SlideShare a Scribd company logo
1 of 32
Download to read offline
1| Universidad de La Rioja | 11/07/2014APPLICATION OF OPENSEES IN RBDO OF STRUCTURESOPENSEES DAYS PORTUGAL 2014Luis Celorrio BarraguéDeparmentof MechanicalEngineering–Universidad de La Rioja -Spain
2| Universidad de La Rioja | 11/07/2014 
SUMMARY APPLICATION OF OPENSEES IN RELIABILITY BASED DESIGN OPTIMIZATION OF STRUCTURES 
RELIABILITY / SENSITIVITY ANALYSIS 
RBDO PROBLEM 
RBDO METHODS 
RBDO WITH OPENSEES 
ANALITICAL EXAMPLE 
10 BARS TRUSS EXAMPLE 
STEELFRAME EXAMPLE 
CONCLUSIONS
3| Universidad de La Rioja | 11/07/2014 
RELIABILITY / SENSTIVITY ANALYSIS 
•Recently, changes in Reliability Modules of OpenSeeshave been carried out. Also some examples, presentations and videos are available in the OpenSeesInternet site. 
•New commands provide sensitivity of response with respect to parameters. Also, parameters can be used to map probability distributions to uncertain properties. 
•A script-level mechanism for identifying and updating parametershas been added 
•Methods to quantify uncertainty are available in OpenSees. 
FOSM, FORM, SORM, etc. 
Response Sensitivity 
Monte Carlo Simulation (Importance Sampling MCS) 
System Reliability
4 | Universidad de La Rioja | 11/07/2014 
RBDO PROBLEM 
  
    
L U L U 
t 
fi i fi s t P P g P i n 
f 
X X X 
X P 
d,μ 
d d d μ μ μ 
d X P 
d μ μ 
x 
    
    
, 
. . , , 0 , 1,..., 
min , , 
m XR : vector of random design variables 
k dR : vector of deterministic design variables 
q PR : vector of random parameters 
 Single objective function 
 Component level probabilistic constraints 
 gi d,X,P 0 Indicates Failure 
 X,P Correlated random input variables 
where: 
The most used formulation of a Reliability Based Design Optimization problem is:
5| Universidad de La Rioja | 11/07/2014 
RBDO PROBLEM
6| Universidad de La Rioja | 11/07/2014 
RBDO PROBLEM
7| Universidad de La Rioja | 11/07/2014 
RBDO METHODS 
Double loop formulations: 
Reliability Index Approach (RIA)-based double loop RBDO 
Performance Measure Approach (PMA)-based double loop RBDO 
Several PMA algorithms: AMV, HMV, HMV+, PMA+ (B.D.Younetal2003, 2005). 
Single loop approaches: 
SLSV (Single Loop Single Vector) 
To Collapse KKT conditions of inner loop as constraints of the outer design loop. 
Decoupled (or sequential) approaches: 
SORA. (Du and Chen, 2004)
8| Universidad de La Rioja | 11/07/2014 
RBDO WITH OPENSEES 
•Structural Reliability applications are useful when large structures supporting extreme actions are considered. These extreme actions are wind loads, seismic ground motions or wave loads. 
•Then, nonlinear structural behavior must be considered. Also dynamic analysis is necessary when load are time variant. Because that an advanced finite element analysis software is needed. 
•OpenSeesis a powerful software with advanced structural analysis capabilities. Also reliability and sensibility functions have been recently modified. Because that OpenSeesbecomes a powerful FEA tool. 
•Here some RBDO problems are solved combining some MATLAB functions with the power of OpenSees. These MATLAB functions were originally integrated with FERUM and forming the RBDO –FERUM toolbox. [1] 
[1]L.Celorrio-Barragué,“DevelopmentofaReliability-BasedDesignOptimizationToolboxfortheFERUMSoftware”, 
SUM2012,LNAI7520,pp.273–286,2012.Springer-VerlagBerlinHeidelberg2012
9| Universidad de La Rioja | 11/07/2014 
RBDO WITH OPENSEES 
•RBDO RIA-based double loop method 
•Outer loop or Design Optimization loop is carried out in Matlabusing RBDO- FERUM functions. Reliability analysis is carried out in OpenSeesusing FORM. Writing/reading of files is used. 
Write RVDATA.tcl 
Design Variables, 
푑푖푖=1,…,푛 
Optimization 
Loop 
RBDO-FERUM 
Call !OpenSeesfile.tcl 
Read betas.out 
Readgradbetas.out 
ReadLSFE.out 
OPENSEES 
Reliability 
Loop
10| Universidad de La Rioja | 11/07/2014 
RBDO WITH OPENSEES 
•RBDO PMA-based double loop method 
•Now, Values of Random Variables are passed to OpenSeesto compute the response and the gradients of the response wrtrandom variables. Optimization loop and the search of MPPIR are computed using RBDO- FERUM. Also files are used as interfaces. 
Write VECTORDATA.tcl 
Random Variables, 
푋푖푖=1,…,푁 
Optimization 
Loop 
Sensitivity 
Analysis 
Call !OpenSeesfilegrad.tcl 
Read RES.out 
ReadGRADRES.out 
Reliability 
Loop 
RBDO-FERUM 
OPENSEES
11 | Universidad de La Rioja | 11/07/2014 
ANALYTICAL EXAMPLE 
 2.0, i 1, 2, 3. t 
i  
To minimize 퐶표푠푡 훍퐗 = 휇푋1 + 휇푋2 
Subject to 푃 푔푖 푋 ≤ 0 ≤ Φ −훽푖 
푡 
, 푖 = 1,2,3 
0 ≤ 휇푋1 ≤ 10 ; 0 ≤ 휇푋2 ≤ 10 
Where the Limit State Functions are 
푔1 퐗 = 푋1 
2 
푋2 20 − 1 
푔2 퐗 = 푋1 + 푋2 − 5 2 30 + 푋1 + 푋2 − 12 2 120 − 1 
푔3 퐗 = 80 푋1 
2 + 8푋2 + 5 − 1 
The distribution of the random variables are: 
Initial design: 훍퐗 
ퟎ = 5.0, 5.0 푇 
Convergence Tolerance of the optimization loop: 10−4 
푋1~푁 휇푋1 , 퐶표푉 = 0.12 
푋2~푁 휇푋2 , 퐶표푉 = 0.12
12| Universidad de La Rioja | 11/07/2014 
ANALYTICAL EXAMPLE 
Results obtained using RIA based RBDO. 
Design Values at the probabilistic optimum: 휇푋1=3.4163휇푋2=3.1335 
Cost Function at the probabilistic optimum: 퐶표푠푡훍퐗=6.5497 
Reliability Indexes at the optimum: 훽1=2.0171,훽2=2.0109,훽3=7.7892 
Number of Optimization Iterations: 15 
Number of LSFEs: 1032. It’s very high. We use very small convergence tolerance(10−4in the external loop). Also, no technique to reduce computational effort has been considered. 
Gradients are computed using Direct Differentiation Method (Implicit in OpenSees).
13| Universidad de La Rioja | 11/07/2014 
ANALYTICAL EXAMPLE
14| Universidad de La Rioja | 11/07/2014 
10 BARS TRUSS EXAMPLE 
Classic Example in Structural Optimization. 
RBDO Problem: To minimize the weight or volume of the truss subject to reliability constraints in terms of displacements or stresses.
15 | Universidad de La Rioja | 11/07/2014 
10 BARS TRUSS EXAMPLE 
CASE 1.- Linear Elastic Material, Linear Analysis. 
RBDO Problem: To minimize the volume of the truss subject to reliability 
constraints in terms of the vertical displacement of node 2. 
To minimize 푉 퐝, 훍퐗, 훍퐏 
Subject to 푃 푔푖 푋 ≤ 0 ≤ Φ −훽푖 
푡 
, 푖 = 1 
5푐푚2 ≤ 휇푋푗 ≤ 75푐푚2; 푗 = 1,2,3 
Displacement constraint: Vertical displacement at node 2 is limited 
u cm allowed displacement a 푔  2  1 퐝, 퐗, 퐏 = 1 − 
푢푦2 퐝, 퐗, 퐏 
푢푎 
Convergence Tolerance of the optimization algorithm: 10−3
16 | Universidad de La Rioja | 11/07/2014 
10 BARS TRUSS EXAMPLE 
CASE 1.- Linear Elastic Material, Linear Analysis 
RANDOM VARIABLES OF THE PROBLEM 
Random 
Variable 
Description 
Distribution 
type 
Mean Value 
(initial) 
CoV or 
Standard 
Desviation 
Design 
Variable 
1 X 1A LN 20.0 cm2 CoV = 0.05 X1  
2 X A2 LN 20.0 cm2 CoV = 0.05 X2  
3 X A3 LN 20.0 cm2 CoV = 0.05 X3  
4 X E LN 21000.0 kN/cm2 1050 kN/cm2 - 
5 X 1 P LN 100.0 kN 20 kN - 
6 X 2 P LN 50.0 kN 2.5 kN - 
 X1 
 X2 
 X3 
Mean value of the cross section area in horizontal bars. 
Mean value of the cross section area in vertical bars. 
Mean value of the cross section area in diagonal bars.
17| Universidad de La Rioja | 11/07/2014 
10 BARS TRUSS EXAMPLE 
Results obtained using RIA based RBDO. 
Design Values at the probabilistic optimum: 
휇푋1=24.1668푐푚2휇푋2=18.2887푐푚2휇푋3=10.2211푐푚2 
Volume of Steel at the probabilistic optimum: 퐶표푠푡훍퐗=68783.08푐푚3 
Reliability Index at the optimum: 훽1=3.7000, 
Number of Optimization Iterations: 61(very high) 
Number of LSFEs: 602. Note that the convergence tolerance is small(10−3). Also, no strategy to reduce computational effort has been considered. 
Gradients are computed using DDM (Implicit in OpenSees). 
CASE 1.-Linear Elastic Material, Linear Analysis
18| Universidad de La Rioja | 11/07/2014 
10 BARS TRUSS EXAMPLE 
####################################################################### 
# FORM ANALYSIS RESULTS, LIMIT-STATE FUNCTION NUMBER 1 # 
# # 
# Limit-state function value at start point: ......... 0.80548 # 
# Limit-state function value at end point: ........... -1.6552e-006 # 
# Number of steps: ................................... 4 # 
# Number of g-function evaluations: .................. 10 # 
# Reliability index beta: ............................ 3.7 # 
# FO approx. probability of failure, pf1: ............ 1.07801e-004 # 
# # 
# rvtagx* u* alpha gamma delta eta # 
# 1 2.342e+001 -5.994e-001 -0.16211 -0.16211 0.16746 -0.10514 # 
# 2 1.806e+001 -2.309e-001 -0.06246 -0.06246 0.06337 -0.01752 # 
# 3 1.002e+001 -3.629e-001 -0.09809 -0.09809 0.10017 -0.04044 # 
# 4 1.993e+004 -1.017e+000 -0.27517 -0.27517 0.29001 -0.29337 # 
# 5 1.948e+002 3.465e+000 0.93649 0.93649 -0.34563 -3.00061 # 
# 6 5.074e+001 3.188e-001 0.08637 0.08637 -0.08526 -0.02319 # 
# # 
####################################################################### 
CASE 1.-Linear Elastic Material, Linear Analysis 
FORM Results for the last iteration.
19| Universidad de La Rioja | 11/07/2014 
10 BARS TRUSS EXAMPLE 
#OPENSEES CODE 
probabilityTransformationNataf-print 0 
randomNumberGeneratorCStdLib 
runImportanceSamplingAnalysistruss10MCSa.out -type responseStatistics-maxNum250000 -targetCOV0.01 -print 0 
runImportanceSamplingAnalysistruss10MCSb.out -type failureProbability-maxNum250000 -targetCOV0.01 -print 0 
####################################################################### 
# SAMPLING ANALYSIS RESULTS, LIMIT-STATE FUNCTION NUMBER 1 # 
# # 
# Estimated mean: .................................... 0.77538 # 
# Estimated standard deviation: ...................... 0.16102 # 
# # 
####################################################################### 
####################################################################### 
# SAMPLING ANALYSIS RESULTS, LIMIT-STATE FUNCTION NUMBER 1 # 
# # 
# Reliability index beta: ............................ 3.7151 # 
# Estimated probability of failure pf_sim: ........... 0.00010155 # 
# Number of simulations: ............................. 250000 # 
# Coefficient of variation (of pf): .................. 0.17007 # 
####################################################################### 
CASE 1.-Linear Elastic Material, Linear Analysis 
Sampling Analysis Results, using 250000 simulations.
20| Universidad de La Rioja | 11/07/2014 
10 BARS TRUSS EXAMPLE
21| Universidad de La Rioja | 11/07/2014 
RBDO 10 BARS TRUSS EXAMPLE 
uniaxialMaterial Hardening1 $E $fy0.0 [expr$b/(1-$b)*$E] 
A random variable is added: fy(elastic limit) ~퐿푁휇=15.5 푘푁푐푚2,퐶표푉=0.05. 
$b is the hardening ratio and is considered determinist: set b 0.02 
CASE 2.-Nonlinear Material, Nonlinear Analysis
22 | Universidad de La Rioja | 11/07/2014 
RBDO 10 BARS TRUSS EXAMPLE 
RANDOM VARIABLES OF THE PROBLEM 
Random 
Variable 
Description 
Distribution 
type 
Mean Value 
(initial) 
CoV or 
Standard 
Desviation 
Design 
Variable 
1 X 1A LN 20.0 cm2 0.05 X1  
2 X 2A LN 20.0 cm2 0.05 X2  
3 X A3 LN 20.0 cm2 0.05 X3  
4 X E LN 21000.0 kN/cm2 1050 kN/cm2 - 
5 X fy LN 15.5 kN/cm2 0.775 kN/cm2 - 
6 X 1 P LN 100.0 kN 20 kN - 
7 X 2 P LN 50.0 kN 2.5 kN - 
 X1 
 X2 
 X3 
Mean value of the cross section area in horizontal bars. 
Mean value of the cross section area in vertical bars. 
Mean value of the cross section area in diagonal bars. 
CASE 2.- Nonlinear Material, Nonlinear Analysis
23| Universidad de La Rioja | 11/07/2014 
RBDO 10 BARS TRUSS EXAMPLE 
CASE 2.-Nonlinear Material, Nonlinear Analysis 
Results obtained using RIA based RBDO. 
Design Values at the probabilistic optimum: 
휇푋1=27.4826푐푚2휇푋2=14.5461푐푚2휇푋3=11.7636푐푚2 
Volume of Steel at the probabilistic optimum: 퐶표푠푡훍퐗=74004.32푐푚3 
Reliability Index at the optimum: 훽1=3.7002, 
Number of Optimization Iterations: 100(very high) 
Number of LSFEs: 1360. 
Gradients are computed using DDM (Implicit in OpenSees). 
Note that areas of cross sections are larger than in the case of elastic material.
24| Universidad de La Rioja | 11/07/2014 
STEELFRAME EXAMPLE 
3 Stories and 3 Bays Steel Frame 
Modified version of the structural model in the file steelframe.tcl[2] downloaded from OpenSeesforum. 
[2]T.HaukaasandM.H.Scott,ShapeSensitivitiesintheReliabilityAnalysisofNonlinearFrameStructures,ComputerandStructures,v.84,15-16,p964-977,2006 
1 2 3 1 1 2 2 5 5 5 4 4 4 1 1 1 1 2 2 2 2
25| Universidad de La Rioja | 11/07/2014 
STEELFRAME EXAMPLE 
3 Stories and 3 Bays Steel Frame 
Random Variable Description Dist. Initial Mean CoV Design Variable 1d Height LC N 0.4 m 0.02 1d 2d Height CC N 0.4 m 0.02 2d 3d Height B N 0.4 m 0.02 3d 1E Modulus LC LN 200E+6 kPa 0.05 - 1fy Yield Stress LC LN 300E+3 kPa 0.1 - 1Hkin Hard. Kin.LC LN 4.0816E+6 kPa 0.1 - 2E Modulus CC LN 200E+6 kPa 0.05 - 2fy Yield Stress CC LN 300E+3 kPa 0.1 - 2Hkin Hard. Kin.CC LN 4.0816E+6 kPa 0.1 - 3E Modulus B LN 200E+6 kPa 0.05 - 3fy Yield Stress B LN 300E+3 kPa 0.1 - 3Hkin Hard. Kin.B LN 4.0816E+6 kPa 0.1 - 1H Lateral Load LN 400 kN 0.05 2H Lateral Load LN 267 kN 0.05 3H Lateral Load LN 133 kN 0.05 1P Vertical Load LN 50 kN 0.05 2P Vertical Load LN 100 kN 0.05
26 | Universidad de La Rioja | 11/07/2014 
STEELFRAME EXAMPLE 
3 Stories and 3 Bays Steel Frame 
Member are grouped in three groups: Lateral Columns, Central Columns and 
Beams. All member assigned to a group have the same rectangular cross 
section, with width b = 20 cm (fixed and deterministic) and height 푑푖 (random, 
design variable). 3 design variables, 휇푑푖 푤푖푡ℎ 푖 = 1,2,3. 
  
      
j . 
s t P g P 
Min V 
d j 
t 
t t 
f 
10 cm 50 cm 1,2,3 
where 3.0 
. . , , 0 
, , 
   
 
     
 
 
d X P  
d μ μX P 
Reliability constraint: the horizontal displacement of node 13 is limited. 푈푚푎푥 = 
3.6 푐푚 푃 푢푥13 퐝, 퐗, 퐏 − 푈푚푎푥 ≤ 0 ≤ Φ −훽푡
27| Universidad de La Rioja | 11/07/2014 
STEELFRAME EXAMPLE 
Results obtained using PMA –HMV+ based RBDO. 
Design Values at the probabilistic optimum: 
휇푑1=29.5624푐푚휇푑2=49.4783푐푚휇푋3=35.2246푐푚 
Volume of Steel at the probabilistic optimum: 퐶표푠푡훍퐗=3482083.3054푐푚3 
Reliability Index at the optimum: 훽1=3.0025, 
Number of Optimization Iterations: 168(very high) 
Number of LSFEs: 336. Convergence tolerance is small(10−2). 
Gradients are computed using DDM (Implicit in OpenSees). 
Nonlinear Material and Beam-Column elements are considered. However, material works in the linear elastic zone because gradients wrtparameters 푓푦푖,퐻푘푖푛푖are 0. 
3 Stories and 3 Bays Steel Frame
28| Universidad de La Rioja | 11/07/2014 
STEELFRAME EXAMPLE 
Results obtained using PMA –HMV+ based RBDO. (DDM) 
CASE Nonlinear. Now, allowed horizontal displacement at node 13 is 20 cm. 
Mean Values of Horizontal loads H1, H2 and H3 are the double that in the first case. Then, large deformations occur and material works in the plastic zone. 
Response gradients wrtmaterial parameters 푓푦푖,퐻푘푖푛푖are ≠0. 
Design Values at the probabilistic optimum: 
휇푑1=20.8792푐푚휇푑2=34.9506푐푚휇푋3=26.1249푐푚 
Volume of Steel at the probabilistic optimum: 퐶표푠푡훍퐗=2515535.2701푐푚3 
Reliability Index at the optimum: 훽1=3.0025, 
Number of Optimization Iterations: 256(very high). Time: 1 hour. 
Number of LSFEs: 1221. Convergence tolerance is small(10−3). 
3 Stories and 3 Bays Steel Frame
29 | Universidad de La Rioja | 11/07/2014 
STEELFRAME EXAMPLE 
3 Stories and 3 Bays Steel Frame 
Random 
Variable 
Description Dist. 
Gradient of Response 
wrt Random Variable 
1d Height LC N -0.726905589 
2 d Height CC N -0.796264509 
3 d Height B N -2.066431991 
1 E Modulus LC LN -0.000235612 
1 fy Yield Stress LC LN -0.021961307 
1 Hkin Hard. Kin.LC LN -5.731584490e-6 
2 E Modulus CC LN -0.000233264 
2 fy Yield Stress CC LN -0.240438494 
2 Hkin Hard. Kin.CC LN -0.000403937 
3 E Modulus V LN -0.000544820 
3 fy Yield Stress V LN -0.393476132 
3 Hkin Hard. Kin.V LN -0.000298610 
H1 Lateral Load LN 0.0271410404 
H2 Lateral Load LN 0.0204777759 
H3 Lateral Load LN 0.0103512600 
P1 Vertical Load LN 2.5797303295e-5 
P2 Vertical Load LN 1.6692914381e-5 
REMARK: Units used 
are: 푘푁, 푘푁 푐푚2 푦 푐푚
30| Universidad de La Rioja | 11/07/2014 
STEELFRAME EXAMPLE 
Results obtained using PMA –HMV+ based RBDO.(DDM) WARM-UP = yes 
CASE Nonlinear. Same case than last slide: 푢푥13푎푑푚=20푐푚 
Loads H1, H2 and H3 are the double that in the linear case. 
Design Values at the probabilistic optimum: 
휇푑1=20.8704푐푚휇푑2=34.9277푐푚휇푋3=26.1391푐푚 
Volume of Steel at the probabilistic optimum: 퐶표푠푡훍퐗=2515413.2267푐푚3 
Reliability Index at the optimum: 훽1=3.0025, 
Number of Optimization Iterations: 244(very high). 
Number of LSFEs: 560≪1221. This reduction is motivated by Warm-Up strategy 
Convergence tolerance is small(10−3), 
Warm-Up Tolerance =10−2. 
3 Stories and 3 Bays Steel Frame
31| Universidad de La Rioja | 11/07/2014 
CONCLUSIONS 
Sensitivity and Reliability capabilities of OpenSeescan be combined with an optimization tool, such as Optimization Toolbox of Matlabto carry out RBDO. 
Double loop RBDO methods have been implemented using OpenSeesand Matlab. 
An analytical and two structural examples have been studied. 
Complex problems can be solved thanks to advanced structural analysis algorithms implemented in OpenSees. 
Computational cost is very high and convergence problems can occur, specially when an increased number of random design variables are considered. 
Some special techniques to reduce the computational cost must be added: 
Warm up: to start the MPP search in the MPP of the last Iteration. 
To use deterministic optimum as initial design
32| Universidad de La Rioja | 11/07/2014 
QUESTIONS –COMENTS 
THANK YOU 
luis.celorrio@unirioja.es 
luis.celorrio@gmail.com

More Related Content

What's hot

Earthquake resistant steel structures arcelor mittal
Earthquake resistant steel structures arcelor mittalEarthquake resistant steel structures arcelor mittal
Earthquake resistant steel structures arcelor mittal
mitsaras22
 

What's hot (20)

Theory of Plates and Shells
Theory of Plates and ShellsTheory of Plates and Shells
Theory of Plates and Shells
 
INDUSTRIALISED BUILDING SYSTEMS & MODULAR COORDINATION
INDUSTRIALISED BUILDING SYSTEMS & MODULAR COORDINATIONINDUSTRIALISED BUILDING SYSTEMS & MODULAR COORDINATION
INDUSTRIALISED BUILDING SYSTEMS & MODULAR COORDINATION
 
1-tension.pdf
1-tension.pdf1-tension.pdf
1-tension.pdf
 
Architectural And Structural Design Of Blast Resistant Buildings - PRESENTATION
Architectural And Structural Design Of Blast Resistant Buildings - PRESENTATIONArchitectural And Structural Design Of Blast Resistant Buildings - PRESENTATION
Architectural And Structural Design Of Blast Resistant Buildings - PRESENTATION
 
Response Spectrum
Response SpectrumResponse Spectrum
Response Spectrum
 
M3 d (1)
M3 d (1)M3 d (1)
M3 d (1)
 
Column base plates_prof_thomas_murray
Column base plates_prof_thomas_murrayColumn base plates_prof_thomas_murray
Column base plates_prof_thomas_murray
 
Analysis of g+3 rcc storied building
Analysis of g+3 rcc storied buildingAnalysis of g+3 rcc storied building
Analysis of g+3 rcc storied building
 
Design of concrete beam
Design of concrete beamDesign of concrete beam
Design of concrete beam
 
Failure Due to overloading
Failure Due to overloadingFailure Due to overloading
Failure Due to overloading
 
Design of floor slab
Design of floor slabDesign of floor slab
Design of floor slab
 
WIND CODE-IS 875-PART 3
WIND CODE-IS 875-PART 3WIND CODE-IS 875-PART 3
WIND CODE-IS 875-PART 3
 
BUILDING STRUCTURE FINAL REPORT
BUILDING STRUCTURE FINAL REPORT BUILDING STRUCTURE FINAL REPORT
BUILDING STRUCTURE FINAL REPORT
 
Analysis Of Thin Shell
Analysis Of Thin ShellAnalysis Of Thin Shell
Analysis Of Thin Shell
 
FIRES AS A CAUSE OF CONCRETE DETERIORATION
FIRES AS A CAUSE OF CONCRETE DETERIORATIONFIRES AS A CAUSE OF CONCRETE DETERIORATION
FIRES AS A CAUSE OF CONCRETE DETERIORATION
 
Introduction to steel concrete composite structure
Introduction to steel concrete composite structureIntroduction to steel concrete composite structure
Introduction to steel concrete composite structure
 
Rc detailing-to-ec2
Rc detailing-to-ec2Rc detailing-to-ec2
Rc detailing-to-ec2
 
Earthquake resistant steel structures arcelor mittal
Earthquake resistant steel structures arcelor mittalEarthquake resistant steel structures arcelor mittal
Earthquake resistant steel structures arcelor mittal
 
Tensile, Impact and Hardness Testing of Mild Steel
Tensile, Impact and Hardness Testing of Mild SteelTensile, Impact and Hardness Testing of Mild Steel
Tensile, Impact and Hardness Testing of Mild Steel
 
Bend test
Bend testBend test
Bend test
 

Similar to Application of OpenSees in Reliability-based Design Optimization of Structures

Presentazione L.M. Rinaldi Ivan
Presentazione L.M. Rinaldi IvanPresentazione L.M. Rinaldi Ivan
Presentazione L.M. Rinaldi Ivan
Ivan Rinaldi
 
Variation aware design of custom integrated circuits a hands on field guide
Variation aware design of custom integrated circuits  a hands on field guideVariation aware design of custom integrated circuits  a hands on field guide
Variation aware design of custom integrated circuits a hands on field guide
Springer
 
User-­friendly Metaworkflows in Quantum Chemistry
User-­friendly Metaworkflows in Quantum ChemistryUser-­friendly Metaworkflows in Quantum Chemistry
User-­friendly Metaworkflows in Quantum Chemistry
Sandra Gesing
 
RBHF_SDM_2011_Jie
RBHF_SDM_2011_JieRBHF_SDM_2011_Jie
RBHF_SDM_2011_Jie
MDO_Lab
 
Scalable NDT Instruments for the Inspection of Variable Geometry Components
Scalable NDT Instruments for the Inspection of Variable Geometry ComponentsScalable NDT Instruments for the Inspection of Variable Geometry Components
Scalable NDT Instruments for the Inspection of Variable Geometry Components
Olympus IMS
 
Change Impact Analysis for Natural Language Requirements
Change Impact Analysis for Natural Language RequirementsChange Impact Analysis for Natural Language Requirements
Change Impact Analysis for Natural Language Requirements
Lionel Briand
 

Similar to Application of OpenSees in Reliability-based Design Optimization of Structures (20)

Presentazione L.M. Rinaldi Ivan
Presentazione L.M. Rinaldi IvanPresentazione L.M. Rinaldi Ivan
Presentazione L.M. Rinaldi Ivan
 
Variation aware design of custom integrated circuits a hands on field guide
Variation aware design of custom integrated circuits  a hands on field guideVariation aware design of custom integrated circuits  a hands on field guide
Variation aware design of custom integrated circuits a hands on field guide
 
ARC2015_I_Slides
ARC2015_I_SlidesARC2015_I_Slides
ARC2015_I_Slides
 
Improving Genetic Algorithm (GA) based NoC mapping algorithm using a formal ...
Improving Genetic Algorithm (GA)  based NoC mapping algorithm using a formal ...Improving Genetic Algorithm (GA)  based NoC mapping algorithm using a formal ...
Improving Genetic Algorithm (GA) based NoC mapping algorithm using a formal ...
 
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W1 Process Capability
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W1 Process CapabilityJavier Garcia - Verdugo Sanchez - Six Sigma Training - W1 Process Capability
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W1 Process Capability
 
IRJET- Optimization of Fink and Howe Trusses
IRJET-  	  Optimization of Fink and Howe TrussesIRJET-  	  Optimization of Fink and Howe Trusses
IRJET- Optimization of Fink and Howe Trusses
 
DSUS_MAO_2012_Jie
DSUS_MAO_2012_JieDSUS_MAO_2012_Jie
DSUS_MAO_2012_Jie
 
Automating Speed: A Proven Approach to Preventing Performance Regressions in ...
Automating Speed: A Proven Approach to Preventing Performance Regressions in ...Automating Speed: A Proven Approach to Preventing Performance Regressions in ...
Automating Speed: A Proven Approach to Preventing Performance Regressions in ...
 
User-­friendly Metaworkflows in Quantum Chemistry
User-­friendly Metaworkflows in Quantum ChemistryUser-­friendly Metaworkflows in Quantum Chemistry
User-­friendly Metaworkflows in Quantum Chemistry
 
Regression and Classification: An Artificial Neural Network Approach
Regression and Classification: An Artificial Neural Network ApproachRegression and Classification: An Artificial Neural Network Approach
Regression and Classification: An Artificial Neural Network Approach
 
RBHF_SDM_2011_Jie
RBHF_SDM_2011_JieRBHF_SDM_2011_Jie
RBHF_SDM_2011_Jie
 
MUMS: Transition & SPUQ Workshop - Gradient-Free Construction of Active Subsp...
MUMS: Transition & SPUQ Workshop - Gradient-Free Construction of Active Subsp...MUMS: Transition & SPUQ Workshop - Gradient-Free Construction of Active Subsp...
MUMS: Transition & SPUQ Workshop - Gradient-Free Construction of Active Subsp...
 
FEASIBLE-Benchmark-Framework-ISWC2015
FEASIBLE-Benchmark-Framework-ISWC2015FEASIBLE-Benchmark-Framework-ISWC2015
FEASIBLE-Benchmark-Framework-ISWC2015
 
Kansas Elsas Klint 2011
Kansas Elsas Klint 2011Kansas Elsas Klint 2011
Kansas Elsas Klint 2011
 
IRJET- An Efficient and Low Power Sram Testing using Clock Gating
IRJET-  	  An Efficient and Low Power Sram Testing using Clock GatingIRJET-  	  An Efficient and Low Power Sram Testing using Clock Gating
IRJET- An Efficient and Low Power Sram Testing using Clock Gating
 
Scalable NDT Instruments for the Inspection of Variable Geometry Components
Scalable NDT Instruments for the Inspection of Variable Geometry ComponentsScalable NDT Instruments for the Inspection of Variable Geometry Components
Scalable NDT Instruments for the Inspection of Variable Geometry Components
 
Deterioration Modelling of Structural Members Subjected to Cyclic Loading Usi...
Deterioration Modelling of Structural Members Subjected to Cyclic Loading Usi...Deterioration Modelling of Structural Members Subjected to Cyclic Loading Usi...
Deterioration Modelling of Structural Members Subjected to Cyclic Loading Usi...
 
A multivariate approach for process variograms
A multivariate approach for process variogramsA multivariate approach for process variograms
A multivariate approach for process variograms
 
IRJET- Optimum Design of Fan, Queen and Pratt Trusses
IRJET-  	  Optimum Design of Fan, Queen and Pratt TrussesIRJET-  	  Optimum Design of Fan, Queen and Pratt Trusses
IRJET- Optimum Design of Fan, Queen and Pratt Trusses
 
Change Impact Analysis for Natural Language Requirements
Change Impact Analysis for Natural Language RequirementsChange Impact Analysis for Natural Language Requirements
Change Impact Analysis for Natural Language Requirements
 

More from openseesdays

Recent advances in modeling soil-structure interaction problems using OpenSees
Recent advances in modeling soil-structure interaction problems using OpenSeesRecent advances in modeling soil-structure interaction problems using OpenSees
Recent advances in modeling soil-structure interaction problems using OpenSees
openseesdays
 
A shared-filesystem-memory approach for running IDA in parallel over informal...
A shared-filesystem-memory approach for running IDA in parallel over informal...A shared-filesystem-memory approach for running IDA in parallel over informal...
A shared-filesystem-memory approach for running IDA in parallel over informal...
openseesdays
 
Expert systems for advanced FE modelling of bridges and buildings using OpenSees
Expert systems for advanced FE modelling of bridges and buildings using OpenSeesExpert systems for advanced FE modelling of bridges and buildings using OpenSees
Expert systems for advanced FE modelling of bridges and buildings using OpenSees
openseesdays
 

More from openseesdays (20)

Opensees integrated in a BIM workflow as calculation engine
Opensees integrated in a BIM workflow as calculation engineOpensees integrated in a BIM workflow as calculation engine
Opensees integrated in a BIM workflow as calculation engine
 
Recent advances in modeling soil-structure interaction problems using OpenSees
Recent advances in modeling soil-structure interaction problems using OpenSeesRecent advances in modeling soil-structure interaction problems using OpenSees
Recent advances in modeling soil-structure interaction problems using OpenSees
 
A shared-filesystem-memory approach for running IDA in parallel over informal...
A shared-filesystem-memory approach for running IDA in parallel over informal...A shared-filesystem-memory approach for running IDA in parallel over informal...
A shared-filesystem-memory approach for running IDA in parallel over informal...
 
Expert systems for advanced FE modelling of bridges and buildings using OpenSees
Expert systems for advanced FE modelling of bridges and buildings using OpenSeesExpert systems for advanced FE modelling of bridges and buildings using OpenSees
Expert systems for advanced FE modelling of bridges and buildings using OpenSees
 
Implementation and finite-element analysis of shell elements confined by thro...
Implementation and finite-element analysis of shell elements confined by thro...Implementation and finite-element analysis of shell elements confined by thro...
Implementation and finite-element analysis of shell elements confined by thro...
 
Development of an OpenSees model for collapse risk assessment of Italian-code...
Development of an OpenSees model for collapse risk assessment of Italian-code...Development of an OpenSees model for collapse risk assessment of Italian-code...
Development of an OpenSees model for collapse risk assessment of Italian-code...
 
Blind test prediction of an infilled RC building with OpenSees
Blind test prediction of an infilled RC building with OpenSeesBlind test prediction of an infilled RC building with OpenSees
Blind test prediction of an infilled RC building with OpenSees
 
Modelling the out-of-plane behaviour of URM infills and the in-plane/out-of-p...
Modelling the out-of-plane behaviour of URM infills and the in-plane/out-of-p...Modelling the out-of-plane behaviour of URM infills and the in-plane/out-of-p...
Modelling the out-of-plane behaviour of URM infills and the in-plane/out-of-p...
 
A new Graphical User Interface for OpenSees
A new Graphical User Interface for OpenSeesA new Graphical User Interface for OpenSees
A new Graphical User Interface for OpenSees
 
Assessment of the seismic performance of steel frames using OpenSees
Assessment of the seismic performance of steel frames using OpenSeesAssessment of the seismic performance of steel frames using OpenSees
Assessment of the seismic performance of steel frames using OpenSees
 
Non-linear dynamic analyses of a 60’s RC building collapsed during L’Aquila 2...
Non-linear dynamic analyses of a 60’s RC building collapsed during L’Aquila 2...Non-linear dynamic analyses of a 60’s RC building collapsed during L’Aquila 2...
Non-linear dynamic analyses of a 60’s RC building collapsed during L’Aquila 2...
 
Efficient analytical and hybrid simulations using OpenSees
Efficient analytical and hybrid simulations using OpenSeesEfficient analytical and hybrid simulations using OpenSees
Efficient analytical and hybrid simulations using OpenSees
 
Numerical modelling of RC columns with plain reinforcing bars
Numerical modelling of RC columns with plain reinforcing barsNumerical modelling of RC columns with plain reinforcing bars
Numerical modelling of RC columns with plain reinforcing bars
 
OpenSees: Future Directions
OpenSees: Future DirectionsOpenSees: Future Directions
OpenSees: Future Directions
 
OpenSees solver with a differential evolutionary algorithm for structural opt...
OpenSees solver with a differential evolutionary algorithm for structural opt...OpenSees solver with a differential evolutionary algorithm for structural opt...
OpenSees solver with a differential evolutionary algorithm for structural opt...
 
An OpenSees material model for the cyclic behaviour of corroded steel bar in ...
An OpenSees material model for the cyclic behaviour of corroded steel bar in ...An OpenSees material model for the cyclic behaviour of corroded steel bar in ...
An OpenSees material model for the cyclic behaviour of corroded steel bar in ...
 
Numerical investigation on the seismic behaviour of repaired and retrofitted ...
Numerical investigation on the seismic behaviour of repaired and retrofitted ...Numerical investigation on the seismic behaviour of repaired and retrofitted ...
Numerical investigation on the seismic behaviour of repaired and retrofitted ...
 
Modelling with fibre beam elements for load capacity assessment of existing m...
Modelling with fibre beam elements for load capacity assessment of existing m...Modelling with fibre beam elements for load capacity assessment of existing m...
Modelling with fibre beam elements for load capacity assessment of existing m...
 
Modelling of soil-structure interaction in OpenSees: A practical approach for...
Modelling of soil-structure interaction in OpenSees: A practical approach for...Modelling of soil-structure interaction in OpenSees: A practical approach for...
Modelling of soil-structure interaction in OpenSees: A practical approach for...
 
Modelling of a shear reinforced flat slab building for seismic fragility anal...
Modelling of a shear reinforced flat slab building for seismic fragility anal...Modelling of a shear reinforced flat slab building for seismic fragility anal...
Modelling of a shear reinforced flat slab building for seismic fragility anal...
 

Recently uploaded

Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 

Recently uploaded (20)

Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 

Application of OpenSees in Reliability-based Design Optimization of Structures

  • 1. 1| Universidad de La Rioja | 11/07/2014APPLICATION OF OPENSEES IN RBDO OF STRUCTURESOPENSEES DAYS PORTUGAL 2014Luis Celorrio BarraguéDeparmentof MechanicalEngineering–Universidad de La Rioja -Spain
  • 2. 2| Universidad de La Rioja | 11/07/2014 SUMMARY APPLICATION OF OPENSEES IN RELIABILITY BASED DESIGN OPTIMIZATION OF STRUCTURES RELIABILITY / SENSITIVITY ANALYSIS RBDO PROBLEM RBDO METHODS RBDO WITH OPENSEES ANALITICAL EXAMPLE 10 BARS TRUSS EXAMPLE STEELFRAME EXAMPLE CONCLUSIONS
  • 3. 3| Universidad de La Rioja | 11/07/2014 RELIABILITY / SENSTIVITY ANALYSIS •Recently, changes in Reliability Modules of OpenSeeshave been carried out. Also some examples, presentations and videos are available in the OpenSeesInternet site. •New commands provide sensitivity of response with respect to parameters. Also, parameters can be used to map probability distributions to uncertain properties. •A script-level mechanism for identifying and updating parametershas been added •Methods to quantify uncertainty are available in OpenSees. FOSM, FORM, SORM, etc. Response Sensitivity Monte Carlo Simulation (Importance Sampling MCS) System Reliability
  • 4. 4 | Universidad de La Rioja | 11/07/2014 RBDO PROBLEM       L U L U t fi i fi s t P P g P i n f X X X X P d,μ d d d μ μ μ d X P d μ μ x         , . . , , 0 , 1,..., min , , m XR : vector of random design variables k dR : vector of deterministic design variables q PR : vector of random parameters  Single objective function  Component level probabilistic constraints  gi d,X,P 0 Indicates Failure  X,P Correlated random input variables where: The most used formulation of a Reliability Based Design Optimization problem is:
  • 5. 5| Universidad de La Rioja | 11/07/2014 RBDO PROBLEM
  • 6. 6| Universidad de La Rioja | 11/07/2014 RBDO PROBLEM
  • 7. 7| Universidad de La Rioja | 11/07/2014 RBDO METHODS Double loop formulations: Reliability Index Approach (RIA)-based double loop RBDO Performance Measure Approach (PMA)-based double loop RBDO Several PMA algorithms: AMV, HMV, HMV+, PMA+ (B.D.Younetal2003, 2005). Single loop approaches: SLSV (Single Loop Single Vector) To Collapse KKT conditions of inner loop as constraints of the outer design loop. Decoupled (or sequential) approaches: SORA. (Du and Chen, 2004)
  • 8. 8| Universidad de La Rioja | 11/07/2014 RBDO WITH OPENSEES •Structural Reliability applications are useful when large structures supporting extreme actions are considered. These extreme actions are wind loads, seismic ground motions or wave loads. •Then, nonlinear structural behavior must be considered. Also dynamic analysis is necessary when load are time variant. Because that an advanced finite element analysis software is needed. •OpenSeesis a powerful software with advanced structural analysis capabilities. Also reliability and sensibility functions have been recently modified. Because that OpenSeesbecomes a powerful FEA tool. •Here some RBDO problems are solved combining some MATLAB functions with the power of OpenSees. These MATLAB functions were originally integrated with FERUM and forming the RBDO –FERUM toolbox. [1] [1]L.Celorrio-Barragué,“DevelopmentofaReliability-BasedDesignOptimizationToolboxfortheFERUMSoftware”, SUM2012,LNAI7520,pp.273–286,2012.Springer-VerlagBerlinHeidelberg2012
  • 9. 9| Universidad de La Rioja | 11/07/2014 RBDO WITH OPENSEES •RBDO RIA-based double loop method •Outer loop or Design Optimization loop is carried out in Matlabusing RBDO- FERUM functions. Reliability analysis is carried out in OpenSeesusing FORM. Writing/reading of files is used. Write RVDATA.tcl Design Variables, 푑푖푖=1,…,푛 Optimization Loop RBDO-FERUM Call !OpenSeesfile.tcl Read betas.out Readgradbetas.out ReadLSFE.out OPENSEES Reliability Loop
  • 10. 10| Universidad de La Rioja | 11/07/2014 RBDO WITH OPENSEES •RBDO PMA-based double loop method •Now, Values of Random Variables are passed to OpenSeesto compute the response and the gradients of the response wrtrandom variables. Optimization loop and the search of MPPIR are computed using RBDO- FERUM. Also files are used as interfaces. Write VECTORDATA.tcl Random Variables, 푋푖푖=1,…,푁 Optimization Loop Sensitivity Analysis Call !OpenSeesfilegrad.tcl Read RES.out ReadGRADRES.out Reliability Loop RBDO-FERUM OPENSEES
  • 11. 11 | Universidad de La Rioja | 11/07/2014 ANALYTICAL EXAMPLE  2.0, i 1, 2, 3. t i  To minimize 퐶표푠푡 훍퐗 = 휇푋1 + 휇푋2 Subject to 푃 푔푖 푋 ≤ 0 ≤ Φ −훽푖 푡 , 푖 = 1,2,3 0 ≤ 휇푋1 ≤ 10 ; 0 ≤ 휇푋2 ≤ 10 Where the Limit State Functions are 푔1 퐗 = 푋1 2 푋2 20 − 1 푔2 퐗 = 푋1 + 푋2 − 5 2 30 + 푋1 + 푋2 − 12 2 120 − 1 푔3 퐗 = 80 푋1 2 + 8푋2 + 5 − 1 The distribution of the random variables are: Initial design: 훍퐗 ퟎ = 5.0, 5.0 푇 Convergence Tolerance of the optimization loop: 10−4 푋1~푁 휇푋1 , 퐶표푉 = 0.12 푋2~푁 휇푋2 , 퐶표푉 = 0.12
  • 12. 12| Universidad de La Rioja | 11/07/2014 ANALYTICAL EXAMPLE Results obtained using RIA based RBDO. Design Values at the probabilistic optimum: 휇푋1=3.4163휇푋2=3.1335 Cost Function at the probabilistic optimum: 퐶표푠푡훍퐗=6.5497 Reliability Indexes at the optimum: 훽1=2.0171,훽2=2.0109,훽3=7.7892 Number of Optimization Iterations: 15 Number of LSFEs: 1032. It’s very high. We use very small convergence tolerance(10−4in the external loop). Also, no technique to reduce computational effort has been considered. Gradients are computed using Direct Differentiation Method (Implicit in OpenSees).
  • 13. 13| Universidad de La Rioja | 11/07/2014 ANALYTICAL EXAMPLE
  • 14. 14| Universidad de La Rioja | 11/07/2014 10 BARS TRUSS EXAMPLE Classic Example in Structural Optimization. RBDO Problem: To minimize the weight or volume of the truss subject to reliability constraints in terms of displacements or stresses.
  • 15. 15 | Universidad de La Rioja | 11/07/2014 10 BARS TRUSS EXAMPLE CASE 1.- Linear Elastic Material, Linear Analysis. RBDO Problem: To minimize the volume of the truss subject to reliability constraints in terms of the vertical displacement of node 2. To minimize 푉 퐝, 훍퐗, 훍퐏 Subject to 푃 푔푖 푋 ≤ 0 ≤ Φ −훽푖 푡 , 푖 = 1 5푐푚2 ≤ 휇푋푗 ≤ 75푐푚2; 푗 = 1,2,3 Displacement constraint: Vertical displacement at node 2 is limited u cm allowed displacement a 푔  2  1 퐝, 퐗, 퐏 = 1 − 푢푦2 퐝, 퐗, 퐏 푢푎 Convergence Tolerance of the optimization algorithm: 10−3
  • 16. 16 | Universidad de La Rioja | 11/07/2014 10 BARS TRUSS EXAMPLE CASE 1.- Linear Elastic Material, Linear Analysis RANDOM VARIABLES OF THE PROBLEM Random Variable Description Distribution type Mean Value (initial) CoV or Standard Desviation Design Variable 1 X 1A LN 20.0 cm2 CoV = 0.05 X1  2 X A2 LN 20.0 cm2 CoV = 0.05 X2  3 X A3 LN 20.0 cm2 CoV = 0.05 X3  4 X E LN 21000.0 kN/cm2 1050 kN/cm2 - 5 X 1 P LN 100.0 kN 20 kN - 6 X 2 P LN 50.0 kN 2.5 kN -  X1  X2  X3 Mean value of the cross section area in horizontal bars. Mean value of the cross section area in vertical bars. Mean value of the cross section area in diagonal bars.
  • 17. 17| Universidad de La Rioja | 11/07/2014 10 BARS TRUSS EXAMPLE Results obtained using RIA based RBDO. Design Values at the probabilistic optimum: 휇푋1=24.1668푐푚2휇푋2=18.2887푐푚2휇푋3=10.2211푐푚2 Volume of Steel at the probabilistic optimum: 퐶표푠푡훍퐗=68783.08푐푚3 Reliability Index at the optimum: 훽1=3.7000, Number of Optimization Iterations: 61(very high) Number of LSFEs: 602. Note that the convergence tolerance is small(10−3). Also, no strategy to reduce computational effort has been considered. Gradients are computed using DDM (Implicit in OpenSees). CASE 1.-Linear Elastic Material, Linear Analysis
  • 18. 18| Universidad de La Rioja | 11/07/2014 10 BARS TRUSS EXAMPLE ####################################################################### # FORM ANALYSIS RESULTS, LIMIT-STATE FUNCTION NUMBER 1 # # # # Limit-state function value at start point: ......... 0.80548 # # Limit-state function value at end point: ........... -1.6552e-006 # # Number of steps: ................................... 4 # # Number of g-function evaluations: .................. 10 # # Reliability index beta: ............................ 3.7 # # FO approx. probability of failure, pf1: ............ 1.07801e-004 # # # # rvtagx* u* alpha gamma delta eta # # 1 2.342e+001 -5.994e-001 -0.16211 -0.16211 0.16746 -0.10514 # # 2 1.806e+001 -2.309e-001 -0.06246 -0.06246 0.06337 -0.01752 # # 3 1.002e+001 -3.629e-001 -0.09809 -0.09809 0.10017 -0.04044 # # 4 1.993e+004 -1.017e+000 -0.27517 -0.27517 0.29001 -0.29337 # # 5 1.948e+002 3.465e+000 0.93649 0.93649 -0.34563 -3.00061 # # 6 5.074e+001 3.188e-001 0.08637 0.08637 -0.08526 -0.02319 # # # ####################################################################### CASE 1.-Linear Elastic Material, Linear Analysis FORM Results for the last iteration.
  • 19. 19| Universidad de La Rioja | 11/07/2014 10 BARS TRUSS EXAMPLE #OPENSEES CODE probabilityTransformationNataf-print 0 randomNumberGeneratorCStdLib runImportanceSamplingAnalysistruss10MCSa.out -type responseStatistics-maxNum250000 -targetCOV0.01 -print 0 runImportanceSamplingAnalysistruss10MCSb.out -type failureProbability-maxNum250000 -targetCOV0.01 -print 0 ####################################################################### # SAMPLING ANALYSIS RESULTS, LIMIT-STATE FUNCTION NUMBER 1 # # # # Estimated mean: .................................... 0.77538 # # Estimated standard deviation: ...................... 0.16102 # # # ####################################################################### ####################################################################### # SAMPLING ANALYSIS RESULTS, LIMIT-STATE FUNCTION NUMBER 1 # # # # Reliability index beta: ............................ 3.7151 # # Estimated probability of failure pf_sim: ........... 0.00010155 # # Number of simulations: ............................. 250000 # # Coefficient of variation (of pf): .................. 0.17007 # ####################################################################### CASE 1.-Linear Elastic Material, Linear Analysis Sampling Analysis Results, using 250000 simulations.
  • 20. 20| Universidad de La Rioja | 11/07/2014 10 BARS TRUSS EXAMPLE
  • 21. 21| Universidad de La Rioja | 11/07/2014 RBDO 10 BARS TRUSS EXAMPLE uniaxialMaterial Hardening1 $E $fy0.0 [expr$b/(1-$b)*$E] A random variable is added: fy(elastic limit) ~퐿푁휇=15.5 푘푁푐푚2,퐶표푉=0.05. $b is the hardening ratio and is considered determinist: set b 0.02 CASE 2.-Nonlinear Material, Nonlinear Analysis
  • 22. 22 | Universidad de La Rioja | 11/07/2014 RBDO 10 BARS TRUSS EXAMPLE RANDOM VARIABLES OF THE PROBLEM Random Variable Description Distribution type Mean Value (initial) CoV or Standard Desviation Design Variable 1 X 1A LN 20.0 cm2 0.05 X1  2 X 2A LN 20.0 cm2 0.05 X2  3 X A3 LN 20.0 cm2 0.05 X3  4 X E LN 21000.0 kN/cm2 1050 kN/cm2 - 5 X fy LN 15.5 kN/cm2 0.775 kN/cm2 - 6 X 1 P LN 100.0 kN 20 kN - 7 X 2 P LN 50.0 kN 2.5 kN -  X1  X2  X3 Mean value of the cross section area in horizontal bars. Mean value of the cross section area in vertical bars. Mean value of the cross section area in diagonal bars. CASE 2.- Nonlinear Material, Nonlinear Analysis
  • 23. 23| Universidad de La Rioja | 11/07/2014 RBDO 10 BARS TRUSS EXAMPLE CASE 2.-Nonlinear Material, Nonlinear Analysis Results obtained using RIA based RBDO. Design Values at the probabilistic optimum: 휇푋1=27.4826푐푚2휇푋2=14.5461푐푚2휇푋3=11.7636푐푚2 Volume of Steel at the probabilistic optimum: 퐶표푠푡훍퐗=74004.32푐푚3 Reliability Index at the optimum: 훽1=3.7002, Number of Optimization Iterations: 100(very high) Number of LSFEs: 1360. Gradients are computed using DDM (Implicit in OpenSees). Note that areas of cross sections are larger than in the case of elastic material.
  • 24. 24| Universidad de La Rioja | 11/07/2014 STEELFRAME EXAMPLE 3 Stories and 3 Bays Steel Frame Modified version of the structural model in the file steelframe.tcl[2] downloaded from OpenSeesforum. [2]T.HaukaasandM.H.Scott,ShapeSensitivitiesintheReliabilityAnalysisofNonlinearFrameStructures,ComputerandStructures,v.84,15-16,p964-977,2006 1 2 3 1 1 2 2 5 5 5 4 4 4 1 1 1 1 2 2 2 2
  • 25. 25| Universidad de La Rioja | 11/07/2014 STEELFRAME EXAMPLE 3 Stories and 3 Bays Steel Frame Random Variable Description Dist. Initial Mean CoV Design Variable 1d Height LC N 0.4 m 0.02 1d 2d Height CC N 0.4 m 0.02 2d 3d Height B N 0.4 m 0.02 3d 1E Modulus LC LN 200E+6 kPa 0.05 - 1fy Yield Stress LC LN 300E+3 kPa 0.1 - 1Hkin Hard. Kin.LC LN 4.0816E+6 kPa 0.1 - 2E Modulus CC LN 200E+6 kPa 0.05 - 2fy Yield Stress CC LN 300E+3 kPa 0.1 - 2Hkin Hard. Kin.CC LN 4.0816E+6 kPa 0.1 - 3E Modulus B LN 200E+6 kPa 0.05 - 3fy Yield Stress B LN 300E+3 kPa 0.1 - 3Hkin Hard. Kin.B LN 4.0816E+6 kPa 0.1 - 1H Lateral Load LN 400 kN 0.05 2H Lateral Load LN 267 kN 0.05 3H Lateral Load LN 133 kN 0.05 1P Vertical Load LN 50 kN 0.05 2P Vertical Load LN 100 kN 0.05
  • 26. 26 | Universidad de La Rioja | 11/07/2014 STEELFRAME EXAMPLE 3 Stories and 3 Bays Steel Frame Member are grouped in three groups: Lateral Columns, Central Columns and Beams. All member assigned to a group have the same rectangular cross section, with width b = 20 cm (fixed and deterministic) and height 푑푖 (random, design variable). 3 design variables, 휇푑푖 푤푖푡ℎ 푖 = 1,2,3.         j . s t P g P Min V d j t t t f 10 cm 50 cm 1,2,3 where 3.0 . . , , 0 , ,            d X P  d μ μX P Reliability constraint: the horizontal displacement of node 13 is limited. 푈푚푎푥 = 3.6 푐푚 푃 푢푥13 퐝, 퐗, 퐏 − 푈푚푎푥 ≤ 0 ≤ Φ −훽푡
  • 27. 27| Universidad de La Rioja | 11/07/2014 STEELFRAME EXAMPLE Results obtained using PMA –HMV+ based RBDO. Design Values at the probabilistic optimum: 휇푑1=29.5624푐푚휇푑2=49.4783푐푚휇푋3=35.2246푐푚 Volume of Steel at the probabilistic optimum: 퐶표푠푡훍퐗=3482083.3054푐푚3 Reliability Index at the optimum: 훽1=3.0025, Number of Optimization Iterations: 168(very high) Number of LSFEs: 336. Convergence tolerance is small(10−2). Gradients are computed using DDM (Implicit in OpenSees). Nonlinear Material and Beam-Column elements are considered. However, material works in the linear elastic zone because gradients wrtparameters 푓푦푖,퐻푘푖푛푖are 0. 3 Stories and 3 Bays Steel Frame
  • 28. 28| Universidad de La Rioja | 11/07/2014 STEELFRAME EXAMPLE Results obtained using PMA –HMV+ based RBDO. (DDM) CASE Nonlinear. Now, allowed horizontal displacement at node 13 is 20 cm. Mean Values of Horizontal loads H1, H2 and H3 are the double that in the first case. Then, large deformations occur and material works in the plastic zone. Response gradients wrtmaterial parameters 푓푦푖,퐻푘푖푛푖are ≠0. Design Values at the probabilistic optimum: 휇푑1=20.8792푐푚휇푑2=34.9506푐푚휇푋3=26.1249푐푚 Volume of Steel at the probabilistic optimum: 퐶표푠푡훍퐗=2515535.2701푐푚3 Reliability Index at the optimum: 훽1=3.0025, Number of Optimization Iterations: 256(very high). Time: 1 hour. Number of LSFEs: 1221. Convergence tolerance is small(10−3). 3 Stories and 3 Bays Steel Frame
  • 29. 29 | Universidad de La Rioja | 11/07/2014 STEELFRAME EXAMPLE 3 Stories and 3 Bays Steel Frame Random Variable Description Dist. Gradient of Response wrt Random Variable 1d Height LC N -0.726905589 2 d Height CC N -0.796264509 3 d Height B N -2.066431991 1 E Modulus LC LN -0.000235612 1 fy Yield Stress LC LN -0.021961307 1 Hkin Hard. Kin.LC LN -5.731584490e-6 2 E Modulus CC LN -0.000233264 2 fy Yield Stress CC LN -0.240438494 2 Hkin Hard. Kin.CC LN -0.000403937 3 E Modulus V LN -0.000544820 3 fy Yield Stress V LN -0.393476132 3 Hkin Hard. Kin.V LN -0.000298610 H1 Lateral Load LN 0.0271410404 H2 Lateral Load LN 0.0204777759 H3 Lateral Load LN 0.0103512600 P1 Vertical Load LN 2.5797303295e-5 P2 Vertical Load LN 1.6692914381e-5 REMARK: Units used are: 푘푁, 푘푁 푐푚2 푦 푐푚
  • 30. 30| Universidad de La Rioja | 11/07/2014 STEELFRAME EXAMPLE Results obtained using PMA –HMV+ based RBDO.(DDM) WARM-UP = yes CASE Nonlinear. Same case than last slide: 푢푥13푎푑푚=20푐푚 Loads H1, H2 and H3 are the double that in the linear case. Design Values at the probabilistic optimum: 휇푑1=20.8704푐푚휇푑2=34.9277푐푚휇푋3=26.1391푐푚 Volume of Steel at the probabilistic optimum: 퐶표푠푡훍퐗=2515413.2267푐푚3 Reliability Index at the optimum: 훽1=3.0025, Number of Optimization Iterations: 244(very high). Number of LSFEs: 560≪1221. This reduction is motivated by Warm-Up strategy Convergence tolerance is small(10−3), Warm-Up Tolerance =10−2. 3 Stories and 3 Bays Steel Frame
  • 31. 31| Universidad de La Rioja | 11/07/2014 CONCLUSIONS Sensitivity and Reliability capabilities of OpenSeescan be combined with an optimization tool, such as Optimization Toolbox of Matlabto carry out RBDO. Double loop RBDO methods have been implemented using OpenSeesand Matlab. An analytical and two structural examples have been studied. Complex problems can be solved thanks to advanced structural analysis algorithms implemented in OpenSees. Computational cost is very high and convergence problems can occur, specially when an increased number of random design variables are considered. Some special techniques to reduce the computational cost must be added: Warm up: to start the MPP search in the MPP of the last Iteration. To use deterministic optimum as initial design
  • 32. 32| Universidad de La Rioja | 11/07/2014 QUESTIONS –COMENTS THANK YOU luis.celorrio@unirioja.es luis.celorrio@gmail.com