SlideShare a Scribd company logo
1 of 70
Download to read offline
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Capacity-Constrained Point Distributions
A Variant of Lloyd’s Method

Michel Alves dos Santos
Pós-Graduação em Engenharia de Sistemas e Computação
Universidade Federal do Rio de Janeiro - UFRJ - COPPE
Cidade Universitária - Rio de Janeiro - CEP: 21941-972
Docentes Responsáveis: Prof. Dsc. Ricardo Marroquim & Prof. PhD. Cláudio Esperança

{michel.mas, michel.santos.al}@gmail.com

January, 2013
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Introduction
Applications of Point Distributions...

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Presentation hosted on: http://www.lcg.ufrj.br/Members/malves/index

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Introduction
Applications of Point Distributions...

Sampling
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Introduction
Applications of Point Distributions...

Sampling

Point-Based Rendering

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Introduction
Applications of Point Distributions...

Sampling

Point-Based Rendering

Geometric Processing

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Introduction
Applications of Point Distributions...

Sampling

Point-Based Rendering

Geometric Processing

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Halftoning

etc...

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Desidered Properties
Desidered Properties for Point Distributions...

Red Noise

White Noise

Blue Noise

Blue noise features;
Similar relative distance between points;
No regular appearance (For most applications);
Adaptation to the provided density functions.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Desidered Properties
Desidered Properties for Point Distributions...

Red Noise

White Noise

Blue noise features;
Similar relative distance between points;
No regular appearance (For most applications);
Adaptation to the provided density functions.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Blue Noise

In this presentation we
will discuss about a
technique for optimal
distribution of points!

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Capacity-Constrained Point Distributions
Capacity-Constrained Point Distributions: A Variant of Lloyd’s Method
Michael Balzer

Thomas Schl¨ mer
o
University of Konstanz, Germany

Oliver Deussen

Figure 1: (Left) 1024 points with constant density in a toroidal square and its spectral analysis to the right; (Center) 2048 points with the
2
2
density function ρ = e(−20x −20y ) + 0.2 sin2 (πx) sin2 (πy); (Right) 4096 points with a density function extracted from a grayscale image.

Abstract
New

that point distributions adapt to
density function in
general-purpose method for optimizingpoints in an a givenpoint sets;density.
existingis proportional to the the sense
that the number of
area

We present a new general-purpose method for optimizing existing
point sets. The resulting distributions possess high-quality blue
noise characteristics and adapt precisely to given density functions.
Our method is similar to the commonly used Lloyd’s method while
avoiding its drawbacks. We achieve our results by utilizing the concept of capacity, which for each point is determined by the area of
its Voronoi region weighted with an underlying density function.
We demand that each point has the same capacity. In combination
with a dedicated optimization algorithm, this capacity constraint
enforces that each point obtains equal importance in the distribution. Our method can be used as a drop-in replacement for Lloyd’s
method, and combines enhancement of blue Gráfica - LCG
Michel Alves dos Santos: Laboratório de Computaçãonoise characteristics

The iterative method by Lloyd [1982] is a powerful and
Resulting distributions possess high-qualitycommonly noise featuresand flexible
blue used to enhance the spectral properties
technique that is
adapt precisely to given density; of existing distributions of points or similar entities. However, the

results from Lloyd’s method are satisfactory only to a limited ex-

tent. First, if the method is not stopped at a
Similar to the commonly used Lloyd’s Method while develop suitable iteration step,
the resulting point distributions will avoiding its
regularity artifacts, as
shown in Figure 2. A reliable universal termination criterion to
drawbacks;
prevent this behavior is unknown. Second, the adaptation to given
heterogenous density functions is suboptimal, requiring additional
application-dependent optimizations to improve the results.

We present a variant of Lloyd’s method which reliably converges toPós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Proposed Method
initial point set

Lloyd’s method
α ≈ 0.75

α converged

our method
(converged)

zone plate test function

1024 points and their Fourier amplitude sprectrum

α ≈ 0.53

input sites

initial state

−→

capacity-constrained optimization

−→

final state

output sites

Figure 3: Our method takes an existing site distribution and transfers it to a random discrete assignment in which each site has the same
Figure 5:This initial set of is thenpoints is optimizedVoronoi regions are formed and sites are relocatedarethe centroids of their regions, while
capacity. An assignment 1024 optimized so that by Lloyd’s method. After 40 iterations the points to well distributed with a normalized
radius of α ≈ 0.75 Applications: characteristics. HDR Sampling an equilibriumspectral properties and introduces hexagonal
and good blue noise for each site. The optimization stops deteriorates the state with the final site distribution.
simultaneously maintaining the capacity Stippling, Further optimizationat Radiance/Luminance,2 etc.
structures. In contrast, α ≈ 0.75 proves to be ill-suited for the sampling of the zone plate test function with 512 points as strong artifacts
become apparent. Relying on the convergence of α is also not an option as only marginally fewer artifacts can be observed. In this sampling
scenario, stopping Lloyd’s method after about 10 iterations with α ≈ 0.53 would provide the best sampling results. Our method converges
2. move each site siem Engenharia de Sistemas of Computação - PESC
reliably to an equilibrium with better Voronoi Tessellation
Michel AlvesAlgorithm 1: Capacity-Constrainedproperties in both - LCG
dos Santos: Laboratório de Computação Gráfica scenarios.
Pós-Graduação ∈ S to the center of mass e all points
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Proposed Method :: Steps and Details

Density Function → Samples → Generation of Sites → Optimization → Optimized Sites
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Lloyd’s Method

Figure: (Left) Random dots (red) and polygons. (Right) Result after running
approximate Lloyd relaxation twice - note the artifacts produced by technique.
Used to enhance the spectral properties of existing point distributions.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Lloyd’s Method

Figure: (Left) Random dots (red) and polygons. (Right) Result after running
approximate Lloyd relaxation twice - note the artifacts produced by technique.
But this method presents regularity in distribution!
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Lloyd’s Method

Figure: (Left) Random dots (red) and polygons. (Right) Result after running
approximate Lloyd relaxation twice - note the artifacts produced by technique.
Difficulty in stopping criterion!
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Lloyd’s Method

Figure: (Left) Random dots (red) and polygons. (Right) Result after running
approximate Lloyd relaxation twice - note the artifacts produced by technique.
And poor adaptation to heterogeneous density functions!
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Capacity Constrained Vs. Lloyd’s Method
Capacity-Constrained

Lloyd’s Method

CCPD is a variation of the Lloyd’s Method that converges in a
natural way and that in addition not presents the appearance of
regularity still fits precisely to given density functions.
CCPD Uses:

Complexity

Metrics or Distance Functions;
Lloyd
Centroidal Voronoi Tessellations;
CCPD
The Concept of Capacity;
Minimization of Energy (through a Optimization Method).
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Memory

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Metrics or Distance Functions

Voronoi Tesselations Using Minkowski Metrics: L1 , L2 , L3 , L4 , L5 , L∞ .
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Metrics or Distance Functions :: Manhattan or L1

d (x, y) = L1 (x, y) =
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

n
i =1

|xi − yi |

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Metrics or Distance Functions :: Euclidean or L2

d (x, y) = L2 (x, y) = (
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

n
i =1

|xi − yi |2 )1/2

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Metrics or Distance Functions :: L3

d (x, y) = L3 (x, y) = (
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

n
i =1

|xi − yi |3 )1/3

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Metrics or Distance Functions :: L4

d (x, y) = L4 (x, y) = (
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

n
i =1

|xi − yi |4 )1/4

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Metrics or Distance Functions :: L5

d (x, y) = L5 (x, y) = (
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

n
i =1

|xi − yi |5 )1/5

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Metrics or Distance Functions :: Chebyshev or L∞

d (x, y) = L∞ (x, y) = limp→∞ (
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

n
i =1

|xi − yi |p )1/p = maxin (|xi − yi |)
=1
Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Toroidal Square Distance
1

1

2

3

4
6
1

2

4

5
7

6
1

For the current work we used a metric
based on a toroidal square.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Toroidal Square Distance :: Algorithm
§
1
2
3
4
5
6
7
8
9
10
11
12
13

/∗ ∗
∗ Method r e s p o n s i b l e by d i s t a n c e c a l c u l a t i o n s [ t o r o i d a l s q u a r e ] .
∗ @ v a r i a b l e p1 and p2 : p o i n t s on t o r o i d a l s q u a r e .
∗ @ v a r i a b l e s i z e : keeps the dimensions of the input square .
∗/
d o u b l e TSD( c o n s t P o i n t 2& p1 , c o n s t P o i n t 2& p2 , c o n s t P o i n t 2& s i z e )
{
d o u b l e dx = p1 . x − p2 . x ;
i f ( f a b s ( dx ) > s i z e . x / 2 )
{
i f ( p1 . x < s i z e . x / 2 ) dx = p1 . x − ( p2 . x − s i z e . x ) ;
e l s e dx = p1 . x − ( p2 . x + s i z e . x ) ;
}

¤

14

d o u b l e dy = p1 . y − p2 . y ;
i f ( f a b s ( dy ) > s i z e . y / 2 )
{
i f ( p1 . y < s i z e . y / 2 ) dy = p1 . y − ( p2 . y − s i z e . y ) ;
e l s e dy = p1 . y − ( p2 . y + s i z e . y ) ;
}

15
16
17
18
19
20
21
22
23

}

return

s q r t ( dx ∗ dx + dy ∗ dy ) ;

¦

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

¥
Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Toroidal Square Distance :: Example

Optimized Sites

Voronoi Tessellation

Note the regions that lie within the limits.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Toroidal Square Distance :: Example

Optimized Sites

Voronoi Tessellation

Note the regions that lie within the limits.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Toroidal Square Distance :: Example

Optimized Sites

Voronoi Tessellation

Note the regions that lie within the limits.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Toroidal Square Distance :: Example

Optimized Sites

Voronoi Tessellation

Note the regions that lie within the limits.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Toroidal Square Distance :: Example

Optimized Sites

Voronoi Tessellation

Note the regions that lie within the limits.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Toroidal Square Distance :: Example

Optimized Sites

Voronoi Tessellation

Note the regions that lie within the limits.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Centroidal Voronoi Tessellation
Non-Centroidal Voronoi

Centroidal Voronoi

1

1

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

CVT is a Voronoi Tesselation with the property that each site
itself coincides with the centroid of their respective Voronoi region.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Centroidal Voronoi Tessellation :: Applications
Optimal quadrature rules;
Covolume and finite difference methods for PDE’s;
Optimal representation, quantization, and clustering;
Optimal placement of sensors and actuators;
Optimal distribution of resources;
Cell division;
Finite volume methods for PDE’s;
Territorial behavior of animals;
Data compression;
Image segmentation;
Meshfree methods;
Grid generation;
Point distributions and grid generation on surfaces;
Hypercube point sampling;
Reduced-order modeling;
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Centroidal Voronoi Tessellation :: Centroids
The centroid of a Voronoi region is nothing but the center of mass
of a region weighted by the density function defined in V area.

z=

Vi
Vi

xρ(x)dx
ρ(x)dx

zi∗

=

M
i =1 xi ρ(xi )
M ρ(x )
i
i =1

For discrete sets of points we have V = {xi }M in Rn and a density
i =1
function ρ(xi ), i = 1, · · · , M. The center of mass is given by zi∗ .
The importance of centroidal Voronoi tessellation is established by
its relationship with the energy function:
M

F (S, V ) =
i =1 Vi

ρ(x)|x − si |2 dx

S → sites; V → voronoi regions; ρ(x) → density function; F (S, V ) → energy function
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Centroidal Voronoi Tessellation :: Using Lloyd
Steps for generating a Centroidal Voronoi Tessellation:
1
2
3

Generate a Voronoi tessellation V (S) in a region Ω;
Move each site si ∈ S to the centroid pi of corresponding Voronoi
region vi ∈ V ;
Repeat the previous steps until the sites reach a convergence
criterion.

Energy Equation:
m

|xi − A(xi )|2

F (X, A) =
i =1

1. The relocation of the sites in the centroid position reduces energy F .
2. The algorithm converges to a local minimum F, where each site
coincides with the centroid of the region.
3. In the discrete case, the limited space Ω with density function ρ is
represented by a set X with m samples. A : X → S takes each point in
X to the nearest site in S.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

The Concept of Capacity :: Capacity-Constrained
Let S be a set with n sites which determine a Voronoi tessellation
V (S) in limited space Ω with function density ρ(x ).
Definition: The capacity c(si ) of a site si ∈ S with respect to its
respective Voronoi region Vi ∈ V is defined as:
c(si ) =

ρ(x)dx
Vi

We say that a distribution of sites in S adapts optimally to a
density function if the capacity of each site follows:
ρ(x)dx
c(si ) = c ∗ , where c ∗ is defined as c ∗ =

Ω

n

In other words, the capacity of a site is equivalent to the area of
Voronoi region weighted by the density function.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Minimization of Energy :: Voronoi Tessellation
Steps for Minimization:
1
2

Generate the Voronoi tessellation doing the assignment A : X → S
of m points in X for n sites in S with capacity c ∗ .
Minimize the function F (X , A) by swap between two points in X
that belong to different sites in S, with the condition that the
energy is reduced;
Restrictions to make the swap ensure that capacity is maintained
even after the minimization.

3

Repeat the exchange until a stage of stability is achieved.

input sites

initial state

−→

capacity-constrained optimization

−→

final state

output sites

Figure 3: Our method takes an existing site distribution and transfers it to a random discrete assignment in which each site has the same
capacity. This assignment is then optimized so that Voronoi regions are formed and sites are relocated to the centroids of their regions, while
simultaneously maintaining the capacity for each site. The optimization stops at an equilibrium state with the final site distribution.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG
Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Overview of Capacity-Constrained Method
Capacity-Constrained:
The Capacity-Constrained method differs from the usual Voronoi
tessellation because it is generated taking into account the capacity
of each site and only optimizing their locations.
Steps to generate the capacity-constrained distribution:
1

Create a set X with m points weighted by the density function ρ(x );

2

Generate the Voronoi tesselation V (S) with conditioned capacity for
the set of n sites S, where each site si has capacity c(si ) = m/n;

3

Move each site si ∈ S to the center of mass of all points xi ∈ X ;

4

Repeat steps 2 and 3 until the new sites achieve the convergence
criterion.

In possession of present provided theory, we will see some evaluations of results obtained according to Balzer et al. (2009).
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Evaluation of Results
The method presented here achieves better results when compared
to the Lloyd’s Method, in some respects:

Blue-noise features;
Number of neighbors;
Stopping criteria;
Measuring the quality of the adaptation.
100 %

percentage

60 %

40 %

20 %

0%

4

5

6

7

8

0.95

1.1

0.85

our method

1.0

0.9

Lloyd’s method
0.7

our method
4

number of neighbors

(a) number of neighbors percentage

5

6

7

number of neighbors

(b) normalized Voronoi region area

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

8

normalized radius α

our method

normalized Voronoi region area

1.2

Lloyd’s method
80 %

0.75

0.65

0.55

16

64

256

1024

4096

16384

number of sites

(c) normalized radius α

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Evaluation of Results :: Blue-noise and Neighbors
1024 optimized points

number of neighbors
4

5

6

7

spectral analysis
8
2

power

1.5
1

Lloyd’s method

0.5
0
0

frequency

fc

+10
anisotropy

+5
0

-5

-10
0

frequency

fc

2

power

1.5
1

0.5

our method

0
0

frequency

fc

+10
anisotropy

+5
0

-5

-10
0

frequency

fc

Lloyd’s method generates point distributions with regular structures.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Evaluation of Results :: Stopping and Quality
Stopping Criteria:
In the Lloyd’s Method is necessary a manual intervention or a
specific criterion determined by the application.
Quality of the adaptation:
The capacity offers the opportunity to measure the quality of
adaptation by a distribution of sites through the errors of the
capacity given by:

δc =

1
n

i =1



c(si )



n

c∗

−

2
1

In respect of capacity:
Constant Density: Lloyd generates a uniform distribution with small errors.
Non-Constant Density: Lloyd generates distribution of sites with large errors.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results

Using:

Regular Density Functions
Custom Density Functions
Images as Density Functions
Now we will see some results obtained with the technique...
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: Regular Density Functions
1.01
1.005
1.01

1

1.005

0.995

1

0.99

0.995
0.99

f(x,y) = c

f(x,y) = c

{(x,y) | x ∈ R, y ∈ R}

(x,y)-> random choice

All tabled numerical results shown in this presentation
are an average of 15 executions for each set of points.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: Constant Regular Grid

Optimized Sites

f (x, y) = c;

Voronoi Tessellation

{(x, y)|x ∈ R, y ∈ R}

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: Constant Regular Grid

1.01
1.005
1
1.01
0.995

1.005
1

1

0.995

0.99

0.5

0.99
0
-1
-0.5

-0.5

0
0.5
1

-1

Regular Density
f(x,y) --> samples

512 Points

1024 Points

2048 Points

16384 Samples

32768 Samples

65536 Samples

Figure: The figure above shows the number of points and samples for each set.
In the table below we can view times of generation, times of optimization and
steps until convergence.
Amount of Points
512
1024
2048

Generation Time
(<) 00.01 seconds
(<) 00.01 seconds
(<) 00.01 seconds

Optimization Time
00.03 seconds
00.08 seconds
00.25 seconds

Optimization Steps*
12
13
16

Optimization Steps*: number of iterations until convergence.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: Constant Regular Random

Optimized Sites

f (x, y) = c;

Voronoi Tessellation

(x, y) −→ random choice

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: Constant Regular Random
Lattice test for random numbers

1.01
1.00
0.80
0.60
0.40
0.20
0.00

1.005
1
0.995
0.99

0.00
1.00

0.20
0.80

0.40

0.60
0.60

0.40
0.80

0.20
1.00 0.00

Random Density
f(x,y) --> samples

512 Points

1024 Points

2048 Points

16384 Samples

32768 Samples

65536 Samples

Figure: The figure above shows the number of points and samples for each set.
In the table below we can view times of generation, times of optimization and
steps until convergence.
Amount of Points
512
1024
2048

Generation Time
(<) 00.01 seconds
(<) 00.01 seconds
(<) 00.01 seconds

Optimization Time
00.04 seconds
00.09 seconds
00.31 seconds

Optimization Steps*
15
13
19

Optimization Steps*: number of iterations until convergence.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: Regular Grid Vs. Regular Random
Grid

Random

128 Optimized Sites

128 Optimized Sites

Comparison between distributions obtained.
Each experiment used 65536 samples. Iterations: 66 for grid density and 99 for random density.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: Custom Density Functions

Five Mountains

SinSquare

SinXCosY

Shadow Torus

The Waves

All tabled numerical results shown in this presentation
are an average of 15 executions for each set of points.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: Five Mountains

Optimized Sites

f (x, y) = e(−20x

2

Voronoi Tessellation
−20y 2 )

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

+ 0.2 sin2 (πx) sin2 (πy)
Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: Five Mountains

Five Mountains
f(x,y) --> samples

1024 Points

2048 Points

4096 Points

32768 Samples

65536 Samples

131072 Samples

Figure: The figure above shows the number of points and samples for each set.
In the table below we can view times of generation, times of optimization and
steps until convergence.
Amount of Points
1024
2048
4096

Generation Time
15.30 seconds
75.90 seconds
355.60 seconds

Optimization Time
00.12 seconds
00.39 seconds
01.29 seconds

Optimization Steps*
20
13
19

Optimization Steps*: number of iterations until convergence.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: SinSquare

Optimized Sites

Voronoi Tessellation

f (x, y) = sin (x 2 y 2 )
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: SinSquare

SinSquare
f(x,y) --> samples

1024 Points

2048 Points

4096 Points

32768 Samples

65536 Samples

131072 Samples

Figure: The figure above shows the number of points and samples for each set.
In the table below we can view times of generation, times of optimization and
steps until convergence.
Amount of Points
1024
2048
4096

Generation Time
12.30 seconds
58.90 seconds
289.00 seconds

Optimization Time
00.18 seconds
00.65 seconds
02.31 seconds

Optimization Steps*
14
17
17

Optimization Steps*: number of iterations until convergence.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: Shadow Torus

Optimized Sites

Voronoi Tessellation

f (x, y) = (0.16 − (0.6 − x 2 + y 2 )2 )1/2
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: Shadow Torus

Shadow Torus
f(x,y) --> samples

1024 Points

2048 Points

4096 Points

32768 Samples

65536 Samples

131072 Samples

Figure: The figure above shows the number of points and samples for each set.
In the table below we can view times of generation, times of optimization and
steps until convergence.
Amount of Points
1024
2048
4096

Generation Time
05.60 seconds
27.10 seconds
135.20 seconds

Optimization Time
00.11 seconds
00.29 seconds
01.20 seconds

Optimization Steps*
20
13
23

Optimization Steps*: number of iterations until convergence.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: SinXCosY

Optimized Sites

Voronoi Tessellation

f (x, y) = 0.2 sin (5x) cos (5y)
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: SinXCosY

SinXCosY
f(x,y) --> samples

1024 Points

2048 Points

4096 Points

32768 Samples

65536 Samples

131072 Samples

Figure: The figure above shows the number of points and samples for each set.
In the table below we can view times of generation, times of optimization and
steps until convergence.
Amount of Points
1024
2048
4096

Generation Time
34.00 seconds
151.40 seconds
813.20 seconds

Optimization Time
00.12 seconds
00.36 seconds
01.33 seconds

Optimization Steps*
14
14
20

Optimization Steps*: number of iterations until convergence.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: The Waves

Optimized Sites

Voronoi Tessellation

f (x, y) = x 3 − 3xy 2
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: The Waves

The Waves
f(x,y) --> samples

1024 Points

2048 Points

4096 Points

32768 Samples

65536 Samples

131072 Samples

Figure: The figure above shows the number of points and samples for each set.
In the table below we can view times of generation, times of optimization and
steps until convergence.
Amount of Points
1024
2048
4096

Generation Time
07.30 seconds
31.90 seconds
168.60 seconds

Optimization Time
00.15 seconds
00.55 seconds
01.72 seconds

Optimization Steps*
16
28
16

Optimization Steps*: number of iterations until convergence.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Points and
Optimization Time

Number of Points
and Samples

Results :: Stippling :: Image as Density Function

4096 Points

16384 Points

20000 Points

393216 Samples

786432 Samples

1280000 Samples

4096 Points

8192 Points

12288 Points

02.97 seconds

09.62 seconds

17.57 seconds

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: Stippling - Corn Plant/Dracaena

4096 Points

16384 Points

20000 Points

393216 Samples

786432 Samples

1280000 Samples

Figure: Input image with 1000x1000 pixels. The figure above shows the number
of points and the number of samples for each set. In the table below we can
visualize times of generation, times of optimization and steps until convergence.
Amount of Points
4096
16384
20000

Generation Time
25.50 minutes
101.70 minutes
271.20 minutes

Optimization Time
4.41 seconds
20.45 seconds
42.43 seconds

Optimization Steps*
57
24
35

Optimization Steps*: number of iterations until convergence.
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Results :: Stippling - Madonna’s Face

4096 Points

8192 Points

12288 Points

02.97 seconds

09.62 seconds

17.57 seconds

Figure: Madonna’s Face. Input image with 1000x1000 pixels. The figure shows
the number of points and the optimization time for each set.
Amount of Points
4096
8192
12288

Generation Time
13.40 minutes
55.37 minutes
124.99 minutes

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Optimization Time
02.97 seconds
09.62 seconds
17.57 seconds

Optimization Steps
38
36
38

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Conclusions
Some conclusions about the method:

1.01
1.00
0.80
0.60
0.40
0.20
0.00

1.005
1
0.995

Performs distribution points optimally.
It is more stable than Lloyd’s Method
therefore uses the concept of capacity
as a form of optimization.
Improves the characteristics of the blue-noise
and has no apparent regularities in the
arrangement of sites.
Displays ‘precise’ adaptation to arbitrary
distribution functions.
No manual intervention is required and
neither depends on the initial distribution
to generate good quality results.

0.99

0.00

1.00

0.20

0.80

0.40

0.60

0.60

0.40

0.80

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

0.20
1.00 0.00

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Conclusions
Some conclusions about the method:

1.01
1.00
0.80
0.60
0.40
0.20
0.00

1.005
1
0.995

Performs distribution points optimally.
It is more stable than Lloyd’s Method
therefore uses the concept of capacity
as a form of optimization.
Improves the characteristics of the blue-noise
and has no apparent regularities in the
arrangement of sites.
Displays ‘precise’ adaptation to arbitrary
distribution functions.
No manual intervention is required and
neither depends on the initial distribution
to generate good quality results.

0.99

0.00

1.00

0.20

0.80

0.40

0.60

0.60

0.40

0.80

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

0.20
1.00 0.00

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Conclusions
Some conclusions about the method:

1.01
1.00
0.80
0.60
0.40
0.20
0.00

1.005
1
0.995

Performs distribution points optimally.
It is more stable than Lloyd’s Method
therefore uses the concept of capacity
as a form of optimization.
Improves the characteristics of the blue-noise
and has no apparent regularities in the
arrangement of sites.
Displays ‘precise’ adaptation to arbitrary
distribution functions.
No manual intervention is required and
neither depends on the initial distribution
to generate good quality results.

0.99

0.00

1.00

0.20

0.80

0.40

0.60

0.60

0.40

0.80

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

0.20
1.00 0.00

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Conclusions
Some conclusions about the method:

1.01
1.00
0.80
0.60
0.40
0.20
0.00

1.005
1
0.995

Performs distribution points optimally.
It is more stable than Lloyd’s Method
therefore uses the concept of capacity
as a form of optimization.
Improves the characteristics of the blue-noise
and has no apparent regularities in the
arrangement of sites.
Displays ‘precise’ adaptation to arbitrary
distribution functions.
No manual intervention is required and
neither depends on the initial distribution
to generate good quality results.

0.99

0.00

1.00

0.20

0.80

0.40

0.60

0.60

0.40

0.80

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

0.20
1.00 0.00

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Conclusions
Some conclusions about the method:

1.01
1.00
0.80
0.60
0.40
0.20
0.00

1.005
1
0.995

Performs distribution points optimally.
It is more stable than Lloyd’s Method
therefore uses the concept of capacity
as a form of optimization.
Improves the characteristics of the blue-noise
and has no apparent regularities in the
arrangement of sites.
Displays ‘precise’ adaptation to arbitrary
distribution functions.
No manual intervention is required and
neither depends on the initial distribution
to generate good quality results.

0.99

0.00

1.00

0.20

0.80

0.40

0.60

0.60

0.40

0.80

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

0.20
1.00 0.00

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Thanks

Thanks for your attention!
Michel Alves dos Santos - michel.mas@gmail.com
Michel Alves dos Santos - (Alves, M.)

MSc Candidate at Federal University of Rio de Janeiro.

E-mail: michel.mas@gmail.com, malves@cos.ufrj.br
Lattes: http://lattes.cnpq.br/7295977425362370
Home: http://www.michelalves.com
Phone: +55 21 2562 8572 (Institutional Phone Number)

http://www.facebook.com/michel.alves.santos
http://www.linkedin.com/profile/view?id=26542507
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Samples
Voronoi
Sites
Thank you for your attention!
Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC
Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG
Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013

Bibliography
M. Balzer, T. Schlömer, and O. Deussen.
Capacity-constrained point distributions: A variant of Lloyd’s method.
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2009), 28(3):86:1–8, 2009.
F. de Goes, K. Breeden, V. Ostromoukhov, and M. Desbrun.
Blue noise through optimal transport.
ACM Trans. Graph. (SIGGRAPH Asia), 31, 2012.
R. Fattal.
Blue-noise point sampling using kernel density model.
ACM SIGGRAPH 2011 papers, 28(3):1–10, 2011.
H. Li, D. Nehab, L.-Y. Wei, P. V. Sander, and C.-W. Fu.
Fast capacity constrained voronoi tessellation.
In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, I3D ’10, pages 13:1–13:1, New York, NY, USA, 2010. ACM.
A. Secord.
Weighted Voronoi stippling.
In Proceedings of the second international symposium on Non-photorealistic animation and
rendering, pages 37–43. ACM Press, 2002.
R. Ulichney.
Digital Halftoning.
MIT Press, 1987.
ISBN 9780262210096.

I dedicate this presentation to Renata Thomaz Lins
do Nascimento, my love, my life!

Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG

Pós-Graduação em Engenharia de Sistemas e Computação - PESC

More Related Content

Similar to Variant of Lloyd's Method Optimizes Point Distributions

Five Minute Speech: An Overview of Activities Developed in Disciplines and Gu...
Five Minute Speech: An Overview of Activities Developed in Disciplines and Gu...Five Minute Speech: An Overview of Activities Developed in Disciplines and Gu...
Five Minute Speech: An Overview of Activities Developed in Disciplines and Gu...Michel Alves
 
HPC Deployment / Use Cases (EVEREST + DAPHNE: Workshop on Design and Programm...
HPC Deployment / Use Cases (EVEREST + DAPHNE: Workshop on Design and Programm...HPC Deployment / Use Cases (EVEREST + DAPHNE: Workshop on Design and Programm...
HPC Deployment / Use Cases (EVEREST + DAPHNE: Workshop on Design and Programm...University of Maribor
 
Remote Sensing IEEE 2015 Projects
Remote Sensing IEEE 2015 ProjectsRemote Sensing IEEE 2015 Projects
Remote Sensing IEEE 2015 ProjectsVijay Karan
 
Remote Sensing IEEE 2015 Projects
Remote Sensing IEEE 2015 ProjectsRemote Sensing IEEE 2015 Projects
Remote Sensing IEEE 2015 ProjectsVijay Karan
 
How might machine learning help advance solar PV research?
How might machine learning help advance solar PV research?How might machine learning help advance solar PV research?
How might machine learning help advance solar PV research?Anubhav Jain
 
Iwsm2014 cosmic approximate sizing using a fuzzy logic approach (alain abran)
Iwsm2014   cosmic approximate sizing using a fuzzy logic approach (alain abran)Iwsm2014   cosmic approximate sizing using a fuzzy logic approach (alain abran)
Iwsm2014 cosmic approximate sizing using a fuzzy logic approach (alain abran)Nesma
 
DSUS_MAO_2012_Jie
DSUS_MAO_2012_JieDSUS_MAO_2012_Jie
DSUS_MAO_2012_JieMDO_Lab
 
Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Aut...
Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Aut...Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Aut...
Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Aut...Pooyan Jamshidi
 
Sim-to-Real Transfer in Deep Reinforcement Learning
Sim-to-Real Transfer in Deep Reinforcement LearningSim-to-Real Transfer in Deep Reinforcement Learning
Sim-to-Real Transfer in Deep Reinforcement Learningatulshah16
 
EffectiveOcclusion Handling for Fast Correlation Filter-based Trackers
EffectiveOcclusion Handling for Fast Correlation Filter-based TrackersEffectiveOcclusion Handling for Fast Correlation Filter-based Trackers
EffectiveOcclusion Handling for Fast Correlation Filter-based TrackersEECJOURNAL
 
Corrosion Detection Using A.I : A Comparison of Standard Computer Vision Tech...
Corrosion Detection Using A.I : A Comparison of Standard Computer Vision Tech...Corrosion Detection Using A.I : A Comparison of Standard Computer Vision Tech...
Corrosion Detection Using A.I : A Comparison of Standard Computer Vision Tech...csandit
 
CORROSION DETECTION USING A.I. : A COMPARISON OF STANDARD COMPUTER VISION TEC...
CORROSION DETECTION USING A.I. : A COMPARISON OF STANDARD COMPUTER VISION TEC...CORROSION DETECTION USING A.I. : A COMPARISON OF STANDARD COMPUTER VISION TEC...
CORROSION DETECTION USING A.I. : A COMPARISON OF STANDARD COMPUTER VISION TEC...cscpconf
 
Jorge Silva, Sr. Research Statistician Developer, SAS at MLconf ATL - 9/18/15
Jorge Silva, Sr. Research Statistician Developer, SAS at MLconf ATL - 9/18/15Jorge Silva, Sr. Research Statistician Developer, SAS at MLconf ATL - 9/18/15
Jorge Silva, Sr. Research Statistician Developer, SAS at MLconf ATL - 9/18/15MLconf
 
Qualifying Exam - Image-Based Reconstruction With Color Harmonization
Qualifying Exam - Image-Based Reconstruction With Color HarmonizationQualifying Exam - Image-Based Reconstruction With Color Harmonization
Qualifying Exam - Image-Based Reconstruction With Color HarmonizationMichel Alves
 
Improving the cosmic approximate sizing using the fuzzy logic epcu model al...
Improving the cosmic approximate sizing using the fuzzy logic epcu model   al...Improving the cosmic approximate sizing using the fuzzy logic epcu model   al...
Improving the cosmic approximate sizing using the fuzzy logic epcu model al...IWSM Mensura
 
Application of OpenSees in Reliability-based Design Optimization of Structures
Application of OpenSees in Reliability-based Design Optimization of StructuresApplication of OpenSees in Reliability-based Design Optimization of Structures
Application of OpenSees in Reliability-based Design Optimization of Structuresopenseesdays
 

Similar to Variant of Lloyd's Method Optimizes Point Distributions (20)

Five Minute Speech: An Overview of Activities Developed in Disciplines and Gu...
Five Minute Speech: An Overview of Activities Developed in Disciplines and Gu...Five Minute Speech: An Overview of Activities Developed in Disciplines and Gu...
Five Minute Speech: An Overview of Activities Developed in Disciplines and Gu...
 
HPC Deployment / Use Cases (EVEREST + DAPHNE: Workshop on Design and Programm...
HPC Deployment / Use Cases (EVEREST + DAPHNE: Workshop on Design and Programm...HPC Deployment / Use Cases (EVEREST + DAPHNE: Workshop on Design and Programm...
HPC Deployment / Use Cases (EVEREST + DAPHNE: Workshop on Design and Programm...
 
Remote Sensing IEEE 2015 Projects
Remote Sensing IEEE 2015 ProjectsRemote Sensing IEEE 2015 Projects
Remote Sensing IEEE 2015 Projects
 
Remote Sensing IEEE 2015 Projects
Remote Sensing IEEE 2015 ProjectsRemote Sensing IEEE 2015 Projects
Remote Sensing IEEE 2015 Projects
 
How might machine learning help advance solar PV research?
How might machine learning help advance solar PV research?How might machine learning help advance solar PV research?
How might machine learning help advance solar PV research?
 
Fahroo - Computational Mathematics - Spring Review 2012
Fahroo - Computational Mathematics - Spring Review 2012 Fahroo - Computational Mathematics - Spring Review 2012
Fahroo - Computational Mathematics - Spring Review 2012
 
Iwsm2014 cosmic approximate sizing using a fuzzy logic approach (alain abran)
Iwsm2014   cosmic approximate sizing using a fuzzy logic approach (alain abran)Iwsm2014   cosmic approximate sizing using a fuzzy logic approach (alain abran)
Iwsm2014 cosmic approximate sizing using a fuzzy logic approach (alain abran)
 
DSUS_MAO_2012_Jie
DSUS_MAO_2012_JieDSUS_MAO_2012_Jie
DSUS_MAO_2012_Jie
 
Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Aut...
Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Aut...Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Aut...
Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Aut...
 
Sim-to-Real Transfer in Deep Reinforcement Learning
Sim-to-Real Transfer in Deep Reinforcement LearningSim-to-Real Transfer in Deep Reinforcement Learning
Sim-to-Real Transfer in Deep Reinforcement Learning
 
EffectiveOcclusion Handling for Fast Correlation Filter-based Trackers
EffectiveOcclusion Handling for Fast Correlation Filter-based TrackersEffectiveOcclusion Handling for Fast Correlation Filter-based Trackers
EffectiveOcclusion Handling for Fast Correlation Filter-based Trackers
 
Corrosion Detection Using A.I : A Comparison of Standard Computer Vision Tech...
Corrosion Detection Using A.I : A Comparison of Standard Computer Vision Tech...Corrosion Detection Using A.I : A Comparison of Standard Computer Vision Tech...
Corrosion Detection Using A.I : A Comparison of Standard Computer Vision Tech...
 
CORROSION DETECTION USING A.I. : A COMPARISON OF STANDARD COMPUTER VISION TEC...
CORROSION DETECTION USING A.I. : A COMPARISON OF STANDARD COMPUTER VISION TEC...CORROSION DETECTION USING A.I. : A COMPARISON OF STANDARD COMPUTER VISION TEC...
CORROSION DETECTION USING A.I. : A COMPARISON OF STANDARD COMPUTER VISION TEC...
 
Graphics
GraphicsGraphics
Graphics
 
Jorge Silva, Sr. Research Statistician Developer, SAS at MLconf ATL - 9/18/15
Jorge Silva, Sr. Research Statistician Developer, SAS at MLconf ATL - 9/18/15Jorge Silva, Sr. Research Statistician Developer, SAS at MLconf ATL - 9/18/15
Jorge Silva, Sr. Research Statistician Developer, SAS at MLconf ATL - 9/18/15
 
2015 11-24 scheduler
2015 11-24 scheduler2015 11-24 scheduler
2015 11-24 scheduler
 
Qualifying Exam - Image-Based Reconstruction With Color Harmonization
Qualifying Exam - Image-Based Reconstruction With Color HarmonizationQualifying Exam - Image-Based Reconstruction With Color Harmonization
Qualifying Exam - Image-Based Reconstruction With Color Harmonization
 
Improving the cosmic approximate sizing using the fuzzy logic epcu model al...
Improving the cosmic approximate sizing using the fuzzy logic epcu model   al...Improving the cosmic approximate sizing using the fuzzy logic epcu model   al...
Improving the cosmic approximate sizing using the fuzzy logic epcu model al...
 
Application of OpenSees in Reliability-based Design Optimization of Structures
Application of OpenSees in Reliability-based Design Optimization of StructuresApplication of OpenSees in Reliability-based Design Optimization of Structures
Application of OpenSees in Reliability-based Design Optimization of Structures
 
Thesis_Oral
Thesis_OralThesis_Oral
Thesis_Oral
 

More from Michel Alves

Texture Synthesis: An Approach Based on GPU Use
Texture Synthesis: An Approach Based on GPU UseTexture Synthesis: An Approach Based on GPU Use
Texture Synthesis: An Approach Based on GPU UseMichel Alves
 
Intelligent Transfer of Thematic Harmonic Color Palettes
Intelligent Transfer of Thematic Harmonic Color PalettesIntelligent Transfer of Thematic Harmonic Color Palettes
Intelligent Transfer of Thematic Harmonic Color PalettesMichel Alves
 
A Framework for Harmonic Color Measures
A Framework for Harmonic Color MeasuresA Framework for Harmonic Color Measures
A Framework for Harmonic Color MeasuresMichel Alves
 
Effectiveness of Image Quality Assessment Indexes
Effectiveness of Image Quality Assessment IndexesEffectiveness of Image Quality Assessment Indexes
Effectiveness of Image Quality Assessment IndexesMichel Alves
 
Introduction to Kernel Functions
Introduction to Kernel FunctionsIntroduction to Kernel Functions
Introduction to Kernel FunctionsMichel Alves
 
About Perception and Hue Histograms in HSV Space
About Perception and Hue Histograms in HSV SpaceAbout Perception and Hue Histograms in HSV Space
About Perception and Hue Histograms in HSV SpaceMichel Alves
 
Color Harmonization - Results
Color Harmonization - ResultsColor Harmonization - Results
Color Harmonization - ResultsMichel Alves
 
Wave Simulation Using Perlin Noise
Wave Simulation Using Perlin NoiseWave Simulation Using Perlin Noise
Wave Simulation Using Perlin NoiseMichel Alves
 
Similarity Maps Using SSIM Index
Similarity Maps Using SSIM IndexSimilarity Maps Using SSIM Index
Similarity Maps Using SSIM IndexMichel Alves
 
TMS - Schedule of Presentations and Reports
TMS - Schedule of Presentations and ReportsTMS - Schedule of Presentations and Reports
TMS - Schedule of Presentations and ReportsMichel Alves
 
Month Presentations Schedule - March/2015 - LCG/UFRJ
Month Presentations Schedule - March/2015 - LCG/UFRJMonth Presentations Schedule - March/2015 - LCG/UFRJ
Month Presentations Schedule - March/2015 - LCG/UFRJMichel Alves
 
Color Palettes in R
Color Palettes in RColor Palettes in R
Color Palettes in RMichel Alves
 
Hue Wheel Prototype
Hue Wheel PrototypeHue Wheel Prototype
Hue Wheel PrototypeMichel Alves
 
Triangle Mesh Plot
Triangle Mesh PlotTriangle Mesh Plot
Triangle Mesh PlotMichel Alves
 
Capacity-Constrained Point Distributions :: Video Slides
Capacity-Constrained Point Distributions :: Video SlidesCapacity-Constrained Point Distributions :: Video Slides
Capacity-Constrained Point Distributions :: Video SlidesMichel Alves
 
Capacity-Constrained Point Distributions :: Density Function Catalog
Capacity-Constrained Point Distributions :: Density Function CatalogCapacity-Constrained Point Distributions :: Density Function Catalog
Capacity-Constrained Point Distributions :: Density Function CatalogMichel Alves
 
Capacity-Constrained Point Distributions :: Complementary Results
Capacity-Constrained Point Distributions :: Complementary ResultsCapacity-Constrained Point Distributions :: Complementary Results
Capacity-Constrained Point Distributions :: Complementary ResultsMichel Alves
 

More from Michel Alves (20)

Texture Synthesis: An Approach Based on GPU Use
Texture Synthesis: An Approach Based on GPU UseTexture Synthesis: An Approach Based on GPU Use
Texture Synthesis: An Approach Based on GPU Use
 
Intelligent Transfer of Thematic Harmonic Color Palettes
Intelligent Transfer of Thematic Harmonic Color PalettesIntelligent Transfer of Thematic Harmonic Color Palettes
Intelligent Transfer of Thematic Harmonic Color Palettes
 
A Framework for Harmonic Color Measures
A Framework for Harmonic Color MeasuresA Framework for Harmonic Color Measures
A Framework for Harmonic Color Measures
 
Effectiveness of Image Quality Assessment Indexes
Effectiveness of Image Quality Assessment IndexesEffectiveness of Image Quality Assessment Indexes
Effectiveness of Image Quality Assessment Indexes
 
Introduction to Kernel Functions
Introduction to Kernel FunctionsIntroduction to Kernel Functions
Introduction to Kernel Functions
 
About Perception and Hue Histograms in HSV Space
About Perception and Hue Histograms in HSV SpaceAbout Perception and Hue Histograms in HSV Space
About Perception and Hue Histograms in HSV Space
 
Color Harmonization - Results
Color Harmonization - ResultsColor Harmonization - Results
Color Harmonization - Results
 
Wave Simulation Using Perlin Noise
Wave Simulation Using Perlin NoiseWave Simulation Using Perlin Noise
Wave Simulation Using Perlin Noise
 
Similarity Maps Using SSIM Index
Similarity Maps Using SSIM IndexSimilarity Maps Using SSIM Index
Similarity Maps Using SSIM Index
 
TMS - Schedule of Presentations and Reports
TMS - Schedule of Presentations and ReportsTMS - Schedule of Presentations and Reports
TMS - Schedule of Presentations and Reports
 
Month Presentations Schedule - March/2015 - LCG/UFRJ
Month Presentations Schedule - March/2015 - LCG/UFRJMonth Presentations Schedule - March/2015 - LCG/UFRJ
Month Presentations Schedule - March/2015 - LCG/UFRJ
 
Color Palettes in R
Color Palettes in RColor Palettes in R
Color Palettes in R
 
Sigmoid Curve Erf
Sigmoid Curve ErfSigmoid Curve Erf
Sigmoid Curve Erf
 
Hue Wheel Prototype
Hue Wheel PrototypeHue Wheel Prototype
Hue Wheel Prototype
 
Cosine Curve
Cosine CurveCosine Curve
Cosine Curve
 
Triangle Mesh Plot
Triangle Mesh PlotTriangle Mesh Plot
Triangle Mesh Plot
 
Triangle Plot
Triangle PlotTriangle Plot
Triangle Plot
 
Capacity-Constrained Point Distributions :: Video Slides
Capacity-Constrained Point Distributions :: Video SlidesCapacity-Constrained Point Distributions :: Video Slides
Capacity-Constrained Point Distributions :: Video Slides
 
Capacity-Constrained Point Distributions :: Density Function Catalog
Capacity-Constrained Point Distributions :: Density Function CatalogCapacity-Constrained Point Distributions :: Density Function Catalog
Capacity-Constrained Point Distributions :: Density Function Catalog
 
Capacity-Constrained Point Distributions :: Complementary Results
Capacity-Constrained Point Distributions :: Complementary ResultsCapacity-Constrained Point Distributions :: Complementary Results
Capacity-Constrained Point Distributions :: Complementary Results
 

Recently uploaded

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 

Recently uploaded (20)

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 

Variant of Lloyd's Method Optimizes Point Distributions

  • 1. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Capacity-Constrained Point Distributions A Variant of Lloyd’s Method Michel Alves dos Santos Pós-Graduação em Engenharia de Sistemas e Computação Universidade Federal do Rio de Janeiro - UFRJ - COPPE Cidade Universitária - Rio de Janeiro - CEP: 21941-972 Docentes Responsáveis: Prof. Dsc. Ricardo Marroquim & Prof. PhD. Cláudio Esperança {michel.mas, michel.santos.al}@gmail.com January, 2013 Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 2. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Introduction Applications of Point Distributions... Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Presentation hosted on: http://www.lcg.ufrj.br/Members/malves/index Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 3. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Introduction Applications of Point Distributions... Sampling Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 4. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Introduction Applications of Point Distributions... Sampling Point-Based Rendering Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 5. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Introduction Applications of Point Distributions... Sampling Point-Based Rendering Geometric Processing Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 6. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Introduction Applications of Point Distributions... Sampling Point-Based Rendering Geometric Processing Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Halftoning etc... Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 7. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Desidered Properties Desidered Properties for Point Distributions... Red Noise White Noise Blue Noise Blue noise features; Similar relative distance between points; No regular appearance (For most applications); Adaptation to the provided density functions. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 8. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Desidered Properties Desidered Properties for Point Distributions... Red Noise White Noise Blue noise features; Similar relative distance between points; No regular appearance (For most applications); Adaptation to the provided density functions. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Blue Noise In this presentation we will discuss about a technique for optimal distribution of points! Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 9. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Capacity-Constrained Point Distributions Capacity-Constrained Point Distributions: A Variant of Lloyd’s Method Michael Balzer Thomas Schl¨ mer o University of Konstanz, Germany Oliver Deussen Figure 1: (Left) 1024 points with constant density in a toroidal square and its spectral analysis to the right; (Center) 2048 points with the 2 2 density function ρ = e(−20x −20y ) + 0.2 sin2 (πx) sin2 (πy); (Right) 4096 points with a density function extracted from a grayscale image. Abstract New that point distributions adapt to density function in general-purpose method for optimizingpoints in an a givenpoint sets;density. existingis proportional to the the sense that the number of area We present a new general-purpose method for optimizing existing point sets. The resulting distributions possess high-quality blue noise characteristics and adapt precisely to given density functions. Our method is similar to the commonly used Lloyd’s method while avoiding its drawbacks. We achieve our results by utilizing the concept of capacity, which for each point is determined by the area of its Voronoi region weighted with an underlying density function. We demand that each point has the same capacity. In combination with a dedicated optimization algorithm, this capacity constraint enforces that each point obtains equal importance in the distribution. Our method can be used as a drop-in replacement for Lloyd’s method, and combines enhancement of blue Gráfica - LCG Michel Alves dos Santos: Laboratório de Computaçãonoise characteristics The iterative method by Lloyd [1982] is a powerful and Resulting distributions possess high-qualitycommonly noise featuresand flexible blue used to enhance the spectral properties technique that is adapt precisely to given density; of existing distributions of points or similar entities. However, the results from Lloyd’s method are satisfactory only to a limited ex- tent. First, if the method is not stopped at a Similar to the commonly used Lloyd’s Method while develop suitable iteration step, the resulting point distributions will avoiding its regularity artifacts, as shown in Figure 2. A reliable universal termination criterion to drawbacks; prevent this behavior is unknown. Second, the adaptation to given heterogenous density functions is suboptimal, requiring additional application-dependent optimizations to improve the results. We present a variant of Lloyd’s method which reliably converges toPós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 10. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Proposed Method initial point set Lloyd’s method α ≈ 0.75 α converged our method (converged) zone plate test function 1024 points and their Fourier amplitude sprectrum α ≈ 0.53 input sites initial state −→ capacity-constrained optimization −→ final state output sites Figure 3: Our method takes an existing site distribution and transfers it to a random discrete assignment in which each site has the same Figure 5:This initial set of is thenpoints is optimizedVoronoi regions are formed and sites are relocatedarethe centroids of their regions, while capacity. An assignment 1024 optimized so that by Lloyd’s method. After 40 iterations the points to well distributed with a normalized radius of α ≈ 0.75 Applications: characteristics. HDR Sampling an equilibriumspectral properties and introduces hexagonal and good blue noise for each site. The optimization stops deteriorates the state with the final site distribution. simultaneously maintaining the capacity Stippling, Further optimizationat Radiance/Luminance,2 etc. structures. In contrast, α ≈ 0.75 proves to be ill-suited for the sampling of the zone plate test function with 512 points as strong artifacts become apparent. Relying on the convergence of α is also not an option as only marginally fewer artifacts can be observed. In this sampling scenario, stopping Lloyd’s method after about 10 iterations with α ≈ 0.53 would provide the best sampling results. Our method converges 2. move each site siem Engenharia de Sistemas of Computação - PESC reliably to an equilibrium with better Voronoi Tessellation Michel AlvesAlgorithm 1: Capacity-Constrainedproperties in both - LCG dos Santos: Laboratório de Computação Gráfica scenarios. Pós-Graduação ∈ S to the center of mass e all points
  • 11. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Proposed Method :: Steps and Details Density Function → Samples → Generation of Sites → Optimization → Optimized Sites Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 12. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Lloyd’s Method Figure: (Left) Random dots (red) and polygons. (Right) Result after running approximate Lloyd relaxation twice - note the artifacts produced by technique. Used to enhance the spectral properties of existing point distributions. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 13. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Lloyd’s Method Figure: (Left) Random dots (red) and polygons. (Right) Result after running approximate Lloyd relaxation twice - note the artifacts produced by technique. But this method presents regularity in distribution! Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 14. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Lloyd’s Method Figure: (Left) Random dots (red) and polygons. (Right) Result after running approximate Lloyd relaxation twice - note the artifacts produced by technique. Difficulty in stopping criterion! Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 15. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Lloyd’s Method Figure: (Left) Random dots (red) and polygons. (Right) Result after running approximate Lloyd relaxation twice - note the artifacts produced by technique. And poor adaptation to heterogeneous density functions! Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 16. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Capacity Constrained Vs. Lloyd’s Method Capacity-Constrained Lloyd’s Method CCPD is a variation of the Lloyd’s Method that converges in a natural way and that in addition not presents the appearance of regularity still fits precisely to given density functions. CCPD Uses: Complexity Metrics or Distance Functions; Lloyd Centroidal Voronoi Tessellations; CCPD The Concept of Capacity; Minimization of Energy (through a Optimization Method). Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Memory Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 17. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Metrics or Distance Functions Voronoi Tesselations Using Minkowski Metrics: L1 , L2 , L3 , L4 , L5 , L∞ . Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 18. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Metrics or Distance Functions :: Manhattan or L1 d (x, y) = L1 (x, y) = Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG n i =1 |xi − yi | Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 19. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Metrics or Distance Functions :: Euclidean or L2 d (x, y) = L2 (x, y) = ( Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG n i =1 |xi − yi |2 )1/2 Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 20. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Metrics or Distance Functions :: L3 d (x, y) = L3 (x, y) = ( Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG n i =1 |xi − yi |3 )1/3 Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 21. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Metrics or Distance Functions :: L4 d (x, y) = L4 (x, y) = ( Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG n i =1 |xi − yi |4 )1/4 Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 22. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Metrics or Distance Functions :: L5 d (x, y) = L5 (x, y) = ( Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG n i =1 |xi − yi |5 )1/5 Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 23. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Metrics or Distance Functions :: Chebyshev or L∞ d (x, y) = L∞ (x, y) = limp→∞ ( Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG n i =1 |xi − yi |p )1/p = maxin (|xi − yi |) =1 Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 24. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Toroidal Square Distance 1 1 2 3 4 6 1 2 4 5 7 6 1 For the current work we used a metric based on a toroidal square. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 25. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Toroidal Square Distance :: Algorithm § 1 2 3 4 5 6 7 8 9 10 11 12 13 /∗ ∗ ∗ Method r e s p o n s i b l e by d i s t a n c e c a l c u l a t i o n s [ t o r o i d a l s q u a r e ] . ∗ @ v a r i a b l e p1 and p2 : p o i n t s on t o r o i d a l s q u a r e . ∗ @ v a r i a b l e s i z e : keeps the dimensions of the input square . ∗/ d o u b l e TSD( c o n s t P o i n t 2& p1 , c o n s t P o i n t 2& p2 , c o n s t P o i n t 2& s i z e ) { d o u b l e dx = p1 . x − p2 . x ; i f ( f a b s ( dx ) > s i z e . x / 2 ) { i f ( p1 . x < s i z e . x / 2 ) dx = p1 . x − ( p2 . x − s i z e . x ) ; e l s e dx = p1 . x − ( p2 . x + s i z e . x ) ; } ¤ 14 d o u b l e dy = p1 . y − p2 . y ; i f ( f a b s ( dy ) > s i z e . y / 2 ) { i f ( p1 . y < s i z e . y / 2 ) dy = p1 . y − ( p2 . y − s i z e . y ) ; e l s e dy = p1 . y − ( p2 . y + s i z e . y ) ; } 15 16 17 18 19 20 21 22 23 } return s q r t ( dx ∗ dx + dy ∗ dy ) ; ¦ Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG ¥ Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 26. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Toroidal Square Distance :: Example Optimized Sites Voronoi Tessellation Note the regions that lie within the limits. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 27. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Toroidal Square Distance :: Example Optimized Sites Voronoi Tessellation Note the regions that lie within the limits. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 28. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Toroidal Square Distance :: Example Optimized Sites Voronoi Tessellation Note the regions that lie within the limits. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 29. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Toroidal Square Distance :: Example Optimized Sites Voronoi Tessellation Note the regions that lie within the limits. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 30. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Toroidal Square Distance :: Example Optimized Sites Voronoi Tessellation Note the regions that lie within the limits. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 31. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Toroidal Square Distance :: Example Optimized Sites Voronoi Tessellation Note the regions that lie within the limits. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 32. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Centroidal Voronoi Tessellation Non-Centroidal Voronoi Centroidal Voronoi 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 CVT is a Voronoi Tesselation with the property that each site itself coincides with the centroid of their respective Voronoi region. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 33. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Centroidal Voronoi Tessellation :: Applications Optimal quadrature rules; Covolume and finite difference methods for PDE’s; Optimal representation, quantization, and clustering; Optimal placement of sensors and actuators; Optimal distribution of resources; Cell division; Finite volume methods for PDE’s; Territorial behavior of animals; Data compression; Image segmentation; Meshfree methods; Grid generation; Point distributions and grid generation on surfaces; Hypercube point sampling; Reduced-order modeling; Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 34. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Centroidal Voronoi Tessellation :: Centroids The centroid of a Voronoi region is nothing but the center of mass of a region weighted by the density function defined in V area. z= Vi Vi xρ(x)dx ρ(x)dx zi∗ = M i =1 xi ρ(xi ) M ρ(x ) i i =1 For discrete sets of points we have V = {xi }M in Rn and a density i =1 function ρ(xi ), i = 1, · · · , M. The center of mass is given by zi∗ . The importance of centroidal Voronoi tessellation is established by its relationship with the energy function: M F (S, V ) = i =1 Vi ρ(x)|x − si |2 dx S → sites; V → voronoi regions; ρ(x) → density function; F (S, V ) → energy function Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 35. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Centroidal Voronoi Tessellation :: Using Lloyd Steps for generating a Centroidal Voronoi Tessellation: 1 2 3 Generate a Voronoi tessellation V (S) in a region Ω; Move each site si ∈ S to the centroid pi of corresponding Voronoi region vi ∈ V ; Repeat the previous steps until the sites reach a convergence criterion. Energy Equation: m |xi − A(xi )|2 F (X, A) = i =1 1. The relocation of the sites in the centroid position reduces energy F . 2. The algorithm converges to a local minimum F, where each site coincides with the centroid of the region. 3. In the discrete case, the limited space Ω with density function ρ is represented by a set X with m samples. A : X → S takes each point in X to the nearest site in S. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 36. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 The Concept of Capacity :: Capacity-Constrained Let S be a set with n sites which determine a Voronoi tessellation V (S) in limited space Ω with function density ρ(x ). Definition: The capacity c(si ) of a site si ∈ S with respect to its respective Voronoi region Vi ∈ V is defined as: c(si ) = ρ(x)dx Vi We say that a distribution of sites in S adapts optimally to a density function if the capacity of each site follows: ρ(x)dx c(si ) = c ∗ , where c ∗ is defined as c ∗ = Ω n In other words, the capacity of a site is equivalent to the area of Voronoi region weighted by the density function. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 37. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Minimization of Energy :: Voronoi Tessellation Steps for Minimization: 1 2 Generate the Voronoi tessellation doing the assignment A : X → S of m points in X for n sites in S with capacity c ∗ . Minimize the function F (X , A) by swap between two points in X that belong to different sites in S, with the condition that the energy is reduced; Restrictions to make the swap ensure that capacity is maintained even after the minimization. 3 Repeat the exchange until a stage of stability is achieved. input sites initial state −→ capacity-constrained optimization −→ final state output sites Figure 3: Our method takes an existing site distribution and transfers it to a random discrete assignment in which each site has the same capacity. This assignment is then optimized so that Voronoi regions are formed and sites are relocated to the centroids of their regions, while simultaneously maintaining the capacity for each site. The optimization stops at an equilibrium state with the final site distribution. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 38. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Overview of Capacity-Constrained Method Capacity-Constrained: The Capacity-Constrained method differs from the usual Voronoi tessellation because it is generated taking into account the capacity of each site and only optimizing their locations. Steps to generate the capacity-constrained distribution: 1 Create a set X with m points weighted by the density function ρ(x ); 2 Generate the Voronoi tesselation V (S) with conditioned capacity for the set of n sites S, where each site si has capacity c(si ) = m/n; 3 Move each site si ∈ S to the center of mass of all points xi ∈ X ; 4 Repeat steps 2 and 3 until the new sites achieve the convergence criterion. In possession of present provided theory, we will see some evaluations of results obtained according to Balzer et al. (2009). Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 39. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Evaluation of Results The method presented here achieves better results when compared to the Lloyd’s Method, in some respects: Blue-noise features; Number of neighbors; Stopping criteria; Measuring the quality of the adaptation. 100 % percentage 60 % 40 % 20 % 0% 4 5 6 7 8 0.95 1.1 0.85 our method 1.0 0.9 Lloyd’s method 0.7 our method 4 number of neighbors (a) number of neighbors percentage 5 6 7 number of neighbors (b) normalized Voronoi region area Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG 8 normalized radius α our method normalized Voronoi region area 1.2 Lloyd’s method 80 % 0.75 0.65 0.55 16 64 256 1024 4096 16384 number of sites (c) normalized radius α Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 40. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Evaluation of Results :: Blue-noise and Neighbors 1024 optimized points number of neighbors 4 5 6 7 spectral analysis 8 2 power 1.5 1 Lloyd’s method 0.5 0 0 frequency fc +10 anisotropy +5 0 -5 -10 0 frequency fc 2 power 1.5 1 0.5 our method 0 0 frequency fc +10 anisotropy +5 0 -5 -10 0 frequency fc Lloyd’s method generates point distributions with regular structures. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 41. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Evaluation of Results :: Stopping and Quality Stopping Criteria: In the Lloyd’s Method is necessary a manual intervention or a specific criterion determined by the application. Quality of the adaptation: The capacity offers the opportunity to measure the quality of adaptation by a distribution of sites through the errors of the capacity given by: δc = 1 n i =1  c(si )  n c∗ − 2 1 In respect of capacity: Constant Density: Lloyd generates a uniform distribution with small errors. Non-Constant Density: Lloyd generates distribution of sites with large errors. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 42. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results Using: Regular Density Functions Custom Density Functions Images as Density Functions Now we will see some results obtained with the technique... Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 43. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: Regular Density Functions 1.01 1.005 1.01 1 1.005 0.995 1 0.99 0.995 0.99 f(x,y) = c f(x,y) = c {(x,y) | x ∈ R, y ∈ R} (x,y)-> random choice All tabled numerical results shown in this presentation are an average of 15 executions for each set of points. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 44. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: Constant Regular Grid Optimized Sites f (x, y) = c; Voronoi Tessellation {(x, y)|x ∈ R, y ∈ R} Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 45. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: Constant Regular Grid 1.01 1.005 1 1.01 0.995 1.005 1 1 0.995 0.99 0.5 0.99 0 -1 -0.5 -0.5 0 0.5 1 -1 Regular Density f(x,y) --> samples 512 Points 1024 Points 2048 Points 16384 Samples 32768 Samples 65536 Samples Figure: The figure above shows the number of points and samples for each set. In the table below we can view times of generation, times of optimization and steps until convergence. Amount of Points 512 1024 2048 Generation Time (<) 00.01 seconds (<) 00.01 seconds (<) 00.01 seconds Optimization Time 00.03 seconds 00.08 seconds 00.25 seconds Optimization Steps* 12 13 16 Optimization Steps*: number of iterations until convergence. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 46. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: Constant Regular Random Optimized Sites f (x, y) = c; Voronoi Tessellation (x, y) −→ random choice Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 47. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: Constant Regular Random Lattice test for random numbers 1.01 1.00 0.80 0.60 0.40 0.20 0.00 1.005 1 0.995 0.99 0.00 1.00 0.20 0.80 0.40 0.60 0.60 0.40 0.80 0.20 1.00 0.00 Random Density f(x,y) --> samples 512 Points 1024 Points 2048 Points 16384 Samples 32768 Samples 65536 Samples Figure: The figure above shows the number of points and samples for each set. In the table below we can view times of generation, times of optimization and steps until convergence. Amount of Points 512 1024 2048 Generation Time (<) 00.01 seconds (<) 00.01 seconds (<) 00.01 seconds Optimization Time 00.04 seconds 00.09 seconds 00.31 seconds Optimization Steps* 15 13 19 Optimization Steps*: number of iterations until convergence. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 48. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: Regular Grid Vs. Regular Random Grid Random 128 Optimized Sites 128 Optimized Sites Comparison between distributions obtained. Each experiment used 65536 samples. Iterations: 66 for grid density and 99 for random density. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 49. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: Custom Density Functions Five Mountains SinSquare SinXCosY Shadow Torus The Waves All tabled numerical results shown in this presentation are an average of 15 executions for each set of points. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 50. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: Five Mountains Optimized Sites f (x, y) = e(−20x 2 Voronoi Tessellation −20y 2 ) Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG + 0.2 sin2 (πx) sin2 (πy) Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 51. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: Five Mountains Five Mountains f(x,y) --> samples 1024 Points 2048 Points 4096 Points 32768 Samples 65536 Samples 131072 Samples Figure: The figure above shows the number of points and samples for each set. In the table below we can view times of generation, times of optimization and steps until convergence. Amount of Points 1024 2048 4096 Generation Time 15.30 seconds 75.90 seconds 355.60 seconds Optimization Time 00.12 seconds 00.39 seconds 01.29 seconds Optimization Steps* 20 13 19 Optimization Steps*: number of iterations until convergence. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 52. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: SinSquare Optimized Sites Voronoi Tessellation f (x, y) = sin (x 2 y 2 ) Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 53. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: SinSquare SinSquare f(x,y) --> samples 1024 Points 2048 Points 4096 Points 32768 Samples 65536 Samples 131072 Samples Figure: The figure above shows the number of points and samples for each set. In the table below we can view times of generation, times of optimization and steps until convergence. Amount of Points 1024 2048 4096 Generation Time 12.30 seconds 58.90 seconds 289.00 seconds Optimization Time 00.18 seconds 00.65 seconds 02.31 seconds Optimization Steps* 14 17 17 Optimization Steps*: number of iterations until convergence. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 54. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: Shadow Torus Optimized Sites Voronoi Tessellation f (x, y) = (0.16 − (0.6 − x 2 + y 2 )2 )1/2 Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 55. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: Shadow Torus Shadow Torus f(x,y) --> samples 1024 Points 2048 Points 4096 Points 32768 Samples 65536 Samples 131072 Samples Figure: The figure above shows the number of points and samples for each set. In the table below we can view times of generation, times of optimization and steps until convergence. Amount of Points 1024 2048 4096 Generation Time 05.60 seconds 27.10 seconds 135.20 seconds Optimization Time 00.11 seconds 00.29 seconds 01.20 seconds Optimization Steps* 20 13 23 Optimization Steps*: number of iterations until convergence. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 56. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: SinXCosY Optimized Sites Voronoi Tessellation f (x, y) = 0.2 sin (5x) cos (5y) Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 57. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: SinXCosY SinXCosY f(x,y) --> samples 1024 Points 2048 Points 4096 Points 32768 Samples 65536 Samples 131072 Samples Figure: The figure above shows the number of points and samples for each set. In the table below we can view times of generation, times of optimization and steps until convergence. Amount of Points 1024 2048 4096 Generation Time 34.00 seconds 151.40 seconds 813.20 seconds Optimization Time 00.12 seconds 00.36 seconds 01.33 seconds Optimization Steps* 14 14 20 Optimization Steps*: number of iterations until convergence. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 58. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: The Waves Optimized Sites Voronoi Tessellation f (x, y) = x 3 − 3xy 2 Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 59. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: The Waves The Waves f(x,y) --> samples 1024 Points 2048 Points 4096 Points 32768 Samples 65536 Samples 131072 Samples Figure: The figure above shows the number of points and samples for each set. In the table below we can view times of generation, times of optimization and steps until convergence. Amount of Points 1024 2048 4096 Generation Time 07.30 seconds 31.90 seconds 168.60 seconds Optimization Time 00.15 seconds 00.55 seconds 01.72 seconds Optimization Steps* 16 28 16 Optimization Steps*: number of iterations until convergence. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 60. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Points and Optimization Time Number of Points and Samples Results :: Stippling :: Image as Density Function 4096 Points 16384 Points 20000 Points 393216 Samples 786432 Samples 1280000 Samples 4096 Points 8192 Points 12288 Points 02.97 seconds 09.62 seconds 17.57 seconds Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 61. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: Stippling - Corn Plant/Dracaena 4096 Points 16384 Points 20000 Points 393216 Samples 786432 Samples 1280000 Samples Figure: Input image with 1000x1000 pixels. The figure above shows the number of points and the number of samples for each set. In the table below we can visualize times of generation, times of optimization and steps until convergence. Amount of Points 4096 16384 20000 Generation Time 25.50 minutes 101.70 minutes 271.20 minutes Optimization Time 4.41 seconds 20.45 seconds 42.43 seconds Optimization Steps* 57 24 35 Optimization Steps*: number of iterations until convergence. Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 62. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Results :: Stippling - Madonna’s Face 4096 Points 8192 Points 12288 Points 02.97 seconds 09.62 seconds 17.57 seconds Figure: Madonna’s Face. Input image with 1000x1000 pixels. The figure shows the number of points and the optimization time for each set. Amount of Points 4096 8192 12288 Generation Time 13.40 minutes 55.37 minutes 124.99 minutes Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Optimization Time 02.97 seconds 09.62 seconds 17.57 seconds Optimization Steps 38 36 38 Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 63. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Conclusions Some conclusions about the method: 1.01 1.00 0.80 0.60 0.40 0.20 0.00 1.005 1 0.995 Performs distribution points optimally. It is more stable than Lloyd’s Method therefore uses the concept of capacity as a form of optimization. Improves the characteristics of the blue-noise and has no apparent regularities in the arrangement of sites. Displays ‘precise’ adaptation to arbitrary distribution functions. No manual intervention is required and neither depends on the initial distribution to generate good quality results. 0.99 0.00 1.00 0.20 0.80 0.40 0.60 0.60 0.40 0.80 Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG 0.20 1.00 0.00 Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 64. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Conclusions Some conclusions about the method: 1.01 1.00 0.80 0.60 0.40 0.20 0.00 1.005 1 0.995 Performs distribution points optimally. It is more stable than Lloyd’s Method therefore uses the concept of capacity as a form of optimization. Improves the characteristics of the blue-noise and has no apparent regularities in the arrangement of sites. Displays ‘precise’ adaptation to arbitrary distribution functions. No manual intervention is required and neither depends on the initial distribution to generate good quality results. 0.99 0.00 1.00 0.20 0.80 0.40 0.60 0.60 0.40 0.80 Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG 0.20 1.00 0.00 Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 65. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Conclusions Some conclusions about the method: 1.01 1.00 0.80 0.60 0.40 0.20 0.00 1.005 1 0.995 Performs distribution points optimally. It is more stable than Lloyd’s Method therefore uses the concept of capacity as a form of optimization. Improves the characteristics of the blue-noise and has no apparent regularities in the arrangement of sites. Displays ‘precise’ adaptation to arbitrary distribution functions. No manual intervention is required and neither depends on the initial distribution to generate good quality results. 0.99 0.00 1.00 0.20 0.80 0.40 0.60 0.60 0.40 0.80 Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG 0.20 1.00 0.00 Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 66. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Conclusions Some conclusions about the method: 1.01 1.00 0.80 0.60 0.40 0.20 0.00 1.005 1 0.995 Performs distribution points optimally. It is more stable than Lloyd’s Method therefore uses the concept of capacity as a form of optimization. Improves the characteristics of the blue-noise and has no apparent regularities in the arrangement of sites. Displays ‘precise’ adaptation to arbitrary distribution functions. No manual intervention is required and neither depends on the initial distribution to generate good quality results. 0.99 0.00 1.00 0.20 0.80 0.40 0.60 0.60 0.40 0.80 Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG 0.20 1.00 0.00 Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 67. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Conclusions Some conclusions about the method: 1.01 1.00 0.80 0.60 0.40 0.20 0.00 1.005 1 0.995 Performs distribution points optimally. It is more stable than Lloyd’s Method therefore uses the concept of capacity as a form of optimization. Improves the characteristics of the blue-noise and has no apparent regularities in the arrangement of sites. Displays ‘precise’ adaptation to arbitrary distribution functions. No manual intervention is required and neither depends on the initial distribution to generate good quality results. 0.99 0.00 1.00 0.20 0.80 0.40 0.60 0.60 0.40 0.80 Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG 0.20 1.00 0.00 Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 68. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Thanks Thanks for your attention! Michel Alves dos Santos - michel.mas@gmail.com Michel Alves dos Santos - (Alves, M.) MSc Candidate at Federal University of Rio de Janeiro. E-mail: michel.mas@gmail.com, malves@cos.ufrj.br Lattes: http://lattes.cnpq.br/7295977425362370 Home: http://www.michelalves.com Phone: +55 21 2562 8572 (Institutional Phone Number) http://www.facebook.com/michel.alves.santos http://www.linkedin.com/profile/view?id=26542507 Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 69. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Samples Voronoi Sites Thank you for your attention! Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC
  • 70. Universidade Federal do Rio de Janeiro - UFRJ - Campus Cidade Universitária - Rio de Janeiro - Ilha do Fundão, CEP: 21941-972 - COPPE/PESC/LCG Capacity-Constrained Point Distributions :: A Variant of Lloyd’s Method :: Computational Geometry Discipline :: Laboratory Seminar :: January, 2013 Bibliography M. Balzer, T. Schlömer, and O. Deussen. Capacity-constrained point distributions: A variant of Lloyd’s method. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2009), 28(3):86:1–8, 2009. F. de Goes, K. Breeden, V. Ostromoukhov, and M. Desbrun. Blue noise through optimal transport. ACM Trans. Graph. (SIGGRAPH Asia), 31, 2012. R. Fattal. Blue-noise point sampling using kernel density model. ACM SIGGRAPH 2011 papers, 28(3):1–10, 2011. H. Li, D. Nehab, L.-Y. Wei, P. V. Sander, and C.-W. Fu. Fast capacity constrained voronoi tessellation. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’10, pages 13:1–13:1, New York, NY, USA, 2010. ACM. A. Secord. Weighted Voronoi stippling. In Proceedings of the second international symposium on Non-photorealistic animation and rendering, pages 37–43. ACM Press, 2002. R. Ulichney. Digital Halftoning. MIT Press, 1987. ISBN 9780262210096. I dedicate this presentation to Renata Thomaz Lins do Nascimento, my love, my life! Michel Alves dos Santos: Laboratório de Computação Gráfica - LCG Pós-Graduação em Engenharia de Sistemas e Computação - PESC