SlideShare a Scribd company logo
1 of 70
Equations of the form asinx + bcosx = c
Method 1: Using the t results
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2      0 ≤ θ ≤ 360
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2      0 ≤ θ ≤ 360
                   θ
       let t = tan
                   2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                 0 ≤ θ ≤ 360
                   θ                                           θ
                            1 − t 2   2t 
       let t = tan                    + 4        =2      0≤     ≤ 180
                         3                    2
                                   2
                   2       1+ t  1+ t                      2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                 0 ≤ θ ≤ 360
                   θ                                                  θ
                            1 − t 2   2t 
       let t = tan                    + 4          =2           0≤     ≤ 180
                         3                     2
                                   2
                   2       1+ t  1+ t                             2
                                      3 − 3t 2 + 8t = 2 + 2t 2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                  θ
                            1 − t 2   2t 
       let t = tan                    + 4          =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                             2
                                      3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                  θ
                            1 − t 2   2t 
       let t = tan                    + 4          =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                             2
                                      3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                             8 ± 84
                                         t=
                                                 10
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
  Q2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4
 Q2 tan α =
                    5
           α = 639′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4
 Q2 tan α =
                    5
           α = 639′
           θ
              = 173 21′
            2
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4
 Q2 tan α =                   Q1
                    5
           α = 639′
           θ
              = 173 21′
            2
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =
                    5                              5
           α = 639′                     α = 59 47′
           θ
              = 173 21′
            2
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =
                    5                              5
           α = 639′                     α = 59 47′
                                          θ
           θ
                                             = 59 47′
                       ′
              = 173 21
                    

                                          2
            2
                                          θ = 11933′
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                   0 ≤ θ ≤ 360
                   θ                                                 θ
                            1 − t 2   2t 
       let t = tan                     + 4          =2          0 ≤ ≤ 180
                         3                        
                             1+ t 2  1+ t 2 
                   2                                                 2
                                    
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                        5t 2 − 8t − 1 = 0
                                              8 ± 84
                                          t=
                                                  10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
                                                                Test : θ = 180
        2        5                        2        5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =
                    5                               5
           α = 639′                      α = 59 47′
                                           θ
           θ
                                              = 59 47′
                       ′
              = 173 21
                    

                                           2
            2
                                          θ = 11933′
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                   0 ≤ θ ≤ 360
                   θ                                                 θ
                            1 − t 2   2t 
       let t = tan                     + 4          =2          0 ≤ ≤ 180
                         3                        
                             1+ t 2  1+ t 2 
                   2                                                 2
                                    
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                        5t 2 − 8t − 1 = 0
                                              8 ± 84
                                          t=
                                                  10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
                                                                Test : θ = 180
        2        5                        2        5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =                    3cos180 + 4sin180
                    5                               5
                                                                  = −4 ≠ 2
           α = 639′                      α = 59 47′
                                           θ
           θ
                                              = 59 47′
                       ′
              = 173 21
                    

                                           2
            2
                                          θ = 11933′
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                   0 ≤ θ ≤ 360
                   θ                                                 θ
                            1 − t 2   2t 
       let t = tan                     + 4          =2          0 ≤ ≤ 180
                         3                        
                             1+ t 2  1+ t 2 
                   2                                                 2
                                    
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                        5t 2 − 8t − 1 = 0
                                              8 ± 84
                                          t=
                                                  10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
                                                                Test : θ = 180
        2        5                        2        5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =                    3cos180 + 4sin180
                    5                               5
                                                                  = −4 ≠ 2
           α = 639′                      α = 59 47′
                                           θ
           θ
                                              = 59 47′
                       ′
              = 173 21
                    

                                           2
            2                                              ∴θ = 11933′,346 42′
                                          θ = 11933′
           θ = 346 42′
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360


          3cos θ + 4sin θ = 2
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ

          3cos θ + 4sin θ = 2
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ

          3cos θ + 4sin θ = 2
                                                α
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ
                                                                         3
          3cos θ + 4sin θ = 2
                                                        α


                                              sin corresponds to 3, so
                                               3 goes on the opposite
                                                        side
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ
                                                    3
          3cos θ + 4sin θ = 2
                                                α
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ
                                                                         3
          3cos θ + 4sin θ = 2
                                                        α
                                                             4

                                              cos corresponds to 4, so
                                               4 goes on the adjacent
                                                        side
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ
                                                        5
                                                                  3
          3cos θ + 4sin θ = 2
                                                    α
                                                         4

                                              by Pythagoras the
                                               hypotenuse is 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                      sin α cosθ + cos α sin θ
                                                           5
                                                                     3
            3cos θ + 4sin θ = 2
                                                       α
         3 cos θ + 4 sin θ  = 2
     5×                                                    4
                            
                           
          5         5
                                                 by Pythagoras the
                                                  hypotenuse is 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                      sin α cosθ + cos α sin θ
                                                           5
                                                                     3
            3cos θ + 4sin θ = 2
                                                       α
         3 cos θ + 4 sin θ  = 2
     5×                                                    4
                            
                           
          5         5
               5sin ( α + θ ) = 2                by Pythagoras the
                                                  hypotenuse is 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                      sin α cosθ + cos α sin θ
                                                           5
                                                                     3
            3cos θ + 4sin θ = 2
                                                       α
         3 cos θ + 4 sin θ  = 2
     5×                                                    4
                            
                           
          5         5
               5sin ( α + θ ) = 2                by Pythagoras the
                                                  hypotenuse is 5


   The hypotenuse becomes the
  coefficient of the trig function
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                            3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =
                                 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
                            β = 2335′
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
                            β = 2335′
                 3652′ + θ = 2335′,156 25′
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
                            β = 2335′
                 3652′ + θ = 2335′,156 25′
                          θ = −1317′,11933′
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                         5
                                                                       3
            3cos θ + 4sin θ = 2
                                                     α
         3 cos θ + 4 sin θ  = 2
     5×                                                  4
                            
                           
          5         5                                         3
                                                      tan α =
               5sin ( α + θ ) = 2                             4
                                 2
                 sin ( α + θ ) =                          α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
                            β = 2335′
                                                ∴θ = 11933′,346 43′
                 36 52′ + θ = 23 35′,156 25′
                                       


                          θ = −1317′,11933′
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360


           3cos θ + 4sin θ = 2
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ

           3cos θ + 4sin θ = 2
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ

           3cos θ + 4sin θ = 2
                                                  α
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ

           3cos θ + 4sin θ = 2
                                                          α
                                                               3

                                                cos corresponds to 3, so
                                                 3 goes on the adjacent
                                                          side
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ

           3cos θ + 4sin θ = 2
                                                  α
                                                      3
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ
                                                                           4
           3cos θ + 4sin θ = 2
                                                          α
                                                               3


                                                cos corresponds to 4, so
                                                 4 goes on the adjacent
                                                          side
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ
                                                          5
                                                                    4
           3cos θ + 4sin θ = 2
                                                      α
                                                              3

                                                by Pythagoras the
                                                 hypotenuse is 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                            5
                                                                      4
            3cos θ + 4sin θ = 2
                                                        α
         3 cos θ + 4 sin θ  = 2
     5×                                                        3
                            
                           
          5         5
                                                  by Pythagoras the
                                                   hypotenuse is 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                            5
                                                                      4
            3cos θ + 4sin θ = 2
                                                        α
         3 cos θ + 4 sin θ  = 2
     5×                                                        3
                            
                           
          5         5
               5cos ( θ − α ) = 2                 by Pythagoras the
                                                   hypotenuse is 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                            5
                                                                      4
            3cos θ + 4sin θ = 2
                                                        α
         3 cos θ + 4 sin θ  = 2
     5×                                                        3
                            
                           
          5         5
               5cos ( θ − α ) = 2                 by Pythagoras the
                                                   hypotenuse is 5


   The hypotenuse becomes the
  coefficient of the trig function
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                              4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =
                                 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
                                 2
                        cos β =
                                 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
                                 2
                        cos β =
                                 5
                            β = 66 25′
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
                                 2
                        cos β =
                                 5
                            β = 66 25′
                   θ − 538′ = 66 25′, 29335′
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
                                 2
                        cos β =
                                 5
                            β = 66 25′
                   θ − 538′ = 66 25′, 29335′
                        ∴θ = 11933′,346 43′
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )

      3sin 3t − cos3t
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )
       3sin 3t − cos3t
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                     2   1
       3sin 3t − cos3t
                                                          α
                                                              3
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                     2   1
       3sin 3t − cos3t = 2sin ( 3t − α )
                                                          α
                                                              3
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                                                          α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                           2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                           2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )

       sin x − cos x
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                           2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )
        sin x − cos x
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                            2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )
        sin x − cos x = − ( cos x − sin x )
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                            2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                    2        1
        sin x − cos x = − ( cos x − sin x )
                                                        α
                                                             1
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                     2        1
        sin x − cos x = − ( cos x − sin x )
                                                         α
                         = − 2 cos ( x − α )
                                                              1
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                     2        1
        sin x − cos x = − ( cos x − sin x )
                                                         α
                         = − 2 cos ( x − α )
                                                               1
                                                           tan α = 1
                                                            α = 45
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                     2        1
        sin x − cos x = − ( cos x − sin x )
                                                         α
                         = − 2 cos ( x − α )
                         = − 2 cos ( x − 45 )                 1
                                                           tan α = 1
                                                            α = 45
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
          ( sin 3t cos α − cos3t sin α )                      2         1
        3sin 3t − cos3t = 2sin ( 3t − α )
                           = 2sin ( 3t − 30 )            α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                 Exercise 2E;
                                                                α = 30
   6, 7, 10bd, 11, 13, 14, 16ac, 20a, 23
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                     2        1
        sin x − cos x = − ( cos x − sin x )
                                                         α
                         = − 2 cos ( x − α )
                         = − 2 cos ( x − 45 )                 1
                                                           tan α = 1
                                                             α = 45

More Related Content

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
EADTU
 

Recently uploaded (20)

Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Our Environment Class 10 Science Notes pdf
Our Environment Class 10 Science Notes pdfOur Environment Class 10 Science Notes pdf
Our Environment Class 10 Science Notes pdf
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Introduction to TechSoup’s Digital Marketing Services and Use Cases
Introduction to TechSoup’s Digital Marketing  Services and Use CasesIntroduction to TechSoup’s Digital Marketing  Services and Use Cases
Introduction to TechSoup’s Digital Marketing Services and Use Cases
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Simple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfSimple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdf
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 

11 X1 T04 13 Asinx + Bcosx = C

  • 1. Equations of the form asinx + bcosx = c Method 1: Using the t results
  • 2. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360
  • 3. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ let t = tan 2
  • 4. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2
  • 5. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2
  • 6. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0
  • 7. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10
  • 8. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5
  • 9. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 Q2
  • 10. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 Q2 tan α = 5 α = 639′
  • 11. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 Q2 tan α = 5 α = 639′ θ = 173 21′ 2 θ = 346 42′
  • 12. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 Q2 tan α = Q1 5 α = 639′ θ = 173 21′ 2 θ = 346 42′
  • 13. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 5 5 α = 639′ α = 59 47′ θ = 173 21′ 2 θ = 346 42′
  • 14. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 5 5 α = 639′ α = 59 47′ θ θ = 59 47′ ′ = 173 21  2 2 θ = 11933′ θ = 346 42′
  • 15. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0 ≤ ≤ 180 3  1+ t 2  1+ t 2  2 2   3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or Test : θ = 180 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 5 5 α = 639′ α = 59 47′ θ θ = 59 47′ ′ = 173 21  2 2 θ = 11933′ θ = 346 42′
  • 16. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0 ≤ ≤ 180 3  1+ t 2  1+ t 2  2 2   3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or Test : θ = 180 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 3cos180 + 4sin180 5 5 = −4 ≠ 2 α = 639′ α = 59 47′ θ θ = 59 47′ ′ = 173 21  2 2 θ = 11933′ θ = 346 42′
  • 17. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0 ≤ ≤ 180 3  1+ t 2  1+ t 2  2 2   3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or Test : θ = 180 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 3cos180 + 4sin180 5 5 = −4 ≠ 2 α = 639′ α = 59 47′ θ θ = 59 47′ ′ = 173 21  2 2 ∴θ = 11933′,346 42′ θ = 11933′ θ = 346 42′
  • 18. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360
  • 19. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 3cos θ + 4sin θ = 2
  • 20. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3cos θ + 4sin θ = 2
  • 21. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3cos θ + 4sin θ = 2 α
  • 22. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3 3cos θ + 4sin θ = 2 α sin corresponds to 3, so 3 goes on the opposite side
  • 23. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3 3cos θ + 4sin θ = 2 α
  • 24. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3 3cos θ + 4sin θ = 2 α 4 cos corresponds to 4, so 4 goes on the adjacent side
  • 25. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 5 3 3cos θ + 4sin θ = 2 α 4 by Pythagoras the hypotenuse is 5
  • 26. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 by Pythagoras the hypotenuse is 5
  • 27. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 5sin ( α + θ ) = 2 by Pythagoras the hypotenuse is 5
  • 28. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 5sin ( α + θ ) = 2 by Pythagoras the hypotenuse is 5 The hypotenuse becomes the coefficient of the trig function
  • 29. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = 5
  • 30. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5
  • 31. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2
  • 32. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5
  • 33. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5 β = 2335′
  • 34. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5 β = 2335′ 3652′ + θ = 2335′,156 25′
  • 35. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5 β = 2335′ 3652′ + θ = 2335′,156 25′ θ = −1317′,11933′
  • 36. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5 β = 2335′ ∴θ = 11933′,346 43′ 36 52′ + θ = 23 35′,156 25′    θ = −1317′,11933′
  • 37. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360
  • 38. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 3cos θ + 4sin θ = 2
  • 39. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 3cos θ + 4sin θ = 2
  • 40. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 3cos θ + 4sin θ = 2 α
  • 41. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 3cos θ + 4sin θ = 2 α 3 cos corresponds to 3, so 3 goes on the adjacent side
  • 42. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 3cos θ + 4sin θ = 2 α 3
  • 43. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 4 3cos θ + 4sin θ = 2 α 3 cos corresponds to 4, so 4 goes on the adjacent side
  • 44. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α 3 by Pythagoras the hypotenuse is 5
  • 45. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 by Pythagoras the hypotenuse is 5
  • 46. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 5cos ( θ − α ) = 2 by Pythagoras the hypotenuse is 5
  • 47. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 5cos ( θ − α ) = 2 by Pythagoras the hypotenuse is 5 The hypotenuse becomes the coefficient of the trig function
  • 48. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = 5
  • 49. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5
  • 50. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4
  • 51. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4 2 cos β = 5
  • 52. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4 2 cos β = 5 β = 66 25′
  • 53. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4 2 cos β = 5 β = 66 25′ θ − 538′ = 66 25′, 29335′
  • 54. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4 2 cos β = 5 β = 66 25′ θ − 538′ = 66 25′, 29335′ ∴θ = 11933′,346 43′
  • 55. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
  • 56. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) 3sin 3t − cos3t
  • 57. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 3sin 3t − cos3t
  • 58. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t α 3
  • 59. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) α 3
  • 60. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) α 3 1 tan α = 3 α = 30
  • 61. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30
  • 62. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α )
  • 63. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) sin x − cos x
  • 64. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) sin x − cos x
  • 65. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) sin x − cos x = − ( cos x − sin x )
  • 66. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α 1
  • 67. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α = − 2 cos ( x − α ) 1
  • 68. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α = − 2 cos ( x − α ) 1 tan α = 1 α = 45
  • 69. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α = − 2 cos ( x − α ) = − 2 cos ( x − 45 ) 1 tan α = 1 α = 45
  • 70. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 Exercise 2E; α = 30 6, 7, 10bd, 11, 13, 14, 16ac, 20a, 23 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α = − 2 cos ( x − α ) = − 2 cos ( x − 45 ) 1 tan α = 1 α = 45