SlideShare a Scribd company logo
1 of 23
Download to read offline
集中治療に関する合併症を減らそう!
~せん妄と ICU-AW を中心に~
JA広島総合病院 救急・集中治療科
櫻谷 正明
第1回 大阪救急集中治療看護セミナー, 2014年4月12日
ICUとせん妄
•せん妄と昏睡は「急性の脳機能障害」.
!
•死亡率が上昇する.
•生存退院した患者でも, 認知機能障害や脳萎縮
に繋がるかもしれない.
ICUと筋力低下
•筋力低下は急性期から始まる.
!
•生存退室した後も, QOLや抑うつと関係する.
せん妄の特徴
• 急性に起こる脳機能障害
• 精神状態の変化や変動, 注意力欠如, 無秩序な思考, 意識レベル
の変動, 認知機能障害など.
• いくつかのサブタイプがある.
• 活動型, 非活動型, 混合型があり, 活動型の頻度は少ない.
• 人工呼吸患者では40-80%程度発生すると言われている.
• ICU退室した後も, 予後に関係している.
to be discharged with cognitive impair-
ment than were those in the no de-
lirium group (adjusted HR, 9.1; 95% CI,
2.3-35.3; P=.002).
COMMENT
The development of delirium in these
mechanically ventilated patients was as-
sociated with a 3-fold increase in risk of
deathaftercontrollingforpreexistingco-
morbidities,severityofillness,coma,and
the use of sedative and analgesic medi-
Adjusted HR (95% CI)* Reference 2.0 (1.4-3.0) Ͻ.001
Post-ICU Stay†
No. 40 156
Median (IQR), d 5 (2-7) 7 (4-15.5)
Adjusted HR (95% CI)* Reference 1.6 (1.1-2.3) .009
Abbreviations: CI, confidence interval; HR, hazard ratio; ICU, intensive care unit; IQR, interquartile range.
*Multivariable model incorporating baseline covariates including patient age at enrollment, Charlson Comorbidity In-
dex,43
modified Blessed Dementia Rating Scale score,45
Acute Physiology and Chronic Health Evaluation II (APACHE
II) score,7
Sequential Organ Failure Assessment (SOFA) score,59,60
admitting diagnoses of sepsis or acute respiratory
distress syndrome, and time-varying covariates for coma and use (yes/no) of lorazepam, propofol, morphine, and
fentanyl. Assumptions of proportional hazard for the final models were evaluated by examining interactions between
time and each variable in the model. Interaction terms were included in the model whenever nonproportionality of
hazards was observed. For analysis of hospital length of stay, interactions were detected between time and APACHE
II scores, SOFA scores, presence of coma, and use of lorazepam. No other significant interactions were observed.
†Twenty-eight patients died in the ICU (1 in the no delirium group and 27 in the delirium group, P = .03) and were
therefore not included in the post-ICU length-of-stay analysis.
Figure 3. Kaplan-Meier Analysis of Delirium in the Intensive Care Unit and 6-Month Survival
100
30
60
50
40
70
80
90
20
10
0
No. at Risk
No Delirium
Delirium
0
41
183
1 32 5 64
34
138
25
111
28
116
21
98
19
88
22
104
Months After Enrollment
ProbabilityofSurvival,%
No Delirium
Delirium
A
Delirium Only
DeliriumNo Delirium
Delirium-Coma
Normal
Coma-Normal
100
30
60
50
40
70
80
90
20
10
0
No. at Risk
No Delirium
0 1 32 5 64
Normal
Coma-Normal
Delirium
Delirium Only
Delirium-Coma
17
24
60
123
15
19
51
87
11
15
39
72
11
17
42
74
10
11
33
65
10
9
29
59
10
12
34
70
Months After Enrollment
ProbabilityofSurvival,%
B
1758 JAMA, April 14, 2004—Vol 291, No. 14 (Reprinted) ©2004 American Medical Association. All rights reserved.
Downloaded From: http://jama.jamanetwork.com/ on 02/06/2013
せん妄と予後
Ely EW, Shintani A, Truman B, at al. Delirium as a predictor of mortality in mechanically
ventilated patients in the intensive care unit. JAMA. 2004;291:1753-1762.
昏睡 → せん妄が最もよくない !!
6ヶ月死亡が上昇する.
42歳女性
慢性呼吸不全と心不全の既往
ARDSでICU入院加療
経過中はせん妄なし
42歳女性
市中肺炎, ARDSでICUで入院加療
12日間のせん妄
神経・精神疾患の既往なし
Gunther ML, Morandi A, Krauskopf E, et al. The association between brain volumes, delirium duration, and cognitive outcomes
in intensive care unit survivors: The VISIONS cohort magnetic resonance imaging study. Crit Care Med 2012;40:2022–2032.
脳萎縮
Crit Care Med 2012 Vol. 40, No. 7 2027
a continuous variable, thus eliminating
artificial cutoffs, and allowing us to better
study its role as a confounder in its entire
spectrum. Our low median IQCODE score
of 3 (interquartile range 3, 3.06) attests
to the fact that our patient population
did not have significant prior cognitive
impairment, potentially reducing the
likelihood of significant prior atrophy in
these patients and thus the related con-
founding effect.
Our patient population was relatively
young and with minimal preexisting
cognitive impairment or neurological
injury. Based on these baseline demo-
graphics and study exclusion criteria,
one would not expect significant atrophy
prior to ICU admission. Another poten-
tial cause of delirium, brain atrophy, and
LTCI observed in our patients is cerebral
hypoperfusion. Several small studies (59,
60) have reported dramatic reduction in
regional cerebral blood flow during acute
delirium in the frontal and parietal lobes,
thalamus, right temporal and occipital
lobes, and the pons. Reduced cerebral
blood flow, if maintained for a sufficient
length of time, would potentially result
in cell death and neuronal loss, leading to
atrophy. Additionally, systemic inflamma-
tion as in sepsis—a frequent diagnosis in
critically ill patients—can lead to neuro-
nal death and brain atrophy (61, 62).
Brain volume loss in our patients
was present at hospital discharge and
3 months. It is important to note that
studies have reported brain atrophy may
occur over a period of days rather than
months (63–66), raising the possibility
that atrophic processes for these patients
may have occurred during hospitaliza-
tion. Animal studies have also shown
significant hippocampal cell loss within
hours of sepsis induction using a lipo-
polysaccharide model (67), although in
our investigation, no such association was
identified. Similarly, hippocampal atrophy
has been reported in pigs within 12 hrs
after an induction of acute respiratory
distress syndrome—another common syn-
drome in critically ill patients (68).
The association between brain atro-
phy at 3 months and neuropsychological
outcomes at 12 months parallels find-
ings in patients who experienced TBI
and anoxic brain injury (15–17). In fact,
previous studies showed global atrophy
(as expressed by VBR) and hippocampal
atrophy were correlated with cogni-
tive performance and memory impair-
ments in patients who experienced TBI
and anoxic brain injury (15–17).In our
Figure 3. Delirium duration, hippocampal and superior frontal lobe volumes. Longer duration of
delirium was independently associated with smaller volumes in the hippocampus at discharge (A at
discharge and B at 3-month follow-up) and the superior portion of the frontal lobe at both scans (C
at discharge and D at 3-month follow-up). Brain volumes are shown in cm3
on the y-axis. The x-axis
is duration of delirium measured in days. The solid black line indicates adjusted brain volume for a
given value of delirium duration, adjusted for confounders; the “ribbon” indicates the 95% confidence
bounds.
Figure 2. Representative example of lateral ventricle size in 46-yr-old female and 42-yr-old female inten-
sive care unit (ICU) survivors with no preexisting cognitive impairment: Axial T1
-weighted brain images in
two ICU survivors. A, Relatively normal ventricular volume (see arrow) in a 46-yr-old female who did not
experience delirium in the ICU. Patient had a history of respiratory and heart failure. She was admitted
to a medical ICU due to acute respiratory distress syndrome and was subsequently intubated and man-
aged through the ICU without ever developing delirium. B, Enlarged ventricles (see arrow) in a 42-yr-old
female who did develop delirium in the ICU. Patient was admitted to the hospital after reporting fever and
dyspnea with a chest radiograph and other laboratory data confirming community acquired pneumonia
and acute respiratory distress syndrome. The patient was admitted to the ICU and mechanically ventilat-
ed, experiencing 12 days of delirium and then resolution. There was no preexisting history of neurological
impairment, and surrogate questioning for preexisting cognitive impairment was also negative.
a continuous variable, thus eliminating
artificial cutoffs, and allowing us to better
study its role as a confounder in its entire
spectrum. Our low median IQCODE score
of 3 (interquartile range 3, 3.06) attests
to the fact that our patient population
did not have significant prior cognitive
impairment, potentially reducing the
likelihood of significant prior atrophy in
these patients and thus the related con-
founding effect.
Our patient population was relatively
young and with minimal preexisting
cognitive impairment or neurological
injury. Based on these baseline demo-
graphics and study exclusion criteria,
one would not expect significant atrophy
prior to ICU admission. Another poten-
tial cause of delirium, brain atrophy, and
LTCI observed in our patients is cerebral
hypoperfusion. Several small studies (59,
60) have reported dramatic reduction in
regional cerebral blood flow during acute
delirium in the frontal and parietal lobes,
thalamus, right temporal and occipital
lobes, and the pons. Reduced cerebral
blood flow, if maintained for a sufficient
length of time, would potentially result
in cell death and neuronal loss, leading to
atrophy. Additionally, systemic inflamma-
tion as in sepsis—a frequent diagnosis in
critically ill patients—can lead to neuro-
nal death and brain atrophy (61, 62).
Brain volume loss in our patients
was present at hospital discharge and
3 months. It is important to note that
studies have reported brain atrophy may
occur over a period of days rather than
months (63–66), raising the possibility
that atrophic processes for these patients
may have occurred during hospitaliza-
tion. Animal studies have also shown
significant hippocampal cell loss within
hours of sepsis induction using a lipo-
polysaccharide model (67), although in
our investigation, no such association was
identified. Similarly, hippocampal atrophy
has been reported in pigs within 12 hrs
after an induction of acute respiratory
distress syndrome—another common syn-
drome in critically ill patients (68).
The association between brain atro-
phy at 3 months and neuropsychological
outcomes at 12 months parallels find-
Figure 2. Representative example of lateral ventricle size in 46-yr-old female and 42-yr-old female inten-
sive care unit (ICU) survivors with no preexisting cognitive impairment: Axial T1
-weighted brain images in
two ICU survivors. A, Relatively normal ventricular volume (see arrow) in a 46-yr-old female who did not
experience delirium in the ICU. Patient had a history of respiratory and heart failure. She was admitted
to a medical ICU due to acute respiratory distress syndrome and was subsequently intubated and man-
aged through the ICU without ever developing delirium. B, Enlarged ventricles (see arrow) in a 42-yr-old
female who did develop delirium in the ICU. Patient was admitted to the hospital after reporting fever and
dyspnea with a chest radiograph and other laboratory data confirming community acquired pneumonia
and acute respiratory distress syndrome. The patient was admitted to the ICU and mechanically ventilat-
ed, experiencing 12 days of delirium and then resolution. There was no preexisting history of neurological
impairment, and surrogate questioning for preexisting cognitive impairment was also negative.
ARDSと予後
• ベルリン定義による分類と予後
軽症 中等症 重症
患者数(%)[95% CI]
819(22)
[21-24]
1820(50)
[48-51]
1031(28)
[27-30]
90日死亡(%)[95% CI]
220(27)
[24-30]
575(32)
[29-34]
461(45)
[42-48]
VFD, 中央値(IQR) 20(1-25) 16(0-23) 1(0-20)
生存者の人工呼吸管理日数,
中央値(IQR)
5(2-11) 7(4-14) 9(5-17)
Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress
syndrome: the Berlin Definition. JAMA. 2012 Jun 20;307(23):2526-33.
VFD: Ventilator Free Days, IQR: Interquartile Range(四分位数範囲)
急性腎障害と予後
• 疾患による重症度を調整した後の急性腎障害(AKI-network)
と死亡率の関係. 重症なほど, 院内死亡のオッズ比が高い.
with a surviv
stages of AKI,
associated with
compared with
tained elevatio
portantly, ren
“protective” as
predicted mor
suggest that fa
may offer a d
Additionally, w
likelihood of r
tests could yiel
tion, and ther
appropriately r
As a retros
hort, the study
Table 3. Odds of death associated with AKI in ICU
AKI Category N Odds Ratio 95% CI
Stratified by Time Taken to Meet AKI Criteria in ICU
AKI Ͻ48 hrs 52,884 2.52 2.45–2.60
AKI Ͼ48 hrs 18,602 4.66 4.47–4.85
Stratified by Severity of AKI Reached during ICU
Stage I AKI 57,126 2.23 2.17–2.30
Stage II AKI 7934 6.08 5.74–6.44
Stage III AKI 6426 8.6 8.07–9.15
AKI requiring dialysis (subgroup of Stage III AKI) 3140 5.78 5.30–6.31
AKI, acute kidney injury; ICU, intensive care unit; CI, confidence interval.
Table 4. Risk-adjusted mortality in AKI by renal recovery statusa
AKI Stage Recovery Status SMR (95% CI) Odds Ratio (95% CI)
Overall, n ϭ 301,675 0.46 (0.46–0.47)
Thakar CV, Christianson A, Freyberg R, et al. Incidence and outcomes of acute kidney injury in
intensive care units: a Veterans Administration study. Crit Care Med. 2009 Sep;37(9):2552-8.
ARDS患者の死亡率
cohort (16%, 14%, 19%, and 13%, respectively).
Even though ARDS was the direct cause of death in
only a few patients, it was present in the majority of
patients at the time of death (88%, 86%, 88%, and
96% in 1981–1982, 1990, 1994, and 1998, respec-
tively).
Timing of death in ARDS, divided into early and
late deaths and then further categorized as due to
presenting injury/illness, respiratory failure, or a
complication occurring after ARDS onset, has also
commonly occurred secondary to the presenting
injury or illness.
There has, however, been a significant change in
the case fatality of ARDS patients when stratified by
risk factor (Fig 3), such that the case fatality
of ARDS patients who present with trauma
(p ϭ 0.0002 for trend) or other risk factors
(p ϭ 0.043 for trend) has decreased, but the case
fatality of patients whose risk factor is sepsis
(p ϭ 0.255 for trend) has not changed. Additionally,
Figure 1. Case fatality of ARDS patients at Harborview Medical Center, 1991–1998. Case fatality was
near 60% in the early 1980s and decreased to near 30% by the mid-1900s (p ϭ 0.001 for trend,
Wilcoxon rank-sum test for trend).
528 Clinical Investigations in Critical Care
Downloaded From: http://journal.publications.chestnet.org/ by a Koseiren Hiroshima Sohgoh Byoin User on 09/04/2013
• 死亡率は減少し, 1990年代半ばからはプラトーになっている.
•多臓器不全を伴う敗血症が主な死因(30-50%)であり, 呼吸不全は13-19%程度.
Stapleton RD, Wang BM, Hudson LD, et al. Causes and Timing of Death in Patients With ARDS. CHEST 2005; 128: 525-532.
重症ほど予後が悪い
せん妄期間と認知機能障害
• 重症患者のICU退室 3ヶ月後の時点で認知機能障害は認められ40%程度に認められ,
12ヶ月後の時点においても, 年齢に関係なく改善はみられない.
• せん妄期間と認知機能障害は相関し, せん妄期間が増えれば認知機能も低下した.
The new engl and jour nal of medicine
tients in the ICU,38-40 and it is not known whether
any preventive or treatment strategies can reduce
the risk of long-term cognitive impairment after
critical illness.
These results complement those of earlier
cohort studies that exposed the problem of cog-
nitive deficits in survivors of critical illness.1-4
Some important differences, however, exist be-
tween previous investigations and the BRAIN-ICU
study. First, we enrolled a large sample of pa-
tients with a diverse set of admission diagnoses
and a broad age range. Second, we collected and
analyzed detailed data about delirium and seda-
tive exposure as risk factors for long-term cogni-
tive impairment. Two longitudinal studies3,4 have
advanced the field, but one was limited to patients
with severe sepsis,4 and neither study collected de-
tailed data on in-hospital exposures, such as
delirium and psychoactive medications. In addi-
tion, the previous studies assessed cognitive
outcomes with the use of abbreviated screening
tools, which do not allow comparisons with
other populations, such as patients with trau-
matic brain injury or Alzheimer’s disease.
An important limitation of the BRAIN-ICU
study was our inability to test patients’ cognition
before their emergent illness. We addressed this
limitation in three ways. First, we excluded pa-
tients who were found to have severe dementia
with the use of a rigorous and well-validated ap-
proach that relied on two validated surrogate as-
AdjustedRBANSGlobalCognitionScore
at12Mo
80
90
70
60
0
0 5 10
Days of Delirium
N=382
P=0.04
Figure 2. Duration of Delirium and Global Cognition Score at 12 Months.
Longer durations of delirium were independently associated with worse
RBANS global cognition scores at 12 months. Point estimates and the 95%
confidence interval for these relationships are shown by the blue line and the
gray band, respectively. RBANS global cognition scores have age-adjusted
population norms, with a mean (±SD) score of 100±15. Rug plots show the
distribution of the durations of delirium. Although delirium could be assessed
for up to 30 days in the study, the x axis is truncated at 10 days because 90%
of the patients had delirium for 10 days or less; all available data were used in
the multivariable modeling. As one example, in a comparison of patients with
no delirium and those with 5 days of delirium (the 25th and 75th percentile
values of delirium duration in our cohort), with all other covariates held con-
stant (at the median or mode of the covariate), patients with 5 days of delir-
ium had RBANS global cognition scores at 12 months that were an average
Pandharipande PP, Girard TD, Jackson JC, et al. Long-term cognitive
impairment after critical illness. N Engl J Med. 2013 Oct 3;369(14):1306-16.
The new engl and jour nal o f medicine
an altered level of consciousness and surgical
versus medical ICU did not qualitatively change
our findings.
DISCUSSION
In this multicenter, prospective cohort study involv-
ing a diverse population of patients in general med-
ical and surgical ICUs, we found that one out of
four patients had cognitive impairment 12 months
after critical illness that was similar in severity to
that of patients with mild Alzheimer’s disease,
and one out of three had impairment typically
associated with moderate traumatic brain injury.
Impairments affected a broader array of neuro-
psychological domains than is characteristically
seen in Alzheimer’s disease, but the impairments
were very similar to those observed after moder-
ate traumatic brain injury. A validated instrument
that assessed baseline cognitive status showed
that only 6% of patients had evidence of mild-to-
moderate cognitive impairment before ICU ad-
mission, indicating that these profound cognitive
deficits were new in the majority of patients.
Long-term cognitive impairment affected both
old and young patients, regardless of the burden
of coexisting conditions at baseline.
A longer duration of delirium was associated
with worse long-term global cognition and ex-
Normal
MCI
TBI
Alzheimer’s
disease
RBANSGlobalCognitionScore
120
80
100
60
40
0
3 Mo
(N=97)
12 Mo
(N=89)
≤49 Yr
3 Mo
(N=147)
12 Mo
(N=138)
50–64 Yr
3 Mo
(N=130)
12 Mo
(N=98)
≥65 Yr
Figure 1. Global Cognition Scores in Survivors of Critical Illness.
The box-and-whisker plots show the age-adjusted global cognition scores on
the Repeatable Battery for the Assessment of Neuropsychological Status
(RBANS; with a population age-adjusted mean [±SD] of 100±15, and lower
scores indicating worse global cognition) at 3 months (light-gray boxes) and
12 months (dark-gray boxes), according to age. For each box-and-whisker
plot, the horizontal bar indicates the median, the upper and lower limits of
the boxes the interquartile range, and the ends of the whiskers 1.5 times the
interquartile range. Outliers are shown as black dots. The green dashed line
indicates the age-adjusted population mean (100) for healthy adults, and the
green band indicates the standard deviation (15). Also shown are the expected
population means for mild cognitive impairment (MCI), moderate traumatic
brain injury (TBI), and mild Alzheimer’s disease on the basis of other cohort
studies. Expected population means for MCI and Alzheimer’s disease are
重症なせん妄とは??
亜症候性せん妄
• 2004年(1月から12月まで)のICU入室患者を対象に, ICDSCで8時間ごとにcheck.
• 0ポイントと比べ1-3ポイントでも, 死亡率は上昇, ICU入室日数は増加した.
ifested an ICDSC score
ere performed with SAS
, N.C., USA); differences
e considered statistically
bsyndromal delirium the
1 on the ICDSC were 67
(32.4%), respectively. Of
ed among subsyndromal
re scored 1, 368 (29.7%)
nts with clinical delirium
1.3%), with higher scores
le 2).
r post-ICU mortality analysis:
of patient first exited first ICU;
elirium 4, subsyndromal delir-
e therefore not included in the
nce interval)
95% CI p
0.84–2.08 0.2346
0.61–1.55 0.9098
1.63–3.73 < 0.0001
1.07–2.60 0.0252
, and coma
Fig. 1 Post-ICU mortality. Kaplan–Meier curves depicting time to
death in the no delirium, subsyndromal delirium, and clinical delir-
ium groups
Fig. 2 Distribution of highest checklist scores over time. All pa-
tients were considered nondelirious prior to admission. In patients
with clinical delirium or subsyndromal delirium the maximal scores
occurred early in the ICU admission, with almost one-half occurring
within 24–48 h (i.e., within the first day) of admission, and over 90%
occurring by ICU day 6. See Table 3
using survival analysis. Time to death was computed
from the date of patient exited the ICU for the first time.
Fifty-three patients died during their first ICU stay (4
with no delirium, 19 with subsyndromal delirium, and
30 with delirium) and were not included in the survival
analysis. Survival curves were computed using the Kap-
lan–Meier formulas and compared between the three
groups by the log rank test. In the case of significant
findings 2 × 2 survival curves were also compared using
the log rank test. Cox regression analysis was used to
analyze the effect of group on mortality adjusted for age,
severity of illness (APACHE II) and medication-induced
coma [14]. Cox regression model was also performed
on the clinical delirium group only to determine whether
the initial score (4–8 ICDSC items) is a predictor of
mortality. In this analysis time to death was computed
from the date of patient manifested an ICDSC score
of 4 or higher. All analyses were performed with SAS
version 8.2 (SAS Institute, Cary, N.C., USA); differences
at the level of p ≤ 0.05 were considered statistically
significant.
Results
Diagnostic categories
Among the patients with subsyndromal delirium the
number with scores of 3, 2, and 1 on the ICDSC were 67
(37.4%), 54 (30.2%), and 58 (32.4%), respectively. Of
the 1,239 assessments completed among subsyndromal
delirium patients 482 (39%) were scored 1, 368 (29.7%)
2, and 389 (31.3%) 3. In patients with clinical delirium
the most frequent score was 4 (51.3%), with higher scores
progressively less common (Table 2).
Table 2 Results of Cox regression for post-ICU mortality analysis:
time to death, computed from the date of patient first exited first ICU;
53 patients died in their first ICU (no delirium 4, subsyndromal delir-
ium 19, clinical delirium 30) and were therefore not included in the
analysis (HR hazard ratio, CI confidence interval)
HRa 95% CI p
Subsyndromal delirium
Unadjusted model 1.32 0.84–2.08 0.2346
Adjusted modelb 0.97 0.61–1.55 0.9098
Clinical delirium
Unadjusted model 2.46 1.63–3.73 < 0.0001
Adjusted modelb 1.67 1.07–2.60 0.0252
a Reference group is no delirium
b Adjusted for age, APACHE II score, and coma
There were 53 ICU deaths: 2.4%, 10.6%, and 15.9% in
the no delirium, subsyndromal delirium, and clinical delir-
ium groups, respectively (no delirium vs. subsyndromal
delirium, p = 0.0020; no delirium vs. clinical delirium,
p < 0.0001; subsyndromal delirium vs. clinical delirium,
p = 0.1378; Fig. 1). On the 484 surviving patients post-
ICU mortality was higher in the clinical delirium than in
the subsyndromal delirium and no delirium groups (clin-
ical delirium vs. no delirium, log-rank test, p < 0.0001;
clinical delirium vs. subsyndromal delirium, log-rank test,
p = 0.0016 and subsyndromal delirium vs. no delirium,
log-rank test, p = 0.2309; Fig. 2, Table 3). The results of
the Cox regression analysis showed that only the clinical
delirium group had a higher risk of mortality than the no
Fig. 1 Post-ICU mortality. Kaplan–Meier curves depicting time to
death in the no delirium, subsyndromal delirium, and clinical delir-
ium groups
Fig. 2 Distribution of highest checklist scores over time. All pa-
tients were considered nondelirious prior to admission. In patients
with clinical delirium or subsyndromal delirium the maximal scores
occurred early in the ICU admission, with almost one-half occurring
within 24–48 h (i.e., within the first day) of admission, and over 90%
occurring by ICU day 6. See Table 3
ICDSCと死亡率ICDSCの最大スコアの発生日
Ouimet S, Riker R, Bergeron N, et al. Subsyndromal delirium in the ICU:
evidence for a disease spectrum.Intensive Care Med 2007 Jun;33(6):1007-13.
せん妄期間が長いと予後が悪い
• 市中病院ICU(14床)での前向
きコホート研究.
• 60歳以上の入室患者(n=304)
を追跡し, せん妄期間の中央値は
3日間, せん妄期間が長いと1年
死亡が増加した(HR, 1.10: 95%
CI, 1.03-1.18 ).
Missing values on predictor and control variables were minimal
(Table 1), so a complete case analysis was conducted. A P value of 0.05
was considered to be significant for all two-sided statistical tests. SAS
statistical software, version 9.2 (SAS Institute Inc, Cary, NC), was used.
and mortality was statistically significant (ha
1.10; 95% confidence interval [CI], 1.02–1.18) a
covariates. Multivariable model results remain
the model is pruned of nonsignificant (P
covariates (HR, 1.10; 95% CI, 1.03–1.18). A
reproducibility, bootstrapping confirmed the m
parameter estimate for the model’s main pred
Other factors significantly associated with m
age, impairment in IADL, Charlson Comorb
severity of illness on ICU admission.
DISCUSSION
This study provides new evidence for the im
number of days of ICU delirium as a risk fac
Previous ICU studies have found an asso
presence of delirium and mortality (6) but not
of days of delirium in ICU and mortality. T
Figure 2. Kaplan-Meier s
year mortality post–inten
admission (ICU delirium
Log-rank chi-square statis
of freedom 5 3; P , 001
Receipt of opiods or benzodiazepines in the ICU, n (%) 248 (82)
Receipt of propofol in the ICU, n (%) 22 (7)
Receipt of haloperidol in the ICU, n (%) 99 (33)
ICU length of stay, median (IQR) 5.0 (6)
Total length hospital stay, median (IQR) 11.0 (12)
ICU delirium days, median (IQR) 3.0 (6)
ICU and floor/ward delirium days, median (IQR) 4.0 (9)
Post-ICU discharge, floor/ward delirium days, median (IQR) 1.0 (3)
Death in the ICU, n (%) 48 (16)
Death within 1 yr of ICU admission, n (%) 153 (50)
Definition of abbreviations: APACHE 5 Acute Physiology and Chronic Health
Evaluation; ICU 5 Intensive Care Unit; IQR 5 interquartile range.
* There are missing data for four subjects (dementia, n 5 3; Charlson, n 5 1).
Kaplan-Meier 曲線(せん妄期間と1年死亡率)
Pisani MA, Kong SY, Kasal SV, et al. Days of delirium are associated with 1-year mortality in an
older intensive care unit population. Am J Respir Crit Care Med 2009 Dec 1; 180(11): 1092-7.
hypoatciveに注意
• 予定手術後の50歳以上の患者
(n=172)の前向きコホート研究.
• 74人(43%)の患者でせん妄が発生し,
67.6%がhypoactive, 31.1%がmixed,
1.4%がhyperactiveであった.
• mixedと比較して, hypoactiveの方が
6ヶ月死亡率が高かった(32.0% vs.
8.7%, p=0.04). せん妄なしは2.1%. 
• 仙骨部の褥瘡hypoactiveで多く, デバ
イス抜去はmixedの方で多かった.
Robinson TN, Raebum CD, Tran ZV, et al. Motor subtypes of postoperative
delirium in older adults. Arch Surg 2011 Mar;146(3):295-300.
cluded from statistical comparisons because of the small
group size (n=1). The mean age of study patients was
64 (8) years; 96.5% (166 of 172) were male. The mean
time to initial presentation of delirium in patients was
2.3 (1.8) days. The time to initial onset of delirium did
not differ between the hypoactive (2.4 [1.7] days) vs mixed
(2.2 [1.8] days) groups (P=.66). The mean duration of
delirium among patients in the hypoactive and mixed
groups was 3.5 (4.5) days. The mean duration of de-
lirium did not differ between the hypoactive (2.8 [1.4]
days) vs mixed (3.9 [5.4] days) groups (P=.34).
An overview of operations performed included 44.8%
(77 of 172) abdominal, 37.2% (65 of 172) cardiac, 9.3%
(16 of 172) noncardiac thoracic, and 8.1% (14 of 172)
vascular. Among patients with delirium, the operations
performed did not differ between the hypoactive vs mixed
groups (Table 1).
Preoperative variables were compared among pa-
tients in the hypoactive vs mixed groups (Table 1). Com-
pared with those having mixed delirium, patients hav-
ing hypoactive delirium were older (mean age, 71 [9] vs
65 [9] years) and more anemic (mean hematocrit, 36%
[8%] vs 41% [6%]) (P=.002 for both) (to convert he-
matocrit to a proportion of 1.0, multiply by 0.01).
Intraoperative variables of blood transfusion, operat-
ing room time, and type of anesthesia were compared be-
tween the hypoactive (n=50) vs mixed (n=23) groups.
9) of patients in the hypoactive group vs 0 of 10 patients
in the mixed group (P=.002), and inadvertent tube or
line removals occurred in 90.0% (9 of 10) of patients in
the mixed group vs 22.2% (2 of 9) of patients in the hy-
poactive group (P=.006). The one patient who devel-
oped purely hyperactive postoperative delirium had 3 de-
0
10
20
30
40
50
60
70
HyperactiveMixedHypoactive
Incidence,%
Motor Subtype of Postoperative Delirium
n=50
n=23
n=1
Figure 2. Incidence of motor subtypes of postoperative delirium among 74
patients.
cluded from statistical comparisons because of the small
group size (n=1). The mean age of study patients was
64 (8) years; 96.5% (166 of 172) were male. The mean
time to initial presentation of delirium in patients was
2.3 (1.8) days. The time to initial onset of delirium did
not differ between the hypoactive (2.4 [1.7] days) vs mixed
(2.2 [1.8] days) groups (P=.66). The mean duration of
delirium among patients in the hypoactive and mixed
groups was 3.5 (4.5) days. The mean duration of de-
lirium did not differ between the hypoactive (2.8 [1.4]
days) vs mixed (3.9 [5.4] days) groups (P=.34).
An overview of operations performed included 44.8%
(77 of 172) abdominal, 37.2% (65 of 172) cardiac, 9.3%
(16 of 172) noncardiac thoracic, and 8.1% (14 of 172)
vascular. Among patients with delirium, the operations
performed did not differ between the hypoactive vs mixed
groups (Table 1).
Preoperative variables were compared among pa-
tients in the hypoactive vs mixed groups (Table 1). Com-
pared with those having mixed delirium, patients hav-
ing hypoactive delirium were older (mean age, 71 [9] vs
65 [9] years) and more anemic (mean hematocrit, 36%
[8%] vs 41% [6%]) (P=.002 for both) (to convert he-
matocrit to a proportion of 1.0, multiply by 0.01).
Intraoperative variables of blood transfusion, operat-
ing room time, and type of anesthesia were compared be-
tween the hypoactive (n=50) vs mixed (n=23) groups.
Type of anesthesia is described as the percentage of pa-
9) of patients in the hypoactive group vs 0 of 10 patients
in the mixed group (P=.002), and inadvertent tube or
line removals occurred in 90.0% (9 of 10) of patients in
the mixed group vs 22.2% (2 of 9) of patients in the hy-
poactive group (P=.006). The one patient who devel-
oped purely hyperactive postoperative delirium had 3 de-
lirium-related adverse events (2 peripheral intravenous
pulls and 1 self-extubation).
0
10
20
30
40
50
60
70
HyperactiveMixedHypoactive
Incidence,%
Motor Subtype of Postoperative Delirium
n=50
n=23
n=1
Figure 2. Incidence of motor subtypes of postoperative delirium among 74
patients.
hypoactiveが多く, 予後も悪い.
重症ほど医療費がかかる
• せん妄をポイント化して, 毎日ポイントを加算していく.
that there were no differences in cost per
ICU day between delirious and nondeliri-
ous patient groups. A more plausible
mechanism to explain the delirium-cost
relationship is found in length of stay,
which is known to be a major cost driver
(12) and which was greater in delirious
patients in our study. Because of the ob-
servational nature of this study, we can-
not determine whether delirium caused
longer lengths of stay or if longer lengths
of stay simply resulted in greater time at
risk for developing delirium. However,
delirium could easily lead to increased
length of stay and cost if it resulted in the
administration of excess sedation or if it
otherwise interfered with liberation from
mechanical ventilation. The salient ques-
tion is whether reducing the incidence
and/or severity of delirium will alter clin-
ical outcomes and improve cost. To ad-
dress this question, future work should
include trials of delirium prevention and
treatment interventions that target mod-
ifiable risk factors such as sedation and
analgesia practices (40) and early patient
mobilization.
The associated annual cost of ICU
delirium could be enormous. In our
study, delirium occurred in 82% of me-
chanically ventilated patients and was
associated with an incremental increase
in ICU cost of $9,014 per patient. In the
United States, there are approximately
880,000–2,760,000 ICU admissions an-
nually for respiratory failure requiring
mechanical ventilation (41–45). At the
rate of delirium detected in our cohort,
the estimated number of cases of ICU
delirium could range from 721,600 to
2,263,200 per year with an associated in-
crease in healthcare costs ranging be-
tween $6.5 and $20.4 billion. If we use
Table 4. Patient costs for major subcategories of ICU care
Characteristic
Never Delirium
(n ϭ 41)
Ever Delirium
(n ϭ 183) p Value
Bed expenses 6,278 (3,791–8,804) 10,061 (6,312–16,016) Ͻ.001
Pharmacy 1,641 (918–3,319) 3,293 (1,993–5,106) Ͻ.001
Laboratory 1,303 (665–2,369) 2,262 (1,011–4,260) .003
Diagnostic radiology 1,106 (451–1,946) 1,732 (885–2,834) .002
Respiratory therapya
897 (650–1,467) 1,466 (1,019–2,441) Ͻ.001
Central supply 760 (411–1,301) 1,234 (586–2,245) .001
Biomedical monitoring 105 (53–330) 178 (53–390) .32
PT/OT/speech therapy 0 (0–141) 175 (0–429) .001
Dialysisb
0 (0–0) 0 (0–0) .61
ICU, intensive care unit; PT, physical therapy; OT, occupational therapy. Values are median patient
costs (US$) with interquartile ranges given in parentheses. Subcategories of ICU cost were based on
the general ledger category assigned to each cost item in the hospital billing system.
a
Includes costs of mechanical ventilation; b
27 of 183 (14.8%) delirious patients and 4 of 41 (12.2%)
nondelirious patients required dialysis. Because so few required dialysis, the median (interquartile
range) cost of dialysis for both patient groups was $0 ($0–$0).
Figure 1. Median intensive care unit (ICU) and hospital cost per patient. This histogram shows cost
according to clinical categorization of “ever delirium” vs. “never delirium.” Delirium was significantly
associated with increased ICU and hospital cost.
Figure 2. Median intensive care unit (ICU) and hospital cost per patient. This histogram shows cost
according to cumulative delirium severity indexes. Increasing delirium severity was significantly
associated with incrementally greater ICU and hospital cost.
D
elirium is a com-
mon clinical
event in me-
chanically ventilated medi-
cal intensive care unit pa-
tients and is associated with
significantly higher inten-
sive care unit and hospital
costs.
959Crit Care Med 2004 Vol. 32, No. 4
Table 2. Delirium severity index determinationa
CAM-ICU RASS
Delirium
Severity
Index
— 0
ϩ ϩ4 5
ϩ ϩ3 4
ϩ ϩ2 3
ϩ ϩ1 2
ϩ 0 1
ϩ Ϫ1 2
ϩ Ϫ2 3
ϩ Ϫ3 4
ϩ Ϫ4 5
ϩ Ϫ5 6
CAM-ICU, Confusion Assessment Method for
the Intensive Care Unit; RASS, Richmond Agita-
tion-Sedation Scale.
a
Delirium severity index determination: Non-
delirious (i.e., CAM-ICU negative) patients re-
ceived zero delirium severity index points for a
given day whereas delirious (i.e., CAM-ICU posi-
tive) patients received between 1 and 6 points on
that day as determined by the absolute RASS
score plus 1. In this way, patients with greater
degrees of hyperactive or hypoactive delirium
Table 3. Baseline ch
Cha
Age, mean (SD), yrs
Men, %
Race
White, %
Black, %
Charlson Comorbidi
Vision deficits, %
Hearing deficits, %
Blessed Dementia Ra
Activities of daily liv
APACHE II score, m
SOFA score, mean (
ICU admission diagn
Sepsis/acute respi
Pneumonia
Myocardial infarct
Hepatic or renal f
Chronic obstructi
Gastrointestinal b
Malignancy
Drug overdose
Other
APACHE, Acute
Assessment; ICU, int
Milbrandt EB, Deppen S, Harrison PL, et al. Costs associated with delirium
in mechanically ventilated patients. Crit Care Med 2004 Apr;32(4):955-62.
予後が悪くなるせん妄
• せん妄の期間が長い.
!
• hyperactive(活動型)< hypoactive(非活動型).
!
• 症状が強い(hyperはより活動的, hypoはより傾眠).
鎮静薬中断とせん妄
• 前向き観察研究, 単施設, 内科系ICU, シカゴ.
• 2009年7月∼2010年6月, 2010年10月∼2011年4月.
• 対象: 18歳以上で48時間以上気管挿管され, 1日1回中断(DIS)の鎮
静・鎮痛プロトコールにそって管理された患者.
• 除外: 鎮静薬中断が出来ない状況, 認知症や神経・精神疾患, 英語が話
せない, 他のtrialに参加など.
• DIS前後で, CAM-ICUを用い, 別々の評価者がせん妄評価を行った.
• 評価者には鎮静薬の投与などは教えず, 盲検化された.
Patel SB, Poston JT, Pohlman A, et al. Rapidly Reversible, Sedation-related Delirium versus Persistent
Delirium in the Intensive Care Unit. Am J Respir Crit Care Med. 2014 Mar 15;189(6):658-65.
評価方法
• 鎮静方法: RASS -2 ∼ 0を目標に, 4時間毎に看護師がcheckし, 鎮静薬の調整
を行った.
• 薬剤を中断する前後に, 研究者が覚醒を確認し, CAM-ICUで評価が可能と判断
すれば, 盲検化された状況で, 評価者がせん妄評価を行った.
• 中断2時間後も指示に反応なければ, せん妄と判断され, DISは継続された.
• No Delirium: DIS前後ともせん妄なし(n=10).
• Persistent Delirium: DIS前およびDIS 2時間後まではせん妄あり(n=51).
• Rapidly Reversible Delirium: DIS前はせん妄→後はせん妄なし(n=12).
• Mixed Delirium: 日によって, 上記3パターンの結果が異なった(n=24).
1年生存は, PDとMixedで悪く, RRDはNDとあまり差がなかった.
• 薬剤によるせん妄と重症疾患で起こるせん妄を, 同じせん妄と考えて
はいけない(APACHE 2で20以上と重症患者を対象にしている).
• 2時間でも覚醒しない程, 蓄積させるような鎮静薬の投与は良くない.
• フェンタニルが99%, プロポフォールが95.1%, ミダゾラムが53.9%
で投与されていた(ミダゾラムは投与量も時間も短い).
• ミダゾラムを使用する場合, 肝機能障害や高齢者など薬剤が蓄積しや
すい状況ではもっと注意しないといけないかもしれない.
不必要な薬剤は使用しない!!
浅い鎮静深度を維持する
臨床的に禁忌がない限りは, 深い鎮静深度よりは
浅い鎮静深度に調整することを推奨する(+1B).
Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation,
and delirium in adult patients in the intensive care unit. Crit Care Med. 2013 Jan;41(1):263-306.
鎮静薬を使用する前に...
• 患者の快適性を維持する.
• 適切な鎮痛を行う.
• 頻回にオリエンテーションを行う.
• 正常な睡眠が得られるように環境を調整する.
鎮静薬以外に不安や興奮を和らげる介入を...
痛みの評価方法
• 全てのICU患者に対して, 常時痛みの評価を行うことを推奨する(+1B).
• 患者本人によるself-reportが“Gold Standard” である.
• 重症患者は, 自分で訴えることが出来ないこともあり, その場合は客観的
な評価方法を用いる.
• Behavioral Pain Scale(BPS)
• Critical care Pain Observation Tool(CPOT)
• 神経因性 痛以外の痛みに対しては, 麻薬を第一選択で用いる(+1C).
Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation,
and delirium in adult patients in the intensive care unit. Crit Care Med. 2013 Jan;41(1):263-306.
深い鎮静はやめましょう
Light Sedation
• どの「浅い鎮静」が良いかは分かっていない.
!
• 鎮静薬を1日1回中断する.
• 原則として, 鎮静薬を使用しない.
• 浅い鎮静深度を維持できれば, 中断しなくていい.
• デクスメデトミジンをベースとした浅い鎮静.
要らないものは, 使用しない!!
1474 · May 18, 2000
*Average rates of infusion were calculated as milligrams of drug per kilogram of body weight di-
vided by the number of hours from the start of the infusion to its termination.
median (interquartile range)
Duration of mechanical ventilation (days) 4.9 (2.5–8.6) 7.3 (3.4–16.1) 0.004
Length of stay (days)
Intensive care unit
Hospital
6.4 (3.9–12.0)
13.3 (7.3–20.0)
9.9 (4.7–17.9)
16.9 (8.5–26.6)
0.02
0.19
Midazolam subgroup (no. of patients) 37 29
Total dose of midazolam (mg) 229.8 (59–491) 425.5 (208–824) 0.05
Average rate of midazolam infusion
(mg/kg/hr)
0.032 (0.02–0.05) 0.054 (0.03–0.07) 0.06
Total dose of morphine (mg) 205 (68–393) 481 (239–748) 0.009
Average rate of morphine infusion
(mg/kg/hr)
0.027 (0.02–0.04) 0.05 (0.04–0.07) 0.004
Propofol subgroup (no. of patients) 31 31
Total dose of propofol (mg) 15,150 (3983–34,125) 17,588 (4769–35,619) 0.54
Average rate of propofol infusion
(mg/kg/hr)
1.9 (0.9–2.6) 1.4 (0.9–2.4) 0.41
Total dose of morphine (mg) 352 (108–632) 382 (148–1053) 0.33
Average rate of morphine infusion
(mg/kg/hr)
0.035 (0.02–0.07) 0.043 (0.02–0.07) 0.65
Figure 1. Kaplan–Meier Analysis of the Duration of Mechanical Ventilation, According to Study Group.
After adjustment for base-line variables (age, sex, weight, APACHE II score, and type of respiratory
failure), mechanical ventilation was discontinued earlier in the intervention group than in the control
group (relative risk of extubation, 1.9; 95 percent confidence interval, 1.3 to 2.7; P<0.001).
0
100
0 30
10
20
30
40
50
60
70
80
90
5 10 15 20 25
Day
Intervention group (n=68)
Control group (n=60)
PatientsReceivingMechanicalVentilation(%)
Copyright © 2000 Massachusetts Medical Society. All rights reserved.
Downloaded from www.nejm.org at MASS GENERAL HOSP on March 19, 2006 .
INTERRUPTION OF SEDATIVE INFUSIONS IN CRITICALLY ILL PATIENTS UNDERGOING MECHANICAL VENTILATION
Volume 342 Number 20 · 1475
pulled out a central venous catheter; in the control
group, four patients removed the endotracheal tube)
(P=0.88). Seven patients in each group were given
cisatracurium (P=0.78), and five in each group re-
quired noninvasive ventilation after extubation (P=
0.74). Twelve patients in the intervention group and
18 patients in the control group required reintuba-
tion (P=0.17), and 12 and 16, respectively, under-
went tracheostomy (P=0.31). Nine patients in the
intervention group and 12 in the control group were
transferred to a facility equipped to provide long-term
ventilation (P=0.43). The in-hospital mortality rate
did not differ significantly between the two groups
(36.0 percent in the intervention group and 46.7
percent in the control group, P=0.25), and care was
withdrawn from 24 and 25 patients, respectively (P=
1.00). Fifty-nine percent of the patients in the inter-
vention group were discharged to their homes, as
compared with 40 percent of the patients in the
control group (P=0.06).
When the primary end points of the study (the
duration of mechanical ventilation, the length of stay
in the intensive care unit, and the length of stay in
the hospital) were evaluated according to whether
midazolam or propofol was given, no significant dif-
ferences between the intervention and control groups
were found (data not shown). In the intervention
group, the average number of hours per day that pa-
tients received the sedative infusion was 22.8 among
those given propofol, as compared with 18.7 among
those given midazolam (P=0.05).
DISCUSSION
Sedatives are often given to patients who are re-
ceiving mechanical ventilation to alleviate their anx-
iety, decrease excessive oxygen consumption, and fa-
cilitate nursing care.17 Administration of these drugs
by continuous infusion offers a more consistent level
of sedation than intermittent bolus administration
and thus may improve patients’ comfort.9 In our ex-
perience, sedation is often difficult with intermittent
administration, and such regimens can be taxing on
nurses and can hamper other aspects of patient care.17
However, a potential drawback to continuous infu-
sions is the accumulation of the drug and accompa-
nying delays in the improvement of mental status. We
hypothesized that daily interruption of the sedative
infusion would decrease these problems.
Care of critically ill patients is costly. In the Unit-
ed States in 1997, approximately $80.8 billion was
spent on intensive care,18 and about 10 percent of this
amount was spent on drugs.19 Ten to 15 percent of
the drug costs resulted from the purchase of sedative
drugs.20 Thus, a conservative estimate of the yearly
cost of sedative drugs administered in intensive care
units in the United States, in 1997 dollars,21 is be-
tween $0.8 billion and $1.2 billion, and the costs
may be higher than that if the use of sedative drugs
Figure 2. Kaplan–Meier Analysis of the Length of Stay in the Intensive Care Unit (ICU), According to
Study Group.
After adjustment for base-line variables (age, sex, weight, APACHE II score, and type of respiratory
failure), discharge from the intensive care unit (ICU) occurred earlier in the intervention group than in
the control group (relative risk of discharge, 1.6; 95 percent confidence interval, 1.1 to 2.3; P=0.02).
0
100
0 45
10
20
30
40
50
60
70
80
90
5 10 15 20 25 30 35 40
Day
Intervention group (n=68)
Control group (n=60)
PatientsRemainingintheICU(%)
Copyright © 2000 Massachusetts Medical Society. All rights reserved.
Downloaded from www.nejm.org at MASS GENERAL HOSP on March 19, 2006 .
1日1回中断 vs. Ramsay 3-4
Kress JP, Pohlman AS, O'Connor MF, et al. Daily interruption of sedative infusions in critically
ill patients undergoing mechanical ventilation. N Engl J Med. 2000 May 18;342(20):1471-7.
人工呼吸管理日数やICU滞在日数が短縮.
鎮静薬(ミダゾラム, プロポフォール)とモルヒネを中断.
無鎮静 vs. 1日1回中断
Strøm T, Martinussen T, Toft P.A protocol of no sedation for critically ill patients receiving
mechanical ventilation: a randomised trial.Lancet. 2010 Feb 6;375(9713):475-80
必要時にはモルヒネ iv., プロポフォール(6時間)を使用.
Ramsay 3-4を目標にプロポフォール, ミダゾラムを投与, 必要時にモルヒネ iv.
Articles
ol and midazolam are shown in
deviated for ten (18%) patients in
who received continuous sedation
ons. In most cases, sedation was
ent oxygenation in severe acute
rome (eg, prone ventilation), but
fter request from relatives. These
most of the sedative drugs used in
but use of these sedatives was
e intervention group than in the
e in morphine dose between the
ficant.
in 11 (20%) patients in the inter-
in the control group (p=0·0400).
ore frequently in the intervention
e control group (n=8; p=0·0100),
ow for both groups (table 2).
show that in critically ill patients
ventilation, a protocol of no
ncreased the number of days
a 28-day period compared with
dation. Use of no sedation was
gnificant reduction in the length
care unit and in hospital. No
ons such as accidental removal of
entilator-associated pneumonia,
RI brain scans were recorded.
in the group receiving sedation,
ared with the group receiving no
significance. The occurrence of
ncreased in the group receiving
to calls in editorials and review
ials aiming to reduce routine use
in most intensive care units.17–19
cal and surgical patients, since a
dies has been inclusion of medical
scale to guide the use of morphine, but use of morphine
was very low in both groups with no significant difference
between the groups. Use of morphine was probably low
because patients included in the study were severely ill,
21
Number at risk
No sedation
Sedation
55
58
0
0 10
Time (days)
20 28
25
50
Patientsremaininginintensivecareunit(%)
75
100
26
38
13
20
12
15
No sedation
Sedation
Figure 2: Kaplan-Meier plot of length of stay in the intensive care unit and number at risk from admission to
28 days
0
25
50
Patientsremaininginhospital(%)
75
100
Number at risk
No sedation
Sedation
55
58
0 15 45 7530
Time (days)
60 90
35
44
21
32
14
22
6
8
10
14
4
5
No sedation
Sedation
Figure3: Kaplan-Meier plot of length of stay in hospital and number at risk from admissionto 90 days
人工呼吸器なしの日数が増加, ICU滞在日数が短縮.
ハロペリドールの使用やせん妄は増加した.
Ramsay Sedation Scale
Score 鎮静状態
SS1 不安,不穏状態
SS2 協力的,協調性があり,落ち着いている
SS3 命令にのみ反応,眉間の叩打や大きい声に反応する
SS4 眠っているが刺激に対してはっきり反応する
SS5 眠っており刺激に対してのろのろした反応
SS6 無反応
身体刺激でないと反応しない鎮静深度は良くない.
RASS -3∼0 vs. 1日1回中断
(SAS 3 or 4)
麻薬で鎮痛, ミダゾラムなどのベンゾジアゼピンで持続鎮静.
Mehta S, Burry L, Cook D, et al. Daily sedation interruption in mechanically ventilated critically ill patients
cared for with a sedation protocol: a randomized controlled trial. JAMA. 2012 Nov 21;308(19):1985-92.
nt characteristics were similar
groups (TABLE 1). Eighty-
cent received medical diagno-
enrollment, 359 (84.9%) pa-
were receiving midazolam
s; 334 (79.0%), fentanyl; 71
, morphine; and 41 (9.5%),
l. Propofol infusions were dis-
ed at enrollment according to
y protocol.
mes
dian time to successful extuba-
7 days in both groups (hazard
08; 95% CI, 0.86-1.35; P=.52)
2). Adjustment for age, body
dex, Acute Physiology and
Health Evaluation II score, and
on type gave consistent results
d hazard ratio, 1.04; 95% CI,
31). Similarly, in a per-
analysis of patients who had
tions on more than 75% of eli-
udy days, there was no differ-
ence in time to successful extubation
between groups. There were no be-
tween-group differences in ICU or hos-
pital lengths of stay, hospital mortal-
ity, rates of unintentional device
removal, delirium, ICU neuroimag-
ing, barotrauma, tracheostomy, or or-
gan dysfunction (TABLE 2).
TABLE 3 summarizes data related to
sedative and opioid administration. Pa-
Figure 2. Kaplan-Meier Curves for Time to Successful Extubation
1.0
0.8
0.6
0.4
0.2
P =.52
0
No. at risk
Protocolized sedation only
Protocolized sedation only
Protocolized sedation and
daily interruption
Protocolized sedation and
daily interruption
0
209
214
5
146
140
10
72
81
15
49
42
20
34
28
25
23
16
30
Time, d
ProportionExtubated
P value calculated from log-rank statistic.
Patient Outcomes
Protocolized Sedation
and Interruption
(n = 214)
Protocolized Sedation
(n = 209) Measure of Effect (95% CI)
P
Value
ccessful extubation, median (IQR)a 7 (4 to 13) 7 (3 to 12) HR, 1.08 (0.86 to 1.35) .52
U,b median (IQR)a 10 (5 to 17) 10 (6 to 20) Mean difference, −3.17 (−6.89 to 0.55) .36
spital, median (IQR)a 20 (10 to 36) 20 (10 to 48) Mean difference, −8.2 (−17.64 to 1.19) .42
ty, No. (%) 50 (23.4) 52 (24.9) RR, 0.94 (0.67 to 1.32) .72
ortality, No. (%) 63 (29.6) 63 (30.1) RR, 0.98 (0.73 to 1.31) .89
ed organ failure and supportive
es, No. (%)
DS 89 (41.8) 78 (37.3) RR, 1.12 (0.88 to 1.42) .35
sopressors/inotropes 121 (56.8) 130 (62.2) RR, 0.91 (0.78 to 1.07) .26
nal replacement 50 (23.5) 37 (17.7) RR, 1.33 (0.91 to 1.94) .14
uromuscular blockade 20 (9.7) 21 (10.2) RR, 0.94 (0.53 to 1.69) .84
nal device removal, No. (%)
tube 18 (8.5) 29 (13.9) RR, 0.61 (0.35 to 1.07) .08
acheal tube 10 (4.7) 12 (5.8) RR, 0.82 (0.36 to 1.84) .64
catheter 6 (2.8) 13 (6.2) RR, 0.45 (0.17 to 1.17) .09
venous or arterial catheter 17 (8.0) 10 (4.8) RR, 1.68 (0.79 to 3.57) .18
ing in ICU, No. (%)
uted tomography 29 (13.6) 33 (15.9) RR, 0.85 (0.54 to 1.35) .53
tic resonance imaging 9 (4.2) 7 (3.4) RR, 1.25 (0.47 to 3.29) .64
straint
s, No. (%) 166 (76.4) 166 (79.4) RR, 0.96 (0.87 to 1.07) .46
days, mean (SD) 4.71 (5.67) 5.36 (6.14) Mean difference, −0.70 (−1.84 to 0.43)
o (%)b 113 (53.3) 113 (54.1) RR, 0.98 (0.82 to 1.17) .83
on within 48 h, No. (%) 12 (5.6) 16 (7.7) RR, 0.73 (0.35 to 1.50) .39
omy, No (%) 49 (23.2) 54 (26.3) RR, 0.88 (0.63 to 1.23) .46
s: ARDS, acute respiratory distress syndrome; HR, hazard ratio; ICU, intensive care unit; IQR, interquartile range; RR, relative risk.
e measured from enrollment.
ho ever had a score of 4 or more on the Intensive Care Screening Delirium Checklist.19
DAILY SEDATION INTERRUPTION IN MECHANICALLY VENTILATED CRITICALLY ILL PATIENTS
merican Medical Association. All rights reserved. JAMA, Published online October 17, 2012 E5
抜管成功までの時間は差がなかった.
看護師の仕事量は, 1日1回中断群で増加した.
浅い鎮静深度(ガイドラインの例)
• 落ち着いて覚醒している: RASS 0, SAS 4
• 浅い鎮静深度: RASS -1 or -2, SAS 3
• 深い鎮静深度: RASS -3 ∼ -5, SAS 1 or 2
Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation,
and delirium in adult patients in the intensive care unit. Crit Care Med. 2013 Jan;41(1):263-306.
身体刺激でなく, 呼びかけで反応
アイコンタクトやコミュニケーション可能
Early Goal-Directed Sedation
• EGDS vs. 標準治療.
• EGDS(Early Goal-Directed Sedation): ミダゾラム使用しない.
• デクスメデトミジンをベースとした浅い鎮静(RASS -2から1)に, 必要
ならプロポフォールを使用.
• 標準治療: デクスメデトミジンは使用できず, ミダゾラムやプロポ
フォールなどを使用.
• 浅い鎮静(RASS -2から1)の達成時間と, せん妄や血管収
縮薬, 身体拘束, デバイス抜去などの安全性を評価した.
Shehabi Y, Bellomo R, Reade MC, et al. Early goal-directed sedation versus standard sedation in
mechanically ventilated critically ill patients: a pilot study. Crit Care Med. 2013 Aug;41(8):1983-91.
主な結果
• 最初48時間以内の浅い鎮静の時間: 増加(66% vs. 38%, p=0.01). 
• せん妄なしの日数: 差はなかった(58% vs. 47%, p=0.27).
• 身体拘束: 有意に少なかった(5% vs. 31%, p=0.03).
• 血管収縮薬の使用や自己抜管, ICU滞在日数などは差がなかった.
!
 患者のケアへの協力はプロポフォールやミダゾラムと比べ,
 デクスメデトミジンで良かった.
Jakob SM, Ruokonen E, Grounds RM, wt al. Dexmedetomidine vs midazolam or propofol for sedation during
prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012 Mar 21;307(11):1151-60.
鎮静薬の選択
• ベンゾジアゼピン(ミダゾラム)を避ける.
!
• デクスメデトミジン ≧ .
• デクスメデトミジンの方が, 浅い鎮静向きかもしれない.
せん妄の評価スケール
hypoactiveは見逃されやすい
• オランダの大学病院で, 3ヶ月間, 48時間以上ICU入室した患者(認知症や中枢
神経系の疾患がある場合は除外). n=46(425 patients days).
• スケールを用いずに, 看護師と医師の印象でせん妄かどうか1日1回質問した.
Spronk PE, Riekerk B, Hofhuis J, et al. Occurrence of delirium is severely
underestimated in the ICU during daily care. Intensive Care Med 2009; 35: 1276-80.
RASS -3 ∼ -1 0 ∼ +1 +2 ∼ +5
せん妄の印象 Yes No Yes No Yes No
看護師
CAM+ 21 28 9 29 1 1
CAM- 1 14 2 153 0 0
医師
CAM+ 14 35 9 29 2 0
CAM- 0 15 0 155 0 0
hypoactiveでは, CAM-ICU+でも半数以上がNoと回答.
CAM-ICU
Confusion Assessment Method for the Intensive Care Unit
• 日本語版のトレーニングマニュアルが簡単にダウンロードできる.
意識評価の 2 ステップ・アプローチ
ステップ 1:鎮静評価
The Richmond Agitation and Sedation Scale: The RASS
スコア 用 語 説 明
+4 好戦的な 明らかに好戦的な、暴力的な、スタッフに対す
る差し迫った危険
+3 非常に興奮した チューブ類またはカテーテル類を自己抜去;攻
撃的な
+2 興奮した 頻繁な非意図的な運動、人工呼吸器ファイティ
ング
+1 落ち着きのない 不安で絶えずそわそわしている、しかし動きは
攻撃的でも活発でもない
0 意識清明な
落ち着いている
-1 傾眠状態 完全に清明ではないが、呼びかけに 10 秒以上の
開眼及びアイ・コンタクトで応答する
-2 軽い鎮静状態 呼びかけに 10 秒以下のアイ・コンタクトで応答 呼びかけ
刺激
-3 中等度鎮静状態 呼びかけに動きまたは開眼で応答するがアイ・
コンタクトなし
-4 深い鎮静状態 呼びかけに無反応、しかし、身体刺激で動きま
たは開眼 身体刺激
-5 昏睡 呼びかけにも身体刺激にも無反応
もし RASS が-4 または-5 の場合、評価を中止し、後で再評価しなさい。
もし RASS が-4 より上(-3∼+4)の場合、ステップ 2 に進みなさい。)
*Sessler, et al. AJRCCM 2002; 166:1338-1344.
*Ely, et al. JAMA 2003; 289:2983-2991.
ステップ 2:せん妄評価
所見 1:精神状態変化の急性発症または変動性の経過
+
所見 2:注意力欠如
+
所見 3:無秩序な思考 または 所見 4:意識レベルの変化
=せん妄
5
Ely EW, Inouye SK, Bernard GR, et al. Delirium in Mechanically Ventilated Patients Validity and Reliability of
the Confusion Assesment Method for the Intensive Care Unit(CAM-ICU). JAMA 2001;286:2703-2710.
RASS -4 or -5ではせん妄評価できない.
ICDSC
Intensive Care Delirium Screening Checklist
• 各勤務帯(8時間のシフ
ト)や24時間で得られ
た情報をもとに, 点数を
つける.
• 4点以上をせん妄とする.
ICDSC(Intensive Care Delirium Screening Checklist)
このスケールはそれぞれ 8 時間のシフトすべて、あるいは 24 時間以内の情報に基づき完成され
る明らかな徴候がある= 1 ポイント:アセスメント不能、あるいは徴候がない= 0 ポイントで評
価する、それぞれの項目のスコアを対応する空欄に 0または 1 で入力する。
ICDSC(Intensive Care Delirium Screening Checklist)
このスケールはそれぞれ 8 時間のシフトすべて、あるいは 24 時間以内の情報に基づき完成され
る明らかな徴候がある= 1 ポイント:アセスメント不能、あるいは徴候がない= 0 ポイントで評
価する、それぞれの項目のスコアを対応する空欄に 0または 1 で入力する。
ICDSC(Intensive Care Delirium Screening Checklist)
このスケールはそれぞれ 8 時間のシフトすべて、あるいは 24 時間以内の情報に基づき完成され
る明らかな徴候がある= 1 ポイント:アセスメント不能、あるいは徴候がない= 0 ポイントで評
価する、それぞれの項目のスコアを対応する空欄に 0または 1 で入力する。
ICDSC(Intensive Care Delirium Screening Checklist)
このスケールはそれぞれ 8 時間のシフトすべて、あるいは 24 時間以内の情報に基づき完成され
る明らかな徴候がある= 1 ポイント:アセスメント不能、あるいは徴候がない= 0 ポイントで評
価する、それぞれの項目のスコアを対応する空欄に 0または 1 で入力する。
1.意識レベルの変化
(A)反応がないか、(B)何らかの反応を得るために強い刺激を必要とする場合は
評価を妨げる重篤な意識障害を示す。もしほとんどの時間(A)昏睡あるいは
(B)昏迷状態である場合、ダッシュ(−)を入力し、それ以上評価を行わない。
(C)傾眠あるいは、反応までに軽度ないし中等度の刺激が必要な場合は意識レベ
ルの変化を示し、1 点である。
(D)覚醒、あるいは容易に覚醒する睡眠状態は正常を意味し、0 点である。
(E)過覚醒は意識レベルの異常と捉え、1 点である。
2. 注意力欠如
会話の理解や指示に従うことが困難。外からの刺激で容易に注意がそらされる。話題
を変えることが困難。これらのうちいずれかがあれば 1 点。
3. 失見当識
時間、場所、人物の明らかな誤認、これらのうちいずれかがあれば 1 点。
4. 幻覚、妄想、精神障害
臨床症状として、幻覚あるいは幻覚から引き起こされていると思われる行動(例えば、
空を掴むような動作)が明らかにある、現実検討能力の総合的な悪化、これらのう
ちいずれかがあれば 1 点。
5. 精神運動的な興奮あるいは遅滞
患者自身あるいはスタッフへの危険を予測するために追加の鎮静薬あるいは身体抑
制が必要となるような過活動(例えば、静脈ラインを抜く、スタッフをたたく)、活動
の低下、あるいは臨床上明らかな精神運動遅滞(遅くなる)、これらのうちいずれ
かがあれば 1 点。
6. 不適切な会話あるいは情緒
不適切な、整理されていない、あるいは一貫性のない会話、出来事や状況にそぐ
わない感情の表出。これらのうちいずれかがあれば 1 点。
7. 睡眠/覚醒サイクルの障害
4 時間以下の睡眠。あるいは頻回な夜間覚醒(医療スタッフや大きな音で起きた場
合の覚醒を含まない)、ほとんど 1 日中眠っている、これらのうちいずれかがあれば
1 点。
8. 症状の変動
上記の徴候あるいは症状が 24 時間のなかで変化する(例えば、その勤務
帯から別の勤務帯で異なる)場合は 1 点。
合計点
1.意識レベルの変化
(A)反応がないか、(B)何らかの反応を得るために強い刺激を必要とする場合は
評価を妨げる重篤な意識障害を示す。もしほとんどの時間(A)昏睡あるいは
(B)昏迷状態である場合、ダッシュ(−)を入力し、それ以上評価を行わない。
(C)傾眠あるいは、反応までに軽度ないし中等度の刺激が必要な場合は意識レベ
ルの変化を示し、1 点である。
(D)覚醒、あるいは容易に覚醒する睡眠状態は正常を意味し、0 点である。
(E)過覚醒は意識レベルの異常と捉え、1 点である。
2. 注意力欠如
会話の理解や指示に従うことが困難。外からの刺激で容易に注意がそらされる。話題
を変えることが困難。これらのうちいずれかがあれば 1 点。
3. 失見当識
時間、場所、人物の明らかな誤認、これらのうちいずれかがあれば 1 点。
4. 幻覚、妄想、精神障害
臨床症状として、幻覚あるいは幻覚から引き起こされていると思われる行動(例えば、
空を掴むような動作)が明らかにある、現実検討能力の総合的な悪化、これらのう
ちいずれかがあれば 1 点。
5. 精神運動的な興奮あるいは遅滞
患者自身あるいはスタッフへの危険を予測するために追加の鎮静薬あるいは身体抑
制が必要となるような過活動(例えば、静脈ラインを抜く、スタッフをたたく)、活動
の低下、あるいは臨床上明らかな精神運動遅滞(遅くなる)、これらのうちいずれ
かがあれば 1 点。
6. 不適切な会話あるいは情緒
不適切な、整理されていない、あるいは一貫性のない会話、出来事や状況にそぐ
わない感情の表出。これらのうちいずれかがあれば 1 点。
7. 睡眠/覚醒サイクルの障害
4 時間以下の睡眠。あるいは頻回な夜間覚醒(医療スタッフや大きな音で起きた場
合の覚醒を含まない)、ほとんど 1 日中眠っている、これらのうちいずれかがあれば
1 点。
8. 症状の変動
上記の徴候あるいは症状が 24 時間のなかで変化する(例えば、その勤務
帯から別の勤務帯で異なる)場合は 1 点。
合計点
1.意識レベルの変化
(A)反応がないか、(B)何らかの反応を得るために強い刺激を必要とする場合は
評価を妨げる重篤な意識障害を示す。もしほとんどの時間(A)昏睡あるいは
(B)昏迷状態である場合、ダッシュ(−)を入力し、それ以上評価を行わない。
(C)傾眠あるいは、反応までに軽度ないし中等度の刺激が必要な場合は意識レベ
ルの変化を示し、1 点である。
(D)覚醒、あるいは容易に覚醒する睡眠状態は正常を意味し、0 点である。
(E)過覚醒は意識レベルの異常と捉え、1 点である。
2. 注意力欠如
会話の理解や指示に従うことが困難。外からの刺激で容易に注意がそらされる。話題
を変えることが困難。これらのうちいずれかがあれば 1 点。
3. 失見当識
時間、場所、人物の明らかな誤認、これらのうちいずれかがあれば 1 点。
4. 幻覚、妄想、精神障害
臨床症状として、幻覚あるいは幻覚から引き起こされていると思われる行動(例えば、
空を掴むような動作)が明らかにある、現実検討能力の総合的な悪化、これらのう
ちいずれかがあれば 1 点。
5. 精神運動的な興奮あるいは遅滞
患者自身あるいはスタッフへの危険を予測するために追加の鎮静薬あるいは身体抑
制が必要となるような過活動(例えば、静脈ラインを抜く、スタッフをたたく)、活動
の低下、あるいは臨床上明らかな精神運動遅滞(遅くなる)、これらのうちいずれ
かがあれば 1 点。
6. 不適切な会話あるいは情緒
不適切な、整理されていない、あるいは一貫性のない会話、出来事や状況にそぐ
わない感情の表出。これらのうちいずれかがあれば 1 点。
7. 睡眠/覚醒サイクルの障害
4 時間以下の睡眠。あるいは頻回な夜間覚醒(医療スタッフや大きな音で起きた場
合の覚醒を含まない)、ほとんど 1 日中眠っている、これらのうちいずれかがあれば
1 点。
8. 症状の変動
上記の徴候あるいは症状が 24 時間のなかで変化する(例えば、その勤務
帯から別の勤務帯で異なる)場合は 1 点。
合計点
1.意識レベルの変化
(A)反応がないか、(B)何らかの反応を得るために強い刺激を必要とする場合は
評価を妨げる重篤な意識障害を示す。もしほとんどの時間(A)昏睡あるいは
(B)昏迷状態である場合、ダッシュ(−)を入力し、それ以上評価を行わない。
(C)傾眠あるいは、反応までに軽度ないし中等度の刺激が必要な場合は意識レベ
ルの変化を示し、1 点である。
(D)覚醒、あるいは容易に覚醒する睡眠状態は正常を意味し、0 点である。
(E)過覚醒は意識レベルの異常と捉え、1 点である。
2. 注意力欠如
会話の理解や指示に従うことが困難。外からの刺激で容易に注意がそらされる。話題
を変えることが困難。これらのうちいずれかがあれば 1 点。
3. 失見当識
時間、場所、人物の明らかな誤認、これらのうちいずれかがあれば 1 点。
4. 幻覚、妄想、精神障害
臨床症状として、幻覚あるいは幻覚から引き起こされていると思われる行動(例えば、
空を掴むような動作)が明らかにある、現実検討能力の総合的な悪化、これらのう
ちいずれかがあれば 1 点。
5. 精神運動的な興奮あるいは遅滞
患者自身あるいはスタッフへの危険を予測するために追加の鎮静薬あるいは身体抑
制が必要となるような過活動(例えば、静脈ラインを抜く、スタッフをたたく)、活動
の低下、あるいは臨床上明らかな精神運動遅滞(遅くなる)、これらのうちいずれ
かがあれば 1 点。
6. 不適切な会話あるいは情緒
不適切な、整理されていない、あるいは一貫性のない会話、出来事や状況にそぐ
わない感情の表出。これらのうちいずれかがあれば 1 点。
7. 睡眠/覚醒サイクルの障害
4 時間以下の睡眠。あるいは頻回な夜間覚醒(医療スタッフや大きな音で起きた場
合の覚醒を含まない)、ほとんど 1 日中眠っている、これらのうちいずれかがあれば
1 点。
8. 症状の変動
上記の徴候あるいは症状が 24 時間のなかで変化する(例えば、その勤務
帯から別の勤務帯で異なる)場合は 1 点。
合計点
〈看護ワンテーマ BOOK〉せん妄であわてない 医学書院
〈看護ワンテーマ BOOK〉せん妄であわてない 医学書院
〈看護ワンテーマ BOOK〉せん妄であわてない 医学書院
〈看護ワンテーマ BOOK〉せん妄であわてない 医学書院
質問項目に対して「0 点」または「1 点」の点数をつけて、その合計点が 4 点以上の場合、せん妄と評価する。
Bergeron N, Dubois MJ, Dumont M, et al.: Intensive Care Delirium Screening checklist :
evaluation of a newscreenig tool. Intensive Care Med 今 ; 27 : 859 - 864,2001. Dr. Nicolas Bergeron の許可を得て逆翻訳法を使用し翻訳.
翻訳と評価:卯野木 健(筑波大学附属病院),水谷太郎(筑波大学 医学医療系 救急・集中治療部),櫻本秀明(筑波大学附属病院)
質問項目に対して「0 点」または「1 点」の点数をつけて、その合計点が 4 点以上の場合、せん妄と評価する。
Bergeron N, Dubois MJ, Dumont M, et al.: Intensive Care Delirium Screening checklist :
evaluation of a newscreenig tool. Intensive Care Med 今 ; 27 : 859 - 864,2001. Dr. Nicolas Bergeron の許可を得て逆翻訳法を使用し翻訳.
翻訳と評価:卯野木 健(筑波大学附属病院),水谷太郎(筑波大学 医学医療系 救急・集中治療部),櫻本秀明(筑波大学附属病院)
質問項目に対して「0 点」または「1 点」の点数をつけて、その合計点が 4 点以上の場合、せん妄と評価する。
Bergeron N, Dubois MJ, Dumont M, et al.: Intensive Care Delirium Screening checklist :
evaluation of a newscreenig tool. Intensive Care Med 今 ; 27 : 859 - 864,2001. Dr. Nicolas Bergeron の許可を得て逆翻訳法を使用し翻訳.
翻訳と評価:卯野木 健(筑波大学附属病院),水谷太郎(筑波大学 医学医療系 救急・集中治療部),櫻本秀明(筑波大学附属病院)
質問項目に対して「0 点」または「1 点」の点数をつけて、その合計点が 4 点以上の場合、せん妄と評価する。
Bergeron N, Dubois MJ, Dumont M, et al.: Intensive Care Delirium Screening checklist :
evaluation of a newscreenig tool. Intensive Care Med 今 ; 27 : 859 - 864,2001. Dr. Nicolas Bergeron の許可を得て逆翻訳法を使用し翻訳.
翻訳と評価:卯野木 健(筑波大学附属病院),水谷太郎(筑波大学 医学医療系 救急・集中治療部),櫻本秀明(筑波大学附属病院)
Bergeron N, Dubois MJ, Dumont M, et al. Intensive Care
Delirium Screening Checklist: evaluation of a new screening
tool. Intensive Care Med 2001 May;27(5):859-64.
CAM-ICU vs. ICDSC
• CAM-ICU
• その時点で「今, せん妄かどうか」の評価ができる.
• 陽性 or 陰性の判断で, 程度(重症度)が分からない.
• 評価のため, 患者さんに質問する必要がある.
• ICDSC
• 今ではなく, 勤務帯や1日を振り返って, 過去のせん妄評価をする.
• 点数化(8点満点)されており, せん妄ありなしに関わらず, 程度の違いを評価できる.
• 必ずしも患者さんに介入を必要とせず, 観察することで評価が可能.
CAM-ICU: 感度 80.0%(77.1-82.6%), 特異度 95.9%(94.8-96.8%).
ICDSC: 感度 74.0%(65.3-81.5%), 特異度 81.9%(76.7-86.4%).
Gusmao-Flores D, Salluh JI, Chalhub RA, et al. The Confusion Assessment Method for the Intensive
Care Unit (CAM-ICU) and Intensive Care Delirium Screening Checklist (ICDSC) for the diagnosis of
delirium: a systematic review and meta-analysis of clinical studies. Crit Care. 2012 Jul 3;16(4):R115.
CAM-ICU vs. ICDSC
• 2008年3月から11月まで, 外科系
ICUに入室(ブラジルの大学病院),
RASS -3から2までの患者.
• CAM-ICU, ICDSCの両方を用いて
評価した.
Tomasi CD, Grandi C, Salluh J, et al. Comparison of CAM-ICU and ICDSC for the detection of delirium
in critically ill patients focusing on relevant clinical outcomes. J Crit Care 2012 Apr;27(2):212-7.
cycle disturbance, symptom fluctuation) can be evaluated in
the course of daily routine by nurses. Thus, while the patients
are involved actively on the CAM-ICU, they are indirectly
involved on the ICDSC [16,18,19].
To date, few studies have compared the performance of
different tools used for the diagnosis of delirium in the ICU
setting [18,19]. However, to the best of our knowledge, this
is the first study comparing the ability of CAM-ICU and
ICDSC to predict clinical relevant outcomes in ICU patients.
Recently, the CAM-ICU and the ICDSC were
compared in 174 surgical ICU patients, and a κ value
of .80 was reported [19]. This was superior as compared
with the findings of the present study (κ = .55). This
difference raises the possibility that these tools performed
differently between surgical and general ICU patients, but
our study was not designed to address this question.
When we analyzed surgical patients separately, we found
a κ value of .79. In the study by van Eijk et al [18], the
CAM-ICU presented a higher sensitivity as compared with
the ICDSC (64% vs 43%) but a lower specificity (88% vs
95%), and this is quite different to the studies that
validate both scales.
In the present cohort, 26.5% of the patients had a
diagnosis of delirium when assessed by the CAM-ICU and
34.6% as confirmed by the ICDSC. In addition, 32.7% of
studied patients presented subsyndromal delirium detected
by the ICDSC. As expected, patients with delirium as
diagnosed by any of the tools were older, more severely ill,
used more sedation and needed further physical restrain, had
longer hospital stay, and increased mortality rates, and this is
in accordance with previous results [21]. The major new
finding of our study is that the delirium diagnosis using
CAM-ICU was predicted more accurately in individuals with
higher mortality rates as compared with ICDSC diagnosis.
Additionally, patients with positive ICDSC but negative
CAM-ICU (Table 5) had mortality rates and LOS compa-
rable with those patients without delirium (negative CAM-
ICU and ICDSC), suggesting that a diagnosis of delirium by
the ICDSC with a negative CAM-ICU does not seem to be
associated with worse outcomes. We can hypothesize that
delirium was not present in these patients since we did not
use the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV) as criterion standard
for the diagnosis of delirium, or despite a correct diagnosis,
these patients presented some particular characteristic such
as disorientation or sleep disorders that may not be associated
to higher mortality.
Our study has some important limitations that should be
mentioned. First, it is a single-center study and relatively low
delirium rates were observed. Therefore, these results must
be confirmed by multicenter studies including larger
populations. In addition, we could not determine the impact
of our findings on long-term outcomes as patients were not
followed beyond hospital discharge. Second, our study was
performed by CAM-ICU and ICDSC scores only; we did not
use a criterion standard, like DSM-IV. However, others
studies had performed without a criterion standard [18,19].
Finally, our study excluded patients whose RASS scores
were −4 and −5 for 3 days to control for possible outcomes
bias, as our research is focused into patients' outcomes.
Excluding these patients, there was also possibly a decreased
incidence of delirium in this specific study.
In conclusion, we demonstrated that delirium patients
diagnosed by CAM-ICU or ICDSC presented similar
clinical profile, but outcomes in patients diagnosed only
by ICDSC were comparable with nondelirium patients. The
findings of our study suggest that CAM-ICU is a better
predictor of outcome.
Fig. 2 Kaplan-Meier survival curves in CAM-ICU and ICDSC
delirium patients.
Table 5 Clinical Outcomes of Delirium Status for ICDSC positive scores in comparison with CAM-ICU scores
ICDSC positive ICDSC negative P
CAM-ICU positive CAM-ICU Negative CAM-ICU negative
Length of hospital stay (d), mean (SD) 15.1 (9.1)⁎ 10.9 (5.9) 9.3 (5.7) 0.04
Hospital mortality, n (%) 8 (80%)⁎ 2 (20%) 6 (5.5) 0.002
Clinical outcomes were analyzed compared CAM-ICU and ICDSC scores.
216 C.D. Tomasi et al.
(unarousable) to +4 (combative). Vital status at ICU,
hospital discharge, and 90 days after internation were
obtained in all patients. Patients with a length of hospital
stay longer than 90 days were censored at this moment.
2.3. Statistical analyses
Standard descriptive statistics were calculated to examine
baseline characteristics of the study population. Continuous
variables with normal distribution were presented as mean ±
SD and compared by Student t test or ANOVA followed by
Bonferroni post hoc analysis, as appropriate. Continuous
variables with a nonnormal distribution were reported as
median (25%-75% interquartile range) and compared using
Mann-Whitney U test or Kruskal-Wallis test, as appropriate.
Categorical variables were presented as absolute numbers
(frequency percentages) and analyzed by χ2 test or Fisher
exact test (with Yates correction where applicable). The
diagnostic value of the CAM-ICU and ICDSC were
described using 2 × 2 tables. The κ coefficient was calculated
Fig. 1 Flowchart of patients in study.
Table 2 Comparison of CAM-ICU and ICDSC for delirium
diagnosis (n = 162)
ICDSC
(n)
CAM-ICU (n)
Negative Positive Total
Negative 105 1 106 (67.3)
Positive 14 42 56 (34.6)
Total 119 (71.6) 43 (26.5) 162 (100)
Data are n (%), P b .01.
214 C.D. Tomasi et al.
CAM-ICU(-), ICDSC(+)のせん妄患者は, 
せん妄なしと比べ, 予後に有意な差はなかった.
せん妄評価の現状
• ICDSCでは後ろ向き, 活動型の症状もcheckできる.
• CAM-ICUではその時点でのせん妄を評価することが出来るが,
「注意力欠如」に重点がおかれている.
• hypoactiveな方が頻度が多く, 予後に関係すると思われる. 
• hypoactiveのせん妄の方が見逃しやすく, なんらかのスケール
が必要である. 
• せん妄を見つけたら, 続かないように, 悪化しないように.
せん妄管理のポイント
• せん妄の予防.
• せん妄の早期発見.
• risk factorを把握.
• モニタリングをする.
• 早期介入.
せん妄のリスク
Page 4 of 12
(page number not for citation purposes)
In the domain of the acute illness, factors were studied relating
to the current diagnosis or treatment. All patients could be
classified as either a surgical or an internal medicine patient.
As patients were included at the time they scored a Glasgow
Coma Scale of 10 or more, the length of stay in the intensive
1.6 to 5.4) describe
tance of psychoact
the use of morphine
studies. A risk of mo
ogy Score (SAPS II)
Health Evaluation (A
versity hospital and
were transformed in
tality' indicating an A
of at least 40. The
28 (TISS 28) was
[19]. A cut-off value
workload of 318 min
Factors from the fou
or the interaction b
Admission characte
presence of a visibl
e.g. an open space
were scored at all lo
of physical restraint
Statistical approa
Continuous or cate
with a binary score.
Figure 1
Four domains of risk factors for intensive care deliriumFour domains of risk factors for intensive care delirium. TISS 28 = The
Therapeutic Intervention Scoring System-28.
変更できない
変更できる
患者背景・性格 慢性疾患
 年齢, 男性
 飲酒, 喫煙
 独居
 心不全, 肺疾患
 認知症
環境要因 急性疾患
救急入院, 転床
個室, 時計なし
日光が見えない
面会できない, 身体拘束
open ICU
長期入室, 発熱, 重症度, 内科疾患
点滴の種類・数, 経口摂取不可
ベンゾジアゼピン(鎮静), 麻薬
チューブ, カテーテル
Van Rompaey B, Elseviers MM, Schuurmans MJ, et al. Risk factors for delirium in
intensive care patients: a prospective cohort study. Crit Care 2009;13(3):R77.
せん妄予防
•早期離床はせん妄を減らす(+1B).
•薬物療法は十分な根拠はなく, 推奨しない(0, C).
• 定型および非定型の抗精神病薬の投与は推奨しない(-2C).
• デクスメデトミジンについてもデータはなく推奨しない(0, C).
とにかく離床・予防, 根拠のある薬剤はない.
Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation,
and delirium in adult patients in the intensive care unit. Crit Care Med. 2013 Jan;41(1):263-306.
せん妄予防について
• 鎮痛・鎮静プロトコール
• 消化管 / 膀胱機能の評価
•早期離床
• 栄養過剰, 不足
• 脱水
• 視覚・聴覚(眼鏡・補聴器)
• 合併症の予防・治療
• 睡眠促進
• スタッフの教育
• 酸素の供給
• 認知機能・見当識の維持
• 使用薬物
Reston JT, Schoelles KM. In-facility delirium prevention programs as a patient safety
strategy: a systematic review. Ann Intern Med. 2013 Mar 5;158(5 Pt 2):375-80.
家族も含めた介入
• 2009年11月から1010年7月まで, チリの急性期病院に入院した内科疾
患で, せん妄のハイリスク患者(年齢 >70, 認知症の既往, アルコール,
電解質異常など).
• 除外: 入院時にすでにせん妄.
• 家族の非薬物的介入(n=143) vs. 従来の標準的管理(n=144).
• 家族へ10分程度の簡単な説明, 時計とカレンダーを設置, 必要なら眼
鏡や補聴器, クッション・写真など家族のものを置く, 家族からオリ
エンテーション, 5時間以上の面会.
• Primary outcome: 入院中のせん妄の発生.
Martinez FT, Tobar C, Beddings CI, et al. Preventing delirium in an acute hospital
using a non-pharmacological intervention. Age Ageing. 2012 Sep;41(5):629-34.
せん妄が減少
介入群 5.6% vs. 標準的管理群 13.3%, RR 0.41; 95%CI; p=0.027
outcome, given that the sample size was not conceived to
detect differences in a complication considerably less fre-
quent than delirium. Further studies should be done on the
potential association between reduction in falls and imple-
mented multicomponent interventions, because this is also a
highly relevant complication to the hospitalised patient.
The strengths of this study include: daily assessment of
There are some limitations that must be considered.
Although this is a randomised controlled trial, family
members of the patients in the control group were allowed
to implement certain measures that could influence delir-
ium development (daily visits, provision of orientation
objects, sensory support equipment, etc.). The incidence of
delirium was lower than expected, a fact that is most likely
related to this phenomenon. This could have made our
statistical power insufficient to detect differences between
groups, but the protective effects of the intervention
remained significant. It should also be considered that the
generation of randomisation sequences by means other
than patient inclusion, such as ward location or room
number, would have been an inappropriate way to achieve
true random allocation.
Simple data masking was another major limitation. The
event adjudicants were aware of treatment assignment,
which has obvious implications when analysing conclusions.
Nevertheless, masking adjudicants would have meant
moving patients out of the multicomponent intervention
place, which in turn would have interfered with the appro-
priate interpretation of the study outcomes.
Another factor to be considered is the small number of
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 2. Study outcomes
Outcome Control
group
(n = 143)
Intervention
group
(n = 144)
P-value
Incident delirium, no. (%) 19 (13.3) 8 (5.6) 0.027
Mixed delirium, no. (%) 9 (6.3) 2 (1.4)
Hypoactive delirium no. (%) 8 (5.6) 2 (1.4)
Hyperactive delirium, no. (%) 2 (1.4) 4 (2.8)
Median delirium duration (days) (IQR) 3 (1–5) 2 (1–2) 0.37
Falls, no. (%) 4 (2.8) 0 (0) 0.06
Median hospital stay (days) (IQR) 9 (5–12) 9 (6–13) 0.36
Figure 2. Time-to-event curves of the studied patients.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 1. Baseline characteristics of the patients
Characteristic Control
group
(n = 143)
Intervention
group
(n = 144)
P-value
Mean age (years) (SD) 78.3 ± 6.1 78.1 ± 6.3 0.74
Male gender, no. (%) 96 (67) 84 (58) 0.16
Barthel index, median (IQR) 95 (85–100) 95 (85–100) 0.88
Comorbiditiesa
Charlson comorbidity index,
median (IQR)
2 (1–3) 2 (1–4) 0.45
Cancer, no. (%) 28 (19.6) 23 (15.9) 0.44
Metastatic Cancer, no. (%) 6 (4.2) 3 (2.1) 0.33
Heart failure, no. (%) 29 (27.3) 44 (30.6) 0.60
Chronic obstructive pulmonary
disease, no. (%)
28 (19.6) 34 (23.6) 0.47
Chronic kidney disease, no. (%) 22 (15.4) 18 (12.5) 0.42
Acute myocardial infarction, no.
(%)
11 (7.7) 15 (10.4) 0.41
Mild cognitive impairment, no. (%) 14 (9.8) 9 (6.3) 0.28
Dementia, no. (%) 8 (5.6) 9 (6.3) 1
Diabetes mellitus with end-organ
damage, no. (%)
11 (7.6) 13 (9) 0.83
Peripheral vascular disease, no. (%) 7 (4.9) 11 (7.6) 0.34
Previous delirium, no. (%) 3 (2.1) 8 (5.5) 0.22
Mild liver disease, no. (%) 6 (4.2) 4 (2.8) 0.54
Severe liver disease, no. (%) 2 (1.4) 3 (2.1) 1
Mesenchymopathies, no. (%) 3 (2.1) 7 (4.9) 0.34
Peptic ulcer disease, no. (%) 2 (1.4) 8 (5.5) 0.10
Lymphoma, no. (%) 1 (0.7) 1 (0.7) 1
Leukaemia, no. (%) 0 (0) 1 (0.7) 0.5
Hemiplegia, no. (%) 0 (0) 0 (0) –
Acquired immunodeficiency
syndrome, no. (%)
0 (0) 0 (0) –
Laboratory
Serum sodium (mEq/l) (SD) 136 ± 5 137 ± 4 0.34
Hyponatremia, no. (%) 29 (20.3) 26 (18) 0.64
Serum potassium (mEq/l) (SD) 4.2 ± 0.7 4.2 ± 0.6 0.95
Serum creatinine (mEq/l) (SD) 1.4 ± 1.1 1.3 ± 1 0.42
Uremia (mg/dl) (SD) 52 ± 38 48 ± 42 0.45
Haemoglobin (g/dl) (SD) 12 ± 2.2 12.1 ± 0.7 0.61
C reactive protein (mg/l) (SD) 11.7 ± 19.8 15.9 ± 30.7 0.22
White cell count (cells/mm3
) 9.580 ± 4.570 9.820 ± 4.185 0.67
Medications
Patients started on risky
medications, no. (%)
7 (4.9) 8 (5.5) 0.80
Benzodiazepines, no. (%) 4 (2.8) 5 (3.5) 0.75
Antihistamines, no. (%) 0 (0) 2 (1.4) 0.25
Anticholinergics, no. (%) 2 (1.4) 1 (0.7) 1
Opioids, no. (%) 1 (0.7) 0 (0) 1
SD, standard deviation.
a
As defined in the Charlson comorbidity index.
Preventing delirium in an acute hospital
atkouseiren-hiroshima-sohgoh-byoinonMarch16,2014http://ageing.oxfordjournals.org/Downloadedfrom
ARDSから回復した後… ARDSになった後…
• 大学の関連病院, トロント, 1998年3月から2002年3月まで.
• 対象: 
• 16歳以上, 少なくともPEEP ≧5cmH2OでP/F ≦200.
• 195人がTrialに登録され, 生存した117人(60%)がFollow upされた.
• 除外:
• ICU入室前に独立した機能なし, 肺切除後, 神経疾患・精神疾患がある.
• ICU退室後, 3・6・12ヶ月後に外来で評価を行った.
• 呼吸機能, 身体機能, 復職など.
Herridge MS, Cheung AM, Tansey CM, et al. One-year outcomes in survivors of the
acute respiratory distress syndrome. N Engl J Med. 2003 Feb 20;348(8):683-93.
ARDS 1年後
• 半年後には, 肺活量や1秒率などは正常化.
• 1年後では...
• 酸素投与が必要な患者はいなかったが, 軽度の拡散能障害は残存して
おり, 6%の患者が労作時にSpO2 <88%になった.
• 胸部単純X線写真は, 80%で正常化, 20%で軽度な陰影が残存.
• 6分間歩行やSF-36の全項目の評価で, 同年代の予測値を下回った.
• 49%の患者が働いており, その8割がもとの仕事に復帰できていた.
Herridge MS, Cheung AM, Tansey CM, et al. One-year outcomes in survivors of the
acute respiratory distress syndrome. N Engl J Med. 2003 Feb 20;348(8):683-93.
その後はどうなる??
ARDS 5年後
• 109人中, 9人が死亡, 36人がフォローアップできず.
•呼吸機能は正常もしくは正常に近い状態に.
• 患者の25%で施行されたCTでは, ほとんどで軽度の線維化
が見られた.
• 6分間歩行やSF-36の評価では, 同年代の予測値を下回った.
•51%が身体機能からの抑うつや不安があった.
•77%が復職(そのうち94%がもとの職業).
Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute
respiratory distress syndrome. N Engl J Med. 2011 Apr 7;364(14):1293-304.
5年間で...
• 肺の画像所見は軽度異常が残存するが, 呼吸機能は,
正常もしくはほぼ正常まで改善.
•身体機能の改善は不十分で, 5年後では77%で復職.
• そのうちわけは, 外勤 77%, 復学 6%, 非常勤の女性 17%.
• 医療費は年間50-60万円, 再入院はのICU入室中の
合併症や疾患によって増加した.
Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute
respiratory distress syndrome. N Engl J Med. 2011 Apr 7;364(14):1293-304.
うつ症状と身体機能障害の累積発生率
between depressive symptoms at last follow-up and incident im-
paired physical function, we repeated the prior analyses to eval-
uate if depressive symptoms at last follow-up were only associated
with individual nonphysical incident IADL dependencies. The
number of patients with incident IADL dependencies/number
at risk were: using the telephone, 34/175; shopping, 80/133; pre-
paring food, 57/132; housekeeping, 85/121; doing laundry, 67/136;
traveling, 73/143; taking medications, 48/159; and managing
Figure 2. Cumulative incidence of depressive
symptoms or impaired physical function in
the first 2 years after acute lung injury. During
2-year follow-up after acute lung injury, the
cumulative incidence of depressive symptoms
was 40%, and the cumulative incidence of im-
paired physical function was 66%. Incidence
was highest by the 3-month follow-up and de-
clined thereafter.
Figure 3. Recovery from incident depres-
sive symptoms or impaired physical func-
tion in the first 2 years after acute lung
injury. Thin lines and thick lines indicate
individual and mean trajectories, respec-
tively, for patients whose conditions
remitted (A and C) and did not remit
(B and D) during 2-year follow-up after
acute lung injury. Horizontal dashed lines
indicate thresholds for depressive symp-
toms (A and B) and impaired physical
function (C and D). HAD ¼ Hospital
Anxiety and Depression Scale; IADL ¼
instrumental activities of daily living.
520 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 185 2012
うつ症状 身体機能障害
Bienvenu OJ, Colantuoni E, Mendez-Tellez PA, et al. Depressive symptoms and impaired physical function
after acute lung injury: a 2-year longitudinal study. Am J Respir Crit Care Med. 2012 Mar 1;185(5):517-24.
ARDSでICUに入室したら…
• 筋力低下は急性期から始まる.
• 呼吸機能は結構回復する.
• 筋力低下は, ICU入室後も問題になっている.
• ADL, 雇用機会, うつ病, 医療費の増加など.
!
• せん妄になると, 死亡率が上昇し, 退室後も認知機能障
害につながる.
ICU退室
退院
抜管
何が出来るか??
筋力低下
• ICU-Acquired Weakness(ICU-AW)
• 他に原因がなく, 重症患者に起こる神経障害・筋障害のこと.
• 急性期の診断は困難であり, 多くは人工呼吸器からの離脱困難で発見される.
• Schweickert WD, Hall J.ICU-acquired weakness.Chest. 2007 May;131(5):1541-9.
• 頻度やリスクファクター: 
• 7日間以上の人工呼吸管理を受けた患者の33%にみられ, 人工呼吸器離脱の
遅れに繋がった.
• De Jonghe B, Bastuji-Garin S, Sharshar T, et al. Does ICU-acquired paresis lengthen weaning from mechanical ventilation?
Intensive Care Med. 2004 Jun;30(6):1117-21.
• 高齢, 高い重症度や高血糖などの全身状態, 筋弛緩薬やステロイド, アミノグ
リコシド系抗菌薬の使用などがリスクになる.
ICU-AWの診断基準
1. 重症疾患罹患後に, 進行性の全身の脱力.
2. 脱力はびまん性(遠位筋・近位筋とも), 両側性, 弛緩性で, 一般的に
脳神経障害は合併しない.
3. 24時間以上間隔を空けた2回以上の検査でMRC合計スコアが48未満,
もしくは検査可能な全ての筋群の平均MRCスコアが4未満.
4. 人工呼吸に依存した状態.
5. 筋力低下について, 他の原因が排除できている.
* 少なくとも, 1, 2, 3 or 4, 5を満たす.
Stevens RD, Marshall SA, Cornblath DR, et al. A framework for diagnosing and classifying
intensive care unit-acquired weakness. Crit Care Med. 2009 Oct;37(10 Suppl):S299-308.
用語について
• ICU-AW: Intensive Care Unit-Acquired Weakness
• ICUでおこった筋力低下.
!
• CIP: Critical illness polyneuropathy →神経障害
• CIM: Critical illness myopathy →筋障害
• CINM: Critical illness neuromyopathy →CIP + CIM
いつから始まるの?
• 健康なボランティアを安静臥床させたところ, 4時間で
筋萎縮が始まった.
• Kasper CE, Talbot LA, Gaines JM. Skeletal muscle damage and recovery. AACN Clin Issues 2002;13(2):237-247.
• 7人の健康な男性を, 6週間の安静臥床した後の筋力に
ついて調査していったところ, 1週間毎に4-5%程度の
筋力低下を認めた.
• Berg HE, Larsson L, Tesch PA. Lower limb skeletal muscle function after 6 wk of bed rest. J Appl Physiol 1997;82(1):
182-188.
結構早く始まり, 放っておくと, どんどん進む.
せん妄とICU-AWと睡眠
せん妄とICU-AWと睡眠
せん妄とICU-AWと睡眠
せん妄とICU-AWと睡眠
せん妄とICU-AWと睡眠
せん妄とICU-AWと睡眠
せん妄とICU-AWと睡眠
せん妄とICU-AWと睡眠

More Related Content

What's hot

What's hot (20)

血液培養についてまとめておく
血液培養についてまとめておく血液培養についてまとめておく
血液培養についてまとめておく
 
輸液、基礎の基礎
輸液、基礎の基礎輸液、基礎の基礎
輸液、基礎の基礎
 
上肢の痺れ
上肢の痺れ上肢の痺れ
上肢の痺れ
 
輸液の話 基本の『き』
輸液の話 基本の『き』輸液の話 基本の『き』
輸液の話 基本の『き』
 
ECG lecture(後期研修医向け)
ECG lecture(後期研修医向け)ECG lecture(後期研修医向け)
ECG lecture(後期研修医向け)
 
エコー下穿刺のコツ【ADVANCED】
エコー下穿刺のコツ【ADVANCED】エコー下穿刺のコツ【ADVANCED】
エコー下穿刺のコツ【ADVANCED】
 
体重減少  パート1 鑑別診断編
体重減少  パート1 鑑別診断編体重減少  パート1 鑑別診断編
体重減少  パート1 鑑別診断編
 
初期研修医のための学会スライドのキホン
初期研修医のための学会スライドのキホン初期研修医のための学会スライドのキホン
初期研修医のための学会スライドのキホン
 
誰も教えてくれなかったカルテの書き方 講義用
誰も教えてくれなかったカルテの書き方 講義用誰も教えてくれなかったカルテの書き方 講義用
誰も教えてくれなかったカルテの書き方 講義用
 
意識障害 パート1 鑑別診断へのアプローチ
意識障害 パート1 鑑別診断へのアプローチ意識障害 パート1 鑑別診断へのアプローチ
意識障害 パート1 鑑別診断へのアプローチ
 
不明熱〜身体診察〜_General Medicine Interest Group
不明熱〜身体診察〜_General Medicine Interest Group不明熱〜身体診察〜_General Medicine Interest Group
不明熱〜身体診察〜_General Medicine Interest Group
 
ゴロ合わせでおぼえる救急診療
ゴロ合わせでおぼえる救急診療ゴロ合わせでおぼえる救急診療
ゴロ合わせでおぼえる救急診療
 
今すぐ使える血ガスの読み方2020
今すぐ使える血ガスの読み方2020今すぐ使える血ガスの読み方2020
今すぐ使える血ガスの読み方2020
 
CV留置と胸腔ドレーン挿入に伴う合併症について
CV留置と胸腔ドレーン挿入に伴う合併症についてCV留置と胸腔ドレーン挿入に伴う合併症について
CV留置と胸腔ドレーン挿入に伴う合併症について
 
急性腎不全 地域で行う急性腎不全の鑑別と治療 【ADVANCED】
急性腎不全 地域で行う急性腎不全の鑑別と治療 【ADVANCED】急性腎不全 地域で行う急性腎不全の鑑別と治療 【ADVANCED】
急性腎不全 地域で行う急性腎不全の鑑別と治療 【ADVANCED】
 
タコツボ心筋症 講義
タコツボ心筋症 講義タコツボ心筋症 講義
タコツボ心筋症 講義
 
呼吸困難 パート1 鑑別診断へのアプローチ
呼吸困難 パート1 鑑別診断へのアプローチ呼吸困難 パート1 鑑別診断へのアプローチ
呼吸困難 パート1 鑑別診断へのアプローチ
 
心不全の所見
心不全の所見心不全の所見
心不全の所見
 
胸痛 パート1 鑑別診断へのアプローチ
胸痛 パート1 鑑別診断へのアプローチ胸痛 パート1 鑑別診断へのアプローチ
胸痛 パート1 鑑別診断へのアプローチ
 
カンジダ血症レビュー
カンジダ血症レビューカンジダ血症レビュー
カンジダ血症レビュー
 

Viewers also liked

ICU acquired weakness (ICUAW) and early rehabilitation
ICU acquired weakness (ICUAW) and early rehabilitationICU acquired weakness (ICUAW) and early rehabilitation
ICU acquired weakness (ICUAW) and early rehabilitation
Toko Fukushima
 

Viewers also liked (9)

ICU acquired weakness (ICUAW) and early rehabilitation
ICU acquired weakness (ICUAW) and early rehabilitationICU acquired weakness (ICUAW) and early rehabilitation
ICU acquired weakness (ICUAW) and early rehabilitation
 
手術中からのLtv
手術中からのLtv手術中からのLtv
手術中からのLtv
 
外傷診療 資料
外傷診療 資料外傷診療 資料
外傷診療 資料
 
Implementazione di ABCDE bundle in una Terapia Intensiva Generale italiana: s...
Implementazione di ABCDE bundle in una Terapia Intensiva Generale italiana: s...Implementazione di ABCDE bundle in una Terapia Intensiva Generale italiana: s...
Implementazione di ABCDE bundle in una Terapia Intensiva Generale italiana: s...
 
精神症状の理解とアセスメント⑥
精神症状の理解とアセスメント⑥精神症状の理解とアセスメント⑥
精神症状の理解とアセスメント⑥
 
生存時間分析の書き方
生存時間分析の書き方生存時間分析の書き方
生存時間分析の書き方
 
Delirium in the ICU
Delirium in the ICUDelirium in the ICU
Delirium in the ICU
 
Primary survey in Trauma
Primary survey in TraumaPrimary survey in Trauma
Primary survey in Trauma
 
一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門
 

Similar to せん妄とICU-AWと睡眠

Atypical forms of the osmotic demyelination syndrome
Atypical forms of the osmotic demyelination syndromeAtypical forms of the osmotic demyelination syndrome
Atypical forms of the osmotic demyelination syndrome
Erwin Chiquete, MD, PhD
 
Creutzfeldt–Jakob disease
Creutzfeldt–Jakob diseaseCreutzfeldt–Jakob disease
Creutzfeldt–Jakob disease
Siva Pesala
 
Death by Neurological Criteria and Organ Donation: Bill Knight
Death by Neurological Criteria and Organ Donation: Bill KnightDeath by Neurological Criteria and Organ Donation: Bill Knight
Death by Neurological Criteria and Organ Donation: Bill Knight
SMACC Conference
 

Similar to せん妄とICU-AWと睡眠 (20)

Atypical forms of the osmotic demyelination syndrome
Atypical forms of the osmotic demyelination syndromeAtypical forms of the osmotic demyelination syndrome
Atypical forms of the osmotic demyelination syndrome
 
Critical Synopsis in Brain Death Determination: A Case Report of Brain Death
Critical Synopsis in Brain Death Determination: A Case Report of Brain  DeathCritical Synopsis in Brain Death Determination: A Case Report of Brain  Death
Critical Synopsis in Brain Death Determination: A Case Report of Brain Death
 
B R A I N D E A T H
B R A I N  D E A T HB R A I N  D E A T H
B R A I N D E A T H
 
C.08a-Diagnosis-and-Treatment-of-Acute-Ischemic-Stroke-Presentation-ppt.pptx
C.08a-Diagnosis-and-Treatment-of-Acute-Ischemic-Stroke-Presentation-ppt.pptxC.08a-Diagnosis-and-Treatment-of-Acute-Ischemic-Stroke-Presentation-ppt.pptx
C.08a-Diagnosis-and-Treatment-of-Acute-Ischemic-Stroke-Presentation-ppt.pptx
 
Brain death
Brain deathBrain death
Brain death
 
braindeath-180612172939.pdf
braindeath-180612172939.pdfbraindeath-180612172939.pdf
braindeath-180612172939.pdf
 
Criteria of Brain Death
Criteria of Brain DeathCriteria of Brain Death
Criteria of Brain Death
 
Manuscript editing service | Primary and secondary data | Neurogenic Shock
Manuscript editing service | Primary and secondary data | Neurogenic ShockManuscript editing service | Primary and secondary data | Neurogenic Shock
Manuscript editing service | Primary and secondary data | Neurogenic Shock
 
CIACI_2015
CIACI_2015CIACI_2015
CIACI_2015
 
Definition-2014-PPT.pptx
Definition-2014-PPT.pptxDefinition-2014-PPT.pptx
Definition-2014-PPT.pptx
 
Epilepsy in Children.pptx
Epilepsy in Children.pptxEpilepsy in Children.pptx
Epilepsy in Children.pptx
 
Stroke mimics
Stroke mimicsStroke mimics
Stroke mimics
 
Brain death in paediatrics
Brain death in paediatricsBrain death in paediatrics
Brain death in paediatrics
 
Isolated Cerebellar Stroke Masquerades as Depression
Isolated Cerebellar Stroke Masquerades as DepressionIsolated Cerebellar Stroke Masquerades as Depression
Isolated Cerebellar Stroke Masquerades as Depression
 
Unconsciousness final(color slides)
Unconsciousness final(color slides)Unconsciousness final(color slides)
Unconsciousness final(color slides)
 
Care of unconscious patient
Care of unconscious patientCare of unconscious patient
Care of unconscious patient
 
Creutzfeldt–Jakob disease
Creutzfeldt–Jakob diseaseCreutzfeldt–Jakob disease
Creutzfeldt–Jakob disease
 
Death by Neurological Criteria and Organ Donation: Bill Knight
Death by Neurological Criteria and Organ Donation: Bill KnightDeath by Neurological Criteria and Organ Donation: Bill Knight
Death by Neurological Criteria and Organ Donation: Bill Knight
 
Salon 2 14 kasim 09.30 10.30 şeri̇fe gül şi̇mşek-ing
Salon 2 14 kasim 09.30 10.30 şeri̇fe gül şi̇mşek-ingSalon 2 14 kasim 09.30 10.30 şeri̇fe gül şi̇mşek-ing
Salon 2 14 kasim 09.30 10.30 şeri̇fe gül şi̇mşek-ing
 
Near-death experience, consciousness, and the brain
Near-death experience, consciousness, and the brainNear-death experience, consciousness, and the brain
Near-death experience, consciousness, and the brain
 

Recently uploaded

Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
EADTU
 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
httgc7rh9c
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Our Environment Class 10 Science Notes pdf
Our Environment Class 10 Science Notes pdfOur Environment Class 10 Science Notes pdf
Our Environment Class 10 Science Notes pdf
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
PANDITA RAMABAI- Indian political thought GENDER.pptx
PANDITA RAMABAI- Indian political thought GENDER.pptxPANDITA RAMABAI- Indian political thought GENDER.pptx
PANDITA RAMABAI- Indian political thought GENDER.pptx
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Simple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfSimple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdf
 

せん妄とICU-AWと睡眠

  • 1. 集中治療に関する合併症を減らそう! ~せん妄と ICU-AW を中心に~ JA広島総合病院 救急・集中治療科 櫻谷 正明 第1回 大阪救急集中治療看護セミナー, 2014年4月12日 ICUとせん妄 •せん妄と昏睡は「急性の脳機能障害」. ! •死亡率が上昇する. •生存退院した患者でも, 認知機能障害や脳萎縮 に繋がるかもしれない. ICUと筋力低下 •筋力低下は急性期から始まる. ! •生存退室した後も, QOLや抑うつと関係する. せん妄の特徴 • 急性に起こる脳機能障害 • 精神状態の変化や変動, 注意力欠如, 無秩序な思考, 意識レベル の変動, 認知機能障害など. • いくつかのサブタイプがある. • 活動型, 非活動型, 混合型があり, 活動型の頻度は少ない. • 人工呼吸患者では40-80%程度発生すると言われている. • ICU退室した後も, 予後に関係している.
  • 2. to be discharged with cognitive impair- ment than were those in the no de- lirium group (adjusted HR, 9.1; 95% CI, 2.3-35.3; P=.002). COMMENT The development of delirium in these mechanically ventilated patients was as- sociated with a 3-fold increase in risk of deathaftercontrollingforpreexistingco- morbidities,severityofillness,coma,and the use of sedative and analgesic medi- Adjusted HR (95% CI)* Reference 2.0 (1.4-3.0) Ͻ.001 Post-ICU Stay† No. 40 156 Median (IQR), d 5 (2-7) 7 (4-15.5) Adjusted HR (95% CI)* Reference 1.6 (1.1-2.3) .009 Abbreviations: CI, confidence interval; HR, hazard ratio; ICU, intensive care unit; IQR, interquartile range. *Multivariable model incorporating baseline covariates including patient age at enrollment, Charlson Comorbidity In- dex,43 modified Blessed Dementia Rating Scale score,45 Acute Physiology and Chronic Health Evaluation II (APACHE II) score,7 Sequential Organ Failure Assessment (SOFA) score,59,60 admitting diagnoses of sepsis or acute respiratory distress syndrome, and time-varying covariates for coma and use (yes/no) of lorazepam, propofol, morphine, and fentanyl. Assumptions of proportional hazard for the final models were evaluated by examining interactions between time and each variable in the model. Interaction terms were included in the model whenever nonproportionality of hazards was observed. For analysis of hospital length of stay, interactions were detected between time and APACHE II scores, SOFA scores, presence of coma, and use of lorazepam. No other significant interactions were observed. †Twenty-eight patients died in the ICU (1 in the no delirium group and 27 in the delirium group, P = .03) and were therefore not included in the post-ICU length-of-stay analysis. Figure 3. Kaplan-Meier Analysis of Delirium in the Intensive Care Unit and 6-Month Survival 100 30 60 50 40 70 80 90 20 10 0 No. at Risk No Delirium Delirium 0 41 183 1 32 5 64 34 138 25 111 28 116 21 98 19 88 22 104 Months After Enrollment ProbabilityofSurvival,% No Delirium Delirium A Delirium Only DeliriumNo Delirium Delirium-Coma Normal Coma-Normal 100 30 60 50 40 70 80 90 20 10 0 No. at Risk No Delirium 0 1 32 5 64 Normal Coma-Normal Delirium Delirium Only Delirium-Coma 17 24 60 123 15 19 51 87 11 15 39 72 11 17 42 74 10 11 33 65 10 9 29 59 10 12 34 70 Months After Enrollment ProbabilityofSurvival,% B 1758 JAMA, April 14, 2004—Vol 291, No. 14 (Reprinted) ©2004 American Medical Association. All rights reserved. Downloaded From: http://jama.jamanetwork.com/ on 02/06/2013 せん妄と予後 Ely EW, Shintani A, Truman B, at al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291:1753-1762. 昏睡 → せん妄が最もよくない !! 6ヶ月死亡が上昇する. 42歳女性 慢性呼吸不全と心不全の既往 ARDSでICU入院加療 経過中はせん妄なし 42歳女性 市中肺炎, ARDSでICUで入院加療 12日間のせん妄 神経・精神疾患の既往なし Gunther ML, Morandi A, Krauskopf E, et al. The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: The VISIONS cohort magnetic resonance imaging study. Crit Care Med 2012;40:2022–2032. 脳萎縮 Crit Care Med 2012 Vol. 40, No. 7 2027 a continuous variable, thus eliminating artificial cutoffs, and allowing us to better study its role as a confounder in its entire spectrum. Our low median IQCODE score of 3 (interquartile range 3, 3.06) attests to the fact that our patient population did not have significant prior cognitive impairment, potentially reducing the likelihood of significant prior atrophy in these patients and thus the related con- founding effect. Our patient population was relatively young and with minimal preexisting cognitive impairment or neurological injury. Based on these baseline demo- graphics and study exclusion criteria, one would not expect significant atrophy prior to ICU admission. Another poten- tial cause of delirium, brain atrophy, and LTCI observed in our patients is cerebral hypoperfusion. Several small studies (59, 60) have reported dramatic reduction in regional cerebral blood flow during acute delirium in the frontal and parietal lobes, thalamus, right temporal and occipital lobes, and the pons. Reduced cerebral blood flow, if maintained for a sufficient length of time, would potentially result in cell death and neuronal loss, leading to atrophy. Additionally, systemic inflamma- tion as in sepsis—a frequent diagnosis in critically ill patients—can lead to neuro- nal death and brain atrophy (61, 62). Brain volume loss in our patients was present at hospital discharge and 3 months. It is important to note that studies have reported brain atrophy may occur over a period of days rather than months (63–66), raising the possibility that atrophic processes for these patients may have occurred during hospitaliza- tion. Animal studies have also shown significant hippocampal cell loss within hours of sepsis induction using a lipo- polysaccharide model (67), although in our investigation, no such association was identified. Similarly, hippocampal atrophy has been reported in pigs within 12 hrs after an induction of acute respiratory distress syndrome—another common syn- drome in critically ill patients (68). The association between brain atro- phy at 3 months and neuropsychological outcomes at 12 months parallels find- ings in patients who experienced TBI and anoxic brain injury (15–17). In fact, previous studies showed global atrophy (as expressed by VBR) and hippocampal atrophy were correlated with cogni- tive performance and memory impair- ments in patients who experienced TBI and anoxic brain injury (15–17).In our Figure 3. Delirium duration, hippocampal and superior frontal lobe volumes. Longer duration of delirium was independently associated with smaller volumes in the hippocampus at discharge (A at discharge and B at 3-month follow-up) and the superior portion of the frontal lobe at both scans (C at discharge and D at 3-month follow-up). Brain volumes are shown in cm3 on the y-axis. The x-axis is duration of delirium measured in days. The solid black line indicates adjusted brain volume for a given value of delirium duration, adjusted for confounders; the “ribbon” indicates the 95% confidence bounds. Figure 2. Representative example of lateral ventricle size in 46-yr-old female and 42-yr-old female inten- sive care unit (ICU) survivors with no preexisting cognitive impairment: Axial T1 -weighted brain images in two ICU survivors. A, Relatively normal ventricular volume (see arrow) in a 46-yr-old female who did not experience delirium in the ICU. Patient had a history of respiratory and heart failure. She was admitted to a medical ICU due to acute respiratory distress syndrome and was subsequently intubated and man- aged through the ICU without ever developing delirium. B, Enlarged ventricles (see arrow) in a 42-yr-old female who did develop delirium in the ICU. Patient was admitted to the hospital after reporting fever and dyspnea with a chest radiograph and other laboratory data confirming community acquired pneumonia and acute respiratory distress syndrome. The patient was admitted to the ICU and mechanically ventilat- ed, experiencing 12 days of delirium and then resolution. There was no preexisting history of neurological impairment, and surrogate questioning for preexisting cognitive impairment was also negative. a continuous variable, thus eliminating artificial cutoffs, and allowing us to better study its role as a confounder in its entire spectrum. Our low median IQCODE score of 3 (interquartile range 3, 3.06) attests to the fact that our patient population did not have significant prior cognitive impairment, potentially reducing the likelihood of significant prior atrophy in these patients and thus the related con- founding effect. Our patient population was relatively young and with minimal preexisting cognitive impairment or neurological injury. Based on these baseline demo- graphics and study exclusion criteria, one would not expect significant atrophy prior to ICU admission. Another poten- tial cause of delirium, brain atrophy, and LTCI observed in our patients is cerebral hypoperfusion. Several small studies (59, 60) have reported dramatic reduction in regional cerebral blood flow during acute delirium in the frontal and parietal lobes, thalamus, right temporal and occipital lobes, and the pons. Reduced cerebral blood flow, if maintained for a sufficient length of time, would potentially result in cell death and neuronal loss, leading to atrophy. Additionally, systemic inflamma- tion as in sepsis—a frequent diagnosis in critically ill patients—can lead to neuro- nal death and brain atrophy (61, 62). Brain volume loss in our patients was present at hospital discharge and 3 months. It is important to note that studies have reported brain atrophy may occur over a period of days rather than months (63–66), raising the possibility that atrophic processes for these patients may have occurred during hospitaliza- tion. Animal studies have also shown significant hippocampal cell loss within hours of sepsis induction using a lipo- polysaccharide model (67), although in our investigation, no such association was identified. Similarly, hippocampal atrophy has been reported in pigs within 12 hrs after an induction of acute respiratory distress syndrome—another common syn- drome in critically ill patients (68). The association between brain atro- phy at 3 months and neuropsychological outcomes at 12 months parallels find- Figure 2. Representative example of lateral ventricle size in 46-yr-old female and 42-yr-old female inten- sive care unit (ICU) survivors with no preexisting cognitive impairment: Axial T1 -weighted brain images in two ICU survivors. A, Relatively normal ventricular volume (see arrow) in a 46-yr-old female who did not experience delirium in the ICU. Patient had a history of respiratory and heart failure. She was admitted to a medical ICU due to acute respiratory distress syndrome and was subsequently intubated and man- aged through the ICU without ever developing delirium. B, Enlarged ventricles (see arrow) in a 42-yr-old female who did develop delirium in the ICU. Patient was admitted to the hospital after reporting fever and dyspnea with a chest radiograph and other laboratory data confirming community acquired pneumonia and acute respiratory distress syndrome. The patient was admitted to the ICU and mechanically ventilat- ed, experiencing 12 days of delirium and then resolution. There was no preexisting history of neurological impairment, and surrogate questioning for preexisting cognitive impairment was also negative. ARDSと予後 • ベルリン定義による分類と予後 軽症 中等症 重症 患者数(%)[95% CI] 819(22) [21-24] 1820(50) [48-51] 1031(28) [27-30] 90日死亡(%)[95% CI] 220(27) [24-30] 575(32) [29-34] 461(45) [42-48] VFD, 中央値(IQR) 20(1-25) 16(0-23) 1(0-20) 生存者の人工呼吸管理日数, 中央値(IQR) 5(2-11) 7(4-14) 9(5-17) Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012 Jun 20;307(23):2526-33. VFD: Ventilator Free Days, IQR: Interquartile Range(四分位数範囲) 急性腎障害と予後 • 疾患による重症度を調整した後の急性腎障害(AKI-network) と死亡率の関係. 重症なほど, 院内死亡のオッズ比が高い. with a surviv stages of AKI, associated with compared with tained elevatio portantly, ren “protective” as predicted mor suggest that fa may offer a d Additionally, w likelihood of r tests could yiel tion, and ther appropriately r As a retros hort, the study Table 3. Odds of death associated with AKI in ICU AKI Category N Odds Ratio 95% CI Stratified by Time Taken to Meet AKI Criteria in ICU AKI Ͻ48 hrs 52,884 2.52 2.45–2.60 AKI Ͼ48 hrs 18,602 4.66 4.47–4.85 Stratified by Severity of AKI Reached during ICU Stage I AKI 57,126 2.23 2.17–2.30 Stage II AKI 7934 6.08 5.74–6.44 Stage III AKI 6426 8.6 8.07–9.15 AKI requiring dialysis (subgroup of Stage III AKI) 3140 5.78 5.30–6.31 AKI, acute kidney injury; ICU, intensive care unit; CI, confidence interval. Table 4. Risk-adjusted mortality in AKI by renal recovery statusa AKI Stage Recovery Status SMR (95% CI) Odds Ratio (95% CI) Overall, n ϭ 301,675 0.46 (0.46–0.47) Thakar CV, Christianson A, Freyberg R, et al. Incidence and outcomes of acute kidney injury in intensive care units: a Veterans Administration study. Crit Care Med. 2009 Sep;37(9):2552-8.
  • 3. ARDS患者の死亡率 cohort (16%, 14%, 19%, and 13%, respectively). Even though ARDS was the direct cause of death in only a few patients, it was present in the majority of patients at the time of death (88%, 86%, 88%, and 96% in 1981–1982, 1990, 1994, and 1998, respec- tively). Timing of death in ARDS, divided into early and late deaths and then further categorized as due to presenting injury/illness, respiratory failure, or a complication occurring after ARDS onset, has also commonly occurred secondary to the presenting injury or illness. There has, however, been a significant change in the case fatality of ARDS patients when stratified by risk factor (Fig 3), such that the case fatality of ARDS patients who present with trauma (p ϭ 0.0002 for trend) or other risk factors (p ϭ 0.043 for trend) has decreased, but the case fatality of patients whose risk factor is sepsis (p ϭ 0.255 for trend) has not changed. Additionally, Figure 1. Case fatality of ARDS patients at Harborview Medical Center, 1991–1998. Case fatality was near 60% in the early 1980s and decreased to near 30% by the mid-1900s (p ϭ 0.001 for trend, Wilcoxon rank-sum test for trend). 528 Clinical Investigations in Critical Care Downloaded From: http://journal.publications.chestnet.org/ by a Koseiren Hiroshima Sohgoh Byoin User on 09/04/2013 • 死亡率は減少し, 1990年代半ばからはプラトーになっている. •多臓器不全を伴う敗血症が主な死因(30-50%)であり, 呼吸不全は13-19%程度. Stapleton RD, Wang BM, Hudson LD, et al. Causes and Timing of Death in Patients With ARDS. CHEST 2005; 128: 525-532. 重症ほど予後が悪い せん妄期間と認知機能障害 • 重症患者のICU退室 3ヶ月後の時点で認知機能障害は認められ40%程度に認められ, 12ヶ月後の時点においても, 年齢に関係なく改善はみられない. • せん妄期間と認知機能障害は相関し, せん妄期間が増えれば認知機能も低下した. The new engl and jour nal of medicine tients in the ICU,38-40 and it is not known whether any preventive or treatment strategies can reduce the risk of long-term cognitive impairment after critical illness. These results complement those of earlier cohort studies that exposed the problem of cog- nitive deficits in survivors of critical illness.1-4 Some important differences, however, exist be- tween previous investigations and the BRAIN-ICU study. First, we enrolled a large sample of pa- tients with a diverse set of admission diagnoses and a broad age range. Second, we collected and analyzed detailed data about delirium and seda- tive exposure as risk factors for long-term cogni- tive impairment. Two longitudinal studies3,4 have advanced the field, but one was limited to patients with severe sepsis,4 and neither study collected de- tailed data on in-hospital exposures, such as delirium and psychoactive medications. In addi- tion, the previous studies assessed cognitive outcomes with the use of abbreviated screening tools, which do not allow comparisons with other populations, such as patients with trau- matic brain injury or Alzheimer’s disease. An important limitation of the BRAIN-ICU study was our inability to test patients’ cognition before their emergent illness. We addressed this limitation in three ways. First, we excluded pa- tients who were found to have severe dementia with the use of a rigorous and well-validated ap- proach that relied on two validated surrogate as- AdjustedRBANSGlobalCognitionScore at12Mo 80 90 70 60 0 0 5 10 Days of Delirium N=382 P=0.04 Figure 2. Duration of Delirium and Global Cognition Score at 12 Months. Longer durations of delirium were independently associated with worse RBANS global cognition scores at 12 months. Point estimates and the 95% confidence interval for these relationships are shown by the blue line and the gray band, respectively. RBANS global cognition scores have age-adjusted population norms, with a mean (±SD) score of 100±15. Rug plots show the distribution of the durations of delirium. Although delirium could be assessed for up to 30 days in the study, the x axis is truncated at 10 days because 90% of the patients had delirium for 10 days or less; all available data were used in the multivariable modeling. As one example, in a comparison of patients with no delirium and those with 5 days of delirium (the 25th and 75th percentile values of delirium duration in our cohort), with all other covariates held con- stant (at the median or mode of the covariate), patients with 5 days of delir- ium had RBANS global cognition scores at 12 months that were an average Pandharipande PP, Girard TD, Jackson JC, et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013 Oct 3;369(14):1306-16. The new engl and jour nal o f medicine an altered level of consciousness and surgical versus medical ICU did not qualitatively change our findings. DISCUSSION In this multicenter, prospective cohort study involv- ing a diverse population of patients in general med- ical and surgical ICUs, we found that one out of four patients had cognitive impairment 12 months after critical illness that was similar in severity to that of patients with mild Alzheimer’s disease, and one out of three had impairment typically associated with moderate traumatic brain injury. Impairments affected a broader array of neuro- psychological domains than is characteristically seen in Alzheimer’s disease, but the impairments were very similar to those observed after moder- ate traumatic brain injury. A validated instrument that assessed baseline cognitive status showed that only 6% of patients had evidence of mild-to- moderate cognitive impairment before ICU ad- mission, indicating that these profound cognitive deficits were new in the majority of patients. Long-term cognitive impairment affected both old and young patients, regardless of the burden of coexisting conditions at baseline. A longer duration of delirium was associated with worse long-term global cognition and ex- Normal MCI TBI Alzheimer’s disease RBANSGlobalCognitionScore 120 80 100 60 40 0 3 Mo (N=97) 12 Mo (N=89) ≤49 Yr 3 Mo (N=147) 12 Mo (N=138) 50–64 Yr 3 Mo (N=130) 12 Mo (N=98) ≥65 Yr Figure 1. Global Cognition Scores in Survivors of Critical Illness. The box-and-whisker plots show the age-adjusted global cognition scores on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS; with a population age-adjusted mean [±SD] of 100±15, and lower scores indicating worse global cognition) at 3 months (light-gray boxes) and 12 months (dark-gray boxes), according to age. For each box-and-whisker plot, the horizontal bar indicates the median, the upper and lower limits of the boxes the interquartile range, and the ends of the whiskers 1.5 times the interquartile range. Outliers are shown as black dots. The green dashed line indicates the age-adjusted population mean (100) for healthy adults, and the green band indicates the standard deviation (15). Also shown are the expected population means for mild cognitive impairment (MCI), moderate traumatic brain injury (TBI), and mild Alzheimer’s disease on the basis of other cohort studies. Expected population means for MCI and Alzheimer’s disease are 重症なせん妄とは??
  • 4. 亜症候性せん妄 • 2004年(1月から12月まで)のICU入室患者を対象に, ICDSCで8時間ごとにcheck. • 0ポイントと比べ1-3ポイントでも, 死亡率は上昇, ICU入室日数は増加した. ifested an ICDSC score ere performed with SAS , N.C., USA); differences e considered statistically bsyndromal delirium the 1 on the ICDSC were 67 (32.4%), respectively. Of ed among subsyndromal re scored 1, 368 (29.7%) nts with clinical delirium 1.3%), with higher scores le 2). r post-ICU mortality analysis: of patient first exited first ICU; elirium 4, subsyndromal delir- e therefore not included in the nce interval) 95% CI p 0.84–2.08 0.2346 0.61–1.55 0.9098 1.63–3.73 < 0.0001 1.07–2.60 0.0252 , and coma Fig. 1 Post-ICU mortality. Kaplan–Meier curves depicting time to death in the no delirium, subsyndromal delirium, and clinical delir- ium groups Fig. 2 Distribution of highest checklist scores over time. All pa- tients were considered nondelirious prior to admission. In patients with clinical delirium or subsyndromal delirium the maximal scores occurred early in the ICU admission, with almost one-half occurring within 24–48 h (i.e., within the first day) of admission, and over 90% occurring by ICU day 6. See Table 3 using survival analysis. Time to death was computed from the date of patient exited the ICU for the first time. Fifty-three patients died during their first ICU stay (4 with no delirium, 19 with subsyndromal delirium, and 30 with delirium) and were not included in the survival analysis. Survival curves were computed using the Kap- lan–Meier formulas and compared between the three groups by the log rank test. In the case of significant findings 2 × 2 survival curves were also compared using the log rank test. Cox regression analysis was used to analyze the effect of group on mortality adjusted for age, severity of illness (APACHE II) and medication-induced coma [14]. Cox regression model was also performed on the clinical delirium group only to determine whether the initial score (4–8 ICDSC items) is a predictor of mortality. In this analysis time to death was computed from the date of patient manifested an ICDSC score of 4 or higher. All analyses were performed with SAS version 8.2 (SAS Institute, Cary, N.C., USA); differences at the level of p ≤ 0.05 were considered statistically significant. Results Diagnostic categories Among the patients with subsyndromal delirium the number with scores of 3, 2, and 1 on the ICDSC were 67 (37.4%), 54 (30.2%), and 58 (32.4%), respectively. Of the 1,239 assessments completed among subsyndromal delirium patients 482 (39%) were scored 1, 368 (29.7%) 2, and 389 (31.3%) 3. In patients with clinical delirium the most frequent score was 4 (51.3%), with higher scores progressively less common (Table 2). Table 2 Results of Cox regression for post-ICU mortality analysis: time to death, computed from the date of patient first exited first ICU; 53 patients died in their first ICU (no delirium 4, subsyndromal delir- ium 19, clinical delirium 30) and were therefore not included in the analysis (HR hazard ratio, CI confidence interval) HRa 95% CI p Subsyndromal delirium Unadjusted model 1.32 0.84–2.08 0.2346 Adjusted modelb 0.97 0.61–1.55 0.9098 Clinical delirium Unadjusted model 2.46 1.63–3.73 < 0.0001 Adjusted modelb 1.67 1.07–2.60 0.0252 a Reference group is no delirium b Adjusted for age, APACHE II score, and coma There were 53 ICU deaths: 2.4%, 10.6%, and 15.9% in the no delirium, subsyndromal delirium, and clinical delir- ium groups, respectively (no delirium vs. subsyndromal delirium, p = 0.0020; no delirium vs. clinical delirium, p < 0.0001; subsyndromal delirium vs. clinical delirium, p = 0.1378; Fig. 1). On the 484 surviving patients post- ICU mortality was higher in the clinical delirium than in the subsyndromal delirium and no delirium groups (clin- ical delirium vs. no delirium, log-rank test, p < 0.0001; clinical delirium vs. subsyndromal delirium, log-rank test, p = 0.0016 and subsyndromal delirium vs. no delirium, log-rank test, p = 0.2309; Fig. 2, Table 3). The results of the Cox regression analysis showed that only the clinical delirium group had a higher risk of mortality than the no Fig. 1 Post-ICU mortality. Kaplan–Meier curves depicting time to death in the no delirium, subsyndromal delirium, and clinical delir- ium groups Fig. 2 Distribution of highest checklist scores over time. All pa- tients were considered nondelirious prior to admission. In patients with clinical delirium or subsyndromal delirium the maximal scores occurred early in the ICU admission, with almost one-half occurring within 24–48 h (i.e., within the first day) of admission, and over 90% occurring by ICU day 6. See Table 3 ICDSCと死亡率ICDSCの最大スコアの発生日 Ouimet S, Riker R, Bergeron N, et al. Subsyndromal delirium in the ICU: evidence for a disease spectrum.Intensive Care Med 2007 Jun;33(6):1007-13. せん妄期間が長いと予後が悪い • 市中病院ICU(14床)での前向 きコホート研究. • 60歳以上の入室患者(n=304) を追跡し, せん妄期間の中央値は 3日間, せん妄期間が長いと1年 死亡が増加した(HR, 1.10: 95% CI, 1.03-1.18 ). Missing values on predictor and control variables were minimal (Table 1), so a complete case analysis was conducted. A P value of 0.05 was considered to be significant for all two-sided statistical tests. SAS statistical software, version 9.2 (SAS Institute Inc, Cary, NC), was used. and mortality was statistically significant (ha 1.10; 95% confidence interval [CI], 1.02–1.18) a covariates. Multivariable model results remain the model is pruned of nonsignificant (P covariates (HR, 1.10; 95% CI, 1.03–1.18). A reproducibility, bootstrapping confirmed the m parameter estimate for the model’s main pred Other factors significantly associated with m age, impairment in IADL, Charlson Comorb severity of illness on ICU admission. DISCUSSION This study provides new evidence for the im number of days of ICU delirium as a risk fac Previous ICU studies have found an asso presence of delirium and mortality (6) but not of days of delirium in ICU and mortality. T Figure 2. Kaplan-Meier s year mortality post–inten admission (ICU delirium Log-rank chi-square statis of freedom 5 3; P , 001 Receipt of opiods or benzodiazepines in the ICU, n (%) 248 (82) Receipt of propofol in the ICU, n (%) 22 (7) Receipt of haloperidol in the ICU, n (%) 99 (33) ICU length of stay, median (IQR) 5.0 (6) Total length hospital stay, median (IQR) 11.0 (12) ICU delirium days, median (IQR) 3.0 (6) ICU and floor/ward delirium days, median (IQR) 4.0 (9) Post-ICU discharge, floor/ward delirium days, median (IQR) 1.0 (3) Death in the ICU, n (%) 48 (16) Death within 1 yr of ICU admission, n (%) 153 (50) Definition of abbreviations: APACHE 5 Acute Physiology and Chronic Health Evaluation; ICU 5 Intensive Care Unit; IQR 5 interquartile range. * There are missing data for four subjects (dementia, n 5 3; Charlson, n 5 1). Kaplan-Meier 曲線(せん妄期間と1年死亡率) Pisani MA, Kong SY, Kasal SV, et al. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am J Respir Crit Care Med 2009 Dec 1; 180(11): 1092-7. hypoatciveに注意 • 予定手術後の50歳以上の患者 (n=172)の前向きコホート研究. • 74人(43%)の患者でせん妄が発生し, 67.6%がhypoactive, 31.1%がmixed, 1.4%がhyperactiveであった. • mixedと比較して, hypoactiveの方が 6ヶ月死亡率が高かった(32.0% vs. 8.7%, p=0.04). せん妄なしは2.1%. • 仙骨部の褥瘡hypoactiveで多く, デバ イス抜去はmixedの方で多かった. Robinson TN, Raebum CD, Tran ZV, et al. Motor subtypes of postoperative delirium in older adults. Arch Surg 2011 Mar;146(3):295-300. cluded from statistical comparisons because of the small group size (n=1). The mean age of study patients was 64 (8) years; 96.5% (166 of 172) were male. The mean time to initial presentation of delirium in patients was 2.3 (1.8) days. The time to initial onset of delirium did not differ between the hypoactive (2.4 [1.7] days) vs mixed (2.2 [1.8] days) groups (P=.66). The mean duration of delirium among patients in the hypoactive and mixed groups was 3.5 (4.5) days. The mean duration of de- lirium did not differ between the hypoactive (2.8 [1.4] days) vs mixed (3.9 [5.4] days) groups (P=.34). An overview of operations performed included 44.8% (77 of 172) abdominal, 37.2% (65 of 172) cardiac, 9.3% (16 of 172) noncardiac thoracic, and 8.1% (14 of 172) vascular. Among patients with delirium, the operations performed did not differ between the hypoactive vs mixed groups (Table 1). Preoperative variables were compared among pa- tients in the hypoactive vs mixed groups (Table 1). Com- pared with those having mixed delirium, patients hav- ing hypoactive delirium were older (mean age, 71 [9] vs 65 [9] years) and more anemic (mean hematocrit, 36% [8%] vs 41% [6%]) (P=.002 for both) (to convert he- matocrit to a proportion of 1.0, multiply by 0.01). Intraoperative variables of blood transfusion, operat- ing room time, and type of anesthesia were compared be- tween the hypoactive (n=50) vs mixed (n=23) groups. 9) of patients in the hypoactive group vs 0 of 10 patients in the mixed group (P=.002), and inadvertent tube or line removals occurred in 90.0% (9 of 10) of patients in the mixed group vs 22.2% (2 of 9) of patients in the hy- poactive group (P=.006). The one patient who devel- oped purely hyperactive postoperative delirium had 3 de- 0 10 20 30 40 50 60 70 HyperactiveMixedHypoactive Incidence,% Motor Subtype of Postoperative Delirium n=50 n=23 n=1 Figure 2. Incidence of motor subtypes of postoperative delirium among 74 patients. cluded from statistical comparisons because of the small group size (n=1). The mean age of study patients was 64 (8) years; 96.5% (166 of 172) were male. The mean time to initial presentation of delirium in patients was 2.3 (1.8) days. The time to initial onset of delirium did not differ between the hypoactive (2.4 [1.7] days) vs mixed (2.2 [1.8] days) groups (P=.66). The mean duration of delirium among patients in the hypoactive and mixed groups was 3.5 (4.5) days. The mean duration of de- lirium did not differ between the hypoactive (2.8 [1.4] days) vs mixed (3.9 [5.4] days) groups (P=.34). An overview of operations performed included 44.8% (77 of 172) abdominal, 37.2% (65 of 172) cardiac, 9.3% (16 of 172) noncardiac thoracic, and 8.1% (14 of 172) vascular. Among patients with delirium, the operations performed did not differ between the hypoactive vs mixed groups (Table 1). Preoperative variables were compared among pa- tients in the hypoactive vs mixed groups (Table 1). Com- pared with those having mixed delirium, patients hav- ing hypoactive delirium were older (mean age, 71 [9] vs 65 [9] years) and more anemic (mean hematocrit, 36% [8%] vs 41% [6%]) (P=.002 for both) (to convert he- matocrit to a proportion of 1.0, multiply by 0.01). Intraoperative variables of blood transfusion, operat- ing room time, and type of anesthesia were compared be- tween the hypoactive (n=50) vs mixed (n=23) groups. Type of anesthesia is described as the percentage of pa- 9) of patients in the hypoactive group vs 0 of 10 patients in the mixed group (P=.002), and inadvertent tube or line removals occurred in 90.0% (9 of 10) of patients in the mixed group vs 22.2% (2 of 9) of patients in the hy- poactive group (P=.006). The one patient who devel- oped purely hyperactive postoperative delirium had 3 de- lirium-related adverse events (2 peripheral intravenous pulls and 1 self-extubation). 0 10 20 30 40 50 60 70 HyperactiveMixedHypoactive Incidence,% Motor Subtype of Postoperative Delirium n=50 n=23 n=1 Figure 2. Incidence of motor subtypes of postoperative delirium among 74 patients. hypoactiveが多く, 予後も悪い. 重症ほど医療費がかかる • せん妄をポイント化して, 毎日ポイントを加算していく. that there were no differences in cost per ICU day between delirious and nondeliri- ous patient groups. A more plausible mechanism to explain the delirium-cost relationship is found in length of stay, which is known to be a major cost driver (12) and which was greater in delirious patients in our study. Because of the ob- servational nature of this study, we can- not determine whether delirium caused longer lengths of stay or if longer lengths of stay simply resulted in greater time at risk for developing delirium. However, delirium could easily lead to increased length of stay and cost if it resulted in the administration of excess sedation or if it otherwise interfered with liberation from mechanical ventilation. The salient ques- tion is whether reducing the incidence and/or severity of delirium will alter clin- ical outcomes and improve cost. To ad- dress this question, future work should include trials of delirium prevention and treatment interventions that target mod- ifiable risk factors such as sedation and analgesia practices (40) and early patient mobilization. The associated annual cost of ICU delirium could be enormous. In our study, delirium occurred in 82% of me- chanically ventilated patients and was associated with an incremental increase in ICU cost of $9,014 per patient. In the United States, there are approximately 880,000–2,760,000 ICU admissions an- nually for respiratory failure requiring mechanical ventilation (41–45). At the rate of delirium detected in our cohort, the estimated number of cases of ICU delirium could range from 721,600 to 2,263,200 per year with an associated in- crease in healthcare costs ranging be- tween $6.5 and $20.4 billion. If we use Table 4. Patient costs for major subcategories of ICU care Characteristic Never Delirium (n ϭ 41) Ever Delirium (n ϭ 183) p Value Bed expenses 6,278 (3,791–8,804) 10,061 (6,312–16,016) Ͻ.001 Pharmacy 1,641 (918–3,319) 3,293 (1,993–5,106) Ͻ.001 Laboratory 1,303 (665–2,369) 2,262 (1,011–4,260) .003 Diagnostic radiology 1,106 (451–1,946) 1,732 (885–2,834) .002 Respiratory therapya 897 (650–1,467) 1,466 (1,019–2,441) Ͻ.001 Central supply 760 (411–1,301) 1,234 (586–2,245) .001 Biomedical monitoring 105 (53–330) 178 (53–390) .32 PT/OT/speech therapy 0 (0–141) 175 (0–429) .001 Dialysisb 0 (0–0) 0 (0–0) .61 ICU, intensive care unit; PT, physical therapy; OT, occupational therapy. Values are median patient costs (US$) with interquartile ranges given in parentheses. Subcategories of ICU cost were based on the general ledger category assigned to each cost item in the hospital billing system. a Includes costs of mechanical ventilation; b 27 of 183 (14.8%) delirious patients and 4 of 41 (12.2%) nondelirious patients required dialysis. Because so few required dialysis, the median (interquartile range) cost of dialysis for both patient groups was $0 ($0–$0). Figure 1. Median intensive care unit (ICU) and hospital cost per patient. This histogram shows cost according to clinical categorization of “ever delirium” vs. “never delirium.” Delirium was significantly associated with increased ICU and hospital cost. Figure 2. Median intensive care unit (ICU) and hospital cost per patient. This histogram shows cost according to cumulative delirium severity indexes. Increasing delirium severity was significantly associated with incrementally greater ICU and hospital cost. D elirium is a com- mon clinical event in me- chanically ventilated medi- cal intensive care unit pa- tients and is associated with significantly higher inten- sive care unit and hospital costs. 959Crit Care Med 2004 Vol. 32, No. 4 Table 2. Delirium severity index determinationa CAM-ICU RASS Delirium Severity Index — 0 ϩ ϩ4 5 ϩ ϩ3 4 ϩ ϩ2 3 ϩ ϩ1 2 ϩ 0 1 ϩ Ϫ1 2 ϩ Ϫ2 3 ϩ Ϫ3 4 ϩ Ϫ4 5 ϩ Ϫ5 6 CAM-ICU, Confusion Assessment Method for the Intensive Care Unit; RASS, Richmond Agita- tion-Sedation Scale. a Delirium severity index determination: Non- delirious (i.e., CAM-ICU negative) patients re- ceived zero delirium severity index points for a given day whereas delirious (i.e., CAM-ICU posi- tive) patients received between 1 and 6 points on that day as determined by the absolute RASS score plus 1. In this way, patients with greater degrees of hyperactive or hypoactive delirium Table 3. Baseline ch Cha Age, mean (SD), yrs Men, % Race White, % Black, % Charlson Comorbidi Vision deficits, % Hearing deficits, % Blessed Dementia Ra Activities of daily liv APACHE II score, m SOFA score, mean ( ICU admission diagn Sepsis/acute respi Pneumonia Myocardial infarct Hepatic or renal f Chronic obstructi Gastrointestinal b Malignancy Drug overdose Other APACHE, Acute Assessment; ICU, int Milbrandt EB, Deppen S, Harrison PL, et al. Costs associated with delirium in mechanically ventilated patients. Crit Care Med 2004 Apr;32(4):955-62.
  • 5. 予後が悪くなるせん妄 • せん妄の期間が長い. ! • hyperactive(活動型)< hypoactive(非活動型). ! • 症状が強い(hyperはより活動的, hypoはより傾眠). 鎮静薬中断とせん妄 • 前向き観察研究, 単施設, 内科系ICU, シカゴ. • 2009年7月∼2010年6月, 2010年10月∼2011年4月. • 対象: 18歳以上で48時間以上気管挿管され, 1日1回中断(DIS)の鎮 静・鎮痛プロトコールにそって管理された患者. • 除外: 鎮静薬中断が出来ない状況, 認知症や神経・精神疾患, 英語が話 せない, 他のtrialに参加など. • DIS前後で, CAM-ICUを用い, 別々の評価者がせん妄評価を行った. • 評価者には鎮静薬の投与などは教えず, 盲検化された. Patel SB, Poston JT, Pohlman A, et al. Rapidly Reversible, Sedation-related Delirium versus Persistent Delirium in the Intensive Care Unit. Am J Respir Crit Care Med. 2014 Mar 15;189(6):658-65. 評価方法 • 鎮静方法: RASS -2 ∼ 0を目標に, 4時間毎に看護師がcheckし, 鎮静薬の調整 を行った. • 薬剤を中断する前後に, 研究者が覚醒を確認し, CAM-ICUで評価が可能と判断 すれば, 盲検化された状況で, 評価者がせん妄評価を行った. • 中断2時間後も指示に反応なければ, せん妄と判断され, DISは継続された. • No Delirium: DIS前後ともせん妄なし(n=10). • Persistent Delirium: DIS前およびDIS 2時間後まではせん妄あり(n=51). • Rapidly Reversible Delirium: DIS前はせん妄→後はせん妄なし(n=12). • Mixed Delirium: 日によって, 上記3パターンの結果が異なった(n=24). 1年生存は, PDとMixedで悪く, RRDはNDとあまり差がなかった. • 薬剤によるせん妄と重症疾患で起こるせん妄を, 同じせん妄と考えて はいけない(APACHE 2で20以上と重症患者を対象にしている). • 2時間でも覚醒しない程, 蓄積させるような鎮静薬の投与は良くない. • フェンタニルが99%, プロポフォールが95.1%, ミダゾラムが53.9% で投与されていた(ミダゾラムは投与量も時間も短い). • ミダゾラムを使用する場合, 肝機能障害や高齢者など薬剤が蓄積しや すい状況ではもっと注意しないといけないかもしれない. 不必要な薬剤は使用しない!!
  • 6. 浅い鎮静深度を維持する 臨床的に禁忌がない限りは, 深い鎮静深度よりは 浅い鎮静深度に調整することを推奨する(+1B). Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013 Jan;41(1):263-306. 鎮静薬を使用する前に... • 患者の快適性を維持する. • 適切な鎮痛を行う. • 頻回にオリエンテーションを行う. • 正常な睡眠が得られるように環境を調整する. 鎮静薬以外に不安や興奮を和らげる介入を... 痛みの評価方法 • 全てのICU患者に対して, 常時痛みの評価を行うことを推奨する(+1B). • 患者本人によるself-reportが“Gold Standard” である. • 重症患者は, 自分で訴えることが出来ないこともあり, その場合は客観的 な評価方法を用いる. • Behavioral Pain Scale(BPS) • Critical care Pain Observation Tool(CPOT) • 神経因性 痛以外の痛みに対しては, 麻薬を第一選択で用いる(+1C). Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013 Jan;41(1):263-306. 深い鎮静はやめましょう
  • 7. Light Sedation • どの「浅い鎮静」が良いかは分かっていない. ! • 鎮静薬を1日1回中断する. • 原則として, 鎮静薬を使用しない. • 浅い鎮静深度を維持できれば, 中断しなくていい. • デクスメデトミジンをベースとした浅い鎮静. 要らないものは, 使用しない!! 1474 · May 18, 2000 *Average rates of infusion were calculated as milligrams of drug per kilogram of body weight di- vided by the number of hours from the start of the infusion to its termination. median (interquartile range) Duration of mechanical ventilation (days) 4.9 (2.5–8.6) 7.3 (3.4–16.1) 0.004 Length of stay (days) Intensive care unit Hospital 6.4 (3.9–12.0) 13.3 (7.3–20.0) 9.9 (4.7–17.9) 16.9 (8.5–26.6) 0.02 0.19 Midazolam subgroup (no. of patients) 37 29 Total dose of midazolam (mg) 229.8 (59–491) 425.5 (208–824) 0.05 Average rate of midazolam infusion (mg/kg/hr) 0.032 (0.02–0.05) 0.054 (0.03–0.07) 0.06 Total dose of morphine (mg) 205 (68–393) 481 (239–748) 0.009 Average rate of morphine infusion (mg/kg/hr) 0.027 (0.02–0.04) 0.05 (0.04–0.07) 0.004 Propofol subgroup (no. of patients) 31 31 Total dose of propofol (mg) 15,150 (3983–34,125) 17,588 (4769–35,619) 0.54 Average rate of propofol infusion (mg/kg/hr) 1.9 (0.9–2.6) 1.4 (0.9–2.4) 0.41 Total dose of morphine (mg) 352 (108–632) 382 (148–1053) 0.33 Average rate of morphine infusion (mg/kg/hr) 0.035 (0.02–0.07) 0.043 (0.02–0.07) 0.65 Figure 1. Kaplan–Meier Analysis of the Duration of Mechanical Ventilation, According to Study Group. After adjustment for base-line variables (age, sex, weight, APACHE II score, and type of respiratory failure), mechanical ventilation was discontinued earlier in the intervention group than in the control group (relative risk of extubation, 1.9; 95 percent confidence interval, 1.3 to 2.7; P<0.001). 0 100 0 30 10 20 30 40 50 60 70 80 90 5 10 15 20 25 Day Intervention group (n=68) Control group (n=60) PatientsReceivingMechanicalVentilation(%) Copyright © 2000 Massachusetts Medical Society. All rights reserved. Downloaded from www.nejm.org at MASS GENERAL HOSP on March 19, 2006 . INTERRUPTION OF SEDATIVE INFUSIONS IN CRITICALLY ILL PATIENTS UNDERGOING MECHANICAL VENTILATION Volume 342 Number 20 · 1475 pulled out a central venous catheter; in the control group, four patients removed the endotracheal tube) (P=0.88). Seven patients in each group were given cisatracurium (P=0.78), and five in each group re- quired noninvasive ventilation after extubation (P= 0.74). Twelve patients in the intervention group and 18 patients in the control group required reintuba- tion (P=0.17), and 12 and 16, respectively, under- went tracheostomy (P=0.31). Nine patients in the intervention group and 12 in the control group were transferred to a facility equipped to provide long-term ventilation (P=0.43). The in-hospital mortality rate did not differ significantly between the two groups (36.0 percent in the intervention group and 46.7 percent in the control group, P=0.25), and care was withdrawn from 24 and 25 patients, respectively (P= 1.00). Fifty-nine percent of the patients in the inter- vention group were discharged to their homes, as compared with 40 percent of the patients in the control group (P=0.06). When the primary end points of the study (the duration of mechanical ventilation, the length of stay in the intensive care unit, and the length of stay in the hospital) were evaluated according to whether midazolam or propofol was given, no significant dif- ferences between the intervention and control groups were found (data not shown). In the intervention group, the average number of hours per day that pa- tients received the sedative infusion was 22.8 among those given propofol, as compared with 18.7 among those given midazolam (P=0.05). DISCUSSION Sedatives are often given to patients who are re- ceiving mechanical ventilation to alleviate their anx- iety, decrease excessive oxygen consumption, and fa- cilitate nursing care.17 Administration of these drugs by continuous infusion offers a more consistent level of sedation than intermittent bolus administration and thus may improve patients’ comfort.9 In our ex- perience, sedation is often difficult with intermittent administration, and such regimens can be taxing on nurses and can hamper other aspects of patient care.17 However, a potential drawback to continuous infu- sions is the accumulation of the drug and accompa- nying delays in the improvement of mental status. We hypothesized that daily interruption of the sedative infusion would decrease these problems. Care of critically ill patients is costly. In the Unit- ed States in 1997, approximately $80.8 billion was spent on intensive care,18 and about 10 percent of this amount was spent on drugs.19 Ten to 15 percent of the drug costs resulted from the purchase of sedative drugs.20 Thus, a conservative estimate of the yearly cost of sedative drugs administered in intensive care units in the United States, in 1997 dollars,21 is be- tween $0.8 billion and $1.2 billion, and the costs may be higher than that if the use of sedative drugs Figure 2. Kaplan–Meier Analysis of the Length of Stay in the Intensive Care Unit (ICU), According to Study Group. After adjustment for base-line variables (age, sex, weight, APACHE II score, and type of respiratory failure), discharge from the intensive care unit (ICU) occurred earlier in the intervention group than in the control group (relative risk of discharge, 1.6; 95 percent confidence interval, 1.1 to 2.3; P=0.02). 0 100 0 45 10 20 30 40 50 60 70 80 90 5 10 15 20 25 30 35 40 Day Intervention group (n=68) Control group (n=60) PatientsRemainingintheICU(%) Copyright © 2000 Massachusetts Medical Society. All rights reserved. Downloaded from www.nejm.org at MASS GENERAL HOSP on March 19, 2006 . 1日1回中断 vs. Ramsay 3-4 Kress JP, Pohlman AS, O'Connor MF, et al. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000 May 18;342(20):1471-7. 人工呼吸管理日数やICU滞在日数が短縮. 鎮静薬(ミダゾラム, プロポフォール)とモルヒネを中断. 無鎮静 vs. 1日1回中断 Strøm T, Martinussen T, Toft P.A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial.Lancet. 2010 Feb 6;375(9713):475-80 必要時にはモルヒネ iv., プロポフォール(6時間)を使用. Ramsay 3-4を目標にプロポフォール, ミダゾラムを投与, 必要時にモルヒネ iv. Articles ol and midazolam are shown in deviated for ten (18%) patients in who received continuous sedation ons. In most cases, sedation was ent oxygenation in severe acute rome (eg, prone ventilation), but fter request from relatives. These most of the sedative drugs used in but use of these sedatives was e intervention group than in the e in morphine dose between the ficant. in 11 (20%) patients in the inter- in the control group (p=0·0400). ore frequently in the intervention e control group (n=8; p=0·0100), ow for both groups (table 2). show that in critically ill patients ventilation, a protocol of no ncreased the number of days a 28-day period compared with dation. Use of no sedation was gnificant reduction in the length care unit and in hospital. No ons such as accidental removal of entilator-associated pneumonia, RI brain scans were recorded. in the group receiving sedation, ared with the group receiving no significance. The occurrence of ncreased in the group receiving to calls in editorials and review ials aiming to reduce routine use in most intensive care units.17–19 cal and surgical patients, since a dies has been inclusion of medical scale to guide the use of morphine, but use of morphine was very low in both groups with no significant difference between the groups. Use of morphine was probably low because patients included in the study were severely ill, 21 Number at risk No sedation Sedation 55 58 0 0 10 Time (days) 20 28 25 50 Patientsremaininginintensivecareunit(%) 75 100 26 38 13 20 12 15 No sedation Sedation Figure 2: Kaplan-Meier plot of length of stay in the intensive care unit and number at risk from admission to 28 days 0 25 50 Patientsremaininginhospital(%) 75 100 Number at risk No sedation Sedation 55 58 0 15 45 7530 Time (days) 60 90 35 44 21 32 14 22 6 8 10 14 4 5 No sedation Sedation Figure3: Kaplan-Meier plot of length of stay in hospital and number at risk from admissionto 90 days 人工呼吸器なしの日数が増加, ICU滞在日数が短縮. ハロペリドールの使用やせん妄は増加した. Ramsay Sedation Scale Score 鎮静状態 SS1 不安,不穏状態 SS2 協力的,協調性があり,落ち着いている SS3 命令にのみ反応,眉間の叩打や大きい声に反応する SS4 眠っているが刺激に対してはっきり反応する SS5 眠っており刺激に対してのろのろした反応 SS6 無反応 身体刺激でないと反応しない鎮静深度は良くない.
  • 8. RASS -3∼0 vs. 1日1回中断 (SAS 3 or 4) 麻薬で鎮痛, ミダゾラムなどのベンゾジアゼピンで持続鎮静. Mehta S, Burry L, Cook D, et al. Daily sedation interruption in mechanically ventilated critically ill patients cared for with a sedation protocol: a randomized controlled trial. JAMA. 2012 Nov 21;308(19):1985-92. nt characteristics were similar groups (TABLE 1). Eighty- cent received medical diagno- enrollment, 359 (84.9%) pa- were receiving midazolam s; 334 (79.0%), fentanyl; 71 , morphine; and 41 (9.5%), l. Propofol infusions were dis- ed at enrollment according to y protocol. mes dian time to successful extuba- 7 days in both groups (hazard 08; 95% CI, 0.86-1.35; P=.52) 2). Adjustment for age, body dex, Acute Physiology and Health Evaluation II score, and on type gave consistent results d hazard ratio, 1.04; 95% CI, 31). Similarly, in a per- analysis of patients who had tions on more than 75% of eli- udy days, there was no differ- ence in time to successful extubation between groups. There were no be- tween-group differences in ICU or hos- pital lengths of stay, hospital mortal- ity, rates of unintentional device removal, delirium, ICU neuroimag- ing, barotrauma, tracheostomy, or or- gan dysfunction (TABLE 2). TABLE 3 summarizes data related to sedative and opioid administration. Pa- Figure 2. Kaplan-Meier Curves for Time to Successful Extubation 1.0 0.8 0.6 0.4 0.2 P =.52 0 No. at risk Protocolized sedation only Protocolized sedation only Protocolized sedation and daily interruption Protocolized sedation and daily interruption 0 209 214 5 146 140 10 72 81 15 49 42 20 34 28 25 23 16 30 Time, d ProportionExtubated P value calculated from log-rank statistic. Patient Outcomes Protocolized Sedation and Interruption (n = 214) Protocolized Sedation (n = 209) Measure of Effect (95% CI) P Value ccessful extubation, median (IQR)a 7 (4 to 13) 7 (3 to 12) HR, 1.08 (0.86 to 1.35) .52 U,b median (IQR)a 10 (5 to 17) 10 (6 to 20) Mean difference, −3.17 (−6.89 to 0.55) .36 spital, median (IQR)a 20 (10 to 36) 20 (10 to 48) Mean difference, −8.2 (−17.64 to 1.19) .42 ty, No. (%) 50 (23.4) 52 (24.9) RR, 0.94 (0.67 to 1.32) .72 ortality, No. (%) 63 (29.6) 63 (30.1) RR, 0.98 (0.73 to 1.31) .89 ed organ failure and supportive es, No. (%) DS 89 (41.8) 78 (37.3) RR, 1.12 (0.88 to 1.42) .35 sopressors/inotropes 121 (56.8) 130 (62.2) RR, 0.91 (0.78 to 1.07) .26 nal replacement 50 (23.5) 37 (17.7) RR, 1.33 (0.91 to 1.94) .14 uromuscular blockade 20 (9.7) 21 (10.2) RR, 0.94 (0.53 to 1.69) .84 nal device removal, No. (%) tube 18 (8.5) 29 (13.9) RR, 0.61 (0.35 to 1.07) .08 acheal tube 10 (4.7) 12 (5.8) RR, 0.82 (0.36 to 1.84) .64 catheter 6 (2.8) 13 (6.2) RR, 0.45 (0.17 to 1.17) .09 venous or arterial catheter 17 (8.0) 10 (4.8) RR, 1.68 (0.79 to 3.57) .18 ing in ICU, No. (%) uted tomography 29 (13.6) 33 (15.9) RR, 0.85 (0.54 to 1.35) .53 tic resonance imaging 9 (4.2) 7 (3.4) RR, 1.25 (0.47 to 3.29) .64 straint s, No. (%) 166 (76.4) 166 (79.4) RR, 0.96 (0.87 to 1.07) .46 days, mean (SD) 4.71 (5.67) 5.36 (6.14) Mean difference, −0.70 (−1.84 to 0.43) o (%)b 113 (53.3) 113 (54.1) RR, 0.98 (0.82 to 1.17) .83 on within 48 h, No. (%) 12 (5.6) 16 (7.7) RR, 0.73 (0.35 to 1.50) .39 omy, No (%) 49 (23.2) 54 (26.3) RR, 0.88 (0.63 to 1.23) .46 s: ARDS, acute respiratory distress syndrome; HR, hazard ratio; ICU, intensive care unit; IQR, interquartile range; RR, relative risk. e measured from enrollment. ho ever had a score of 4 or more on the Intensive Care Screening Delirium Checklist.19 DAILY SEDATION INTERRUPTION IN MECHANICALLY VENTILATED CRITICALLY ILL PATIENTS merican Medical Association. All rights reserved. JAMA, Published online October 17, 2012 E5 抜管成功までの時間は差がなかった. 看護師の仕事量は, 1日1回中断群で増加した. 浅い鎮静深度(ガイドラインの例) • 落ち着いて覚醒している: RASS 0, SAS 4 • 浅い鎮静深度: RASS -1 or -2, SAS 3 • 深い鎮静深度: RASS -3 ∼ -5, SAS 1 or 2 Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013 Jan;41(1):263-306. 身体刺激でなく, 呼びかけで反応 アイコンタクトやコミュニケーション可能 Early Goal-Directed Sedation • EGDS vs. 標準治療. • EGDS(Early Goal-Directed Sedation): ミダゾラム使用しない. • デクスメデトミジンをベースとした浅い鎮静(RASS -2から1)に, 必要 ならプロポフォールを使用. • 標準治療: デクスメデトミジンは使用できず, ミダゾラムやプロポ フォールなどを使用. • 浅い鎮静(RASS -2から1)の達成時間と, せん妄や血管収 縮薬, 身体拘束, デバイス抜去などの安全性を評価した. Shehabi Y, Bellomo R, Reade MC, et al. Early goal-directed sedation versus standard sedation in mechanically ventilated critically ill patients: a pilot study. Crit Care Med. 2013 Aug;41(8):1983-91. 主な結果 • 最初48時間以内の浅い鎮静の時間: 増加(66% vs. 38%, p=0.01). • せん妄なしの日数: 差はなかった(58% vs. 47%, p=0.27). • 身体拘束: 有意に少なかった(5% vs. 31%, p=0.03). • 血管収縮薬の使用や自己抜管, ICU滞在日数などは差がなかった. !  患者のケアへの協力はプロポフォールやミダゾラムと比べ,  デクスメデトミジンで良かった. Jakob SM, Ruokonen E, Grounds RM, wt al. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012 Mar 21;307(11):1151-60.
  • 9. 鎮静薬の選択 • ベンゾジアゼピン(ミダゾラム)を避ける. ! • デクスメデトミジン ≧ . • デクスメデトミジンの方が, 浅い鎮静向きかもしれない. せん妄の評価スケール hypoactiveは見逃されやすい • オランダの大学病院で, 3ヶ月間, 48時間以上ICU入室した患者(認知症や中枢 神経系の疾患がある場合は除外). n=46(425 patients days). • スケールを用いずに, 看護師と医師の印象でせん妄かどうか1日1回質問した. Spronk PE, Riekerk B, Hofhuis J, et al. Occurrence of delirium is severely underestimated in the ICU during daily care. Intensive Care Med 2009; 35: 1276-80. RASS -3 ∼ -1 0 ∼ +1 +2 ∼ +5 せん妄の印象 Yes No Yes No Yes No 看護師 CAM+ 21 28 9 29 1 1 CAM- 1 14 2 153 0 0 医師 CAM+ 14 35 9 29 2 0 CAM- 0 15 0 155 0 0 hypoactiveでは, CAM-ICU+でも半数以上がNoと回答. CAM-ICU Confusion Assessment Method for the Intensive Care Unit • 日本語版のトレーニングマニュアルが簡単にダウンロードできる. 意識評価の 2 ステップ・アプローチ ステップ 1:鎮静評価 The Richmond Agitation and Sedation Scale: The RASS スコア 用 語 説 明 +4 好戦的な 明らかに好戦的な、暴力的な、スタッフに対す る差し迫った危険 +3 非常に興奮した チューブ類またはカテーテル類を自己抜去;攻 撃的な +2 興奮した 頻繁な非意図的な運動、人工呼吸器ファイティ ング +1 落ち着きのない 不安で絶えずそわそわしている、しかし動きは 攻撃的でも活発でもない 0 意識清明な 落ち着いている -1 傾眠状態 完全に清明ではないが、呼びかけに 10 秒以上の 開眼及びアイ・コンタクトで応答する -2 軽い鎮静状態 呼びかけに 10 秒以下のアイ・コンタクトで応答 呼びかけ 刺激 -3 中等度鎮静状態 呼びかけに動きまたは開眼で応答するがアイ・ コンタクトなし -4 深い鎮静状態 呼びかけに無反応、しかし、身体刺激で動きま たは開眼 身体刺激 -5 昏睡 呼びかけにも身体刺激にも無反応 もし RASS が-4 または-5 の場合、評価を中止し、後で再評価しなさい。 もし RASS が-4 より上(-3∼+4)の場合、ステップ 2 に進みなさい。) *Sessler, et al. AJRCCM 2002; 166:1338-1344. *Ely, et al. JAMA 2003; 289:2983-2991. ステップ 2:せん妄評価 所見 1:精神状態変化の急性発症または変動性の経過 + 所見 2:注意力欠如 + 所見 3:無秩序な思考 または 所見 4:意識レベルの変化 =せん妄 5 Ely EW, Inouye SK, Bernard GR, et al. Delirium in Mechanically Ventilated Patients Validity and Reliability of the Confusion Assesment Method for the Intensive Care Unit(CAM-ICU). JAMA 2001;286:2703-2710. RASS -4 or -5ではせん妄評価できない.
  • 10. ICDSC Intensive Care Delirium Screening Checklist • 各勤務帯(8時間のシフ ト)や24時間で得られ た情報をもとに, 点数を つける. • 4点以上をせん妄とする. ICDSC(Intensive Care Delirium Screening Checklist) このスケールはそれぞれ 8 時間のシフトすべて、あるいは 24 時間以内の情報に基づき完成され る明らかな徴候がある= 1 ポイント:アセスメント不能、あるいは徴候がない= 0 ポイントで評 価する、それぞれの項目のスコアを対応する空欄に 0または 1 で入力する。 ICDSC(Intensive Care Delirium Screening Checklist) このスケールはそれぞれ 8 時間のシフトすべて、あるいは 24 時間以内の情報に基づき完成され る明らかな徴候がある= 1 ポイント:アセスメント不能、あるいは徴候がない= 0 ポイントで評 価する、それぞれの項目のスコアを対応する空欄に 0または 1 で入力する。 ICDSC(Intensive Care Delirium Screening Checklist) このスケールはそれぞれ 8 時間のシフトすべて、あるいは 24 時間以内の情報に基づき完成され る明らかな徴候がある= 1 ポイント:アセスメント不能、あるいは徴候がない= 0 ポイントで評 価する、それぞれの項目のスコアを対応する空欄に 0または 1 で入力する。 ICDSC(Intensive Care Delirium Screening Checklist) このスケールはそれぞれ 8 時間のシフトすべて、あるいは 24 時間以内の情報に基づき完成され る明らかな徴候がある= 1 ポイント:アセスメント不能、あるいは徴候がない= 0 ポイントで評 価する、それぞれの項目のスコアを対応する空欄に 0または 1 で入力する。 1.意識レベルの変化 (A)反応がないか、(B)何らかの反応を得るために強い刺激を必要とする場合は 評価を妨げる重篤な意識障害を示す。もしほとんどの時間(A)昏睡あるいは (B)昏迷状態である場合、ダッシュ(−)を入力し、それ以上評価を行わない。 (C)傾眠あるいは、反応までに軽度ないし中等度の刺激が必要な場合は意識レベ ルの変化を示し、1 点である。 (D)覚醒、あるいは容易に覚醒する睡眠状態は正常を意味し、0 点である。 (E)過覚醒は意識レベルの異常と捉え、1 点である。 2. 注意力欠如 会話の理解や指示に従うことが困難。外からの刺激で容易に注意がそらされる。話題 を変えることが困難。これらのうちいずれかがあれば 1 点。 3. 失見当識 時間、場所、人物の明らかな誤認、これらのうちいずれかがあれば 1 点。 4. 幻覚、妄想、精神障害 臨床症状として、幻覚あるいは幻覚から引き起こされていると思われる行動(例えば、 空を掴むような動作)が明らかにある、現実検討能力の総合的な悪化、これらのう ちいずれかがあれば 1 点。 5. 精神運動的な興奮あるいは遅滞 患者自身あるいはスタッフへの危険を予測するために追加の鎮静薬あるいは身体抑 制が必要となるような過活動(例えば、静脈ラインを抜く、スタッフをたたく)、活動 の低下、あるいは臨床上明らかな精神運動遅滞(遅くなる)、これらのうちいずれ かがあれば 1 点。 6. 不適切な会話あるいは情緒 不適切な、整理されていない、あるいは一貫性のない会話、出来事や状況にそぐ わない感情の表出。これらのうちいずれかがあれば 1 点。 7. 睡眠/覚醒サイクルの障害 4 時間以下の睡眠。あるいは頻回な夜間覚醒(医療スタッフや大きな音で起きた場 合の覚醒を含まない)、ほとんど 1 日中眠っている、これらのうちいずれかがあれば 1 点。 8. 症状の変動 上記の徴候あるいは症状が 24 時間のなかで変化する(例えば、その勤務 帯から別の勤務帯で異なる)場合は 1 点。 合計点 1.意識レベルの変化 (A)反応がないか、(B)何らかの反応を得るために強い刺激を必要とする場合は 評価を妨げる重篤な意識障害を示す。もしほとんどの時間(A)昏睡あるいは (B)昏迷状態である場合、ダッシュ(−)を入力し、それ以上評価を行わない。 (C)傾眠あるいは、反応までに軽度ないし中等度の刺激が必要な場合は意識レベ ルの変化を示し、1 点である。 (D)覚醒、あるいは容易に覚醒する睡眠状態は正常を意味し、0 点である。 (E)過覚醒は意識レベルの異常と捉え、1 点である。 2. 注意力欠如 会話の理解や指示に従うことが困難。外からの刺激で容易に注意がそらされる。話題 を変えることが困難。これらのうちいずれかがあれば 1 点。 3. 失見当識 時間、場所、人物の明らかな誤認、これらのうちいずれかがあれば 1 点。 4. 幻覚、妄想、精神障害 臨床症状として、幻覚あるいは幻覚から引き起こされていると思われる行動(例えば、 空を掴むような動作)が明らかにある、現実検討能力の総合的な悪化、これらのう ちいずれかがあれば 1 点。 5. 精神運動的な興奮あるいは遅滞 患者自身あるいはスタッフへの危険を予測するために追加の鎮静薬あるいは身体抑 制が必要となるような過活動(例えば、静脈ラインを抜く、スタッフをたたく)、活動 の低下、あるいは臨床上明らかな精神運動遅滞(遅くなる)、これらのうちいずれ かがあれば 1 点。 6. 不適切な会話あるいは情緒 不適切な、整理されていない、あるいは一貫性のない会話、出来事や状況にそぐ わない感情の表出。これらのうちいずれかがあれば 1 点。 7. 睡眠/覚醒サイクルの障害 4 時間以下の睡眠。あるいは頻回な夜間覚醒(医療スタッフや大きな音で起きた場 合の覚醒を含まない)、ほとんど 1 日中眠っている、これらのうちいずれかがあれば 1 点。 8. 症状の変動 上記の徴候あるいは症状が 24 時間のなかで変化する(例えば、その勤務 帯から別の勤務帯で異なる)場合は 1 点。 合計点 1.意識レベルの変化 (A)反応がないか、(B)何らかの反応を得るために強い刺激を必要とする場合は 評価を妨げる重篤な意識障害を示す。もしほとんどの時間(A)昏睡あるいは (B)昏迷状態である場合、ダッシュ(−)を入力し、それ以上評価を行わない。 (C)傾眠あるいは、反応までに軽度ないし中等度の刺激が必要な場合は意識レベ ルの変化を示し、1 点である。 (D)覚醒、あるいは容易に覚醒する睡眠状態は正常を意味し、0 点である。 (E)過覚醒は意識レベルの異常と捉え、1 点である。 2. 注意力欠如 会話の理解や指示に従うことが困難。外からの刺激で容易に注意がそらされる。話題 を変えることが困難。これらのうちいずれかがあれば 1 点。 3. 失見当識 時間、場所、人物の明らかな誤認、これらのうちいずれかがあれば 1 点。 4. 幻覚、妄想、精神障害 臨床症状として、幻覚あるいは幻覚から引き起こされていると思われる行動(例えば、 空を掴むような動作)が明らかにある、現実検討能力の総合的な悪化、これらのう ちいずれかがあれば 1 点。 5. 精神運動的な興奮あるいは遅滞 患者自身あるいはスタッフへの危険を予測するために追加の鎮静薬あるいは身体抑 制が必要となるような過活動(例えば、静脈ラインを抜く、スタッフをたたく)、活動 の低下、あるいは臨床上明らかな精神運動遅滞(遅くなる)、これらのうちいずれ かがあれば 1 点。 6. 不適切な会話あるいは情緒 不適切な、整理されていない、あるいは一貫性のない会話、出来事や状況にそぐ わない感情の表出。これらのうちいずれかがあれば 1 点。 7. 睡眠/覚醒サイクルの障害 4 時間以下の睡眠。あるいは頻回な夜間覚醒(医療スタッフや大きな音で起きた場 合の覚醒を含まない)、ほとんど 1 日中眠っている、これらのうちいずれかがあれば 1 点。 8. 症状の変動 上記の徴候あるいは症状が 24 時間のなかで変化する(例えば、その勤務 帯から別の勤務帯で異なる)場合は 1 点。 合計点 1.意識レベルの変化 (A)反応がないか、(B)何らかの反応を得るために強い刺激を必要とする場合は 評価を妨げる重篤な意識障害を示す。もしほとんどの時間(A)昏睡あるいは (B)昏迷状態である場合、ダッシュ(−)を入力し、それ以上評価を行わない。 (C)傾眠あるいは、反応までに軽度ないし中等度の刺激が必要な場合は意識レベ ルの変化を示し、1 点である。 (D)覚醒、あるいは容易に覚醒する睡眠状態は正常を意味し、0 点である。 (E)過覚醒は意識レベルの異常と捉え、1 点である。 2. 注意力欠如 会話の理解や指示に従うことが困難。外からの刺激で容易に注意がそらされる。話題 を変えることが困難。これらのうちいずれかがあれば 1 点。 3. 失見当識 時間、場所、人物の明らかな誤認、これらのうちいずれかがあれば 1 点。 4. 幻覚、妄想、精神障害 臨床症状として、幻覚あるいは幻覚から引き起こされていると思われる行動(例えば、 空を掴むような動作)が明らかにある、現実検討能力の総合的な悪化、これらのう ちいずれかがあれば 1 点。 5. 精神運動的な興奮あるいは遅滞 患者自身あるいはスタッフへの危険を予測するために追加の鎮静薬あるいは身体抑 制が必要となるような過活動(例えば、静脈ラインを抜く、スタッフをたたく)、活動 の低下、あるいは臨床上明らかな精神運動遅滞(遅くなる)、これらのうちいずれ かがあれば 1 点。 6. 不適切な会話あるいは情緒 不適切な、整理されていない、あるいは一貫性のない会話、出来事や状況にそぐ わない感情の表出。これらのうちいずれかがあれば 1 点。 7. 睡眠/覚醒サイクルの障害 4 時間以下の睡眠。あるいは頻回な夜間覚醒(医療スタッフや大きな音で起きた場 合の覚醒を含まない)、ほとんど 1 日中眠っている、これらのうちいずれかがあれば 1 点。 8. 症状の変動 上記の徴候あるいは症状が 24 時間のなかで変化する(例えば、その勤務 帯から別の勤務帯で異なる)場合は 1 点。 合計点 〈看護ワンテーマ BOOK〉せん妄であわてない 医学書院 〈看護ワンテーマ BOOK〉せん妄であわてない 医学書院 〈看護ワンテーマ BOOK〉せん妄であわてない 医学書院 〈看護ワンテーマ BOOK〉せん妄であわてない 医学書院 質問項目に対して「0 点」または「1 点」の点数をつけて、その合計点が 4 点以上の場合、せん妄と評価する。 Bergeron N, Dubois MJ, Dumont M, et al.: Intensive Care Delirium Screening checklist : evaluation of a newscreenig tool. Intensive Care Med 今 ; 27 : 859 - 864,2001. Dr. Nicolas Bergeron の許可を得て逆翻訳法を使用し翻訳. 翻訳と評価:卯野木 健(筑波大学附属病院),水谷太郎(筑波大学 医学医療系 救急・集中治療部),櫻本秀明(筑波大学附属病院) 質問項目に対して「0 点」または「1 点」の点数をつけて、その合計点が 4 点以上の場合、せん妄と評価する。 Bergeron N, Dubois MJ, Dumont M, et al.: Intensive Care Delirium Screening checklist : evaluation of a newscreenig tool. Intensive Care Med 今 ; 27 : 859 - 864,2001. Dr. Nicolas Bergeron の許可を得て逆翻訳法を使用し翻訳. 翻訳と評価:卯野木 健(筑波大学附属病院),水谷太郎(筑波大学 医学医療系 救急・集中治療部),櫻本秀明(筑波大学附属病院) 質問項目に対して「0 点」または「1 点」の点数をつけて、その合計点が 4 点以上の場合、せん妄と評価する。 Bergeron N, Dubois MJ, Dumont M, et al.: Intensive Care Delirium Screening checklist : evaluation of a newscreenig tool. Intensive Care Med 今 ; 27 : 859 - 864,2001. Dr. Nicolas Bergeron の許可を得て逆翻訳法を使用し翻訳. 翻訳と評価:卯野木 健(筑波大学附属病院),水谷太郎(筑波大学 医学医療系 救急・集中治療部),櫻本秀明(筑波大学附属病院) 質問項目に対して「0 点」または「1 点」の点数をつけて、その合計点が 4 点以上の場合、せん妄と評価する。 Bergeron N, Dubois MJ, Dumont M, et al.: Intensive Care Delirium Screening checklist : evaluation of a newscreenig tool. Intensive Care Med 今 ; 27 : 859 - 864,2001. Dr. Nicolas Bergeron の許可を得て逆翻訳法を使用し翻訳. 翻訳と評価:卯野木 健(筑波大学附属病院),水谷太郎(筑波大学 医学医療系 救急・集中治療部),櫻本秀明(筑波大学附属病院) Bergeron N, Dubois MJ, Dumont M, et al. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intensive Care Med 2001 May;27(5):859-64. CAM-ICU vs. ICDSC • CAM-ICU • その時点で「今, せん妄かどうか」の評価ができる. • 陽性 or 陰性の判断で, 程度(重症度)が分からない. • 評価のため, 患者さんに質問する必要がある. • ICDSC • 今ではなく, 勤務帯や1日を振り返って, 過去のせん妄評価をする. • 点数化(8点満点)されており, せん妄ありなしに関わらず, 程度の違いを評価できる. • 必ずしも患者さんに介入を必要とせず, 観察することで評価が可能. CAM-ICU: 感度 80.0%(77.1-82.6%), 特異度 95.9%(94.8-96.8%). ICDSC: 感度 74.0%(65.3-81.5%), 特異度 81.9%(76.7-86.4%). Gusmao-Flores D, Salluh JI, Chalhub RA, et al. The Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) and Intensive Care Delirium Screening Checklist (ICDSC) for the diagnosis of delirium: a systematic review and meta-analysis of clinical studies. Crit Care. 2012 Jul 3;16(4):R115. CAM-ICU vs. ICDSC • 2008年3月から11月まで, 外科系 ICUに入室(ブラジルの大学病院), RASS -3から2までの患者. • CAM-ICU, ICDSCの両方を用いて 評価した. Tomasi CD, Grandi C, Salluh J, et al. Comparison of CAM-ICU and ICDSC for the detection of delirium in critically ill patients focusing on relevant clinical outcomes. J Crit Care 2012 Apr;27(2):212-7. cycle disturbance, symptom fluctuation) can be evaluated in the course of daily routine by nurses. Thus, while the patients are involved actively on the CAM-ICU, they are indirectly involved on the ICDSC [16,18,19]. To date, few studies have compared the performance of different tools used for the diagnosis of delirium in the ICU setting [18,19]. However, to the best of our knowledge, this is the first study comparing the ability of CAM-ICU and ICDSC to predict clinical relevant outcomes in ICU patients. Recently, the CAM-ICU and the ICDSC were compared in 174 surgical ICU patients, and a κ value of .80 was reported [19]. This was superior as compared with the findings of the present study (κ = .55). This difference raises the possibility that these tools performed differently between surgical and general ICU patients, but our study was not designed to address this question. When we analyzed surgical patients separately, we found a κ value of .79. In the study by van Eijk et al [18], the CAM-ICU presented a higher sensitivity as compared with the ICDSC (64% vs 43%) but a lower specificity (88% vs 95%), and this is quite different to the studies that validate both scales. In the present cohort, 26.5% of the patients had a diagnosis of delirium when assessed by the CAM-ICU and 34.6% as confirmed by the ICDSC. In addition, 32.7% of studied patients presented subsyndromal delirium detected by the ICDSC. As expected, patients with delirium as diagnosed by any of the tools were older, more severely ill, used more sedation and needed further physical restrain, had longer hospital stay, and increased mortality rates, and this is in accordance with previous results [21]. The major new finding of our study is that the delirium diagnosis using CAM-ICU was predicted more accurately in individuals with higher mortality rates as compared with ICDSC diagnosis. Additionally, patients with positive ICDSC but negative CAM-ICU (Table 5) had mortality rates and LOS compa- rable with those patients without delirium (negative CAM- ICU and ICDSC), suggesting that a diagnosis of delirium by the ICDSC with a negative CAM-ICU does not seem to be associated with worse outcomes. We can hypothesize that delirium was not present in these patients since we did not use the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) as criterion standard for the diagnosis of delirium, or despite a correct diagnosis, these patients presented some particular characteristic such as disorientation or sleep disorders that may not be associated to higher mortality. Our study has some important limitations that should be mentioned. First, it is a single-center study and relatively low delirium rates were observed. Therefore, these results must be confirmed by multicenter studies including larger populations. In addition, we could not determine the impact of our findings on long-term outcomes as patients were not followed beyond hospital discharge. Second, our study was performed by CAM-ICU and ICDSC scores only; we did not use a criterion standard, like DSM-IV. However, others studies had performed without a criterion standard [18,19]. Finally, our study excluded patients whose RASS scores were −4 and −5 for 3 days to control for possible outcomes bias, as our research is focused into patients' outcomes. Excluding these patients, there was also possibly a decreased incidence of delirium in this specific study. In conclusion, we demonstrated that delirium patients diagnosed by CAM-ICU or ICDSC presented similar clinical profile, but outcomes in patients diagnosed only by ICDSC were comparable with nondelirium patients. The findings of our study suggest that CAM-ICU is a better predictor of outcome. Fig. 2 Kaplan-Meier survival curves in CAM-ICU and ICDSC delirium patients. Table 5 Clinical Outcomes of Delirium Status for ICDSC positive scores in comparison with CAM-ICU scores ICDSC positive ICDSC negative P CAM-ICU positive CAM-ICU Negative CAM-ICU negative Length of hospital stay (d), mean (SD) 15.1 (9.1)⁎ 10.9 (5.9) 9.3 (5.7) 0.04 Hospital mortality, n (%) 8 (80%)⁎ 2 (20%) 6 (5.5) 0.002 Clinical outcomes were analyzed compared CAM-ICU and ICDSC scores. 216 C.D. Tomasi et al. (unarousable) to +4 (combative). Vital status at ICU, hospital discharge, and 90 days after internation were obtained in all patients. Patients with a length of hospital stay longer than 90 days were censored at this moment. 2.3. Statistical analyses Standard descriptive statistics were calculated to examine baseline characteristics of the study population. Continuous variables with normal distribution were presented as mean ± SD and compared by Student t test or ANOVA followed by Bonferroni post hoc analysis, as appropriate. Continuous variables with a nonnormal distribution were reported as median (25%-75% interquartile range) and compared using Mann-Whitney U test or Kruskal-Wallis test, as appropriate. Categorical variables were presented as absolute numbers (frequency percentages) and analyzed by χ2 test or Fisher exact test (with Yates correction where applicable). The diagnostic value of the CAM-ICU and ICDSC were described using 2 × 2 tables. The κ coefficient was calculated Fig. 1 Flowchart of patients in study. Table 2 Comparison of CAM-ICU and ICDSC for delirium diagnosis (n = 162) ICDSC (n) CAM-ICU (n) Negative Positive Total Negative 105 1 106 (67.3) Positive 14 42 56 (34.6) Total 119 (71.6) 43 (26.5) 162 (100) Data are n (%), P b .01. 214 C.D. Tomasi et al. CAM-ICU(-), ICDSC(+)のせん妄患者は, せん妄なしと比べ, 予後に有意な差はなかった. せん妄評価の現状 • ICDSCでは後ろ向き, 活動型の症状もcheckできる. • CAM-ICUではその時点でのせん妄を評価することが出来るが, 「注意力欠如」に重点がおかれている. • hypoactiveな方が頻度が多く, 予後に関係すると思われる. • hypoactiveのせん妄の方が見逃しやすく, なんらかのスケール が必要である. • せん妄を見つけたら, 続かないように, 悪化しないように.
  • 11. せん妄管理のポイント • せん妄の予防. • せん妄の早期発見. • risk factorを把握. • モニタリングをする. • 早期介入. せん妄のリスク Page 4 of 12 (page number not for citation purposes) In the domain of the acute illness, factors were studied relating to the current diagnosis or treatment. All patients could be classified as either a surgical or an internal medicine patient. As patients were included at the time they scored a Glasgow Coma Scale of 10 or more, the length of stay in the intensive 1.6 to 5.4) describe tance of psychoact the use of morphine studies. A risk of mo ogy Score (SAPS II) Health Evaluation (A versity hospital and were transformed in tality' indicating an A of at least 40. The 28 (TISS 28) was [19]. A cut-off value workload of 318 min Factors from the fou or the interaction b Admission characte presence of a visibl e.g. an open space were scored at all lo of physical restraint Statistical approa Continuous or cate with a binary score. Figure 1 Four domains of risk factors for intensive care deliriumFour domains of risk factors for intensive care delirium. TISS 28 = The Therapeutic Intervention Scoring System-28. 変更できない 変更できる 患者背景・性格 慢性疾患  年齢, 男性  飲酒, 喫煙  独居  心不全, 肺疾患  認知症 環境要因 急性疾患 救急入院, 転床 個室, 時計なし 日光が見えない 面会できない, 身体拘束 open ICU 長期入室, 発熱, 重症度, 内科疾患 点滴の種類・数, 経口摂取不可 ベンゾジアゼピン(鎮静), 麻薬 チューブ, カテーテル Van Rompaey B, Elseviers MM, Schuurmans MJ, et al. Risk factors for delirium in intensive care patients: a prospective cohort study. Crit Care 2009;13(3):R77. せん妄予防 •早期離床はせん妄を減らす(+1B). •薬物療法は十分な根拠はなく, 推奨しない(0, C). • 定型および非定型の抗精神病薬の投与は推奨しない(-2C). • デクスメデトミジンについてもデータはなく推奨しない(0, C). とにかく離床・予防, 根拠のある薬剤はない. Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013 Jan;41(1):263-306. せん妄予防について • 鎮痛・鎮静プロトコール • 消化管 / 膀胱機能の評価 •早期離床 • 栄養過剰, 不足 • 脱水 • 視覚・聴覚(眼鏡・補聴器) • 合併症の予防・治療 • 睡眠促進 • スタッフの教育 • 酸素の供給 • 認知機能・見当識の維持 • 使用薬物 Reston JT, Schoelles KM. In-facility delirium prevention programs as a patient safety strategy: a systematic review. Ann Intern Med. 2013 Mar 5;158(5 Pt 2):375-80.
  • 12. 家族も含めた介入 • 2009年11月から1010年7月まで, チリの急性期病院に入院した内科疾 患で, せん妄のハイリスク患者(年齢 >70, 認知症の既往, アルコール, 電解質異常など). • 除外: 入院時にすでにせん妄. • 家族の非薬物的介入(n=143) vs. 従来の標準的管理(n=144). • 家族へ10分程度の簡単な説明, 時計とカレンダーを設置, 必要なら眼 鏡や補聴器, クッション・写真など家族のものを置く, 家族からオリ エンテーション, 5時間以上の面会. • Primary outcome: 入院中のせん妄の発生. Martinez FT, Tobar C, Beddings CI, et al. Preventing delirium in an acute hospital using a non-pharmacological intervention. Age Ageing. 2012 Sep;41(5):629-34. せん妄が減少 介入群 5.6% vs. 標準的管理群 13.3%, RR 0.41; 95%CI; p=0.027 outcome, given that the sample size was not conceived to detect differences in a complication considerably less fre- quent than delirium. Further studies should be done on the potential association between reduction in falls and imple- mented multicomponent interventions, because this is also a highly relevant complication to the hospitalised patient. The strengths of this study include: daily assessment of There are some limitations that must be considered. Although this is a randomised controlled trial, family members of the patients in the control group were allowed to implement certain measures that could influence delir- ium development (daily visits, provision of orientation objects, sensory support equipment, etc.). The incidence of delirium was lower than expected, a fact that is most likely related to this phenomenon. This could have made our statistical power insufficient to detect differences between groups, but the protective effects of the intervention remained significant. It should also be considered that the generation of randomisation sequences by means other than patient inclusion, such as ward location or room number, would have been an inappropriate way to achieve true random allocation. Simple data masking was another major limitation. The event adjudicants were aware of treatment assignment, which has obvious implications when analysing conclusions. Nevertheless, masking adjudicants would have meant moving patients out of the multicomponent intervention place, which in turn would have interfered with the appro- priate interpretation of the study outcomes. Another factor to be considered is the small number of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 2. Study outcomes Outcome Control group (n = 143) Intervention group (n = 144) P-value Incident delirium, no. (%) 19 (13.3) 8 (5.6) 0.027 Mixed delirium, no. (%) 9 (6.3) 2 (1.4) Hypoactive delirium no. (%) 8 (5.6) 2 (1.4) Hyperactive delirium, no. (%) 2 (1.4) 4 (2.8) Median delirium duration (days) (IQR) 3 (1–5) 2 (1–2) 0.37 Falls, no. (%) 4 (2.8) 0 (0) 0.06 Median hospital stay (days) (IQR) 9 (5–12) 9 (6–13) 0.36 Figure 2. Time-to-event curves of the studied patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 1. Baseline characteristics of the patients Characteristic Control group (n = 143) Intervention group (n = 144) P-value Mean age (years) (SD) 78.3 ± 6.1 78.1 ± 6.3 0.74 Male gender, no. (%) 96 (67) 84 (58) 0.16 Barthel index, median (IQR) 95 (85–100) 95 (85–100) 0.88 Comorbiditiesa Charlson comorbidity index, median (IQR) 2 (1–3) 2 (1–4) 0.45 Cancer, no. (%) 28 (19.6) 23 (15.9) 0.44 Metastatic Cancer, no. (%) 6 (4.2) 3 (2.1) 0.33 Heart failure, no. (%) 29 (27.3) 44 (30.6) 0.60 Chronic obstructive pulmonary disease, no. (%) 28 (19.6) 34 (23.6) 0.47 Chronic kidney disease, no. (%) 22 (15.4) 18 (12.5) 0.42 Acute myocardial infarction, no. (%) 11 (7.7) 15 (10.4) 0.41 Mild cognitive impairment, no. (%) 14 (9.8) 9 (6.3) 0.28 Dementia, no. (%) 8 (5.6) 9 (6.3) 1 Diabetes mellitus with end-organ damage, no. (%) 11 (7.6) 13 (9) 0.83 Peripheral vascular disease, no. (%) 7 (4.9) 11 (7.6) 0.34 Previous delirium, no. (%) 3 (2.1) 8 (5.5) 0.22 Mild liver disease, no. (%) 6 (4.2) 4 (2.8) 0.54 Severe liver disease, no. (%) 2 (1.4) 3 (2.1) 1 Mesenchymopathies, no. (%) 3 (2.1) 7 (4.9) 0.34 Peptic ulcer disease, no. (%) 2 (1.4) 8 (5.5) 0.10 Lymphoma, no. (%) 1 (0.7) 1 (0.7) 1 Leukaemia, no. (%) 0 (0) 1 (0.7) 0.5 Hemiplegia, no. (%) 0 (0) 0 (0) – Acquired immunodeficiency syndrome, no. (%) 0 (0) 0 (0) – Laboratory Serum sodium (mEq/l) (SD) 136 ± 5 137 ± 4 0.34 Hyponatremia, no. (%) 29 (20.3) 26 (18) 0.64 Serum potassium (mEq/l) (SD) 4.2 ± 0.7 4.2 ± 0.6 0.95 Serum creatinine (mEq/l) (SD) 1.4 ± 1.1 1.3 ± 1 0.42 Uremia (mg/dl) (SD) 52 ± 38 48 ± 42 0.45 Haemoglobin (g/dl) (SD) 12 ± 2.2 12.1 ± 0.7 0.61 C reactive protein (mg/l) (SD) 11.7 ± 19.8 15.9 ± 30.7 0.22 White cell count (cells/mm3 ) 9.580 ± 4.570 9.820 ± 4.185 0.67 Medications Patients started on risky medications, no. (%) 7 (4.9) 8 (5.5) 0.80 Benzodiazepines, no. (%) 4 (2.8) 5 (3.5) 0.75 Antihistamines, no. (%) 0 (0) 2 (1.4) 0.25 Anticholinergics, no. (%) 2 (1.4) 1 (0.7) 1 Opioids, no. (%) 1 (0.7) 0 (0) 1 SD, standard deviation. a As defined in the Charlson comorbidity index. Preventing delirium in an acute hospital atkouseiren-hiroshima-sohgoh-byoinonMarch16,2014http://ageing.oxfordjournals.org/Downloadedfrom ARDSから回復した後… ARDSになった後… • 大学の関連病院, トロント, 1998年3月から2002年3月まで. • 対象: • 16歳以上, 少なくともPEEP ≧5cmH2OでP/F ≦200. • 195人がTrialに登録され, 生存した117人(60%)がFollow upされた. • 除外: • ICU入室前に独立した機能なし, 肺切除後, 神経疾患・精神疾患がある. • ICU退室後, 3・6・12ヶ月後に外来で評価を行った. • 呼吸機能, 身体機能, 復職など. Herridge MS, Cheung AM, Tansey CM, et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med. 2003 Feb 20;348(8):683-93.
  • 13. ARDS 1年後 • 半年後には, 肺活量や1秒率などは正常化. • 1年後では... • 酸素投与が必要な患者はいなかったが, 軽度の拡散能障害は残存して おり, 6%の患者が労作時にSpO2 <88%になった. • 胸部単純X線写真は, 80%で正常化, 20%で軽度な陰影が残存. • 6分間歩行やSF-36の全項目の評価で, 同年代の予測値を下回った. • 49%の患者が働いており, その8割がもとの仕事に復帰できていた. Herridge MS, Cheung AM, Tansey CM, et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med. 2003 Feb 20;348(8):683-93. その後はどうなる?? ARDS 5年後 • 109人中, 9人が死亡, 36人がフォローアップできず. •呼吸機能は正常もしくは正常に近い状態に. • 患者の25%で施行されたCTでは, ほとんどで軽度の線維化 が見られた. • 6分間歩行やSF-36の評価では, 同年代の予測値を下回った. •51%が身体機能からの抑うつや不安があった. •77%が復職(そのうち94%がもとの職業). Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011 Apr 7;364(14):1293-304. 5年間で... • 肺の画像所見は軽度異常が残存するが, 呼吸機能は, 正常もしくはほぼ正常まで改善. •身体機能の改善は不十分で, 5年後では77%で復職. • そのうちわけは, 外勤 77%, 復学 6%, 非常勤の女性 17%. • 医療費は年間50-60万円, 再入院はのICU入室中の 合併症や疾患によって増加した. Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011 Apr 7;364(14):1293-304.
  • 14. うつ症状と身体機能障害の累積発生率 between depressive symptoms at last follow-up and incident im- paired physical function, we repeated the prior analyses to eval- uate if depressive symptoms at last follow-up were only associated with individual nonphysical incident IADL dependencies. The number of patients with incident IADL dependencies/number at risk were: using the telephone, 34/175; shopping, 80/133; pre- paring food, 57/132; housekeeping, 85/121; doing laundry, 67/136; traveling, 73/143; taking medications, 48/159; and managing Figure 2. Cumulative incidence of depressive symptoms or impaired physical function in the first 2 years after acute lung injury. During 2-year follow-up after acute lung injury, the cumulative incidence of depressive symptoms was 40%, and the cumulative incidence of im- paired physical function was 66%. Incidence was highest by the 3-month follow-up and de- clined thereafter. Figure 3. Recovery from incident depres- sive symptoms or impaired physical func- tion in the first 2 years after acute lung injury. Thin lines and thick lines indicate individual and mean trajectories, respec- tively, for patients whose conditions remitted (A and C) and did not remit (B and D) during 2-year follow-up after acute lung injury. Horizontal dashed lines indicate thresholds for depressive symp- toms (A and B) and impaired physical function (C and D). HAD ¼ Hospital Anxiety and Depression Scale; IADL ¼ instrumental activities of daily living. 520 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 185 2012 うつ症状 身体機能障害 Bienvenu OJ, Colantuoni E, Mendez-Tellez PA, et al. Depressive symptoms and impaired physical function after acute lung injury: a 2-year longitudinal study. Am J Respir Crit Care Med. 2012 Mar 1;185(5):517-24. ARDSでICUに入室したら… • 筋力低下は急性期から始まる. • 呼吸機能は結構回復する. • 筋力低下は, ICU入室後も問題になっている. • ADL, 雇用機会, うつ病, 医療費の増加など. ! • せん妄になると, 死亡率が上昇し, 退室後も認知機能障 害につながる. ICU退室 退院 抜管 何が出来るか??
  • 15. 筋力低下 • ICU-Acquired Weakness(ICU-AW) • 他に原因がなく, 重症患者に起こる神経障害・筋障害のこと. • 急性期の診断は困難であり, 多くは人工呼吸器からの離脱困難で発見される. • Schweickert WD, Hall J.ICU-acquired weakness.Chest. 2007 May;131(5):1541-9. • 頻度やリスクファクター: • 7日間以上の人工呼吸管理を受けた患者の33%にみられ, 人工呼吸器離脱の 遅れに繋がった. • De Jonghe B, Bastuji-Garin S, Sharshar T, et al. Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensive Care Med. 2004 Jun;30(6):1117-21. • 高齢, 高い重症度や高血糖などの全身状態, 筋弛緩薬やステロイド, アミノグ リコシド系抗菌薬の使用などがリスクになる. ICU-AWの診断基準 1. 重症疾患罹患後に, 進行性の全身の脱力. 2. 脱力はびまん性(遠位筋・近位筋とも), 両側性, 弛緩性で, 一般的に 脳神経障害は合併しない. 3. 24時間以上間隔を空けた2回以上の検査でMRC合計スコアが48未満, もしくは検査可能な全ての筋群の平均MRCスコアが4未満. 4. 人工呼吸に依存した状態. 5. 筋力低下について, 他の原因が排除できている. * 少なくとも, 1, 2, 3 or 4, 5を満たす. Stevens RD, Marshall SA, Cornblath DR, et al. A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med. 2009 Oct;37(10 Suppl):S299-308. 用語について • ICU-AW: Intensive Care Unit-Acquired Weakness • ICUでおこった筋力低下. ! • CIP: Critical illness polyneuropathy →神経障害 • CIM: Critical illness myopathy →筋障害 • CINM: Critical illness neuromyopathy →CIP + CIM いつから始まるの? • 健康なボランティアを安静臥床させたところ, 4時間で 筋萎縮が始まった. • Kasper CE, Talbot LA, Gaines JM. Skeletal muscle damage and recovery. AACN Clin Issues 2002;13(2):237-247. • 7人の健康な男性を, 6週間の安静臥床した後の筋力に ついて調査していったところ, 1週間毎に4-5%程度の 筋力低下を認めた. • Berg HE, Larsson L, Tesch PA. Lower limb skeletal muscle function after 6 wk of bed rest. J Appl Physiol 1997;82(1): 182-188. 結構早く始まり, 放っておくと, どんどん進む.