 
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
 sincoscossin 

3
4
by Pythagoras the
hypotenuse is 5
5
 5sin 2  
3 4
5 cos sin 2
5 5
     
 
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
 sincoscossin 

3
4
by Pythagoras the
hypotenuse is 5
5
 5sin 2  
The hypotenuse becomes the
coefficient of the trig function
3 4
5 cos sin 2
5 5
     
 
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  

3
4
5
 5sin 2  
3 4
5 cos sin 2
5 5
     
  3
tan
4
 
 
2
sin
5
  
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  

3
4
5
 5sin 2  
3 4
5 cos sin 2
5 5
     
  3
tan
4
 
36 52  
 
2
sin
5
  
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  

3
4
5
 5sin 2  
3 4
5 cos sin 2
5 5
     
  3
tan
4
 
36 52  
 
2
sin
5
  
Q1, Q2
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  

3
4
5
 5sin 2  
3 4
5 cos sin 2
5 5
     
  3
tan
4
 
36 52  
 
2
sin
5
  
Q1, Q2
2
sin
5
 
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  

3
4
5
 5sin 2  
3 4
5 cos sin 2
5 5
     
  3
tan
4
 
36 52  
 
2
sin
5
  
Q1, Q2
2
sin
5
 
23 35  
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  

3
4
5
 5sin 2  
3 4
5 cos sin 2
5 5
     
  3
tan
4
 
36 52  
 
2
sin
5
  
Q1, Q2
2
sin
5
 
23 35  
36 52 23 35 ,156 25     
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  

3
4
5
 5sin 2  
3 4
5 cos sin 2
5 5
     
  3
tan
4
 
36 52  
 
2
sin
5
  
Q1, Q2
2
sin
5
 
23 35  
36 52 23 35 ,156 25     
1317 ,119 33     
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  

3
4
5
 5sin 2  
3 4
5 cos sin 2
5 5
     
  3
tan
4
 
36 52  
 
2
sin
5
  
Q1, Q2
2
sin
5
 
23 35  
36 52 23 35 ,156 25     
119 33 ,346 43     
1317 ,119 33     
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

cos corresponds to 3, so
3 goes on the adjacent
side
3
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

3
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

3
cos corresponds to 4, so
4 goes on the adjacent
side
4
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

3
4
by Pythagoras the
hypotenuse is 5
5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

3
4
by Pythagoras the
hypotenuse is 5
5
3 4
5 cos sin 2
5 5
     
 
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

3
4
by Pythagoras the
hypotenuse is 5
5
 5cos 2  
3 4
5 cos sin 2
5 5
     
 
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

3
4
by Pythagoras the
hypotenuse is 5
5
 5cos 2  
The hypotenuse becomes the
coefficient of the trig function
3 4
5 cos sin 2
5 5
     
 
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

3
4
5
 5cos 2  
3 4
5 cos sin 2
5 5
     
  4
tan
3
 
 
2
cos
5
  
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

3
4
5
 5cos 2  
3 4
5 cos sin 2
5 5
     
  4
tan
3
 
53 8  
 
2
cos
5
  
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

3
4
5
 5cos 2  
3 4
5 cos sin 2
5 5
     
  4
tan
3
 
53 8  
 
2
cos
5
  
Q1, Q4
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

3
4
5
 5cos 2  
3 4
5 cos sin 2
5 5
     
  4
tan
3
 
53 8  
 
2
cos
5
  
Q1, Q4
2
cos
5
 
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

3
4
5
 5cos 2  
3 4
5 cos sin 2
5 5
     
  4
tan
3
 
53 8  
 
2
cos
5
  
Q1, Q4
2
cos
5
 
66 25  
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

3
4
5
 5cos 2  
3 4
5 cos sin 2
5 5
     
  4
tan
3
 
53 8  
 
2
cos
5
  
Q1, Q4
2
cos
5
 
66 25  
53 8 66 25 ,293 35      
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos 4sin 2   
3600 
3cos 4sin 2  
cos cos sin sin   

3
4
5
 5cos 2  
3 4
5 cos sin 2
5 5
     
  4
tan
3
 
53 8  
 
2
cos
5
  
Q1, Q4
2
cos
5
 
66 25  
53 8 66 25 ,293 35      
119 33 ,346 43     
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 

3
12
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 

3
12
 2sin 3t  
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 

3
12
 2sin 3t  
1
tan
3
30



 
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 

3
12
 2sin 3t  
1
tan
3
30



 
 2sin 3 30t  
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 

3
12
 2sin 3t  
1
tan
3
30



 
 2sin 3 30t  
 (iii) Express sin cos in the form cosx x R x  
2003 Extension 1 HSC Q2e) (i)
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 

3
12
 2sin 3t  
1
tan
3
30



 
 2sin 3 30t  
 (iii) Express sin cos in the form cosx x R x  
2003 Extension 1 HSC Q2e) (i)
sin cosx x
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 

3
12
 2sin 3t  
1
tan
3
30



 
 2sin 3 30t  
 (iii) Express sin cos in the form cosx x R x  
2003 Extension 1 HSC Q2e) (i)
sin cosx x
 cos cos sin sinx x 
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 

3
12
 2sin 3t  
1
tan
3
30



 
 2sin 3 30t  
 (iii) Express sin cos in the form cosx x R x  
2003 Extension 1 HSC Q2e) (i)
sin cosx x
 cos cos sin sinx x 
 cos sinx x  
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 

3
12
 2sin 3t  
1
tan
3
30



 
 2sin 3 30t  
 (iii) Express sin cos in the form cosx x R x  
2003 Extension 1 HSC Q2e) (i)
sin cosx x
 cos cos sin sinx x 

1
12
 cos sinx x  
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 

3
12
 2sin 3t  
1
tan
3
30



 
 2sin 3 30t  
 (iii) Express sin cos in the form cosx x R x  
2003 Extension 1 HSC Q2e) (i)
sin cosx x
 cos cos sin sinx x 

1
12
 2cos x   
 cos sinx x  
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 

3
12
 2sin 3t  
1
tan
3
30



 
 2sin 3 30t  
 (iii) Express sin cos in the form cosx x R x  
2003 Extension 1 HSC Q2e) (i)
sin cosx x
 cos cos sin sinx x 

1
12
 2cos x   
tan 1
45



 
 cos sinx x  
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 

3
12
 2sin 3t  
1
tan
3
30



 
 2sin 3 30t  
 (iii) Express sin cos in the form cosx x R x  
2003 Extension 1 HSC Q2e) (i)
sin cosx x
 cos cos sin sinx x 

1
12
 2cos x   
tan 1
45



 
 2cos 45x   
 cos sinx x  
 (ii) Express 3sin3 cos3 in the form sin 3t t R t  
2005 Extension 1 HSC Q5c) (i)
3sin3 cos3t t
 sin3 cos cos3 sint t 

3
12
 2sin 3t  
1
tan
3
30



 
 2sin 3 30t  
 (iii) Express sin cos in the form cosx x R x  
2003 Extension 1 HSC Q2e) (i)
sin cosx x
 cos cos sin sinx x 

1
12
 2cos x   
tan 1
45



 
 2cos 45x   
 cos sinx x  
Exercise 2E;
6, 7, 10bd, 11, 13, 14, 16ac, 20a, 23

More Related Content

What's hot

Untitled 1
Untitled 1Untitled 1
Untitled 1
41639342
 

What's hot (13)

Group theory questions and answers
Group theory questions and answersGroup theory questions and answers
Group theory questions and answers
 
3D Geometry QA 3
3D Geometry QA 33D Geometry QA 3
3D Geometry QA 3
 
Find transitive-closure using warshalls-algorithm
Find transitive-closure  using warshalls-algorithmFind transitive-closure  using warshalls-algorithm
Find transitive-closure using warshalls-algorithm
 
Alejandro González Transformación de coordenadas
Alejandro González  Transformación de coordenadasAlejandro González  Transformación de coordenadas
Alejandro González Transformación de coordenadas
 
ED7202 mds_notes
ED7202 mds_notesED7202 mds_notes
ED7202 mds_notes
 
Fourier integral
Fourier integralFourier integral
Fourier integral
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open Channel
 
block diagram reduction with examples
block diagram reduction with examplesblock diagram reduction with examples
block diagram reduction with examples
 
Fourier integral of Fourier series
Fourier integral of Fourier seriesFourier integral of Fourier series
Fourier integral of Fourier series
 
24 kestirim-omar
24 kestirim-omar24 kestirim-omar
24 kestirim-omar
 
3.6 notes
3.6 notes3.6 notes
3.6 notes
 
Untitled 1
Untitled 1Untitled 1
Untitled 1
 
Position analysis and dimensional synthesis
Position analysis and dimensional synthesisPosition analysis and dimensional synthesis
Position analysis and dimensional synthesis
 

Similar to 11 x1 t08 07 asinx + bcosx = c (2013)

11 x1 t08 07 asinx + bcosx = c (2012)
11 x1 t08 07 asinx + bcosx = c (2012)11 x1 t08 07 asinx + bcosx = c (2012)
11 x1 t08 07 asinx + bcosx = c (2012)
Nigel Simmons
 
11X1 T08 07 asinx + bcosx = c (2010)
11X1 T08 07 asinx + bcosx = c (2010)11X1 T08 07 asinx + bcosx = c (2010)
11X1 T08 07 asinx + bcosx = c (2010)
Nigel Simmons
 
11X1 T07 07 asinx + bcosx = c (2011)
11X1 T07 07 asinx + bcosx = c (2011)11X1 T07 07 asinx + bcosx = c (2011)
11X1 T07 07 asinx + bcosx = c (2011)
Nigel Simmons
 
Lecture 14 section 5.3 trig fcts of any angle
Lecture 14   section 5.3 trig fcts of any angleLecture 14   section 5.3 trig fcts of any angle
Lecture 14 section 5.3 trig fcts of any angle
njit-ronbrown
 
Foundations of Trigonometry: Navigating Angles and Ratios with Ease"
Foundations of Trigonometry: Navigating Angles and Ratios with Ease"Foundations of Trigonometry: Navigating Angles and Ratios with Ease"
Foundations of Trigonometry: Navigating Angles and Ratios with Ease"
abhishek2019pandey
 

Similar to 11 x1 t08 07 asinx + bcosx = c (2013) (20)

11 x1 t08 07 asinx + bcosx = c (2012)
11 x1 t08 07 asinx + bcosx = c (2012)11 x1 t08 07 asinx + bcosx = c (2012)
11 x1 t08 07 asinx + bcosx = c (2012)
 
11X1 T08 07 asinx + bcosx = c (2010)
11X1 T08 07 asinx + bcosx = c (2010)11X1 T08 07 asinx + bcosx = c (2010)
11X1 T08 07 asinx + bcosx = c (2010)
 
11X1 T07 07 asinx + bcosx = c (2011)
11X1 T07 07 asinx + bcosx = c (2011)11X1 T07 07 asinx + bcosx = c (2011)
11X1 T07 07 asinx + bcosx = c (2011)
 
4. coordinate systems part 1 by-ghumare s m
4. coordinate systems part 1 by-ghumare s m4. coordinate systems part 1 by-ghumare s m
4. coordinate systems part 1 by-ghumare s m
 
Complete Factoring Rules.ppt
Complete Factoring Rules.pptComplete Factoring Rules.ppt
Complete Factoring Rules.ppt
 
Complete Factoring Rules in Grade 8 Math.ppt
Complete Factoring Rules in Grade 8 Math.pptComplete Factoring Rules in Grade 8 Math.ppt
Complete Factoring Rules in Grade 8 Math.ppt
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
 
Lecture 14 section 5.3 trig fcts of any angle
Lecture 14   section 5.3 trig fcts of any angleLecture 14   section 5.3 trig fcts of any angle
Lecture 14 section 5.3 trig fcts of any angle
 
Nelson maple pdf
Nelson maple pdfNelson maple pdf
Nelson maple pdf
 
Simpli fied Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...
Simplified Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...Simplified Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...
Simpli fied Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...
 
Chap 1 trigonometry 2 part 1
Chap 1 trigonometry 2 part 1Chap 1 trigonometry 2 part 1
Chap 1 trigonometry 2 part 1
 
chp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.pptchp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.ppt
 
Counting Sort and Radix Sort Algorithms
Counting Sort and Radix Sort AlgorithmsCounting Sort and Radix Sort Algorithms
Counting Sort and Radix Sort Algorithms
 
Unit 1Trigonometry.pptx
Unit 1Trigonometry.pptxUnit 1Trigonometry.pptx
Unit 1Trigonometry.pptx
 
Determinants and matrices.ppt
Determinants and matrices.pptDeterminants and matrices.ppt
Determinants and matrices.ppt
 
Foundations of Trigonometry: Navigating Angles and Ratios with Ease"
Foundations of Trigonometry: Navigating Angles and Ratios with Ease"Foundations of Trigonometry: Navigating Angles and Ratios with Ease"
Foundations of Trigonometry: Navigating Angles and Ratios with Ease"
 
Chap5 sec5.2
Chap5 sec5.2Chap5 sec5.2
Chap5 sec5.2
 
chp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).pptchp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).ppt
 
Trigonometry Cheat Sheet
Trigonometry Cheat SheetTrigonometry Cheat Sheet
Trigonometry Cheat Sheet
 
FM CHAPTER 5.pptx
FM CHAPTER 5.pptxFM CHAPTER 5.pptx
FM CHAPTER 5.pptx
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 

Recently uploaded (20)

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 

11 x1 t08 07 asinx + bcosx = c (2013)

  • 1. Equations of the form asinx + bcosx = c Method 1: Using the t results
  • 2. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2  
  • 3. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   let tan 2 t  
  • 4. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t              let tan 2 t  
  • 5. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t              let tan 2 t   2 2 3 3 8 2 2t t t   
  • 6. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t              let tan 2 t   2 2 3 3 8 2 2t t t    2 5 8 1 0t t  
  • 7. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t              let tan 2 t   2 2 3 3 8 2 2t t t    2 5 8 1 0t t   8 84 10 t  
  • 8. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t               let tan 2 t   2 2 3 3 8 2 2t t t    2 5 8 1 0t t   8 84 10 t   4 21 4 21 tan or tan 2 5 2 5     
  • 9. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t               let tan 2 t   2 2 3 3 8 2 2t t t    2 5 8 1 0t t   8 84 10 t   4 21 4 21 tan or tan 2 5 2 5      Q2
  • 10. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t               let tan 2 t   2 2 3 3 8 2 2t t t    2 5 8 1 0t t   8 84 10 t   4 21 4 21 tan or tan 2 5 2 5      Q2 21 4 tan 5 6 39      
  • 11. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t               let tan 2 t   2 2 3 3 8 2 2t t t    2 5 8 1 0t t   8 84 10 t   4 21 4 21 tan or tan 2 5 2 5      Q2 21 4 tan 5 6 39       173 21 2 346 42      
  • 12. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t               let tan 2 t   2 2 3 3 8 2 2t t t    2 5 8 1 0t t   8 84 10 t   4 21 4 21 tan or tan 2 5 2 5      Q2 21 4 tan 5 6 39       173 21 2 346 42       Q1
  • 13. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t               let tan 2 t   2 2 3 3 8 2 2t t t    2 5 8 1 0t t   8 84 10 t   4 21 4 21 tan or tan 2 5 2 5      Q2 21 4 tan 5 6 39       173 21 2 346 42       Q1 4 21 tan 5 59 47      
  • 14. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t               let tan 2 t   2 2 3 3 8 2 2t t t    2 5 8 1 0t t   8 84 10 t   4 21 4 21 tan or tan 2 5 2 5      Q2 21 4 tan 5 6 39       173 21 2 346 42       Q1 4 21 tan 5 59 47       59 47 2 119 33      
  • 15. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t               let tan 2 t   2 2 3 3 8 2 2t t t    2 5 8 1 0t t   8 84 10 t   4 21 4 21 tan or tan 2 5 2 5      Q2 21 4 tan 5 6 39       173 21 2 346 42       Q1 4 21 tan 5 59 47       59 47 2 119 33        180: Test
  • 16. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t               let tan 2 t   2 2 3 3 8 2 2t t t    2 5 8 1 0t t   8 84 10 t   4 21 4 21 tan or tan 2 5 2 5      Q2 21 4 tan 5 6 39       173 21 2 346 42       Q1 4 21 tan 5 59 47       59 47 2 119 33        180: Test 3cos180 4sin180 4 2      
  • 17. Equations of the form asinx + bcosx = c Method 1: Using the t results  3600 eg (i) 3cos 4sin 2   2 2 2 1 2 3 4 2 0 180 1 1 2 t t t t               let tan 2 t   2 2 3 3 8 2 2t t t    2 5 8 1 0t t   8 84 10 t   4 21 4 21 tan or tan 2 5 2 5      Q2 21 4 tan 5 6 39       173 21 2 346 42       Q1 4 21 tan 5 59 47       59 47 2 119 33        180: Test 3cos180 4sin180 4 2       119 33 ,346 42     
  • 18. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600 
  • 19. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2  
  • 20. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    sincoscossin 
  • 21. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    sincoscossin  
  • 22. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    sincoscossin   sin corresponds to 3, so 3 goes on the opposite side 3
  • 23. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    sincoscossin   3
  • 24. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    sincoscossin   3 cos corresponds to 4, so 4 goes on the adjacent side 4
  • 25. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    sincoscossin   3 4 by Pythagoras the hypotenuse is 5 5
  • 26. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    sincoscossin   3 4 by Pythagoras the hypotenuse is 5 5 3 4 5 cos sin 2 5 5        
  • 27. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    sincoscossin   3 4 by Pythagoras the hypotenuse is 5 5  5sin 2   3 4 5 cos sin 2 5 5        
  • 28. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    sincoscossin   3 4 by Pythagoras the hypotenuse is 5 5  5sin 2   The hypotenuse becomes the coefficient of the trig function 3 4 5 cos sin 2 5 5        
  • 29. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    3 4 5  5sin 2   3 4 5 cos sin 2 5 5         3 tan 4     2 sin 5   
  • 30. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    3 4 5  5sin 2   3 4 5 cos sin 2 5 5         3 tan 4   36 52     2 sin 5   
  • 31. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    3 4 5  5sin 2   3 4 5 cos sin 2 5 5         3 tan 4   36 52     2 sin 5    Q1, Q2
  • 32. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    3 4 5  5sin 2   3 4 5 cos sin 2 5 5         3 tan 4   36 52     2 sin 5    Q1, Q2 2 sin 5  
  • 33. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    3 4 5  5sin 2   3 4 5 cos sin 2 5 5         3 tan 4   36 52     2 sin 5    Q1, Q2 2 sin 5   23 35  
  • 34. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    3 4 5  5sin 2   3 4 5 cos sin 2 5 5         3 tan 4   36 52     2 sin 5    Q1, Q2 2 sin 5   23 35   36 52 23 35 ,156 25     
  • 35. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    3 4 5  5sin 2   3 4 5 cos sin 2 5 5         3 tan 4   36 52     2 sin 5    Q1, Q2 2 sin 5   23 35   36 52 23 35 ,156 25      1317 ,119 33     
  • 36. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2    3 4 5  5sin 2   3 4 5 cos sin 2 5 5         3 tan 4   36 52     2 sin 5    Q1, Q2 2 sin 5   23 35   36 52 23 35 ,156 25      119 33 ,346 43      1317 ,119 33     
  • 37. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600 
  • 38. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2  
  • 39. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin   
  • 40. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin    
  • 41. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     cos corresponds to 3, so 3 goes on the adjacent side 3
  • 42. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     3
  • 43. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     3 cos corresponds to 4, so 4 goes on the adjacent side 4
  • 44. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     3 4 by Pythagoras the hypotenuse is 5 5
  • 45. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     3 4 by Pythagoras the hypotenuse is 5 5 3 4 5 cos sin 2 5 5        
  • 46. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     3 4 by Pythagoras the hypotenuse is 5 5  5cos 2   3 4 5 cos sin 2 5 5        
  • 47. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     3 4 by Pythagoras the hypotenuse is 5 5  5cos 2   The hypotenuse becomes the coefficient of the trig function 3 4 5 cos sin 2 5 5        
  • 48. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     3 4 5  5cos 2   3 4 5 cos sin 2 5 5         4 tan 3     2 cos 5   
  • 49. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     3 4 5  5cos 2   3 4 5 cos sin 2 5 5         4 tan 3   53 8     2 cos 5   
  • 50. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     3 4 5  5cos 2   3 4 5 cos sin 2 5 5         4 tan 3   53 8     2 cos 5    Q1, Q4
  • 51. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     3 4 5  5cos 2   3 4 5 cos sin 2 5 5         4 tan 3   53 8     2 cos 5    Q1, Q4 2 cos 5  
  • 52. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     3 4 5  5cos 2   3 4 5 cos sin 2 5 5         4 tan 3   53 8     2 cos 5    Q1, Q4 2 cos 5   66 25  
  • 53. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     3 4 5  5cos 2   3 4 5 cos sin 2 5 5         4 tan 3   53 8     2 cos 5    Q1, Q4 2 cos 5   66 25   53 8 66 25 ,293 35      
  • 54. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos 4sin 2    3600  3cos 4sin 2   cos cos sin sin     3 4 5  5cos 2   3 4 5 cos sin 2 5 5         4 tan 3   53 8     2 cos 5    Q1, Q4 2 cos 5   66 25   53 8 66 25 ,293 35       119 33 ,346 43     
  • 55.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i)
  • 56.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t
  • 57.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t 
  • 58.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t   3 12
  • 59.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t   3 12  2sin 3t  
  • 60.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t   3 12  2sin 3t   1 tan 3 30     
  • 61.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t   3 12  2sin 3t   1 tan 3 30       2sin 3 30t  
  • 62.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t   3 12  2sin 3t   1 tan 3 30       2sin 3 30t    (iii) Express sin cos in the form cosx x R x   2003 Extension 1 HSC Q2e) (i)
  • 63.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t   3 12  2sin 3t   1 tan 3 30       2sin 3 30t    (iii) Express sin cos in the form cosx x R x   2003 Extension 1 HSC Q2e) (i) sin cosx x
  • 64.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t   3 12  2sin 3t   1 tan 3 30       2sin 3 30t    (iii) Express sin cos in the form cosx x R x   2003 Extension 1 HSC Q2e) (i) sin cosx x  cos cos sin sinx x 
  • 65.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t   3 12  2sin 3t   1 tan 3 30       2sin 3 30t    (iii) Express sin cos in the form cosx x R x   2003 Extension 1 HSC Q2e) (i) sin cosx x  cos cos sin sinx x   cos sinx x  
  • 66.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t   3 12  2sin 3t   1 tan 3 30       2sin 3 30t    (iii) Express sin cos in the form cosx x R x   2003 Extension 1 HSC Q2e) (i) sin cosx x  cos cos sin sinx x   1 12  cos sinx x  
  • 67.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t   3 12  2sin 3t   1 tan 3 30       2sin 3 30t    (iii) Express sin cos in the form cosx x R x   2003 Extension 1 HSC Q2e) (i) sin cosx x  cos cos sin sinx x   1 12  2cos x     cos sinx x  
  • 68.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t   3 12  2sin 3t   1 tan 3 30       2sin 3 30t    (iii) Express sin cos in the form cosx x R x   2003 Extension 1 HSC Q2e) (i) sin cosx x  cos cos sin sinx x   1 12  2cos x    tan 1 45       cos sinx x  
  • 69.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t   3 12  2sin 3t   1 tan 3 30       2sin 3 30t    (iii) Express sin cos in the form cosx x R x   2003 Extension 1 HSC Q2e) (i) sin cosx x  cos cos sin sinx x   1 12  2cos x    tan 1 45       2cos 45x     cos sinx x  
  • 70.  (ii) Express 3sin3 cos3 in the form sin 3t t R t   2005 Extension 1 HSC Q5c) (i) 3sin3 cos3t t  sin3 cos cos3 sint t   3 12  2sin 3t   1 tan 3 30       2sin 3 30t    (iii) Express sin cos in the form cosx x R x   2003 Extension 1 HSC Q2e) (i) sin cosx x  cos cos sin sinx x   1 12  2cos x    tan 1 45       2cos 45x     cos sinx x   Exercise 2E; 6, 7, 10bd, 11, 13, 14, 16ac, 20a, 23