SlideShare a Scribd company logo
1 of 146
Download to read offline
HOCHIMINH CITY UNIVERSITY OF
TECHNOLOGY AND EDUCATION
CIVIL ENGINEERING
GRADUATION THESIS
PHU DONG PREMIER APARTMENT
ADVISOR: Dr. NGUYEN VAN CHUNG
Ho Chi Minh City, March 2021
SKL 0 0 7 7 3 9
STUDENT’S NAME: VU THI HOAI
STUDENT’S ID: 16149323
1
GRADUATION PROJECT TASK
Student: VŨ THỊ HOÀI Student ID: 16149323
Major: CIVIL ENGINEERING
PROJECT NAME: PHU DONG PREMIER APARTMENT
1. Preliminary data
 Architectural document (has already edited following advisor’s instruction).
 Geotechnical survey.
2. Theoretical and calculation content
a. Architecture
 Represent architectural drawings.
b. Structure
 Calculation, design typical floor slab.
 Calculation, design stair case.
 Model, calculation, design frame axis 2.
c. Foundation
 Gather geotechnical data
 Design practical foundation solutions.
3. Demonstration and drawings
 01 presentation and 01 appendix.
 16 A1 drawing (7 architectures, 9 structures).
4. Advisor : Dr. NGUYỄN VĂN CHÚNG
5. Date of assignment : 8/2020
6. Completion date :
Ho Chi Minh City, 18th
January 2021
Advisor’s confirmation Faculty’s administration confirmation
2
THE SOCIALIST REPUBLIC OF VIETNAM
Independence – Freedom– Happiness
--------
Ho Chi Minh City, January 18, 2021
ADVISOR’S EVALUATION SHEET
Student name: ..............................................................Student ID: ..................................
Student name: ..............................................................Student ID: ..................................
Student name: ..............................................................Student ID: ..................................
Major:..................................................................................................................................
Project title: ........................................................................................................................
Advisor:..............................................................................................................................
EVALUATION
1. Content of the project:
............................................................................................................................................
............................................................................................................................................
............................................................................................................................................
2. Strengths:
............................................................................................................................................
............................................................................................................................................
............................................................................................................................................
3. Weaknesses:
............................................................................................................................................
............................................................................................................................................
............................................................................................................................................
4. Approval for oral defense? (Approved or denied)
............................................................................................................................................
............................................................................................................................................
............................................................................................................................................
5. Overall evaluation: (Excellent, Good, Fair, Poor)
............................................................................................................................................
............................................................................................................................................
6. Mark:……………….(in words:....................................................................................)
Ho Chi Minh City, 18th
January 2021
ADVISOR
(Sign with full name)
3
THE SOCIALIST REPUBLIC OF VIETNAM
Independence – Freedom– Happiness
--------
Ho Chi Minh City, January 18, 2021
PRE-DEFENSE EVALUATION SHEET
Student name: ................................................................. Student ID: .............................
Student name: ................................................................. Student ID: .............................
Student name: ................................................................. Student ID: .............................
Major: .....................................................................................................................................
Project title: .............................................................................................................................
.................................................................................................................................................
Name of Reviewer: .................................................................................................................
EVALUATION
1. Content and workload of the project
............................................................................................................................................
............................................................................................................................................
............................................................................................................................................
............................................................................................................................................
2. Strengths:
............................................................................................................................................
............................................................................................................................................
............................................................................................................................................
3. Weaknesses:
............................................................................................................................................
............................................................................................................................................
............................................................................................................................................
4. Approval for oral defense? (Approved or denied)
............................................................................................................................................
............................................................................................................................................
5. Overall evaluation: (Excellent, Good, Fair, Poor)
............................................................................................................................................
............................................................................................................................................
6. Mark:……………….(in words.....................................................................................)
Ho Chi Minh City, 18th
January 2021
REVIEWER
(Sign with full name)
4
THE SOCIALIST REPUBLIC OF VIETNAM
Independence – Freedom– Happiness
--------
Ho Chi Minh City, January 18, 2021
EVALUATION SHEET OF
DEFENSE COMITTE MEMBER
Student name: ................................................................. Student ID: .............................
Student name: ................................................................. Student ID: .............................
Student name: ................................................................. Student ID: .............................
Major: ......................................................................................................................................
Project title: ..............................................................................................................................
Name of Defense Committee Member:
...................................................................................................................................................
EVALUATION
1. Content and workload of the project
............................................................................................................................................
............................................................................................................................................
............................................................................................................................................
............................................................................................................................................
2. Strengths:
............................................................................................................................................
............................................................................................................................................
3. Weaknesses:
............................................................................................................................................
............................................................................................................................................
4. Overall evaluation: (Excellent, Good, Fair, Poor)
............................................................................................................................................
5. Mark:……………….(in words:....................................................................................)
Ho Chi Minh City, 18th
January 2021
COMMITTEE MEMBER
(Sign with full name)
5
PREFACE
I did my best to complete this project with the help of Dr.Nguyễn Văn Chúng
I am would like to send my sincere thanks to Dr.Nguyễn Văn Chúng for the guidance
and support as well as providing necessary information regarding the project
Ho Chi Minh City, 18th
January 2021
Student
Vũ Thị Hoài
6
CONTENTS:
GRADUATION PROJECT TASK .......................................................................................1
ADVISOR’S EVALUATION SHEET..................................................................................2
PRE-DEFENSE EVALUATION SHEET..............................................................................3
EVALUATION SHEET OF ..................................................................................................4
DEFENSE COMITTE MEMBER .........................................................................................4
CHAPTER 1: OVERVIEW OF THE BUILDING ARCHITECTURE ..............................12
1.1 Briefly describe the building.................................................................................12
1.1.1 Demand for construction building.................................................................12
1.1.2 Position of the building..................................................................................13
1.1.3 Project description.........................................................................................13
1.2 Architectural solution............................................................................................13
1.2.1 Dividing plans and functions .........................................................................13
1.2.2 Traffic inside the building..............................................................................14
1.3 Technical solution .................................................................................................14
1.3.1 Electrical systems ..........................................................................................14
1.3.2 Water systems ................................................................................................14
1.3.3 Ventilation systems ........................................................................................15
1.3.4 Lighting systems.............................................................................................15
1.3.5 Fire protection system – Escape....................................................................15
CHAPTER 2: STRUCTURES PLAN .................................................................................16
2.1 Structure solution ..................................................................................................16
2.2 Standard for structural design ...............................................................................16
2.3 Software uses during the process ..........................................................................17
2.4 Material .................................................................................................................17
2.4.1 Concrete cover ........................................................................................................17
2.5 Preliminary section of elements............................................................................18
2.5.1 Thickness of slab..................................................................................................18
2.5.2 Dimension of beam..............................................................................................18
2.5.3 Dimension of shear wall......................................................................................19
2.5.4 Dimension of column...........................................................................................20
CHAPTER 3: LOADS APPLIED ON BUILDING ............................................................21
7
3.1 Load classification .....................................................................................................21
3.2 Calculating design loads .......................................................................................21
3.2.1 Weight of structure itself (DL).......................................................................21
3.2.2 Loads of finishes (SDL)..................................................................................21
3.2.3 Loads of brick wall (WL) ...............................................................................25
3.2.4 Live load(LL,LL1)..........................................................................................29
3.2.5 Wind load.......................................................................................................30
3.2.5.2 Dynamic wind load ........................................................................................32
3.2.5.3 Combination of static wind load and dynamic wind load .............................39
CHAPTER 4: DESIGNING TYPICAL – FLOOR .............................................................42
4.1 General introduction .................................................................................................42
4.1.1 Preliminary size of beam – slab system.........................................................42
4.1.2 Structural solution..........................................................................................42
4.1.3 Material used..................................................................................................43
4.1.4 Loads applied and loads combination............................................................43
4.2 Slab analysis model ..................................................................................................46
4.3 Calculating slab reinforcement .................................................................................50
4.4 Checking displacement.............................................................................................52
4.5 Checking crack width.............................................................................................50
CHAPTER 5: STAIRCASE DESIGN.................................................................................54
5.1 General features .........................................................................................................54
5.1.1 Size and dimension of stairs................................................................................54
5.1.2 Preliminary section..............................................................................................55
5.1.3 Load applied and combination ............................................................................55
5.2 Calculating staircase...................................................................................................56
5.2.1 Modelling ............................................................................................................57
CHAPTER 6: FRAME DESIGN.........................................................................................60
6.1 Checking the stability of the building.......................................................................60
6.1.1 Horizontal displacement at the top of building .............................................60
6.1.2 Displacement between each story (Table C.4 TCVN 5574:2012).................60
6.1.3 Anti – roll stability checking..........................................................................62
6.2 Calculating reinforcement for beams of typical floor and frame in axis 2...............63
8
6.2.1 Internal forces and load combination............................................................63
6.2.2 Calculating detail for beam B2......................................................................64
6.3 Calculating reinforcement for columns of axis 2......................................................69
6.3.1 Eccentrical compression column ...................................................................69
6.4 Calculating reinforcement for shear wall..................................................................73
6.4.1 Layout and dimension....................................................................................73
6.4.2 Method of boundary zone element for SW1..................................................74
CHAPTER 7: FOUNDATION DESIGN ............................................................................78
7.1 Soil Report ............................................................................................................78
7.2 Ultimate bearing capacity of pile according to the material .................................80
7.3 Pile load capacity by criteria of soil strength TCVN 10304:2012 (G.2) ..............80
7.4 Pile load capacity by SPT (formula of the Japanese Institute of Architecture 1988)82
7.5 Pile load capacity by Meyerhof.............................................................................83
7.6 Design the typical foundation M1.........................................................................85
7.6.1 Bearing capacity of pile.................................................................................85
7.6.2 The number of piles in pile cap......................................................................85
7.6.3 Checking the horizontal load bearing capacity of piles ................................86
7.6.4 Determine the spring stiffness ............................................................................. 90
7.6.5 Checking ground stability and settlement below the assuming foundation...91
7.6.6 Checking the punching shear condition: .......................................................95
7.6.7 Calculating the reinforcement for pile cap....................................................96
7.7 Design the typical foundation M2 …………………..…….……….…………….95
7.7.1 Internal forces of foundation M2.................................................................102
7.7.2 Checking reaction force at pile head...........................................................102
7.7.3 Checking ground stability and settlement below the assuming foundation.102
7.7.4 Checking the punching shear condition.........................................................98
7.7.5 Calculating the reinforcement for pile cap M2 .............................................99
7.8 Design the elevator foundation M3 ….…………………………………...…….100
7.8.1 Checking the horizontal load bearing capacity of piles…………………...102
7.8.2 Determine the spring stiffness......................................................................102
7.8.3 Checking ground stability and settlement below the assuming foundation.102
7.8.4 Checking shear resistance of concrete ........................................................107
7.8.5 Calculating the reinforcement for pile cap..................................................107
9
CONTENTS OF FIGURES and TABLES
Figure 1.1 Position of building in map ................................................................................13
Table 2.6.1 Thickness of slab ..............................................................................................18
Table 2.6.2 Beam section.....................................................................................................19
Table 2.6.4.1 Preliminary column section at middle and corner .........................................20
Figure 3.1: Slab detail..........................................................................................................21
Table 3.1 Load of bedroom floor structure layers ...............................................................22
Table 3.2 Load of restroom floor structure layers ...............................................................22
Table 3.3 Load of the floor of the living room ....................................................................23
Table 3.4 Loading of corridor floor layers ..........................................................................23
Table 3.5 Loading of balcony floor structure ......................................................................23
Table 3.6 Loading of layers of the terrace floor ..................................................................24
Table 3.7 Loading of the roof floor structure ......................................................................24
Table 3.8 Loading floor structure of Basement 1, Basement 2 ...........................................25
Table 3.9 Loading of brick wall basement ..........................................................................26
Table 3.10 Loading of the first floor wall............................................................................26
Table 3.11 Loading of 2nd floor wall, Mezzanine ..............................................................27
Table 3.12 Loading of technical floors................................................................................27
Table 3.13 Loading of wall on the 3rd floor - Technical elevator.......................................28
Table 3.14 Loading of wall roof ..........................................................................................28
Table 3.15 Live load ............................................................................................................29
Table 3.16 Table of static wind pressure .............................................................................31
Table 3.17 Limitation value of specific oscillation frequency ............................................32
Table 3.19 Analyzing oscillation export from ETABS .......................................................34
Table 3.20 Calculating dynamic wind load in X – direction...............................................35
Table 3.21 Calculating dynamic wind load in Y – direction...............................................36
Table 3.22 Calculating dynamic wind load in X – direction...............................................37
Table 3.23 Calculating dynamic wind load in Y – direction...............................................37
Table 3.24 Combination of static wind load and dynamic wind load .................................40
Figure 4.1.2: Structural layout of typical – floor .................................................................42
10
Table 4.1.4.2 Load cases......................................................................................................44
Table 4.1.2 Load combination .............................................................................................45
Figure 4.2.1: Strip A in X – direction..................................................................................46
Figure 4.2.2: Strip B in Y – direction ..................................................................................47
Figure 4.2.3: Moment diagram in strip A ............................................................................48
Figure 4.2.4: Moment diagram in strip B ............................................................................49
Table 4.3: Calculating rebars in span and support of two - way slab..................................50
Figure 4.4 Displacement of slab ..........................................................................................51
Figure 5.1: Overview of staircase........................................................................................54
Table 5.1.1 Detailing of typical staircase ............................................................................54
Table 5.1.3.a: Load of layers for the structure of the landing..............................................55
Table 5.1.3.b: Load of layers for the structure of the flight.................................................56
Figure 5.2.1a: Moment diagram of staircase .......................................................................57
Table 5.2.1a: Value of moment diagram for staircase.........................................................58
Table 5.2.2: Table of calculating reinforcement for flight ..................................................58
Table 5.2.3: Table of calculating reinforcement for beam ..................................................59
Table 6.1.3: Horizontal displacement of each story ............................................................61
Figure 6.2.1: Internal force of typical floor .........................................................................63
Figure 6.2.2 Internal force diagram B2................................................................................64
Table 6.2 Data for calculating..............................................................................................64
Table 6.3.1: Internal force and eccentricity of C1 ...............................................................69
Table 6.3.2: Summary reinforcement of column in axis 2 (C1, C18) .................................71
Table 6.3.3: Calculating stirrup ...........................................................................................72
Figure 6.3.1: Arranging stirrup............................................................................................72
Table 6.4.2 Internal force of SW1 .......................................................................................74
Figure 6.4.2a: Interface of the program for calculating reinforcement ...............................75
Figure 6.4.2b: Interface of the program for calculating reinforcement ...............................76
Table 6.4.2: Summary reinforcement of SW1 in axis 2 ......................................................76
Table 7.1: Calculate the pile load capacity..........................................................................82
Table 7.2: Calculate the pile load capacity..........................................................................83
Table 7.3: Calculate the pile load capacity..........................................................................84
Table 7.4 Internal forces at base ..........................................................................................85
11
Figure 7.1: Geometry of pile cap M1 ..................................................................................85
Table 7.5: Calculation of pile subjected to horizontal forces ..............................................88
Figure 7.2: The Diagram of pile subjected to horizontal forces ..........................................89
Figure 7.3: The geometry of the assuming foundation........................................................91
Table 7.6: Calculating settlement ........................................................................................94
Figure 7.4: Moment diagram of M1 foundation..................................................................96
Table 7.7: Calculation of pile cap reinforcement ................................................................96
Figure 7.5: Dimension of foundation M2 and Reaction force at pile head .........................95
Table 7.8: Internal forces of M2 .......................................................................................102
Table 7.9: The settlement of foundation M2 ....................................................................103
Table 7.10: Calculating settlement ....................................................................................108
Figure 7.7: Moment diagram of M1 foundation................................................................108
12
CHAPTER 1: OVERVIEW OF THE BUILDING ARCHITECTURE
1.1 Briefly describe the building
1.1.1 Demand for construction building
The fundamental proof for development country which is the infrastructure stable,
create good conditions, and most favorable conditions for living and working needs
of the people. For our country, as a country that is gradually developing and
increasingly asserting its position in the region and the world, to do well that goal,
the first thing needs to increasingly improve the need for security and jobs for the
people. In which the need for accommodation is one of the top urgent needs.
Faced with a rapidly growing population, the need to buy land for house
construction is increasing while the city's land fund is limited, so land prices are
escalating, making many people unable to afford. buy land for construction. To
solve this urgent problem, the solution of building high-rise apartments and
developing residential planning to the districts and suburbs of the city center is the
most reasonable.
Besides, along with the rise of the City's economy and the growing foreign
investment in the market, it opens up a promising prospect for investment in
construction of buildings used as offices, high-rise hotels, high-rise apartments ...
with high quality to meet the increasing living needs of all people.
It can be said that the appearance of more and more buildings inside and outside the
city not only meets the urgent need for infrastructure, but also contributes positively
to creating a new face for the city. Time is also an opportunity to create many jobs
for people.
Therefore, PHU DONG PREMIER APARTMENT is designed and built to
contribute to solving the above objectives. This is a modern high-rise building, fully
furnished, beautiful landscape ... suitable for living, entertainment and working, a
high-rise apartment building is designed and constructed with high quality, full
sufficient facilities to serve the living needs of people.
13
1.1.2 Position of the building
Address: The surface of Highway 32, 100m across Dien Bridge, close to Tay Do
supermarket and Cau Dien market, 1km from My Dinh bus station, 500m from
Trade University, 700m from National University.
Figure 1.1 Position of building in map
The special feature of the project is that it is located in a prime location with the
Northwest adjacent to the planned road, the Southeast bordering the Cau Dien
market street, the Northeast bordering the 32 National Highway, the Southwest
bordering the road area. The project is expected to be constructed from 2011 to the
end of 2014. After completion, the project will contribute more to the city. A
modern living environment, partially meeting the housing needs of the people.
1.1.3 Project description
The building has a floor area of 34,000 m2
, including 2 units of 23 floors for
housing and 25 floors for offices. The first floor is used as a public service area.
The total number of apartments is 154 units with an area of 80-140 m2
each. The
building also has 2 basements for semi-automatic parking of 4,860 m2
.
1.2 Architectural solution
1.2.1 Dividing plans and functions
The plan is rectangular in shape with the land area shown above. Basement 1,
basement 2 are located at the elevation of -6,250m, arranged with a vortex ramp
from the basement to the entrance to the ground, arranged appropriately for the area
mostly used for parking, arrangement of gain boxes reasonable and create the most
open space possible for the basement. Stairs and elevators are arranged in the
14
middle of the basement so that users can see it right away to serve the travel. At the
same time, the fire protection system is also easy to see.
The first floor is arranged with offices and public services to serve necessary jobs.
In general, it is easy to operate and manage when arranging rooms like the existing
architecture.
2nd floor to technical floor layout of offices.
The third floor to the attic shows the function of the building, in addition to the
toilet area and the traffic area inside, the remaining area is used for active
apartments.
The rooftop terrace, elevator techniques and the remaining roof are used for multi-
purpose hall and courtyard to increase the overall efficiency of the building.
1.2.2 Traffic inside the building
Standing traffic: 3 elevators, 2 stairs, 1 technical room.
Cross traffic: the corridor is the main traffic route.
1.3 Technical solution
1.3.1 Electrical systems
Buildings using electricity are supplied from two sources: the grid and a generator
with a capacity of 150 kV (with a transformer all placed in the basement to avoid
noise and vibration affecting the birth. active).
The entire power line is underground (installed at the same time with construction).
The main power supply system is in a technical box inserted in the electrical gen
and placed underground in the wall and floor, ensuring not passing through wet
areas and facilitating easy repair when needed.
1.3.2 Water systems
The building uses water taken from the water supply system to the underground
storage tank and then pumped to the roof water tank, from here it will be distributed
down the floors of the building according to the main water pipes. The water pump
system for the project is fully automatic designed to ensure that the water in the roof
tank is always enough to supply for living and firefighting.
The pipes that pass through the layers are always wrapped in water gene boxes.
Underground water supply system in technical boxes. The main fire pipes are
always located on each floor along the vertical traffic area and on the ceiling.
15
Rainwater on the roof will drain through the collection holes that flow into the
rainwater drainage pipes downwards. Particularly, the wastewater drainage system
will have its own pipeline. Wastewater from the toilets has its own pipeline system
to bring water to the wastewater treatment tank and then into the general drainage
system.
1.3.3 Ventilation systems
Each floor has windows and skylights that are convenient for receiving the wind
and draining the wind, helping to evenly air-condition the building.
1.3.4 Lighting systems
The floors are naturally illuminated through the outside glass and skylights in the
building. In addition, the artificial lighting system is also arranged so that it can
provide light to where needed.
1.3.5 Fire protection system – Escape
Fire alarm system is installed in each rental area. Fire extinguishers are fully
equipped and arranged in corridors, stairs ... according to the guidance of the city's
fire department.
16
CHAPTER 2: STRUCTURES PLAN
2.1 Structure solution
 Slab plan
Table 1.4 Comparison between slabs types
Slab plan Advantage Disadvantage
Beam – slab
system
The ability to exceed the
average span.
Slab thickness is small, small
deflection.
Reducing clearance height
because of beam, and not
convenient in layout
architecture.
Flat - slab Getting more clearance height
Restricting in exceed span.
Large concentrated force in
top column.
Slab thickness is big, big
deflection, complex
calculation.
Waffle - slab
Light floor weight, saving costs
for structures and structures,
great stiffness, and good sound
insulation
Requires design,
construction, low fire
resistance technology.
 With the characteristic of the building. Therefore, choosing frame - core and beam
– slab system.
2.2 Standard for structural design
- TCVN 2737:1995: Loads and Impacts.
- TCVN 5574:2012: Reinforced concrete structure.
- TCXD 229 – 1999: Instruction on calculating the dynamic components of wind load
is in accordance with TCVN 2737 – 1995.
- TCVN 10304 – 2014: Pile foundations - Design standards.
- TCVN 9362:2012: Background design of houses and buildings.
17
2.3 Software uses during the process
- Software for analyzing and calculating: ETABS, SAFE, Matlab, Excel.
- Drawing: Autocad.
2.4 Material
Concrete B30 Reinforcement CB400-V
(Table 21 – TCVN 5574:2012)
2
25 ( / )
kN m
 
2
17( ) 17000 ( / )
b
R MPa kN m
 
2
1.15( ) 1150 ( / )
bt
R MPa kN m
 
2
32500( ) 3.25 07 ( / )
b
E MPa E kN m
  
.
2
: 225( ) 225000 ( / )
sc s
AI R R MPa kN m
  
2
2
: 365( ) 365000 ( / )
200000( ) 2.0 08 ( / )
sc s
s
AIII R R MPa kN m
E MPa E kN m
  
  
.
2.4.1 Concrete cover
STT Detail Thickness (mm)
1 Foundation 50
2 Slab 15
3 Beam 30, 40
4 Stair 20
5 Wall 40
6 Structures in contact with soil are lined with
concrete
50
18
2.5 Preliminary section of elements
2.5.1 Thickness of slab
Choosing of floor thickness depends on span and applied load.
Preliminarily select the floor area according to the formula
s
D
h L
m
  ; min
s
h h

Where
  
40 45
m   for two-way slab
  
30 35
m   for one-way slab
  
10 15
m   for the first half version of the consol version
  
0.8 1.4
D   depending on loads
 min 4
h cm
 for roof - slab
 min 5
h cm
 for slab of house and public
 L: bearing edge of the slab (short edge)
 Considering slab 10.4 11m

 
1 1
5200 115 130
45 40
s
h mm
 
    
 
 
Table 2.6.1 Thickness of slab
Slab Typical floor Basement B1 Basement B2
140 140 250 500
2.5.2 Dimension of beam
1
b b
b
h L
m
   
0.3 0.5
b b
b h
  
Where
 Ld: Length of considering beam
  
12 16
b
m   : for main - beam
  
14 18
b
m   : for secondary beam
  
5 7
b
m   : for consol beam
19
 Main – beam
 
1 1
11000 687 916
16 12
mb
h mm
 
    
 
 
 Choosing 600
mb
h mm

   
0.3 0.5 800 240 400
mb
b mm
      Choosing 300
mb
b mm

 Secondary beam
 
1 1
11000 611 785
18 14
sb
h mm
 
    
 
 
 Choosing 500
sb
h mm

   
0.3 0.5 700 210 350
sb
b mm
      Choosing 300
sb
b mm

 Consol beam
 
1 1
5500 550 785
10 7
cb
h mm
 
    
 
 
 Choosing 400
cb
h mm

   
0.3 0.5 500 150 250
cb
b mm
      Choosing 200
d
b mm

Table 2.6.2 Beam section
Beam
Main – beam
bxh (mm)
Secondary beam
bxh (mm)
Consol beam
bxh (mm)
Section
(mm)
600x300 500x300 400x200
2.5.3 Dimension of shear wall
Section of shear wall have to satisfied:
t
150
1 1
3400 170
20 20
mm
H mm



 
  


Ht: Height of typical floor
Thickness of elevator wall 300mm
Thickness of basement wall 300mm
20
2.5.4 Dimension of column
c
b
N
F k
R
 
Where
 k (1.2-1.5): Safety factor (k = 1.3 for boundary beam, k = 1.5 for corner beam)
 Rb: Compressive strength of concrete
 N: Total transferring loads into column
N=m.q.F
+ m: Number of floors above column
+ q: equivalent load per square meter of floor surface including regular and
temporary loads on the floor, beams, walls, and columns.
(q = 10÷14 kN/m² when slab thickness 10÷14cm)
+ F: Transferring load area into column (cm2
)
Table 2.6.4.1 Preliminary column section at middle and corner
Floor Basement B2 – 2nd
2nd
– 6th
6th
– 10th
10th
– Roofing
900x900 800x800 700x700 600x600
Corner 1100x1100
21
CHAPTER 3: LOADS APPLIED ON BUILDING
3.1 Load classification
The structure of a high-rise building is calculated with the following main loads:
Vertical loads
 Weight of structure itself (DL)
 Loads of finishes (SDL)
 Wall load (WL)
 Active load used (LL1, LL2)
Wind loads
 Static wind load
 Dynamic wind load
Impact load during construction
Soil pressure, groundwater
Application of TCVN 2737: 1995 Loads and impacts - Design standards to calculate
the types of loads acting on the building.
3.2 Calculating design loads
3.2.1 Weight of structure itself (DL)
The self-weight of the building will depend on the size of each member and the
structural software will automatically calculate the self-load.
3.2.2 Loads of finishes (SDL)
The thickness of the structural layers is based on architectural drawings, pipeline
technical systems, electrical equipment, and the confidence coefficient is based on
TCVN 2737: 1995. Depending on the function of the use of the floor plots, we
calculate the static load on each floor plot as follows:
Calculating the load of the structural layers:
Figure 3.1: Slab detail
22
 
2
1
/
n
i i i i
g n kN m
 
 
Where
i
 : Specific gravity of i layer
i
 : Thickness of i layer
i
n : Safety factor of i layer
Table 3.1 Load of bedroom floor structure layers
No Layers Thickness
Specific
Gravity
Standard
Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Ceramic Tile 10 22 0.22 1.1 0.24
2 Mortar 20 18 0.36 1.3 0.47
3 Plasters 15 18 0.27 1.3 0.35
4 Systems engineering - - 0.25 1.2 0.30
Total dead load 1.10 1.36
Table 3.2 Load of restroom floor structure layers
No Layers Thickness
Specific
Gravity
Standard
Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Ceramic Tile 10 22 0.22 1.1 0.24
2 Mortar to make sloped 40 18 0.72 1.3 0.94
3 Plasters 15 18 0.27 1.3 0.35
4 Waterproof 10 18 0.18 1.1 0.20
5 Mortar for ceiling 0.20 1.3 0.26
6 Systems engineering - - 0.25 1.2 0.30
Total dead load 1.84 2.29
23
Table 3.3 Load of the floor of the living room
No Layers Thickness
Specific
Gravity
Standard
Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Ceramic Tile 10 22 0.22 1.1 0.24
2 Mortar 20 18 0.36 1.3 0.47
3 Plasters 15 18 0.27 1.3 0.35
4 Systems engineering - - 0.25 1.2 0.30
Total dead load 1.10 1.36
Table 3.4 Loading of corridor floor layers
No Layers Thickness
Specific
Gravity
Standard
Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Ceramic Tile 10 22 0.22 1.1 0.24
2 Mortar 20 18 0.36 1.3 0.47
3 Plasters 15 18 0.27 1.3 0.35
4 Systems engineering - - 0.25 1.2 0.30
Total dead load 1.10 1.36
Table 3.5 Loading of balcony floor structure
No Layers Thickness
Specific
Gravity
Standard
Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Ceramic Tile 10 22 0.22 1.1 0.24
2 Mortar 20 18 0.36 1.3 0.47
3 Plasters 15 18 0.27 1.3 0.35
Total dead load 0.85 1.06
24
Table 3.6 Loading of layers of the terrace floor
No Layers Thickness
Specific
Gravity
Standar
d Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Ceramic Tile 10 22 0.22 1.1 0.24
2 Mortar to make sloped 20 18 0.36 1.3 0.47
3
Elastic waterproof
coating sika
10
4 Plasters 15 18 0.27 1.3 0.35
5 Waterproof 10 18 0.18 1.1 0.20
6 Mortar for ceiling 0.20 1.3 0.26
7 Systems engineering - - 0.25 1.2 0.30
Total dead load 1.48 1.82
Table 3.7 Loading of the roof floor structure
No Layers Thickness
Specific
Gravity
Standard
Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Ceramic Tile 10 22 0.22 1.1 0.24
2
Mortar to make
sloped
20 18 0.36 1.3 0.47
3
Elastic waterproof
coating sika
10
4 Plasters 15 18 0.27 1.3 0.35
5 Waterproof 10 18 0.18 1.1 0.20
6 Mortar for ceiling 0.20 1.3 0.26
7 Systems engineering - - 0.25 1.2 0.30
25
Table 3.8 Loading floor structure of Basement 1, Basement 2
No Layers Thickness
Specific
Gravity
Standard
Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
3 Plasters 15 18 0.27 1.3 0.35
4 Systems engineering - - 0.25 1.2 0.30
Total dead load 0.52 0.65
3.2.3 Loads of brick wall (WL)
Calculating the load of the structural layers:
 
2
1
/
n
i i i i t s
g n h kN m
  
  

Where
i
 : Specific gravity of i layer
i
 : Thickness of i layer
i
n : Safety factor of i layer
t
h : Height of wall
s
 : Coefficient minus window;
1
s
 
26
Table 3.9 Loading of brick wall basement
No Layers
Thickness
Specific
Gravity
Standard
Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Brick wall 220 18 3.96 1.1 4.36
2 Mortar cement mac 75 30 18 0.54 1.3 0.70
3 Height of floor 3250 Standard load distributed in 1m wall length
4 Height of beam 700 11.48 (kN/m)
5 Height of wall 2550 Design load distributed in 1m wall length
6
Coefficient minus
window
1 12.91 (kN/m)
Table 3.10 Loading of the first floor wall
No Layers
Thickness
Specific
Gravity
Standard
Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Brick wall 220 18 3.96 1.1 4.36
2 Mortar cement mac 75 30 18 0.54 1.3 0.70
3 Height of floor 4200
Standard load distributed in 1m wall
length
4 Height of beam 700 15.75 (kN/m)
5 Height of wall 3500
Design load distributed in 1m wall
length
6
Coefficient minus
window
1 17.72 (kN/m)
27
Table 3.11 Loading of 2nd floor wall, Mezzanine
No Layers
Thicknes
s
Specific
Gravity
Standar
d Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Brick wall 220 18 3.96 1.1 4.36
2 Mortar cement mac 75 30 18 0.54 1.3 0.70
3 Height of floor 3600
Standard load distributed in 1m wall
length
4 Height of beam 700 13.05 (kN/m)
5 Height of wall 2900 Design load distributed in 1m wall length
6
Coefficient minus
window
1 14.68 (kN/m)
Table 3.12 Loading of technical floors
No Layers
Thickness
Specific
Gravity
Standard
Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Brick wall 220 18 3.96 1.1 4.36
2 Mortar cement mac 75 30 18 0.54 1.3 0.70
3 Height of floor 3900 Standard load distributed in 1m wall length
4 Height of beam 700 14.4 (kN/m)
5 Height of wall 3200 Design load distributed in 1m wall length
6
Coefficient minus
window
1 16.2 (kN/m)
28
Table 3.13 Loading of wall on the 3rd floor - Technical elevator
No Layers
Thickness
Specific
Gravity
Standard
Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Brick wall 220 18 3.96 1.1 4.36
2 Mortar cement mac 75 30 18 0.54 1.3 0.70
3 Height of floor 3400 Standard load distributed in 1m wall length
4 Height of beam 700 12.15 (kN/m)
5 Height of wall 2700 Design load distributed in 1m wall length
6 Coefficient minus window 1 13.67 (kN/m)
Table 3.14 Loading of wall roof
No Layers
Thickness
Specific
Gravity
Standard
Loads
Safety
Factor
n
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Brick wall 220 18 3.96 1.1 4.36
2 Mortar cement mac 75 30 18 0.54 1.3 0.70
3 Height of floor 400 Standard load distributed in 1m wall length
4 Height of beam 0 1.8 (kN/m)
5 Height of wall 400 Design load distributed in 1m wall length
6 Coefficient minus window 1 2.02 (kN/m)
29
3.2.4 Live Load(LL,LL1)
- Following to Table 3 TCVN 2737:1995 Tải trọng và tác động -Tiêu chuẩn thiết
kế.
- Design live load distributed on slabs
 
2
1 /
tt c
p
P p n kN m
 
Where

c
p : Standard live loads follow to TCVN 2737-1995
 p
n : Safety factors follow to TCVN 2737-1995
Table 3.15 Live load
Function rooms
Standard
long-term
live
load(LL1)
Standard
live
load(LL)
Safety
factor
Design
long-
term
live
load
Design
live
load
kN/m2
kN/m2
n kN/m2 kN/m2
Slab basement 1.8 5 1.2 2.16 6
Halls, corridors, stairs 1 3 1.2 1.2 3.6
Office, bedroom, living room,
dining room, restroom.
0.3 1.5 1.3 0.39 1.95
Balcony, logia 1.4 2 1.2 1.68 2.4
Attic - 0.7 1.3 - 0.91
Mezzanine, roof floor - 0.75 1.3 - 0.975
30
3.2.5 Wind load
3.2.5.1Static wind load
The concentrated wind pressure of static component Wj at point j corresponding to
height zj compared with reference point:
 
j 0 j
W W kB H c
 
Where
 : Safety factor of wind load, 1.2
0
W : Standard wind loads depend on the active wind area and topography(kPa)
(Table 4 TCVN 2737:1995)
k: Depending on the height of the floor under consideration
(Table 5 TCVN 2737:1995)
c: aerodynamic coefficient, wind pushed 0.8 wind suction 0.6
(Table 6 TCVN 2737:1995)
B: Catching wind width (m)
Hj: Catching wind height (m)
Position: Thị trấn Cầu Diễn, Huyện Từ Liêm, Thủ đô Hà Nội.
Phụ lục E TCVN 2737 – 1995
- IIB  2
0
W = 95 daN/m
- Coefficient of aerodynamics on the push side and suction side c = 1.4
- Catching wind surface width following to x-direction: Ox
- Catching wind surface width following to y-direction: Oy
- Catching wind surface width following to vertical direction: Oz
Zone II
Topography B
Standard wind pressure Wo ( kN/m2) 0.95
Aerodynamic coefficient c 1.4
Total floors 20
31
Table 3.16 Table of static wind pressure
Story
Height
of
each
floor
(m)
Ox
(m)
Oy
(m)
Oz
(m)
k Floor
elevation
(m)
Wind
pressure
following
to x-
direction
Wind
pressure
following
to y-
direction
1 4.2 28.7 29.3 4.2 0.85 4.2 163.52 166.94
Mezzanine 3.6 28.7 29.3 3.6 0.95 7.8 156.65 159.93
2 3.6 28.7 29.3 3.6 1.02 11.4 168.20 171.71
Technical 3.9 28.7 29.3 3.9 1.08 15.3 192.93 196.96
3 3.4 28.7 29.3 3.4 1.12 18.7 174.43 178.07
4 3.4 28.7 29.3 3.4 1.15 22.1 179.10 182.84
5 3.4 28.7 29.3 3.4 1.18 25.5 183.77 187.61
6 3.4 28.7 29.3 3.4 1.2 28.9 186.89 190.79
7 3.4 28.7 29.3 3.4 1.23 32.3 191.56 195.56
8 3.4 28.7 29.3 3.4 1.25 35.7 194.67 198.74
9 3.4 28.7 29.3 3.4 1.27 39.1 197.79 201.92
10 3.4 28.7 29.3 3.4 1.3 42.5 202.46 206.69
11 3.4 28.7 29.3 3.4 1.32 45.9 205.57 209.87
12 3.4 28.7 29.3 3.4 1.34 49.3 208.69 213.05
13 3.4 28.7 29.3 3.4 1.35 52.7 210.25 214.64
14 3.4 28.7 29.3 3.4 1.36 56.1 211.80 216.23
Attic 3.4 28.7 29.3 3.4 1.38 59.5 214.92 219.41
Terrace 3.4 28.7 29.3 3.4 1.39 62.9 216.48 221.00
Technical
Elevator
3.4 28.7 29.3 3.4 1.4 66.3 218.03 222.59
Roof 3.4 11 10.4 3.4 1.41 69.7 84.16 79.57
32
3.2.5.2Dynamic wind load
3.2.5.2.1 Theory
The height of building greater than 40m following to TCXD 229-1999, considering the
effect of dynamic wind load, following to instruction the step for calculation as follow:
Wind zone: IIB
‘Note 10 at page 10: when the building is reinforcement concrete and brick stone, also
steel building have the enclosure structure ’
Table 3.17 Limitation value of specific oscillation frequency
Hence, the limitation value of specific oscillation frequency design for building fL = 1.3.
Case 1: 1 L
f f

The dynamic component of the wind load only includes the effect of the wind speed
impulse. Then the calculated value of dynamic components of wind pressure Wpj
acting on the j part of the work is determined by the formula:
pj j j
W W  

Where
 pj
W : pressure, the calculation unit is daN / m2 or kN / m2 depending on the
calculation unit of Wj
 j
W : The unit of calculation is daN / m2 or kN / m2, depending on the standard value
of the static component of the wind pressure, acting on the j part of the building,
determined according to Article 4.10 of TCXD 229-1999.
 j
 : is the coefficient of dynamic pressure of wind load, at height corresponding to j
part of the building, dimensionless. The values for are taken according to TCVN
2737: 1995 and given in Table 3 TCXD 229-1999.
33
  : spatial correlation coefficients of dynamic pressure of wind load corresponding
to different types of building fluctuations, dimensionless. In the formula,  is
obtained by 1
 . If the wind-receiving surface of the building has a rectangular
orientation parallel to the fundamental axes in Figure 1, the values 1
 are taken
according to Table 4 TCXD 229-1999, in which the parameters  and  determined
according to Table 5, the value of corresponding to the 2nd and 3rd vibrations is
2 3 1
 
  . The values in Table 4 and Table 5 are taken according to TCVN 2737-
1995.
Case 2: 1 L
f f

The dynamic composition of the wind load must include the effect of the wind
velocity impulse and the inertial force of the building.
When the fundamental natural frequency s, satisfies the inequality 1
s L s
f f f 
  , it is
necessary to calculate the dynamic composition of the wind load with s first form of
oscillation:
pji j i i ji
W M y


Where
pj
W : force, calculation unit is daN or kN depending on the calculation unit of WFj in
the coefficient formula i

j
M : concentrating mass of part of the building jth; (t)
i
 : dynamic coefficient corresponding to the ith oscillation, dimensionless,
depending on the parameters i
 and logarithmic reduction of the oscillation
0
940
i
i
W
f

 
 : Safety factor of wind load, 1.2
0
W : wind pressure (N/m2
)
i
f : frequency ith (Hz)
34
3.2.5.2.2 Result of analyzing
To analyzing the oscillation of building taking 100% Dead load + 50% Live load
Table 3.19 Analyzing oscillation export from ETABS
Mode
Period Frequency
UX UY UZ Oscillation state
sec Hz
1 2.018 0.50 0.001 0.999 0 Y - direction
2 1.613 0.62 0.977 0.001 0 X - direction
3 1.291 0.77 0.022 0 0 X - direction
4 0.507 1.97 0 0.991 0 Y - direction
5 0.424 2.36 0.046 0.009 0 X - direction
6 0.341 2.93 0.954 0 0 X - direction
7 0.239 4.18 0.008 0.079 0 Y - direction
8 0.214 4.67 0.001 0.919 0 Y - direction
9 0.157 6.37 0.005 0.018 0 Torsion
10 0.148 6.76 0.99 0 0 X - direction
11 0.121 8.26 0 0.882 0 Y - direction
12 0.115 8.70 0.002 0.05 0 Y - direction
 From the result, based on frequency taking 3 first mode for calculating.
Because 1 L
f f

The dynamic composition of the wind load must include the effect of the wind
velocity impulse and the inertial force of the building. And the procedure like
above
35
 Considering mode 1 with the oscillation in 2 direction X, Y
1 0.5
f  , 1 0.072
  , 1 1.75
 
Table 3.20 Calculating dynamic wind load in X – direction
yxji yxji
2
WFjx Mj
[m]
[kN/
m2
]
[m2
] [kN] [kN] [kN]
Roof 69.7 1.88 97.58 53.96 0.409 567.53 1.00E-03 5.40E-02 5.68E-04 95.08 94.43
Elevator.T 66.3 1.86 97.58 53.71 0.41 6661.88 9.55E-04 5.13E-02 6.07E-03 8.45 93.99
Terrace 62.9 1.85 97.58 53.59 0.412 9119.33 9.05E-04 4.85E-02 7.46E-03 6.50 93.78
Attic 59.5 1.84 97.58 53.46 0.414 9851.97 8.51E-04 4.55E-02 7.13E-03 6.38 93.55
14 56.1 1.81 97.58 52.94 0.416 9914.82 8.00E-04 4.23E-02 6.34E-03 6.68 92.64
13 52.7 1.8 97.58 52.93 0.419 10012.39 7.46E-04 3.95E-02 5.58E-03 7.08 92.63
12 49.3 1.78 97.58 52.91 0.422 10026.04 6.92E-04 3.66E-02 4.79E-03 7.63 92.60
11 45.9 1.76 97.58 52.49 0.425 10125.07 6.37E-04 3.34E-02 4.11E-03 8.14 91.86
10 42.5 1.73 97.58 51.94 0.427 10009.85 5.80E-04 3.01E-02 3.36E-03 8.95 90.90
9 39.1 1.69 97.58 51.10 0.43 10131.55 5.25E-04 2.68E-02 2.79E-03 9.61 89.42
8 35.7 1.66 97.58 50.88 0.435 10207.01 4.69E-04 2.39E-02 2.25E-03 10.63 89.04
7 32.3 1.64 97.58 50.53 0.439 10205.41 4.12E-04 2.08E-02 1.73E-03 12.01 88.42
6 28.9 1.6 97.58 49.41 0.44 10238.38 3.57E-04 1.77E-02 1.31E-03 13.50 86.46
5 25.5 1.57 97.58 49.69 0.45 10292.84 3.03E-04 1.50E-02 9.43E-04 15.95 86.95
4 22.1 1.53 97.58 48.85 0.454 10245.53 2.49E-04 1.22E-02 6.36E-04 19.14 85.49
3 18.7 1.49 97.58 48.21 0.46 10320.16 1.99E-04 9.60E-03 4.09E-04 23.47 84.36
Technical 15.3 1.44 111.9 54.48 0.47 8287.91 1.51E-04 8.25E-03 1.90E-04 43.44 95.34
2 11.4 1.36 103.3 48.51 0.48 8092.16 1.01E-04 4.91E-03 8.30E-05 59.19 84.89
Mezzanine 7.8 1.26 103.3 47.06 0.5 8126.52 6.17E-05 2.90E-03 3.09E-05 93.86 82.36
1 4.2 1.13 120.5 42.25 0.43 8779.30 3.03E-05 1.28E-03 8.04E-06 158.99 73.93
Story  yxji  i
Mj
Z Wtj Sjx WFjx   xpj
W
36
Table 3.21 Calculating dynamic wind load in Y – direction
yyji yyji
2
WFjy Mj
[m]
[kN/
m2
]
[m2
] [kN] [kN] [kN]
Roof 69.7 1.88 99.62 51.27 0.409 567.53 1.00E-03 5.13E-02 5.68E-04 90.34 89.72
Elevator.T 66.3 1.86 99.62 51.03 0.41 6661.88 9.57E-04 4.88E-02 6.10E-03 8.01 89.30
Terrace 62.9 1.85 99.62 50.91 0.412 9119.33 9.15E-04 4.66E-02 7.64E-03 6.10 89.10
Attic 59.5 1.84 99.62 50.79 0.414 9851.97 8.71E-04 4.43E-02 7.48E-03 5.92 88.89
14 56.1 1.81 99.62 50.30 0.416 9914.82 8.25E-04 4.15E-02 6.76E-03 6.15 88.02
13 52.7 1.8 99.62 50.29 0.419 10012.39 7.78E-04 3.91E-02 6.05E-03 6.46 88.00
12 49.3 1.78 99.62 50.27 0.422 10026.04 7.27E-04 3.65E-02 5.30E-03 6.90 87.98
11 45.9 1.76 99.62 49.88 0.425 10125.07 6.74E-04 3.36E-02 4.60E-03 7.30 87.28
10 42.5 1.73 99.62 49.35 0.427 10009.85 6.20E-04 3.06E-02 3.84E-03 7.96 86.36
9 39.1 1.69 99.62 48.55 0.43 10131.55 5.63E-04 2.73E-02 3.21E-03 8.52 84.96
8 35.7 1.66 99.62 48.34 0.435 10207.01 5.04E-04 2.44E-02 2.60E-03 9.39 84.60
7 32.3 1.64 99.62 48.01 0.439 10205.41 4.45E-04 2.14E-02 2.02E-03 10.57 84.01
6 28.9 1.6 99.62 46.94 0.44 10238.38 3.86E-04 1.81E-02 1.52E-03 11.89 82.15
5 25.5 1.57 99.62 47.21 0.45 10292.84 3.27E-04 1.54E-02 1.10E-03 14.03 82.61
4 22.1 1.53 99.62 46.42 0.454 10245.53 2.69E-04 1.25E-02 7.44E-04 16.82 81.23
3 18.7 1.49 99.62 45.80 0.46 10320.16 2.14E-04 9.82E-03 4.75E-04 20.70 80.16
Technical 15.3 1.44 114.3 51.76 0.47 8287.91 1.63E-04 8.46E-03 2.21E-04 38.23 90.59
2 11.4 1.36 105.5 46.09 0.48 8092.16 1.10E-04 5.08E-03 9.84E-05 51.65 80.65
Mezzanine 7.8 1.26 105.5 44.71 0.5 8126.52 6.75E-05 3.02E-03 3.71E-05 81.47 78.25
1 4.2 1.13 123.1 40.14 0.43 8779.30 3.26E-05 1.31E-03 9.31E-06 140.41 70.25
Mj Wypj
i
yyji
Z Wtj Sjy WFjy
Story
j
  
37
 Considering mode 3 with the oscillation in 2 direction X, Y
3 0.77
f  , 3 0.05
  , 3 1.58
 
Table 3.22 Calculating dynamic wind load in X – direction
yxji yxji
2
WFjx Mj
[m] [kN/m2
] [m2
] [kN] [kN] [kN]
Roof 69.7 1.8753 97.58 53.96 0.409 567.53 0.001000 5.40E-02 5.68E-04 95.08 85.26
Elevator.
T
66.3 1.862 97.58 53.71 0.41 6661.88 0.000989 5.31E-02 6.52E-03 8.15 84.86
Terrace 62.9 1.8487 97.58 53.59 0.412 9119.33 0.000935 5.01E-02 7.97E-03 6.29 84.67
Attic 59.5 1.8354 97.58 53.46 0.414 9851.97 0.000864 4.62E-02 7.36E-03 6.28 84.47
14 56.1 1.8088 97.58 52.94 0.416 9914.82 0.000803 4.25E-02 6.39E-03 6.65 83.64
13 52.7 1.7955 97.58 52.93 0.419 10012.39 0.000739 3.91E-02 5.47E-03 7.15 83.63
12 49.3 1.7822 97.58 52.91 0.422 10026.04 0.000672 3.55E-02 4.52E-03 7.86 83.60
11 45.9 1.7556 97.58 52.49 0.425 10125.07 0.000611 3.21E-02 3.78E-03 8.48 82.94
10 42.5 1.729 97.58 51.94 0.427 10009.85 0.000536 2.78E-02 2.87E-03 9.68 82.07
9 39.1 1.6891 97.58 51.10 0.43 10131.55 0.000481 2.46E-02 2.35E-03 10.48 80.74
8 35.7 1.6625 97.58 50.88 0.435 10207.01 0.000420 2.14E-02 1.80E-03 11.86 80.39
7 32.3 1.6359 97.58 50.53 0.439 10205.41 0.000359 1.82E-02 1.32E-03 13.77 79.83
6 28.9 1.596 97.58 49.41 0.44 10238.38 0.000301 1.49E-02 9.29E-04 16.02 78.06
5 25.5 1.5694 97.58 49.69 0.45 10292.84 0.000245 1.22E-02 6.19E-04 19.69 78.51
4 22.1 1.5295 97.58 48.85 0.454 10245.53 0.000190 9.28E-03 3.70E-04 25.10 77.19
3 18.7 1.4896 97.58 48.21 0.46 10320.16 0.000146 7.06E-03 2.21E-04 31.91 76.17
Technical 15.3 1.4364 111.93 54.48 0.47 8287.91 0.000110 5.99E-03 1.00E-04 59.82 86.08
2 11.4 1.3566 103.32 48.51 0.48 8092.16 0.000074 3.59E-03 4.44E-05 80.91 76.64
Mezzanine 7.8 1.2635 103.32 47.06 0.5 8126.52 0.000046 2.18E-03 1.74E-05 125.30 74.36
1 4.2 1.1305 120.54 42.25 0.43 8779.30 2.6E-05 1.12E-03 6.15E-06 181.87 66.75
Story yxji  i
Z Wtj Sjx WFjx Mj
j

  xpj
W
38
Table 3.23 Calculating dynamic wind load in Y – direction
yyji yyji
2
Wfjy Mj
[m] [kN/m2
] [m2
] [kN] [kN] [kN]
Roof 69.7 1.8753 99.62 51.27 0.409 567.53 0.001000 5.13E-02 5.68E-04 9.03E+01 81.01
Elevator.
T
66.3 1.862 99.62 51.03 0.41 6661.88 0.000423 2.16E-02 1.19E-03 1.81E+01 80.63
Terrace 62.9 1.8487 99.62 50.91 0.412 9119.33 0.000434 2.21E-02 1.71E-03 1.29E+01 80.44
Attic 59.5 1.8354 99.62 50.79 0.414 9851.97 0.000483 2.46E-02 2.30E-03 1.07E+01 80.25
14 56.1 1.8088 99.62 50.30 0.416 9914.82 0.000487 2.45E-02 2.35E-03 1.04E+01 79.47
13 52.7 1.7955 99.62 50.29 0.419 10012.39 0.000409 2.06E-02 1.67E-03 1.23E+01 79.46
12 49.3 1.7822 99.62 50.27 0.422 10026.04 0.000419 2.11E-02 1.76E-03 1.20E+01 79.43
11 45.9 1.7556 99.62 49.88 0.425 10125.07 0.000348 1.74E-02 1.23E-03 1.41E+01 78.80
10 42.5 1.729 99.62 49.35 0.427 10009.85 0.000322 1.59E-02 1.04E-03 1.53E+01 77.97
9 39.1 1.6891 99.62 48.55 0.43 10131.55 0.000322 1.56E-02 1.05E-03 1.49E+01 76.71
8 35.7 1.6625 99.62 48.34 0.435 10207.01 0.000263 1.27E-02 7.06E-04 1.80E+01 76.38
7 32.3 1.6359 99.62 48.01 0.439 10205.41 0.000239 1.15E-02 5.85E-04 1.97E+01 75.85
6 28.9 1.596 99.62 46.94 0.44 10238.38 0.000214 1.01E-02 4.71E-04 2.14E+01 74.17
5 25.5 1.5694 99.62 47.21 0.45 10292.84 0.000181 8.56E-03 3.38E-04 2.53E+01 74.59
4 22.1 1.5295 99.62 46.42 0.454 10245.53 0.000167 7.75E-03 2.86E-04 2.71E+01 73.34
3 18.7 1.4896 99.62 45.80 0.46 10320.16 0.000152 6.95E-03 2.37E-04 2.93E+01 72.37
Technical 15.3 1.4364 114.27 51.76 0.47 8287.91 0.000047 2.45E-03 1.86E-05 1.32E+02 81.79
2 11.4 1.3566 105.48 46.09 0.48 8092.16 0.000038 1.75E-03 1.16E-05 1.50E+02 72.82
Mezzanine 7.8 1.2635 105.48 44.71 0.5 8126.52 0.000046 2.07E-03 1.74E-05 1.19E+02 70.65
1 4.2 1.1305 123.06 40.14 0.43 8779.30 1.8E-05 7.13E-04 2.77E-06 2.57E+02 63.42
Wypj
Sjy WFjy Mj yyji
 i
Z Wtj
Story j

 
39
3.2.5.3 Combination of static wind load and dynamic wind load
According to 4.12 TCXD 229-1999
Internal force combination, displacement cause static and dynamic wind load
 
s 2
t d
I
i 1
X X X

  
Where
 X: Internal force cause by static and dynamic wind load.
 Xt
: Internal force cause by static wind load acting on building.
 Xd
: Internal force cause by dynamic wind load acting on building.
 s: The number of the calculated oscillation
40
Table 3.24 Combination of static wind load and dynamic wind load
X -
direction
X -
direction
Y -
direction
Y -
direction
Mode 1 Mode 3 Mode 1 Mode 3
[kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]
Roof 84.16 79.57 94.43396 85.26 89.72 81.01 210.65 200.45
Elevator. 218.03 222.59 93.99347 84.86 89.30 80.63 455.46 342.91
Terrace 216.48 221 93.77731 84.67 89.10 80.44 452.40 341.04
Attic 214.92 219.41 93.55461 84.47 88.89 80.25 449.32 339.17
14 211.8 216.23 92.64415 83.64 88.02 79.47 442.98 334.82
13 210.25 214.64 92.62614 83.63 88.00 79.46 440.00 333.21
12 208.69 213.05 92.5983 83.60 87.98 79.43 437.00 331.58
11 205.57 209.87 91.86469 82.94 87.28 78.80 430.73 327.46
10 202.46 206.69 90.89856 82.07 86.36 77.97 424.39 323.05
9 197.79 201.92 89.42479 80.74 84.96 76.71 414.86 316.39
8 194.67 198.74 89.03998 80.39 84.60 76.38 408.74 312.72
7 192.93 196.96 88.421 79.83 84.01 75.85 405.16 310.14
6 191.56 195.56 86.46089 78.06 82.15 74.17 401.73 306.23
5 186.89 190.79 86.95214 78.51 82.61 74.59 393.02 302.09
4 183.77 187.61 85.49475 77.19 81.23 73.34 386.45 297.05
3 179.1 182.84 84.36487 76.17 80.16 72.37 377.08 290.83
Technical 174.43 178.07
95.34393
86.08
90.59
81.79 373.22 300.12
2 168.2 171.71 84.88887 76.64 80.65 72.82 356.61 280.37
Mezzanine 156.65 159.93 82.35746 74.36 78.25 70.65 333.63 265.35
1 163.52 166.94 73.93388 66.75 70.25 63.42 342.98 261.58
Story X -
direction
Y -
direction
Static wind load Dynamic wind load Combination
GX GY
41
3.2.6.2.3 Load combination
Load
Combination
Load
Combination
Type
Case Name Scale factor
DL Add SW,WL,SDL 1,1,1
Comb1 Add DL,LL 1,1
Comb2 Add DL,WX 1,1
Comb3 Add DL,WX 1,-1
Comb4 Add DL,WY 1,1
Comb5 Add DL,WY 1,-1
Comb6 Add DL,WX,WY 1,0.7,0.7
Comb7 Add DL,WX,WY 1,0.7,-0.7
Comb8 Add DL,WX,WY 1,-0.7,0.7
Comb9 Add DL,WX,WY 1,-0.7,-0.7
Comb10 Add DL,LL,WX 1,0.9,0.9
Comb11 Add DL,LL,WX 1,0.9,-0.9
Comb12 Add DL,LL,WY 1,0.9,0.9
Comb13 Add DL,LL,WY 1,0.9,-0.9
Comb14 Add DL,LL,WX,WY 1,0.9,0.63,0.63
Comb15 Add DL,LL,WX,WY 1,0.9,0.63,-0.63
Comb16 Add DL,LL,WX,WY 1,0.9,-0.63,0.63
Comb17 Add DL,LL,WX,WY 1,0.9,-0.63,-0.63
ENVE Add Comb1,Comb2,…,Comb17 1,1,…,1
42
CHAPTER 4: DESIGNING TYPICAL – FLOOR
4.1 General introduction
4.1.1 Preliminary size of beam – slab system
Thickness of slab: 140mm.
Beam – system: 600x300; 500x300; 200x400.
4.1.2 Structural solution
Height floor: 3.4m, largest span l = 11m.
Using beam – slab system with some advantages (table 1.4) can be applied to this
structure.
Figure 4.1.2: Structural layout of typical – floor
43
4.1.3 Material used
(2.5 – CHAPTER 2)
4.1.4 Loads applied and loads combination
4.1.4.1 Loads applied
(3.2 – CHAPTER3)
Figure 4.1.4.1a: Super dead load on slab
44
Figure 4.1.4.1b: Wall load on beam
4.1.4.2 Loads combination
 For displacement
Long – term deflection: f = f1 – f2 + f3
f1: acting of short – term loads of whole loads.
f2: acting of short – term loads of long – term loads.
f3: acting of long – term loads of long – term loads.
Table 4.1.4.2 Load cases
Name Load Cases Analysis Type
NH1 1SW+1SDL+1WL
Nonlinear
(cracked)
NH2 1LL
NH3 1LL1
DH1 1SW+1SDL+1WL Nonlinear(Long-
term cracked)
DH2 1LL1
45
Table 4.1.2 Load combination
Name Load name Significant
COMBO Displacement
Short Term
1SW+1SDL+1WL+1LL
Checking short
term deflection
COMBO Displacement
Long Term
1NH1+1NH2-1NH3+1DH2 Checking long
term deflection
COMBO Calculation Rebar 1.1SW+1.2SDL+1.1WL+1.2LL
Calculating slab
reinforcement
46
4.2Slab analysis model
Figure 4.2.1: Strip A in X – direction
47
Figure 4.2.2: Strip B in Y – direction
48
Figure 4.2.3: Moment diagram in strip A
49
Figure 4.2.4: Moment diagram in strip B
50
4.3Calculating slab reinforcement
Effective height of slab: 140 15 125 ( )
o
h h a mm
    
Percentage of area: min max
17
0.05% 0.533 2.58%
350
s b
R
o s
A R
b h R
   
        

Summary reinforcement:
 Span: X – direction 8a200,8a150; Y – direction 8a200,10a150.
 Support: X – direction 10a200,10a100, 12a100;
Y – direction 8a200,10a100,10a200.
 More detail in drawing
Table 4.3: Calculating rebars in span and support of two - way slab
Note: Full calculating results in appendix 1
Station M3 Width Strip b As As/Strip μ As choose μchoose
[m] [kN.m] [m] [mm²] [mm²] % Ø @ [mm²] %
CSA6 0 2.610 1 0.014 0.014 70.5 0.0007 0.07 10 100 785 0.75 0.16 0.14 26.98
CSA6 0.3725 -0.289 1 0.002 0.002 7.8 0.0001 0.01 10 100 785 0.75 0.16 0.14 -26.98
CSA6 0.3725 0.236 1 0.001 0.001 6.3 0.0001 0.01 10 100 785 0.75 0.16 0.14 26.98
CSA6 0.75 -6.946 1 0.037 0.038 189.9 0.0018 0.18 10 100 785 0.75 0.16 0.14 -26.98
CSA6 0.75 -0.351 1 0.002 0.002 9.4 0.0001 0.01 10 100 785 0.75 0.16 0.14 -26.98
CSA6 1.2 -0.526 1 0.003 0.003 14.1 0.0001 0.01 10 100 785 0.75 0.16 0.14 -26.98
CSA6 1.2 -0.189 1 0.001 0.001 5.1 0.0000 0.00 10 100 785 0.75 0.16 0.14 -26.98
CSA6 1.65 -0.724 1 0.004 0.004 19.5 0.0002 0.02 10 100 785 0.75 0.16 0.14 -26.98
CSA6 1.65 -25.580 1 0.136 0.147 740.8 0.0071 0.71 10 100 785 0.75 0.16 0.14 -26.98
CSA6 2.1 -4.335 1 0.023 0.023 117.7 0.0011 0.11 10 100 785 0.75 0.16 0.14 -26.98
CSA6 2.1 -9.043 1 0.048 0.049 248.8 0.0024 0.24 10 100 785 0.75 0.16 0.14 -26.98
CSA6 2.55 -3.685 1 0.020 0.020 99.9 0.0010 0.10 10 100 785 0.75 0.16 0.14 -26.98
CSA6 2.55 -7.662 1 0.041 0.042 209.9 0.0020 0.20 10 100 785 0.75 0.16 0.14 -26.98
CSA6 3 -1.996 1 0.011 0.011 53.8 0.0005 0.05 10 100 785 0.75 0.16 0.14 -26.98
CSA6 3 -5.670 1 0.030 0.031 154.5 0.0015 0.15 10 100 785 0.75 0.16 0.14 -26.98
CSA6 3.45 0.006 1 0.000 0.000 0.2 0.0000 0.00 10 100 785 0.75 0.16 0.14 26.98
CSA6 3.45 -3.226 1 0.017 0.017 87.3 0.0008 0.08 10 100 785 0.75 0.16 0.14 -26.98
CSA6 3.9 1.927 1 0.010 0.010 52.0 0.0005 0.05 10 100 785 0.75 0.16 0.14 26.98
CSA6 3.9 -0.876 1 0.005 0.005 23.6 0.0002 0.02 10 100 785 0.75 0.16 0.14 -26.98
CSA6 4.35 3.697 1 0.020 0.020 100.2 0.0010 0.10 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 4.35 1.283 1 0.007 0.007 34.5 0.0003 0.03 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 4.8 5.237 1 0.028 0.028 142.5 0.0014 0.14 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 4.8 3.166 1 0.017 0.017 85.7 0.0008 0.08 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 5.25 6.431 1 0.034 0.035 175.6 0.0017 0.17 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 5.25 4.619 1 0.025 0.025 125.5 0.0012 0.12 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 5.7 8.380 1 0.045 0.046 230.1 0.0022 0.22 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 5.7 7.547 1 0.040 0.041 206.7 0.0020 0.20 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 6.19558 5.779 1 0.031 0.031 157.5 0.0015 0.15 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 6.19558 6.160 1 0.033 0.033 168.1 0.0016 0.16 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 6.69116 4.853 1 0.026 0.026 131.9 0.0013 0.13 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 6.69116 4.818 1 0.026 0.026 131.0 0.0012 0.12 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 7.18675 3.498 1 0.019 0.019 94.7 0.0009 0.09 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 7.18675 3.458 1 0.018 0.019 93.6 0.0009 0.09 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 7.68233 1.871 1 0.010 0.010 50.4 0.0005 0.05 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 7.68233 1.826 1 0.010 0.010 49.2 0.0005 0.05 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 8.17791 0.002 1 0.000 0.000 0.0 0.0000 0.00 8 200 251.3 0.24 0.05 0.05 9.13
CSA6 8.17791 -0.050 1 0.000 0.000 1.3 0.0000 0.00 8 100 453 0.43 0.09 0.09 -16.12
 am [M]
Strip
Arrangement
am 
51
4.4Checking displacement
Figure 4.4 Displacement of slab
Maximum displacement exported from SAFE
   
19 [ ] 60
150
'
L
f mm f mm
It satisfied
   

52
4.5Checking crack width
f1: f2: acting of short – term loads of long – term loads
f3: acting of long – term loads of long – term loads
Checking for strip MSA7 (TCVN5574:2012)
Mr≤ Mcrc
Which
 Mr = M (For bending element).
 Mcrc = Rbt.serWpl
 Wpl : Approximate bending-resisted moment: Wpl = γWred
 γ : coefficient of calculation with rectangular section: γ = 1.75
 Wred : Bending-resisted moment of the section of the tensile edge.
   
'
red s s
' 2
s s
2
red
s
b
t
red
8 4
red
6 3
red
red
t
crc bt,se
A A (A A )
A 0;A 251.3(mm )
A 121633(mm )
E 2100000
6.5
E 325000
h 140
bh As(h a) 1000 140 6.5 251.3 140 15
2 2
y 60.6(mm)
A 121633
I 1.45 10 (mm )
I
W 2.4 10 (mm )
h y
M R
  a 
 

a   
 a         
 
  
 
  

 r red
W 1.8 2.4 1.75 7.56(kN.m) M 8.44(kN.m)
Crack appeared
      

53
Crack width
 
 
   
3
s
crc c l
s
6
2 2
o b,ser
2 2
o
f
s
s
a 20 3.5 100
E
M 8.44 10
0; 0.3
bh R 1000 125 1.8
1.8for heavyconcrete
1 1
0.02
1 5 0.3
1 5
1.8
10 0.002 6.5
10
0.02
z 1 h 1 125 123.75mm
2 2 0.02
M 8.44
zA

      

     
 
 
   
 
   

 
 
a
   

     
   
   
   

  
 
6
3
crc cr
10
271(MPa)
123.75 251
271
a 1 1 1.3 20 3.5 100 0.002 10 0.15(mm) [a ] 0.3mm
200000


          
54
CHAPTER 5: STAIRCASE DESIGN
5.1 General features
Figure 5.1: Overview of staircase
5.1.1 Size and dimension of stairs
Table 5.1.1 Detailing of typical staircase
Height of floor 3.4 [m]
Step height 150 [mm]
Stair flight 1 1650 [mm]
Stair flight 2 1650 [mm]
Step width 300 [mm]
Flight distance 225 [mm]
Step number 21
Angle
0
b
b
h 150
tan = = 26
l 300
a  a  cos 0.894
a  [degree]
55
5.1.2 Preliminary section
a. Thickness of landing and flight
0
1 1 1 1
4560 152 182.4
30 25 30 25
150
s
s
h L
h mm
   
      
   
   
 
5.1.3 Load applied and combination
a. Landing
 Dead load
Table 5.1.3.a: Load of layers for the structure of the landing
No Layers Thickness
Specific
Gravity
Safety
Factor
n
Standard
Loads
Design
Loads
mm kN/m³ kN/m² kN/m²
1 Granite Tile 20 24 1.2 0.48 0.576
2 Mortar 20 18 1.3 0.36 0.47
3 Plasters 15 18 1.2 0.27 0.324
Total load (kN/m2) 1.11 1.37
Ladder load 0.3 (kN/ m)
 Live load
2
tt tc
p = n×p =1.2×3 = 3.6 (kN/ m )
 Distributed load on 1m – length of landing:  
(3.6 1.37) 1 5 /
q m kN m
   
b. Flight
 Dead load
Granite Tile: 1 tđ
g = n , b b
tđ
b
l + h
= × ×cos
l
  a
Mortar: 2 tđ
g = n  , b b
tđ
b
l + h
= × ×cos
l
  a
56
Brick step: tđ
n
g 
.
.
3  ; a
 cos
2
1


 b
tđ h
Plaster: 
.
.
5 n
g 
Table 5.1.3.b: Load of layers for the structure of the flight
No
Layers 
Thickness
δtđ
Safety factor
gtc
kN/m3 (mm) (n) kN/m2
1 Granite Tile 24 26.82 1.1 0.7
2 Mortar 18 26.82 1.3 0.63
3 Brick step 16 67.4 1.1 1.18
4 Plaster 18 15 1.3 0.35
Total dead load 2.86
Ladder load 0.3 (kN/ m)
 Live load
tc 2
p = p ×cos = 3×0.894 1.2 = 3.218(kN/ m )
tt
n
a  
 Distributed load on 1m – length of flight:  
(2.86 3.218) 1 6.078 /
q m kN m
   
5.2 Calculating staircase
Stair diagram is modeled as a beam with cross-section converted 1000 x hs.
Connecting directly the landing into shear wall and considering these connection is fixed
and the ratio
400
2.67 3
150
d
s
h
h
   . Considering the connection between beam and flight 2
is hinged connection.
57
5.2.1 Modelling
Using ETABS 2D for calculating internal forces
Dimension:
Flight: D150X1000
Load combination: 1Dead load + 1Live load
Figure 5.2.1a: Moment diagram of staircase
58
Table 5.2.1a: Value of moment diagram for staircase
Position Moment (kN.m)
Span 9.056
Support 9.84
Calculating reinforcement
Calculating the longitudinal bars as a bending element putting single reinforcement
with section  
1000 150
s
b h mm
  
Choosing a = 20mm 0 150 20 130
h h a mm
     
2
0
m
b
M
R bh
a  ; 1 1 2 m
 a
   ; 0
b
s
s
R bh
A
R


0
s
A
bh

 
Table 5.2.2: Table of calculating reinforcement for flight
Position
M
(kN.m/m) m
a 
As
(cm2
)

(%)
Ø
(mm)
As ,ch
(cm2
)
@
(mm)

ch
(%)
Span 9.056 0.032 0.033 3.24 0.25 8 4.52 100 0.35
Support 9.84 0.034 0.035 3.43 0.26 8 4.52 100 0.35
Calculating reinforcement for beam
Considering the beam is a simple beam subjecting by the load of flight 2 transferred
into it.
Internal forces Value
Mmax 79.74 (kN.m)
Qmax 83.71 (kN)
59
Choosing a = 40mm 0 400 40 360
h h a mm
     
2
0
m
b
M
R bh
a  ; 1 1 2 m
 a
   ; 0
b
s
s
R bh
A
R


0
s
A
bh

 
Table 5.2.3: Table of calculating reinforcement for beam
Position
M
(kN.m/m) m
a 
As
(cm2
)

(%)
Ø
(mm)
As ,ch
(cm2
)
 ch
(%)
Support 79.74 0.18 0.2 6.7 0.9 4Ø16 8.04 1.1
60
CHAPTER 6: FRAME DESIGN
6.1 Checking the stability of the building
6.1.1 Horizontal displacement at the top of building
(Appendix C, TCVN5574:2012)
The horizontal limitation for high-rise building  
69700
f 139.4( )
500 500
h
f mm
   
Story Combo
UX UY h h/500
Checking
[m] [m] [m] [m]
Roofing
Maximum
displacement
0.088 0.1 69.7 0.1394 Satisfied
6.1.2 Displacement between each story (Table C.4 TCVN 5574:2012)
From the table: 500
: of
s
u
s
h
f f
h height each story
 
61
Table 6.1.3: Horizontal displacement of each story
Story
Height
(m)
u
f
(mm)
Drift X
(mm)
Drift Y
(mm)
Checking
Roofing 3.4 6.8 1.397 1.542 Satisfied
Technical 3.4 6.8 1.406 1.55 Satisfied
Terrace 3.4 6.8 1.419 1.587 Satisfied
Attic 3.4 6.8 1.429 1.627 Satisfied
14 3.4 6.8 1.443 1.676 Satisfied
13 3.4 6.8 1.455 1.729 Satisfied
12 3.4 6.8 1.459 1.777 Satisfied
11 3.4 6.8 1.462 1.822 Satisfied
10 3.4 6.8 1.457 1.86 Satisfied
9 3.4 6.8 1.441 1.88 Satisfied
8 3.4 6.8 1.417 1.9 Satisfied
7 3.4 6.8 1.382 1.897 Satisfied
6 3.4 6.8 1.332 1.87 Satisfied
5 3.4 6.8 1.268 1.814 Satisfied
4 3.4 6.8 1.186 1.72 Satisfied
3 3.9 7.8 1.083 1.612 Satisfied
Technical 3.6 7.2 0.94 1.476 Satisfied
2 3.6 7.2 0.8 1.28 Satisfied
Mezzanine 4.2 8.4 0.65 1.05 Satisfied
1 3.25 6.5 0.47 0.7 Satisfied
B1 3 6 0.105 0.124 Satisfied
B2 0 0 0.048 0.067 Satisfied
62
6.1.3 Anti – roll stability checking
Ratio between rolled moment by horizontal load had to satisfy
1.5
CL
L
M
M

Where:
CL
M : Anti – roll moment
L
M : Rolled moment
However, the building with 69.7
2.37 5
29.3
H
B
   . Hence, it doesn’t need to check this
condition.
63
6.2 Calculating reinforcement for beams of typical floor and frame in axis 2
6.2.1 Internal forces and load combination
Figure 6.2.1: Internal force of typical floor
Using COMBOENVELOP to calculate bars for all typical floor beam
64
6.2.2 Calculating detail for beam B2
Figure 6.2.2 Internal force diagram B2
Table 6.2 Data for calculating
Beam Combo
Section bxh Mmax
[mm] [kNm]
B2 ComENVE Max 300x600 220
B2 ComENVE Min -364.13
B2 ComENVE Min -343.68
65
 Longitudinal reinforcement
 Span reinforcement M = 220 kN.m
Supposing a = 50mm, effective height: ho = h – a = 600 – 50 =550mm.
6
m R
2 2
b o
m
2
b 0
s
s
s b
min max R
0 s
M 220 10
α = 0.142 α 0.39 Single reinf orcement
R ×b×h 17 300 550
1 1 2 1 1 2 0.142 0.15
R b h 0.15 17 300 550
A 1187(mm )
R 365
A R
1187 17
μ 0.05% 0.72% μ ξ 0.53 2.5%
b h 300 550 R 365

    
 
    a     
     
  
           
 
Arranging 320 + 220
 Span reinforcement M = -364.13 kN.m
6
m R
2 2
b o
m
2
b 0
s
s
s b
min max R
0 s
M 364.13 10
α = 0.24 α 0.39 Single reinf orcement
R ×b×h 17 300 550
1 1 2 1 1 2 0.24 0.27
R b h 0.27 17 300 550
A 2101(mm )
R 365
A R
2101 17
μ 0.05% 1.27% μ ξ 0.53 2.5
b h 300 550 R 365

    
 
    a     
     
  
           
 
%
Arranging 422 + 222
Note: Full calculating results in appendix.
66
 Stirrup reinforcement
Maximum shear force in beam Qmax = 193.6kN
Shear resistance of concrete:
3
3 0 max
(1 ) 0.6 1.2 10 300 550 118.8 193.6
bt b n bt
Q R bh kN Q kN
  
         
Choosing 2 number of transverses Ø8:
Spacing of stirrup in
1
L
4
:
h > 450 ct ct
h
200(mm)
S min min S 150mm
3
300(mm)
300
 
 
 
   
   
 
 
 
Spacing of stirrup in
1
L
2
:
h >300 ct ct
3h
450(mm)
S min min S 200mm
4
500(mm)
500
 
 
 
   
   
 
 
 
3
w w
w
w
280 10 50.24
2 0.14 /
200
s s
s
R A
q n kN mm
s

 
    
Checking shear resistance of concrete and stirrup:
2 3 2
2 0
113.85 2 118.8 2 2 1.2 10 300 550 0.14 468
bt sw b bt sw
Q Q R bh q kN
 
          
Checking the main compressive stress of beam:
s s
w1
b
nE A 2 210000 50.24
1 5 1 5 1.06
E bs 30000 300 200
 
      
 
1 1 0.01 1 0.01 17 0.855
b b
R
      
3
1 w1 max
0.3 0.3 0.855 1.06 17 10 300 550 762.6 193.6
mc b b o
Q R bh kN Q kN
  
          
67
 Calculate hanging rebars (TCVN 5574:2012, Appendix C)
Concentrated load by the sub-beam acting on the main beam:
F = P + G =163.3 (kN)
Rebar diameter Ø8, number of branch n =2 asw = 50.3 (mm2
)
Number of hanging rebar needed:
(1 )
w w
hs
F
ho
x
n a R
s s


 
hs = hmb – hsb – a = 600 – 500 – 50 = 50mm
 0
3
50
(1 ) 163.3(1 )
550 5.3( )
2 50.3 280 10
 
  
    
s
sw sw
h
F
h
x mm
n a R
Total length of hanging bars: 2 2 50 300 400( )
     
s
a h b mm
Choose x = 8 (transverses), arrange each sub-beam 3 stirrups, at the length
hs = 50 (mm) approximate distance between two rebar is 20 (mm).
 Checking deflection for B2
 
2 6 2
u 3
5ML 5 220 10 9000 L 9000
f f 13(mm) 60(mm)
300 600
48EI 150 150
48 26000
12
  
      

 
68
 Checking crack for B2
Mr≤ Mcrc
Which
 Mr = M (For bending element).
 Mcrc = Rbt.serWpl
 Wpl : Approximate bending-resisted moment: Wpl = γWred
 γ : coefficient of calculation with rectangular section: γ = 1.75
 Wred : Bending-resisted moment of the section of the tensile edge.
   
'
red s s
' 2
s s
2
red
s
b
t
red
9 4
red
7 3
red
red
t
crc bt,ser red
A A (A A )
A 0;A 1571(mm )
A 190211(mm )
E 2100000
6.5
E 325000
h 600
bh As(h a) 300 600 6.5 1571 600 35
2 2
y 314(mm)
A 190211
I 8 10 (mm )
I
W 2.8 10 (mm )
h y
M R W
  a 
 

a   
 a         
 
  
 
  

  1.8 28 1.75 88.2(kN.m) M 200(kN.m)
Crack appeared
    

69
 Crack width
 
 
   
3
s
crc c l
s
6
2 2
o b,ser
2 2
o
f
s
s
a 20 3.5 100
E
M 200 10
0; 1.16
bh R 300 565 1.8
1.8for heavyconcrete
1 1
0.07
1 5 1.16
1 5
1.8
10 0.009 6.5
10
0.07
z 1 h 1 565 545.23mm
2 2 0.07
M 200 1
zA

      

     
 
 
   
 
   

 
 
a
   

     
   
   
   

  
 
6
3
crc cr
0
233.5(MPa)
545.23 1571
233.5
a 1 1 1 20 3.5 100 0.009 20 0.16(mm) [a ] 0.3mm
200000


           
6.3 Calculating reinforcement for columns of axis 2
6.3.1 Eccentrically compression column
Theory of calculation (Following to TCVN 5574:2012 and Tính toán thực hành cấu
kiện BTCT tập 2 – Nguyễn Đình Cống).
Calculation for column
Table 6.3.1: Internal force and eccentricity of C1
Story Load
P M2 M3
[kN] [kN.m] [kN.m]
Technical
Elevator
Comb1 -372.467 -106.083 -64.89
Technical
Elevator
Comb1 -355.676 33.386 23.84
…..
Technical
Elevator
Comb17 -360.145 -182.735 -153.28
70
Effective length: ox oy
l l 0.7 3.4 2.38
   
Calculate the typical case of Nmax, Mxcorrespond, Mycorrespond. More detail for all cases in
appendix.
Bending in X – direction:
ox
x x
x
l 2.38 1000
13.77 28 1
c 0.288 600

       

Accidental eccentricity: x
ax
c lox 600 2.38 1000
e Max ; Max ; 20 (mm)
30 600 30 600

   
  
 
 
 
 
Statics eccentricity: 3
x
1x
M 64.89
e 10 127 (mm)
N 372.467
   
For statically indeterminate structures
 
ox 1x ax
*
x x ox
e Max e ;e 127
M N e 380.164 1 0.127 48.28 (kN.m)
 
       
Bending in Y – direction:
oy
y y
y
l 2.38 1000
13.77 28 1
c 0.288 600

       

Accidental eccentricity:
y
ay
c l 600 2.38 1000
e Max ; Max ; 20 (mm)
30 600 30 600
  
 
  
   
 
 
Statics eccentricity: y 3
1y
M 176.1
e 10 463.2 (mm)
N 380.164
   
For statically indeterminate structures
 
oy 1y ay
*
y y oy
e Max e ;e 463.2
M N e 380.164 1 0.4632 176 (kN.m)
 
       
Considering:
*
*
y
x
x y
* *
y x
y x
M
M 48.28 176
80.467 (kN); 293.3(kN)
c 0.6 c 0.6
M M
c c
   
 
71
 Calculating in Y-direction, then exchanging from compressive eccentricity to axial
compression:
y x
* *
1 y 2 x
h c 600 (mm); b c 600 (mm);
M M 176 (kN.m); M M 48.28 (kN.m)
   
   
Assuming
gt o gt
a gt
a 50 (mm); h h a 600 50 550 (mm)
z h 2a 500 (mm)
     
  
Position of neutral axis:
1
1 o
b o
0.6 x
N 380.164 1000 0.6 32.27
x 32.27 (mm)<2agt=100mm;m 1 1 0.96
R b 17 600 h 550

 
       
 
Moment corresponding: 1 o 2
h 600
M M m M 176 0.96 48.28 222 (kN.m)
b 600
        
Statics eccentricity: 1
M 222 1000
e 584 (mm)
N 380.164

  
Accidental eccentricity: a ay ax
e e 0.2e 20 0.2 20 24 (mm)
     
 
o 1 a o
e Max e ;e 584 (mm) e e 0.5h a 584 0.5 600 50 834(mm)
          
o
1 R o
o
e 584
1.06 0.3;x <ξ h 0.546 550 300.3mm
h 550
        Calculating for a big
eccentricity case.
Reinforcement area:
 
 
 
1 o
'
s
sc
2
N× e+0.5x -h
A =A
0.4 R ×z
380.164 1000 834 0.5 32.27 550
1563 mm
0.4 365 500
s
a


    
 
 
Checking the percentage of reinforcements:
s
min tt max
o
A 1563
0.05% 100 0.5% 6%
bh 600 550
          

Table 6.3.2: Summary reinforcement of column in axis 2 (C1, C18)
Story Arranging  [%]
B2 – 3rd
20Ø28 1.5
4th
– 6th
12Ø28 1.5
7th
– Technical Elevator 8Ø28 1.4
72
Stirrup of the column
Table 6.3.3: Calculating stirrup
Direction Qmax s Qb Qsw Qsbw Checking
[kN] [mm] [kN] [kN] [kN]
x -32.62 200 100.8 203.5 304.26 Satisfied
y -92.57 200 100.8 203.5 304.26 Satisfied
Calculating stirrup as the case for beams, but the shear force is quite small and concrete
capacity can resist. Therefore, the stirrups put as secondary reinforcement with the detail
as follows (TCVN 5574 : 2012 8.7)
ar
ar
0.25
min(10 ,400); 15
oosin 8@200
st longitudinal b s
longitudinal b s d
s
Ch g
 
 a


 

Figure 6.3.1: Arranging stirrup
73
6.4 Calculating reinforcement for shear wall
6.4.1 Layout and dimension
Figure 6.4.1: Layout of shear wall in typical floor
Dimension of shear wall SW1 300x3850
SW2 300x3100
74
6.4.2 Method of boundary zone element for SW1
Table 6.4.2 Internal force of SW1
Story
Load Location
P M2 M3 V2
B2
[kN] [kNm] [kNm] [kN]
Combo1 Top -6762.71 196.4 -446.75 200.09
Combo1 Bottom -6359.59 5.29 -218.74 246.44
Combo2 Top -2857.8 144.15 -466.4 172.11
……..
Roofing Combo17 Top -8782.89 9.35 -708.248
Longitudinal reinforcement
Calculate the typical case of Nmax, Mxcorrespond, Mycorrespond. More detail for all cases in
appendix.
Dimension of SW1 tw = 0.3 m; L = 3.85 m
Suppose the width of boundary B =0.95m
L R
B

Left boundary
1
3
2
1
9367.25 356.874
4806( )
2 0.5 0.5 2 3.85 0.5 0.95 0.5 0.95
4806 10
13169( )
365
    
     

   
L R
s
s
Tension r
N M
N kN
L B B
N
einforcemen
mm
R
t
A
 Arranging 2022.
 Right boundary
1
3
1
w
9367.25 356.874
4560( )
2 0.5 0.5 2 3.85 0.5 0.95 0.5 0.95
Bendingcoefficient 0.9)
4560 10
17 950 300
0.9 607
(
365
    
     


   
   
L R
b r
s
s
Compression reinforc
N M
N kN
L B B
N
R
eme
B t
A
R
nt 

75
Middle zone
   
     
w
w
3
w
9367.25
2 3.85 2 0.95 0.3 4744( )
3.85 0.3
2 17 10 3.85 2 0.95 0.3 944
       

        
m r
m b r
Compression force the middle wall is subjected
The capacity of middle wall for subjecting compression f
N
N L B t kN
Lt
N R B t
o e
L
rc
5( ) 4744( )

kN kN
 Arranging the secondary reinforcement for middle zone 22200
 Calculating and comparing with the result of SW1 with the program for
reinforcement design using Matlab writing by student.
Figure 6.4.2a: Interface of the program for calculating reinforcement
 The same result. Therefore, using this program for calculating all shear wall
76
 Then checking for all the cases of internal forces by the interaction chart.
Figure 6.4.2b: Interface of the program for calculating reinforcement
Table 6.4.2: Summary reinforcement of SW1 in axis 2
Story
Arranging
 [%]
Left zone
Middle
zone
Right
zone
B2 – 3rd
20Ø22
22200
20Ø22 1.4
4th
– 10th
16Ø22 16Ø22 1.15
11th
– Technical Elevator 12Ø22 12Ø22 0.94
77
Stirrup reinforcement
Suppose 0.8 0.8 3.85 3.08 ( )
o
h L m
   
Qmax s Qb Qsw Qsbw
Checking
[kN] [mm] [kN] [kN] [kN]
-890.11 200 587.52 1955 2543.3 Satisfied
 Arranging 8@200 (5890mm2
)
78
CHAPTER 7: FOUNDATION DESIGN
7.1 Soil Report
Layers Parameters
Clayey sand, yellowish grey, plastic
 
3
sub 10.7 kN / m
 
o
19 36
 
 
2
u
c 20.6 kN / m

L
I 0.58

Clay with sand, yellowish brown,
stiff plastic
 
3
sub 10 kN / m
 
o
11 02
 
 
2
u
c 30.3 kN / m

L
I 0.22

Silty clayey sand, greyish blue,
loose to dense
 
3
sub 10.9 kN / m
 
o
30 07
 
 
2
u
c 12.2 kN / m

L
I 0.27

Clay, pinkish brown, yellowish
brown, stiff
 
3
sub 10.9 kN / m
 
o
15 41
 
 
2
u
c 113.7 kN / m

79
Figure 7.1: Layout of bored pile foundation
80
7.2 Ultimate bearing capacity of pile according to the material
vl b b sc s
Q =R .A +R .A
Where:
 
2 2
2
0.8
0.5
4 4
b
d
A m
  
   , d is diameter of bored pile.
2 2
3 2
0.016
14 2.8 10 ( )
4 4
s
A n m
  

     ,is diameter of reinforcement.
Hence, Ultimate bearing capacity of pile according to the material:
 
vl b b sc s
3 3 3 3
vl
Q =R .A +R .A
Q =17 10 0.5 2.8 10 355 10 2.8 10 9446( )
kN
 
        
7.3 Pile load capacity by criteria of soil strength TCVN 10304:2012 (G.2)
c,u b b i i
R q .A u f l
  
Where
 c,u
R : Ultimate bearing capacity of pile (kN)
 Ab – Area of end bearing,  
2
b
A 0.5 m

 u – Perimeter of body pile, u = 2.51 (m)
 p
q : strength of soil resistance below pile tip because the pile embedded at sand layer
(c=0) then the formula is:
' '
b ,p q b
q q .N A


Where
 '
q
N the soil load-bearing factors under the pile tip. It cab be determined by Table G1
take from AS 2159 - 1978, TCVN 10304 : 2014
81
Or
3
2 tan
4 2
'
q
2
e
N
2cos
2 2
 
 
 
 
 

 
 

 
 
 i
l (m) Length of body pile at layer “i”
 i
f (kPa) Average strength of resistance.
In cohesive soil:
i u,i
u,i
f c
c :Undrainedshearstrengthof layeri
:The coefficient depends on the characteristics of the soil layer
on the adhesive layer, the type of pile and the method of lowering the pile,
consolidation
 a
a
of the soil during construction and the method of determining cu.
When there is not enough information, this can be found on the G1, TCVN 10304: 2014
82
In coarse-grained soil:
i i i
v,z
i
v,z
i
f k tg
k :Horizontalpressure coefficient
:Averageverticaleffectivestressinlayeri
: frictionangelbetween pileandsoil


 



Table 7.1: Calculate the pile load capacity
7.4 Pile load capacity by SPT (formula of the Japanese Institute of Architecture
1988)
 
c,u b b c,i c,i s,i s,i
R q A u f l f l
  

Where:
 p
q : strength of soil resistance below pile tip because the pile embedded at sand layer
then the formula is:
b p
q 300N

For driven pile:
 Average resistance strength for the pile section at coarse-grained soil layer i
s,i
s,i
10N
f
3

 Average resistance strength for the pile section at cohesive soil layer i
c,i L L u,i
f f c
 a
d Depth li Ab u cu,i  
-
'v fili
(m) (m) (m) (m2
) (m) (kPa) (o
) (kPa) kN/m
4 Sand -18.9 11.15 12.2 30 139.5 0.40 359.51
4a Cohesive -20.8 1.9 30.3 1 11 198.5 0.65 57.57
4 Sand -36.3 15.5 12.2 - 30 311.2 0.40 1114.7
5 Clay (Stiff) -52.4 9.45 113.7 1 15 483.4 0.59 1074.5
6550.3
342.91
6893.2
6
0.8 0.50 2.51
Rc,u
u(fili)
qbAb
Type a ki
N'c
Layers
83
Where
 P
a Adjustment coefficient for the driving pile, depending on the ratio between the
undrained shear strength of Cu cohesive soil and the average value of effective
vertical normal stress, determined according to the graph in Figure G.2a
 L
f adjustment coefficient according to the slenderness h / d of the piles.
 Cu he intensity of the undrained shear strength of the cohesive soil, which can be
determined from the compression test of a horizontal expansion axis, or from the SPT
index in the cohesive soil calculated u,i c,i
c 6.25N
 by kPa
 c,i
N Average SPT index in cohesive of layer i
 s,i
N Average SPT index in coarse-grained soil of layer i
Table 7.2: Calculate the pile load capacity
7.5 Pile load capacity by Meyerhof
 
c,u b b c,i c,i s,i s,i
b 1 p
i 2 s,i
R q A u f l f l
q k N
f k N
  



Where:
 1
k is coefficient, k1 = 40h/d < 400 for driven pile, k1=120 for bored pile.
 p
N is the average SPT index in the distance 4d below pile tip and 1d above
 2
k is coefficient take 2 for driven pile and 1 for bored pile
 s,i
N is the average SPT index in the ith
layer
Depth d li Ab u cu,i 
-
'v fc,ili fs.ili
(m) (m) (m) (m2
) (m) (kPa) (kPa) kN/m kN/m
4 -18.9 Sand 11.15 8 12.2 - 139.5 - - 297.33
4a -20.8 Cohesive 1.9 14 30.3 0.99 198.5 1.2 66.51 -
4 -36.3 Sand 15.5 18 12.2 311.2 - 930.00
5 -52.4 Clay(Stiff) 9.45 38.00 113.7 0.99 483.4 1.2 1276.46 -
6459.9
342.91
6802.8
Rc,u
Abqb
u(fc.ili + fs,ili)
0.8 0.50 2.51
Type fL aP
Layers Ns,i
84
For the case the body pile in cohesive layer calculate skin friction by the formula
i u,i
u,i
f c
c :Undrainedshearstrengthof layeri
:The coefficient depends on the characteristics of the soil layer on the adhesive layer,
the type of pile and the method of lowering the pile, consolidation
 a
a
of the soil during construction
and the method of determining cu.
When there is not enough information, this can be found on the G1, TCVN 10304: 2014
Table 7.3: Calculate the pile load capacity
Depth d li Ab u cu,i fili
(m) (m) (m) (m2
) (m) (kPa) kN/m
4 -18.9 Sand 11.15 8 12.2 178.4
4a -20.8 Cohesive 1.9 14 30.3 1 57.57
4 -36.3 Sand 15.5 18 12.2 - 558
5 -52.4 Clay(Stiff) 9.45 38.00 113.7 1 1074
4696
2413
7109
k2 a
Layers Type Np Ns,i k1
Rc,u
40.00
u(fili)
Abqb
0.8 2
120
2.51
0.50
85
7.6 Design the typical foundation M1
7.6.1 Bearing capacity of pile
 Ultimate bearing capacity of pile:
   
c,u vl
R min 6893.2,6802.8,7108.6 6802.8 kN Q 9446(kN)
   
 Design bearing capacity of pile:
c,u
a
R 6802.8
Q 4122.9(kN)
FS 1.65
  
7.6.2 The number of piles in pile cap
Table 7.4 Internal forces at base
Foundation Cases Ntt
max Mtt
x Mtt
y Fx Fy
M1
Nmax,
Mcorresponding
[kN] [kNm] [kNm] [kN] [kN]
16927.95 -145.11 67.3 40.33 125.16
   
tt
N 16927.95
n 1 1.4 1 1.4 4.1 5.7
Qa 4122.9
       
Figure 7.1: Geometry of pile cap M1
The distance between them from center to center 3d, and from the center of outer pile to
edge pile cap 1d.
Choosing 6 bored pile 3x3 for pile cap of foundation of the core, the group factor will be:
   
   
1 2 2 1
1 2
n 1 n n 1 n
d
1 arctg
s 90n n
3 1 3 3 1 3
0.8
1 arctg 0.7 1
2.4 90 3 3
    
 
    
 
  
    
 
   
 
 
 
  
86
Pile group capacity:
   
   
1 2 2 1
group c,u
1 2
n 1 n n 1 n
d
P 1 arctg nR
s 90n n
3 1 3 3 1 3
0.8
1 arctg 6 4122.9 17316.2(kN) 16927.95(kN)
2.4 90 3 3
 
    
 
 
 
 
 
  
 
    
 
     
 
 
 
  
7.6.3 Checking the horizontal load bearing capacity of piles
The preliminary horizontal force of each pile:
tt 2 2 2 2
x y
H F F 40.33 125.16 131.5(kN)
    
pile
tt
tt H 131.5
H 22(kN)
6 6
  
Calculating for the horizontal load bearing capacity of piles by the method of calculating
the beam on the elastic ground with the support is spring and beam is pile.
The bending equation of pile:
4
0
4
d y
EI K zy 0
dz
 
Where
Ko the ground coefficient (kN/m4
)
y displacement of pile (m)
z depth (m)
EI the spring stiffness (kN.m2
)
Following to TCVN 205 – 1998, G.7 giving the formula to calculate the design of
pressure, moment and shear force:
0 0 0
z c 0 1 1 1 1
2 3
bd bd bd bd
2 0
z bd 0 3 bd 0 3 0 3 3
bd
3 2
z bd 0 4 bd 0 4 bd 0 4 0 4
M H
K
z y A B C D
EI EI
H
M EIy A EI B M C D
Q EIy A EIy B M C H D
 

    
 
a a a a
 
 a  a   
a
 a  a  a 
87
Where
0 0 HH 0 HM 0 0 0 0
2 3
bd bd
0 0 MH 0 MM 0 0 0 0
2 3
bd bd
1 1
y H M H A M B
EI EI
1 1
H M H B M C
EI EI
     
a a
      
a a
A0, B0, C0 take from the table with the coefficient 0 P
5
c bd pile pile
K b
l L L
EI
 a 
A1, A3, A4, B1, B3, B4, C1, C3, C4, D1, D3, D4 take from the table
88
Table 7.5: Calculation of pile subjected to horizontal force
At the depth 2m from the basement B2. There is the maximum horizontal pressure:
   
 
'
max 1 2 v u
4
5.39(kPa) tan c
cos
4
1 0.7 21.8 tan30.1 12.2 80.4(kPa)
cos30.1
         

      
 It’s satisfied the ground stability around piles
d 0.80 m lp 16.128
L 38.00 m Ao 2.441
I 0.02 m4 Bo 1.621
E 32500000 kPa Co 1.751
bp 1.8 m H 22
K 5000.0 kN/m4 M 0
abd 0.4244
z zc HH MH yo o D  z Mz Qz
m m m/kN m/kN m rad m rad kPa kN.m kN
0 0.0 0.00 0.00 22.00
0.1 0.0 0.54 0.00 22.00
0.3 0.1 1.51 5.18 21.73
0.7 0.3 3.02 15.13 19.90
0.9 0.4 3.57 19.51 18.45
1.2 0.5 4.36 23.68 16.76
1.6 0.7 4.79 30.70 12.78
2 0.8 5.39 33.52 10.67
2.4 1.0 5.14 37.37 6.35
2.6 1.1 4.90 38.66 4.23
2.9 1.2 4.76 39.54 2.23
3.1 1.3 4.40 39.80 0.30
3.4 1.4 4.13 39.62 -1.42
3.7 1.6 3.17 38.21 -4.53
3.9 1.7 2.73 37.00 -5.81
4.6 2.0 1.49 31.87 -8.56
5.4 2.2 0.74 27.58 -9.52
6.8 3.0 -1.37 9.92 -7.93
8.6 4.0 -2.31 -0.28 0.11
0.0003
0.0011
1.38E-05
4.89E-05 0.0003
0.0011
89
Figure 7.2: The Diagram of pile subjected to horizontal forces
0
2
4
6
8
10
-20.00 0.00 20.00 40.00 60.00
Depth
(m)
Value (kN.m)
Moment Diagram
0
2
4
6
8
10
-4.00-2.000.00 2.00 4.00 6.00 8.00
Depth
(m)
Value (kPa)
Horizontal Pressure
Diagram
0
2
4
6
8
10
-20.00 0.00 20.00 40.00
Depth
(m)
Value (kN)
Shear Force Diagram
90
7.6.4 Determine the spring stiffness
Settlement of single pile following to the formula B.1 – Appendix B- TCVN
10304:2014:
pile
D QL
s
100 AE
 
Where:
pile
D diameter of pile (m).
16927.95
Q 3527(kN)
6 0.8
 

The load acted on pile (kN)
L Length of pile (m).
A Area of pile (m2
).
E Young modulus of the material pile (kN/m2
).
pile
6
D QL 0.8 3527 37.8
s 0.016m 16(mm)
100 AE 100 0.5 32.5 10

     
 
The spring stiffness:
a
Q 4122.9
k 258(kN / mm)
s 16
  
Choosing height of pile cap H 1.5(m)

Using SAFE to calculate the reaction force at pile head
Exporting from SAFE: max a
min
P 2259(kN) Q 4122.9(kN)
P 1633(kN) 0
  
 
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf
Phu Dong Premier Apartment.pdf

More Related Content

Similar to Phu Dong Premier Apartment.pdf

Factors Impacting the Acheivement of Chilled Water Setpoint...
Factors Impacting the Acheivement of Chilled Water Setpoint...Factors Impacting the Acheivement of Chilled Water Setpoint...
Factors Impacting the Acheivement of Chilled Water Setpoint...
Jonathan Isaacs
 
TEAM 14 -HAZMAT ROBOT FINAL REPORT
TEAM 14 -HAZMAT ROBOT FINAL REPORTTEAM 14 -HAZMAT ROBOT FINAL REPORT
TEAM 14 -HAZMAT ROBOT FINAL REPORT
samuel caillouette
 
Centerline Cons.(Final Print)
Centerline Cons.(Final Print)Centerline Cons.(Final Print)
Centerline Cons.(Final Print)
Mariel Rosario
 
Archi cad step_by_step
Archi cad step_by_stepArchi cad step_by_step
Archi cad step_by_step
imaduddin91
 

Similar to Phu Dong Premier Apartment.pdf (20)

Dissertation - FINAL
Dissertation - FINALDissertation - FINAL
Dissertation - FINAL
 
Factors Impacting the Acheivement of Chilled Water Setpoint...
Factors Impacting the Acheivement of Chilled Water Setpoint...Factors Impacting the Acheivement of Chilled Water Setpoint...
Factors Impacting the Acheivement of Chilled Water Setpoint...
 
TEAM 14 -HAZMAT ROBOT FINAL REPORT
TEAM 14 -HAZMAT ROBOT FINAL REPORTTEAM 14 -HAZMAT ROBOT FINAL REPORT
TEAM 14 -HAZMAT ROBOT FINAL REPORT
 
Centerline Cons.(Final Print)
Centerline Cons.(Final Print)Centerline Cons.(Final Print)
Centerline Cons.(Final Print)
 
litrature finale.docx
litrature finale.docxlitrature finale.docx
litrature finale.docx
 
A study on effective vocabulary learning strategies for students, 9đ
A study on effective vocabulary learning strategies for students, 9đA study on effective vocabulary learning strategies for students, 9đ
A study on effective vocabulary learning strategies for students, 9đ
 
portfolio2
portfolio2portfolio2
portfolio2
 
Site visit report
Site visit reportSite visit report
Site visit report
 
Project Proposal Guidelines
Project Proposal GuidelinesProject Proposal Guidelines
Project Proposal Guidelines
 
Digital Reader
Digital Reader Digital Reader
Digital Reader
 
SENSE4US D8.3 Project Dissemination Material
SENSE4US D8.3 Project Dissemination Material SENSE4US D8.3 Project Dissemination Material
SENSE4US D8.3 Project Dissemination Material
 
PORTFOLIO BY RAJNISH.pdf
PORTFOLIO BY RAJNISH.pdfPORTFOLIO BY RAJNISH.pdf
PORTFOLIO BY RAJNISH.pdf
 
Design engineering 1-b report
Design engineering 1-b reportDesign engineering 1-b report
Design engineering 1-b report
 
Archi cad step_by_step
Archi cad step_by_stepArchi cad step_by_step
Archi cad step_by_step
 
Magazine (ICI)
Magazine (ICI)Magazine (ICI)
Magazine (ICI)
 
MAGAZINE.ppt
MAGAZINE.pptMAGAZINE.ppt
MAGAZINE.ppt
 
New technologies & environmental challenges in construction industry
New technologies & environmental challenges in construction industryNew technologies & environmental challenges in construction industry
New technologies & environmental challenges in construction industry
 
Ce 451 design of commercial building in jubail industrial city
Ce 451 design of commercial building in jubail industrial cityCe 451 design of commercial building in jubail industrial city
Ce 451 design of commercial building in jubail industrial city
 
Ken Lam 林锦鸿 || Portfolio
Ken Lam 林锦鸿 || PortfolioKen Lam 林锦鸿 || Portfolio
Ken Lam 林锦鸿 || Portfolio
 
Work Measurement Application - Ghent Internship Report - Adel Belasker
Work Measurement Application - Ghent Internship Report - Adel BelaskerWork Measurement Application - Ghent Internship Report - Adel Belasker
Work Measurement Application - Ghent Internship Report - Adel Belasker
 

More from Man_Ebook

More from Man_Ebook (20)

BÀI GIẢNG MÔN HỌC CƠ SỞ NGÔN NGỮ, Dùng cho hệ Cao đẳng chuyên nghiệp.pdf
BÀI GIẢNG MÔN HỌC CƠ SỞ NGÔN NGỮ, Dùng cho hệ Cao đẳng chuyên nghiệp.pdfBÀI GIẢNG MÔN HỌC CƠ SỞ NGÔN NGỮ, Dùng cho hệ Cao đẳng chuyên nghiệp.pdf
BÀI GIẢNG MÔN HỌC CƠ SỞ NGÔN NGỮ, Dùng cho hệ Cao đẳng chuyên nghiệp.pdf
 
TL Báo cáo Thực tập tại Nissan Đà Nẵng.doc
TL Báo cáo Thực tập tại Nissan Đà Nẵng.docTL Báo cáo Thực tập tại Nissan Đà Nẵng.doc
TL Báo cáo Thực tập tại Nissan Đà Nẵng.doc
 
Giáo trình thực vật học 2 - Trường ĐH Cần Thơ.pdf
Giáo trình thực vật học 2 - Trường ĐH Cần Thơ.pdfGiáo trình thực vật học 2 - Trường ĐH Cần Thơ.pdf
Giáo trình thực vật học 2 - Trường ĐH Cần Thơ.pdf
 
Giáo trình mô động vật - Trường ĐH Cần Thơ.pdf
Giáo trình mô động vật - Trường ĐH Cần Thơ.pdfGiáo trình mô động vật - Trường ĐH Cần Thơ.pdf
Giáo trình mô động vật - Trường ĐH Cần Thơ.pdf
 
Giáo trình ngôn ngữ hệ thống A - Trường ĐH Cần Thơ.pdf
Giáo trình ngôn ngữ hệ thống A - Trường ĐH Cần Thơ.pdfGiáo trình ngôn ngữ hệ thống A - Trường ĐH Cần Thơ.pdf
Giáo trình ngôn ngữ hệ thống A - Trường ĐH Cần Thơ.pdf
 
Giáo trình ngôn ngữ mô hình hóa UML - Trường ĐH Cần Thơ.pdf
Giáo trình ngôn ngữ mô hình hóa UML - Trường ĐH Cần Thơ.pdfGiáo trình ngôn ngữ mô hình hóa UML - Trường ĐH Cần Thơ.pdf
Giáo trình ngôn ngữ mô hình hóa UML - Trường ĐH Cần Thơ.pdf
 
Giáo trình nguyên lý máy học - Trường ĐH Cần Thơ.pdf
Giáo trình nguyên lý máy học - Trường ĐH Cần Thơ.pdfGiáo trình nguyên lý máy học - Trường ĐH Cần Thơ.pdf
Giáo trình nguyên lý máy học - Trường ĐH Cần Thơ.pdf
 
Giáo trình mô hình hóa quyết định - Trường ĐH Cần Thơ.pdf
Giáo trình mô hình hóa quyết định - Trường ĐH Cần Thơ.pdfGiáo trình mô hình hóa quyết định - Trường ĐH Cần Thơ.pdf
Giáo trình mô hình hóa quyết định - Trường ĐH Cần Thơ.pdf
 
Giáo trình Linux và phần mềm nguồn mở.pdf
Giáo trình Linux và phần mềm nguồn mở.pdfGiáo trình Linux và phần mềm nguồn mở.pdf
Giáo trình Linux và phần mềm nguồn mở.pdf
 
Giáo trình logic học đại cương - Trường ĐH Cần Thơ.pdf
Giáo trình logic học đại cương - Trường ĐH Cần Thơ.pdfGiáo trình logic học đại cương - Trường ĐH Cần Thơ.pdf
Giáo trình logic học đại cương - Trường ĐH Cần Thơ.pdf
 
Giáo trình lý thuyết điều khiển tự động.pdf
Giáo trình lý thuyết điều khiển tự động.pdfGiáo trình lý thuyết điều khiển tự động.pdf
Giáo trình lý thuyết điều khiển tự động.pdf
 
Giáo trình mạng máy tính - Trường ĐH Cần Thơ.pdf
Giáo trình mạng máy tính - Trường ĐH Cần Thơ.pdfGiáo trình mạng máy tính - Trường ĐH Cần Thơ.pdf
Giáo trình mạng máy tính - Trường ĐH Cần Thơ.pdf
 
Giáo trình lý thuyết xếp hàng và ứng dụng đánh giá hệ thống.pdf
Giáo trình lý thuyết xếp hàng và ứng dụng đánh giá hệ thống.pdfGiáo trình lý thuyết xếp hàng và ứng dụng đánh giá hệ thống.pdf
Giáo trình lý thuyết xếp hàng và ứng dụng đánh giá hệ thống.pdf
 
Giáo trình lập trình cho thiết bị di động.pdf
Giáo trình lập trình cho thiết bị di động.pdfGiáo trình lập trình cho thiết bị di động.pdf
Giáo trình lập trình cho thiết bị di động.pdf
 
Giáo trình lập trình web - Trường ĐH Cần Thơ.pdf
Giáo trình lập trình web  - Trường ĐH Cần Thơ.pdfGiáo trình lập trình web  - Trường ĐH Cần Thơ.pdf
Giáo trình lập trình web - Trường ĐH Cần Thơ.pdf
 
Giáo trình lập trình .Net - Trường ĐH Cần Thơ.pdf
Giáo trình lập trình .Net  - Trường ĐH Cần Thơ.pdfGiáo trình lập trình .Net  - Trường ĐH Cần Thơ.pdf
Giáo trình lập trình .Net - Trường ĐH Cần Thơ.pdf
 
Giáo trình lập trình song song - Trường ĐH Cần Thơ.pdf
Giáo trình lập trình song song  - Trường ĐH Cần Thơ.pdfGiáo trình lập trình song song  - Trường ĐH Cần Thơ.pdf
Giáo trình lập trình song song - Trường ĐH Cần Thơ.pdf
 
Giáo trình lập trình hướng đối tượng.pdf
Giáo trình lập trình hướng đối tượng.pdfGiáo trình lập trình hướng đối tượng.pdf
Giáo trình lập trình hướng đối tượng.pdf
 
Giáo trình lập trình hướng đối tượng Java.pdf
Giáo trình lập trình hướng đối tượng Java.pdfGiáo trình lập trình hướng đối tượng Java.pdf
Giáo trình lập trình hướng đối tượng Java.pdf
 
Giáo trình kỹ thuật phản ứng - Trường ĐH Cần Thơ.pdf
Giáo trình kỹ thuật phản ứng  - Trường ĐH Cần Thơ.pdfGiáo trình kỹ thuật phản ứng  - Trường ĐH Cần Thơ.pdf
Giáo trình kỹ thuật phản ứng - Trường ĐH Cần Thơ.pdf
 

Recently uploaded

Contoh Aksi Nyata Refleksi Diri ( NUR ).pdf
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdfContoh Aksi Nyata Refleksi Diri ( NUR ).pdf
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdf
cupulin
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
AnaAcapella
 

Recently uploaded (20)

Graduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptxGraduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptx
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
e-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopale-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopal
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
How to Send Pro Forma Invoice to Your Customers in Odoo 17
How to Send Pro Forma Invoice to Your Customers in Odoo 17How to Send Pro Forma Invoice to Your Customers in Odoo 17
How to Send Pro Forma Invoice to Your Customers in Odoo 17
 
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdf
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdfContoh Aksi Nyata Refleksi Diri ( NUR ).pdf
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdf
 
Rich Dad Poor Dad ( PDFDrive.com )--.pdf
Rich Dad Poor Dad ( PDFDrive.com )--.pdfRich Dad Poor Dad ( PDFDrive.com )--.pdf
Rich Dad Poor Dad ( PDFDrive.com )--.pdf
 
What is 3 Way Matching Process in Odoo 17.pptx
What is 3 Way Matching Process in Odoo 17.pptxWhat is 3 Way Matching Process in Odoo 17.pptx
What is 3 Way Matching Process in Odoo 17.pptx
 
Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management
 
Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesMajor project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategies
 
Observing-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxObserving-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptx
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in Hinduism
 
diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....
 
male presentation...pdf.................
male presentation...pdf.................male presentation...pdf.................
male presentation...pdf.................
 
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUMDEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
 
Trauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical PrinciplesTrauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical Principles
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 

Phu Dong Premier Apartment.pdf

  • 1. HOCHIMINH CITY UNIVERSITY OF TECHNOLOGY AND EDUCATION CIVIL ENGINEERING GRADUATION THESIS PHU DONG PREMIER APARTMENT ADVISOR: Dr. NGUYEN VAN CHUNG Ho Chi Minh City, March 2021 SKL 0 0 7 7 3 9 STUDENT’S NAME: VU THI HOAI STUDENT’S ID: 16149323
  • 2. 1 GRADUATION PROJECT TASK Student: VŨ THỊ HOÀI Student ID: 16149323 Major: CIVIL ENGINEERING PROJECT NAME: PHU DONG PREMIER APARTMENT 1. Preliminary data  Architectural document (has already edited following advisor’s instruction).  Geotechnical survey. 2. Theoretical and calculation content a. Architecture  Represent architectural drawings. b. Structure  Calculation, design typical floor slab.  Calculation, design stair case.  Model, calculation, design frame axis 2. c. Foundation  Gather geotechnical data  Design practical foundation solutions. 3. Demonstration and drawings  01 presentation and 01 appendix.  16 A1 drawing (7 architectures, 9 structures). 4. Advisor : Dr. NGUYỄN VĂN CHÚNG 5. Date of assignment : 8/2020 6. Completion date : Ho Chi Minh City, 18th January 2021 Advisor’s confirmation Faculty’s administration confirmation
  • 3. 2 THE SOCIALIST REPUBLIC OF VIETNAM Independence – Freedom– Happiness -------- Ho Chi Minh City, January 18, 2021 ADVISOR’S EVALUATION SHEET Student name: ..............................................................Student ID: .................................. Student name: ..............................................................Student ID: .................................. Student name: ..............................................................Student ID: .................................. Major:.................................................................................................................................. Project title: ........................................................................................................................ Advisor:.............................................................................................................................. EVALUATION 1. Content of the project: ............................................................................................................................................ ............................................................................................................................................ ............................................................................................................................................ 2. Strengths: ............................................................................................................................................ ............................................................................................................................................ ............................................................................................................................................ 3. Weaknesses: ............................................................................................................................................ ............................................................................................................................................ ............................................................................................................................................ 4. Approval for oral defense? (Approved or denied) ............................................................................................................................................ ............................................................................................................................................ ............................................................................................................................................ 5. Overall evaluation: (Excellent, Good, Fair, Poor) ............................................................................................................................................ ............................................................................................................................................ 6. Mark:……………….(in words:....................................................................................) Ho Chi Minh City, 18th January 2021 ADVISOR (Sign with full name)
  • 4. 3 THE SOCIALIST REPUBLIC OF VIETNAM Independence – Freedom– Happiness -------- Ho Chi Minh City, January 18, 2021 PRE-DEFENSE EVALUATION SHEET Student name: ................................................................. Student ID: ............................. Student name: ................................................................. Student ID: ............................. Student name: ................................................................. Student ID: ............................. Major: ..................................................................................................................................... Project title: ............................................................................................................................. ................................................................................................................................................. Name of Reviewer: ................................................................................................................. EVALUATION 1. Content and workload of the project ............................................................................................................................................ ............................................................................................................................................ ............................................................................................................................................ ............................................................................................................................................ 2. Strengths: ............................................................................................................................................ ............................................................................................................................................ ............................................................................................................................................ 3. Weaknesses: ............................................................................................................................................ ............................................................................................................................................ ............................................................................................................................................ 4. Approval for oral defense? (Approved or denied) ............................................................................................................................................ ............................................................................................................................................ 5. Overall evaluation: (Excellent, Good, Fair, Poor) ............................................................................................................................................ ............................................................................................................................................ 6. Mark:……………….(in words.....................................................................................) Ho Chi Minh City, 18th January 2021 REVIEWER (Sign with full name)
  • 5. 4 THE SOCIALIST REPUBLIC OF VIETNAM Independence – Freedom– Happiness -------- Ho Chi Minh City, January 18, 2021 EVALUATION SHEET OF DEFENSE COMITTE MEMBER Student name: ................................................................. Student ID: ............................. Student name: ................................................................. Student ID: ............................. Student name: ................................................................. Student ID: ............................. Major: ...................................................................................................................................... Project title: .............................................................................................................................. Name of Defense Committee Member: ................................................................................................................................................... EVALUATION 1. Content and workload of the project ............................................................................................................................................ ............................................................................................................................................ ............................................................................................................................................ ............................................................................................................................................ 2. Strengths: ............................................................................................................................................ ............................................................................................................................................ 3. Weaknesses: ............................................................................................................................................ ............................................................................................................................................ 4. Overall evaluation: (Excellent, Good, Fair, Poor) ............................................................................................................................................ 5. Mark:……………….(in words:....................................................................................) Ho Chi Minh City, 18th January 2021 COMMITTEE MEMBER (Sign with full name)
  • 6. 5 PREFACE I did my best to complete this project with the help of Dr.Nguyễn Văn Chúng I am would like to send my sincere thanks to Dr.Nguyễn Văn Chúng for the guidance and support as well as providing necessary information regarding the project Ho Chi Minh City, 18th January 2021 Student Vũ Thị Hoài
  • 7. 6 CONTENTS: GRADUATION PROJECT TASK .......................................................................................1 ADVISOR’S EVALUATION SHEET..................................................................................2 PRE-DEFENSE EVALUATION SHEET..............................................................................3 EVALUATION SHEET OF ..................................................................................................4 DEFENSE COMITTE MEMBER .........................................................................................4 CHAPTER 1: OVERVIEW OF THE BUILDING ARCHITECTURE ..............................12 1.1 Briefly describe the building.................................................................................12 1.1.1 Demand for construction building.................................................................12 1.1.2 Position of the building..................................................................................13 1.1.3 Project description.........................................................................................13 1.2 Architectural solution............................................................................................13 1.2.1 Dividing plans and functions .........................................................................13 1.2.2 Traffic inside the building..............................................................................14 1.3 Technical solution .................................................................................................14 1.3.1 Electrical systems ..........................................................................................14 1.3.2 Water systems ................................................................................................14 1.3.3 Ventilation systems ........................................................................................15 1.3.4 Lighting systems.............................................................................................15 1.3.5 Fire protection system – Escape....................................................................15 CHAPTER 2: STRUCTURES PLAN .................................................................................16 2.1 Structure solution ..................................................................................................16 2.2 Standard for structural design ...............................................................................16 2.3 Software uses during the process ..........................................................................17 2.4 Material .................................................................................................................17 2.4.1 Concrete cover ........................................................................................................17 2.5 Preliminary section of elements............................................................................18 2.5.1 Thickness of slab..................................................................................................18 2.5.2 Dimension of beam..............................................................................................18 2.5.3 Dimension of shear wall......................................................................................19 2.5.4 Dimension of column...........................................................................................20 CHAPTER 3: LOADS APPLIED ON BUILDING ............................................................21
  • 8. 7 3.1 Load classification .....................................................................................................21 3.2 Calculating design loads .......................................................................................21 3.2.1 Weight of structure itself (DL).......................................................................21 3.2.2 Loads of finishes (SDL)..................................................................................21 3.2.3 Loads of brick wall (WL) ...............................................................................25 3.2.4 Live load(LL,LL1)..........................................................................................29 3.2.5 Wind load.......................................................................................................30 3.2.5.2 Dynamic wind load ........................................................................................32 3.2.5.3 Combination of static wind load and dynamic wind load .............................39 CHAPTER 4: DESIGNING TYPICAL – FLOOR .............................................................42 4.1 General introduction .................................................................................................42 4.1.1 Preliminary size of beam – slab system.........................................................42 4.1.2 Structural solution..........................................................................................42 4.1.3 Material used..................................................................................................43 4.1.4 Loads applied and loads combination............................................................43 4.2 Slab analysis model ..................................................................................................46 4.3 Calculating slab reinforcement .................................................................................50 4.4 Checking displacement.............................................................................................52 4.5 Checking crack width.............................................................................................50 CHAPTER 5: STAIRCASE DESIGN.................................................................................54 5.1 General features .........................................................................................................54 5.1.1 Size and dimension of stairs................................................................................54 5.1.2 Preliminary section..............................................................................................55 5.1.3 Load applied and combination ............................................................................55 5.2 Calculating staircase...................................................................................................56 5.2.1 Modelling ............................................................................................................57 CHAPTER 6: FRAME DESIGN.........................................................................................60 6.1 Checking the stability of the building.......................................................................60 6.1.1 Horizontal displacement at the top of building .............................................60 6.1.2 Displacement between each story (Table C.4 TCVN 5574:2012).................60 6.1.3 Anti – roll stability checking..........................................................................62 6.2 Calculating reinforcement for beams of typical floor and frame in axis 2...............63
  • 9. 8 6.2.1 Internal forces and load combination............................................................63 6.2.2 Calculating detail for beam B2......................................................................64 6.3 Calculating reinforcement for columns of axis 2......................................................69 6.3.1 Eccentrical compression column ...................................................................69 6.4 Calculating reinforcement for shear wall..................................................................73 6.4.1 Layout and dimension....................................................................................73 6.4.2 Method of boundary zone element for SW1..................................................74 CHAPTER 7: FOUNDATION DESIGN ............................................................................78 7.1 Soil Report ............................................................................................................78 7.2 Ultimate bearing capacity of pile according to the material .................................80 7.3 Pile load capacity by criteria of soil strength TCVN 10304:2012 (G.2) ..............80 7.4 Pile load capacity by SPT (formula of the Japanese Institute of Architecture 1988)82 7.5 Pile load capacity by Meyerhof.............................................................................83 7.6 Design the typical foundation M1.........................................................................85 7.6.1 Bearing capacity of pile.................................................................................85 7.6.2 The number of piles in pile cap......................................................................85 7.6.3 Checking the horizontal load bearing capacity of piles ................................86 7.6.4 Determine the spring stiffness ............................................................................. 90 7.6.5 Checking ground stability and settlement below the assuming foundation...91 7.6.6 Checking the punching shear condition: .......................................................95 7.6.7 Calculating the reinforcement for pile cap....................................................96 7.7 Design the typical foundation M2 …………………..…….……….…………….95 7.7.1 Internal forces of foundation M2.................................................................102 7.7.2 Checking reaction force at pile head...........................................................102 7.7.3 Checking ground stability and settlement below the assuming foundation.102 7.7.4 Checking the punching shear condition.........................................................98 7.7.5 Calculating the reinforcement for pile cap M2 .............................................99 7.8 Design the elevator foundation M3 ….…………………………………...…….100 7.8.1 Checking the horizontal load bearing capacity of piles…………………...102 7.8.2 Determine the spring stiffness......................................................................102 7.8.3 Checking ground stability and settlement below the assuming foundation.102 7.8.4 Checking shear resistance of concrete ........................................................107 7.8.5 Calculating the reinforcement for pile cap..................................................107
  • 10. 9 CONTENTS OF FIGURES and TABLES Figure 1.1 Position of building in map ................................................................................13 Table 2.6.1 Thickness of slab ..............................................................................................18 Table 2.6.2 Beam section.....................................................................................................19 Table 2.6.4.1 Preliminary column section at middle and corner .........................................20 Figure 3.1: Slab detail..........................................................................................................21 Table 3.1 Load of bedroom floor structure layers ...............................................................22 Table 3.2 Load of restroom floor structure layers ...............................................................22 Table 3.3 Load of the floor of the living room ....................................................................23 Table 3.4 Loading of corridor floor layers ..........................................................................23 Table 3.5 Loading of balcony floor structure ......................................................................23 Table 3.6 Loading of layers of the terrace floor ..................................................................24 Table 3.7 Loading of the roof floor structure ......................................................................24 Table 3.8 Loading floor structure of Basement 1, Basement 2 ...........................................25 Table 3.9 Loading of brick wall basement ..........................................................................26 Table 3.10 Loading of the first floor wall............................................................................26 Table 3.11 Loading of 2nd floor wall, Mezzanine ..............................................................27 Table 3.12 Loading of technical floors................................................................................27 Table 3.13 Loading of wall on the 3rd floor - Technical elevator.......................................28 Table 3.14 Loading of wall roof ..........................................................................................28 Table 3.15 Live load ............................................................................................................29 Table 3.16 Table of static wind pressure .............................................................................31 Table 3.17 Limitation value of specific oscillation frequency ............................................32 Table 3.19 Analyzing oscillation export from ETABS .......................................................34 Table 3.20 Calculating dynamic wind load in X – direction...............................................35 Table 3.21 Calculating dynamic wind load in Y – direction...............................................36 Table 3.22 Calculating dynamic wind load in X – direction...............................................37 Table 3.23 Calculating dynamic wind load in Y – direction...............................................37 Table 3.24 Combination of static wind load and dynamic wind load .................................40 Figure 4.1.2: Structural layout of typical – floor .................................................................42
  • 11. 10 Table 4.1.4.2 Load cases......................................................................................................44 Table 4.1.2 Load combination .............................................................................................45 Figure 4.2.1: Strip A in X – direction..................................................................................46 Figure 4.2.2: Strip B in Y – direction ..................................................................................47 Figure 4.2.3: Moment diagram in strip A ............................................................................48 Figure 4.2.4: Moment diagram in strip B ............................................................................49 Table 4.3: Calculating rebars in span and support of two - way slab..................................50 Figure 4.4 Displacement of slab ..........................................................................................51 Figure 5.1: Overview of staircase........................................................................................54 Table 5.1.1 Detailing of typical staircase ............................................................................54 Table 5.1.3.a: Load of layers for the structure of the landing..............................................55 Table 5.1.3.b: Load of layers for the structure of the flight.................................................56 Figure 5.2.1a: Moment diagram of staircase .......................................................................57 Table 5.2.1a: Value of moment diagram for staircase.........................................................58 Table 5.2.2: Table of calculating reinforcement for flight ..................................................58 Table 5.2.3: Table of calculating reinforcement for beam ..................................................59 Table 6.1.3: Horizontal displacement of each story ............................................................61 Figure 6.2.1: Internal force of typical floor .........................................................................63 Figure 6.2.2 Internal force diagram B2................................................................................64 Table 6.2 Data for calculating..............................................................................................64 Table 6.3.1: Internal force and eccentricity of C1 ...............................................................69 Table 6.3.2: Summary reinforcement of column in axis 2 (C1, C18) .................................71 Table 6.3.3: Calculating stirrup ...........................................................................................72 Figure 6.3.1: Arranging stirrup............................................................................................72 Table 6.4.2 Internal force of SW1 .......................................................................................74 Figure 6.4.2a: Interface of the program for calculating reinforcement ...............................75 Figure 6.4.2b: Interface of the program for calculating reinforcement ...............................76 Table 6.4.2: Summary reinforcement of SW1 in axis 2 ......................................................76 Table 7.1: Calculate the pile load capacity..........................................................................82 Table 7.2: Calculate the pile load capacity..........................................................................83 Table 7.3: Calculate the pile load capacity..........................................................................84 Table 7.4 Internal forces at base ..........................................................................................85
  • 12. 11 Figure 7.1: Geometry of pile cap M1 ..................................................................................85 Table 7.5: Calculation of pile subjected to horizontal forces ..............................................88 Figure 7.2: The Diagram of pile subjected to horizontal forces ..........................................89 Figure 7.3: The geometry of the assuming foundation........................................................91 Table 7.6: Calculating settlement ........................................................................................94 Figure 7.4: Moment diagram of M1 foundation..................................................................96 Table 7.7: Calculation of pile cap reinforcement ................................................................96 Figure 7.5: Dimension of foundation M2 and Reaction force at pile head .........................95 Table 7.8: Internal forces of M2 .......................................................................................102 Table 7.9: The settlement of foundation M2 ....................................................................103 Table 7.10: Calculating settlement ....................................................................................108 Figure 7.7: Moment diagram of M1 foundation................................................................108
  • 13. 12 CHAPTER 1: OVERVIEW OF THE BUILDING ARCHITECTURE 1.1 Briefly describe the building 1.1.1 Demand for construction building The fundamental proof for development country which is the infrastructure stable, create good conditions, and most favorable conditions for living and working needs of the people. For our country, as a country that is gradually developing and increasingly asserting its position in the region and the world, to do well that goal, the first thing needs to increasingly improve the need for security and jobs for the people. In which the need for accommodation is one of the top urgent needs. Faced with a rapidly growing population, the need to buy land for house construction is increasing while the city's land fund is limited, so land prices are escalating, making many people unable to afford. buy land for construction. To solve this urgent problem, the solution of building high-rise apartments and developing residential planning to the districts and suburbs of the city center is the most reasonable. Besides, along with the rise of the City's economy and the growing foreign investment in the market, it opens up a promising prospect for investment in construction of buildings used as offices, high-rise hotels, high-rise apartments ... with high quality to meet the increasing living needs of all people. It can be said that the appearance of more and more buildings inside and outside the city not only meets the urgent need for infrastructure, but also contributes positively to creating a new face for the city. Time is also an opportunity to create many jobs for people. Therefore, PHU DONG PREMIER APARTMENT is designed and built to contribute to solving the above objectives. This is a modern high-rise building, fully furnished, beautiful landscape ... suitable for living, entertainment and working, a high-rise apartment building is designed and constructed with high quality, full sufficient facilities to serve the living needs of people.
  • 14. 13 1.1.2 Position of the building Address: The surface of Highway 32, 100m across Dien Bridge, close to Tay Do supermarket and Cau Dien market, 1km from My Dinh bus station, 500m from Trade University, 700m from National University. Figure 1.1 Position of building in map The special feature of the project is that it is located in a prime location with the Northwest adjacent to the planned road, the Southeast bordering the Cau Dien market street, the Northeast bordering the 32 National Highway, the Southwest bordering the road area. The project is expected to be constructed from 2011 to the end of 2014. After completion, the project will contribute more to the city. A modern living environment, partially meeting the housing needs of the people. 1.1.3 Project description The building has a floor area of 34,000 m2 , including 2 units of 23 floors for housing and 25 floors for offices. The first floor is used as a public service area. The total number of apartments is 154 units with an area of 80-140 m2 each. The building also has 2 basements for semi-automatic parking of 4,860 m2 . 1.2 Architectural solution 1.2.1 Dividing plans and functions The plan is rectangular in shape with the land area shown above. Basement 1, basement 2 are located at the elevation of -6,250m, arranged with a vortex ramp from the basement to the entrance to the ground, arranged appropriately for the area mostly used for parking, arrangement of gain boxes reasonable and create the most open space possible for the basement. Stairs and elevators are arranged in the
  • 15. 14 middle of the basement so that users can see it right away to serve the travel. At the same time, the fire protection system is also easy to see. The first floor is arranged with offices and public services to serve necessary jobs. In general, it is easy to operate and manage when arranging rooms like the existing architecture. 2nd floor to technical floor layout of offices. The third floor to the attic shows the function of the building, in addition to the toilet area and the traffic area inside, the remaining area is used for active apartments. The rooftop terrace, elevator techniques and the remaining roof are used for multi- purpose hall and courtyard to increase the overall efficiency of the building. 1.2.2 Traffic inside the building Standing traffic: 3 elevators, 2 stairs, 1 technical room. Cross traffic: the corridor is the main traffic route. 1.3 Technical solution 1.3.1 Electrical systems Buildings using electricity are supplied from two sources: the grid and a generator with a capacity of 150 kV (with a transformer all placed in the basement to avoid noise and vibration affecting the birth. active). The entire power line is underground (installed at the same time with construction). The main power supply system is in a technical box inserted in the electrical gen and placed underground in the wall and floor, ensuring not passing through wet areas and facilitating easy repair when needed. 1.3.2 Water systems The building uses water taken from the water supply system to the underground storage tank and then pumped to the roof water tank, from here it will be distributed down the floors of the building according to the main water pipes. The water pump system for the project is fully automatic designed to ensure that the water in the roof tank is always enough to supply for living and firefighting. The pipes that pass through the layers are always wrapped in water gene boxes. Underground water supply system in technical boxes. The main fire pipes are always located on each floor along the vertical traffic area and on the ceiling.
  • 16. 15 Rainwater on the roof will drain through the collection holes that flow into the rainwater drainage pipes downwards. Particularly, the wastewater drainage system will have its own pipeline. Wastewater from the toilets has its own pipeline system to bring water to the wastewater treatment tank and then into the general drainage system. 1.3.3 Ventilation systems Each floor has windows and skylights that are convenient for receiving the wind and draining the wind, helping to evenly air-condition the building. 1.3.4 Lighting systems The floors are naturally illuminated through the outside glass and skylights in the building. In addition, the artificial lighting system is also arranged so that it can provide light to where needed. 1.3.5 Fire protection system – Escape Fire alarm system is installed in each rental area. Fire extinguishers are fully equipped and arranged in corridors, stairs ... according to the guidance of the city's fire department.
  • 17. 16 CHAPTER 2: STRUCTURES PLAN 2.1 Structure solution  Slab plan Table 1.4 Comparison between slabs types Slab plan Advantage Disadvantage Beam – slab system The ability to exceed the average span. Slab thickness is small, small deflection. Reducing clearance height because of beam, and not convenient in layout architecture. Flat - slab Getting more clearance height Restricting in exceed span. Large concentrated force in top column. Slab thickness is big, big deflection, complex calculation. Waffle - slab Light floor weight, saving costs for structures and structures, great stiffness, and good sound insulation Requires design, construction, low fire resistance technology.  With the characteristic of the building. Therefore, choosing frame - core and beam – slab system. 2.2 Standard for structural design - TCVN 2737:1995: Loads and Impacts. - TCVN 5574:2012: Reinforced concrete structure. - TCXD 229 – 1999: Instruction on calculating the dynamic components of wind load is in accordance with TCVN 2737 – 1995. - TCVN 10304 – 2014: Pile foundations - Design standards. - TCVN 9362:2012: Background design of houses and buildings.
  • 18. 17 2.3 Software uses during the process - Software for analyzing and calculating: ETABS, SAFE, Matlab, Excel. - Drawing: Autocad. 2.4 Material Concrete B30 Reinforcement CB400-V (Table 21 – TCVN 5574:2012) 2 25 ( / ) kN m   2 17( ) 17000 ( / ) b R MPa kN m   2 1.15( ) 1150 ( / ) bt R MPa kN m   2 32500( ) 3.25 07 ( / ) b E MPa E kN m    . 2 : 225( ) 225000 ( / ) sc s AI R R MPa kN m    2 2 : 365( ) 365000 ( / ) 200000( ) 2.0 08 ( / ) sc s s AIII R R MPa kN m E MPa E kN m       . 2.4.1 Concrete cover STT Detail Thickness (mm) 1 Foundation 50 2 Slab 15 3 Beam 30, 40 4 Stair 20 5 Wall 40 6 Structures in contact with soil are lined with concrete 50
  • 19. 18 2.5 Preliminary section of elements 2.5.1 Thickness of slab Choosing of floor thickness depends on span and applied load. Preliminarily select the floor area according to the formula s D h L m   ; min s h h  Where    40 45 m   for two-way slab    30 35 m   for one-way slab    10 15 m   for the first half version of the consol version    0.8 1.4 D   depending on loads  min 4 h cm  for roof - slab  min 5 h cm  for slab of house and public  L: bearing edge of the slab (short edge)  Considering slab 10.4 11m    1 1 5200 115 130 45 40 s h mm            Table 2.6.1 Thickness of slab Slab Typical floor Basement B1 Basement B2 140 140 250 500 2.5.2 Dimension of beam 1 b b b h L m     0.3 0.5 b b b h    Where  Ld: Length of considering beam    12 16 b m   : for main - beam    14 18 b m   : for secondary beam    5 7 b m   : for consol beam
  • 20. 19  Main – beam   1 1 11000 687 916 16 12 mb h mm             Choosing 600 mb h mm      0.3 0.5 800 240 400 mb b mm       Choosing 300 mb b mm   Secondary beam   1 1 11000 611 785 18 14 sb h mm             Choosing 500 sb h mm      0.3 0.5 700 210 350 sb b mm       Choosing 300 sb b mm   Consol beam   1 1 5500 550 785 10 7 cb h mm             Choosing 400 cb h mm      0.3 0.5 500 150 250 cb b mm       Choosing 200 d b mm  Table 2.6.2 Beam section Beam Main – beam bxh (mm) Secondary beam bxh (mm) Consol beam bxh (mm) Section (mm) 600x300 500x300 400x200 2.5.3 Dimension of shear wall Section of shear wall have to satisfied: t 150 1 1 3400 170 20 20 mm H mm           Ht: Height of typical floor Thickness of elevator wall 300mm Thickness of basement wall 300mm
  • 21. 20 2.5.4 Dimension of column c b N F k R   Where  k (1.2-1.5): Safety factor (k = 1.3 for boundary beam, k = 1.5 for corner beam)  Rb: Compressive strength of concrete  N: Total transferring loads into column N=m.q.F + m: Number of floors above column + q: equivalent load per square meter of floor surface including regular and temporary loads on the floor, beams, walls, and columns. (q = 10÷14 kN/m² when slab thickness 10÷14cm) + F: Transferring load area into column (cm2 ) Table 2.6.4.1 Preliminary column section at middle and corner Floor Basement B2 – 2nd 2nd – 6th 6th – 10th 10th – Roofing 900x900 800x800 700x700 600x600 Corner 1100x1100
  • 22. 21 CHAPTER 3: LOADS APPLIED ON BUILDING 3.1 Load classification The structure of a high-rise building is calculated with the following main loads: Vertical loads  Weight of structure itself (DL)  Loads of finishes (SDL)  Wall load (WL)  Active load used (LL1, LL2) Wind loads  Static wind load  Dynamic wind load Impact load during construction Soil pressure, groundwater Application of TCVN 2737: 1995 Loads and impacts - Design standards to calculate the types of loads acting on the building. 3.2 Calculating design loads 3.2.1 Weight of structure itself (DL) The self-weight of the building will depend on the size of each member and the structural software will automatically calculate the self-load. 3.2.2 Loads of finishes (SDL) The thickness of the structural layers is based on architectural drawings, pipeline technical systems, electrical equipment, and the confidence coefficient is based on TCVN 2737: 1995. Depending on the function of the use of the floor plots, we calculate the static load on each floor plot as follows: Calculating the load of the structural layers: Figure 3.1: Slab detail
  • 23. 22   2 1 / n i i i i g n kN m     Where i  : Specific gravity of i layer i  : Thickness of i layer i n : Safety factor of i layer Table 3.1 Load of bedroom floor structure layers No Layers Thickness Specific Gravity Standard Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 1 Ceramic Tile 10 22 0.22 1.1 0.24 2 Mortar 20 18 0.36 1.3 0.47 3 Plasters 15 18 0.27 1.3 0.35 4 Systems engineering - - 0.25 1.2 0.30 Total dead load 1.10 1.36 Table 3.2 Load of restroom floor structure layers No Layers Thickness Specific Gravity Standard Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 1 Ceramic Tile 10 22 0.22 1.1 0.24 2 Mortar to make sloped 40 18 0.72 1.3 0.94 3 Plasters 15 18 0.27 1.3 0.35 4 Waterproof 10 18 0.18 1.1 0.20 5 Mortar for ceiling 0.20 1.3 0.26 6 Systems engineering - - 0.25 1.2 0.30 Total dead load 1.84 2.29
  • 24. 23 Table 3.3 Load of the floor of the living room No Layers Thickness Specific Gravity Standard Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 1 Ceramic Tile 10 22 0.22 1.1 0.24 2 Mortar 20 18 0.36 1.3 0.47 3 Plasters 15 18 0.27 1.3 0.35 4 Systems engineering - - 0.25 1.2 0.30 Total dead load 1.10 1.36 Table 3.4 Loading of corridor floor layers No Layers Thickness Specific Gravity Standard Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 1 Ceramic Tile 10 22 0.22 1.1 0.24 2 Mortar 20 18 0.36 1.3 0.47 3 Plasters 15 18 0.27 1.3 0.35 4 Systems engineering - - 0.25 1.2 0.30 Total dead load 1.10 1.36 Table 3.5 Loading of balcony floor structure No Layers Thickness Specific Gravity Standard Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 1 Ceramic Tile 10 22 0.22 1.1 0.24 2 Mortar 20 18 0.36 1.3 0.47 3 Plasters 15 18 0.27 1.3 0.35 Total dead load 0.85 1.06
  • 25. 24 Table 3.6 Loading of layers of the terrace floor No Layers Thickness Specific Gravity Standar d Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 1 Ceramic Tile 10 22 0.22 1.1 0.24 2 Mortar to make sloped 20 18 0.36 1.3 0.47 3 Elastic waterproof coating sika 10 4 Plasters 15 18 0.27 1.3 0.35 5 Waterproof 10 18 0.18 1.1 0.20 6 Mortar for ceiling 0.20 1.3 0.26 7 Systems engineering - - 0.25 1.2 0.30 Total dead load 1.48 1.82 Table 3.7 Loading of the roof floor structure No Layers Thickness Specific Gravity Standard Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 1 Ceramic Tile 10 22 0.22 1.1 0.24 2 Mortar to make sloped 20 18 0.36 1.3 0.47 3 Elastic waterproof coating sika 10 4 Plasters 15 18 0.27 1.3 0.35 5 Waterproof 10 18 0.18 1.1 0.20 6 Mortar for ceiling 0.20 1.3 0.26 7 Systems engineering - - 0.25 1.2 0.30
  • 26. 25 Table 3.8 Loading floor structure of Basement 1, Basement 2 No Layers Thickness Specific Gravity Standard Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 3 Plasters 15 18 0.27 1.3 0.35 4 Systems engineering - - 0.25 1.2 0.30 Total dead load 0.52 0.65 3.2.3 Loads of brick wall (WL) Calculating the load of the structural layers:   2 1 / n i i i i t s g n h kN m        Where i  : Specific gravity of i layer i  : Thickness of i layer i n : Safety factor of i layer t h : Height of wall s  : Coefficient minus window; 1 s  
  • 27. 26 Table 3.9 Loading of brick wall basement No Layers Thickness Specific Gravity Standard Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 1 Brick wall 220 18 3.96 1.1 4.36 2 Mortar cement mac 75 30 18 0.54 1.3 0.70 3 Height of floor 3250 Standard load distributed in 1m wall length 4 Height of beam 700 11.48 (kN/m) 5 Height of wall 2550 Design load distributed in 1m wall length 6 Coefficient minus window 1 12.91 (kN/m) Table 3.10 Loading of the first floor wall No Layers Thickness Specific Gravity Standard Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 1 Brick wall 220 18 3.96 1.1 4.36 2 Mortar cement mac 75 30 18 0.54 1.3 0.70 3 Height of floor 4200 Standard load distributed in 1m wall length 4 Height of beam 700 15.75 (kN/m) 5 Height of wall 3500 Design load distributed in 1m wall length 6 Coefficient minus window 1 17.72 (kN/m)
  • 28. 27 Table 3.11 Loading of 2nd floor wall, Mezzanine No Layers Thicknes s Specific Gravity Standar d Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 1 Brick wall 220 18 3.96 1.1 4.36 2 Mortar cement mac 75 30 18 0.54 1.3 0.70 3 Height of floor 3600 Standard load distributed in 1m wall length 4 Height of beam 700 13.05 (kN/m) 5 Height of wall 2900 Design load distributed in 1m wall length 6 Coefficient minus window 1 14.68 (kN/m) Table 3.12 Loading of technical floors No Layers Thickness Specific Gravity Standard Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 1 Brick wall 220 18 3.96 1.1 4.36 2 Mortar cement mac 75 30 18 0.54 1.3 0.70 3 Height of floor 3900 Standard load distributed in 1m wall length 4 Height of beam 700 14.4 (kN/m) 5 Height of wall 3200 Design load distributed in 1m wall length 6 Coefficient minus window 1 16.2 (kN/m)
  • 29. 28 Table 3.13 Loading of wall on the 3rd floor - Technical elevator No Layers Thickness Specific Gravity Standard Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 1 Brick wall 220 18 3.96 1.1 4.36 2 Mortar cement mac 75 30 18 0.54 1.3 0.70 3 Height of floor 3400 Standard load distributed in 1m wall length 4 Height of beam 700 12.15 (kN/m) 5 Height of wall 2700 Design load distributed in 1m wall length 6 Coefficient minus window 1 13.67 (kN/m) Table 3.14 Loading of wall roof No Layers Thickness Specific Gravity Standard Loads Safety Factor n Design Loads mm kN/m³ kN/m² kN/m² 1 Brick wall 220 18 3.96 1.1 4.36 2 Mortar cement mac 75 30 18 0.54 1.3 0.70 3 Height of floor 400 Standard load distributed in 1m wall length 4 Height of beam 0 1.8 (kN/m) 5 Height of wall 400 Design load distributed in 1m wall length 6 Coefficient minus window 1 2.02 (kN/m)
  • 30. 29 3.2.4 Live Load(LL,LL1) - Following to Table 3 TCVN 2737:1995 Tải trọng và tác động -Tiêu chuẩn thiết kế. - Design live load distributed on slabs   2 1 / tt c p P p n kN m   Where  c p : Standard live loads follow to TCVN 2737-1995  p n : Safety factors follow to TCVN 2737-1995 Table 3.15 Live load Function rooms Standard long-term live load(LL1) Standard live load(LL) Safety factor Design long- term live load Design live load kN/m2 kN/m2 n kN/m2 kN/m2 Slab basement 1.8 5 1.2 2.16 6 Halls, corridors, stairs 1 3 1.2 1.2 3.6 Office, bedroom, living room, dining room, restroom. 0.3 1.5 1.3 0.39 1.95 Balcony, logia 1.4 2 1.2 1.68 2.4 Attic - 0.7 1.3 - 0.91 Mezzanine, roof floor - 0.75 1.3 - 0.975
  • 31. 30 3.2.5 Wind load 3.2.5.1Static wind load The concentrated wind pressure of static component Wj at point j corresponding to height zj compared with reference point:   j 0 j W W kB H c   Where  : Safety factor of wind load, 1.2 0 W : Standard wind loads depend on the active wind area and topography(kPa) (Table 4 TCVN 2737:1995) k: Depending on the height of the floor under consideration (Table 5 TCVN 2737:1995) c: aerodynamic coefficient, wind pushed 0.8 wind suction 0.6 (Table 6 TCVN 2737:1995) B: Catching wind width (m) Hj: Catching wind height (m) Position: Thị trấn Cầu Diễn, Huyện Từ Liêm, Thủ đô Hà Nội. Phụ lục E TCVN 2737 – 1995 - IIB  2 0 W = 95 daN/m - Coefficient of aerodynamics on the push side and suction side c = 1.4 - Catching wind surface width following to x-direction: Ox - Catching wind surface width following to y-direction: Oy - Catching wind surface width following to vertical direction: Oz Zone II Topography B Standard wind pressure Wo ( kN/m2) 0.95 Aerodynamic coefficient c 1.4 Total floors 20
  • 32. 31 Table 3.16 Table of static wind pressure Story Height of each floor (m) Ox (m) Oy (m) Oz (m) k Floor elevation (m) Wind pressure following to x- direction Wind pressure following to y- direction 1 4.2 28.7 29.3 4.2 0.85 4.2 163.52 166.94 Mezzanine 3.6 28.7 29.3 3.6 0.95 7.8 156.65 159.93 2 3.6 28.7 29.3 3.6 1.02 11.4 168.20 171.71 Technical 3.9 28.7 29.3 3.9 1.08 15.3 192.93 196.96 3 3.4 28.7 29.3 3.4 1.12 18.7 174.43 178.07 4 3.4 28.7 29.3 3.4 1.15 22.1 179.10 182.84 5 3.4 28.7 29.3 3.4 1.18 25.5 183.77 187.61 6 3.4 28.7 29.3 3.4 1.2 28.9 186.89 190.79 7 3.4 28.7 29.3 3.4 1.23 32.3 191.56 195.56 8 3.4 28.7 29.3 3.4 1.25 35.7 194.67 198.74 9 3.4 28.7 29.3 3.4 1.27 39.1 197.79 201.92 10 3.4 28.7 29.3 3.4 1.3 42.5 202.46 206.69 11 3.4 28.7 29.3 3.4 1.32 45.9 205.57 209.87 12 3.4 28.7 29.3 3.4 1.34 49.3 208.69 213.05 13 3.4 28.7 29.3 3.4 1.35 52.7 210.25 214.64 14 3.4 28.7 29.3 3.4 1.36 56.1 211.80 216.23 Attic 3.4 28.7 29.3 3.4 1.38 59.5 214.92 219.41 Terrace 3.4 28.7 29.3 3.4 1.39 62.9 216.48 221.00 Technical Elevator 3.4 28.7 29.3 3.4 1.4 66.3 218.03 222.59 Roof 3.4 11 10.4 3.4 1.41 69.7 84.16 79.57
  • 33. 32 3.2.5.2Dynamic wind load 3.2.5.2.1 Theory The height of building greater than 40m following to TCXD 229-1999, considering the effect of dynamic wind load, following to instruction the step for calculation as follow: Wind zone: IIB ‘Note 10 at page 10: when the building is reinforcement concrete and brick stone, also steel building have the enclosure structure ’ Table 3.17 Limitation value of specific oscillation frequency Hence, the limitation value of specific oscillation frequency design for building fL = 1.3. Case 1: 1 L f f  The dynamic component of the wind load only includes the effect of the wind speed impulse. Then the calculated value of dynamic components of wind pressure Wpj acting on the j part of the work is determined by the formula: pj j j W W    Where  pj W : pressure, the calculation unit is daN / m2 or kN / m2 depending on the calculation unit of Wj  j W : The unit of calculation is daN / m2 or kN / m2, depending on the standard value of the static component of the wind pressure, acting on the j part of the building, determined according to Article 4.10 of TCXD 229-1999.  j  : is the coefficient of dynamic pressure of wind load, at height corresponding to j part of the building, dimensionless. The values for are taken according to TCVN 2737: 1995 and given in Table 3 TCXD 229-1999.
  • 34. 33   : spatial correlation coefficients of dynamic pressure of wind load corresponding to different types of building fluctuations, dimensionless. In the formula,  is obtained by 1  . If the wind-receiving surface of the building has a rectangular orientation parallel to the fundamental axes in Figure 1, the values 1  are taken according to Table 4 TCXD 229-1999, in which the parameters  and  determined according to Table 5, the value of corresponding to the 2nd and 3rd vibrations is 2 3 1     . The values in Table 4 and Table 5 are taken according to TCVN 2737- 1995. Case 2: 1 L f f  The dynamic composition of the wind load must include the effect of the wind velocity impulse and the inertial force of the building. When the fundamental natural frequency s, satisfies the inequality 1 s L s f f f    , it is necessary to calculate the dynamic composition of the wind load with s first form of oscillation: pji j i i ji W M y   Where pj W : force, calculation unit is daN or kN depending on the calculation unit of WFj in the coefficient formula i  j M : concentrating mass of part of the building jth; (t) i  : dynamic coefficient corresponding to the ith oscillation, dimensionless, depending on the parameters i  and logarithmic reduction of the oscillation 0 940 i i W f     : Safety factor of wind load, 1.2 0 W : wind pressure (N/m2 ) i f : frequency ith (Hz)
  • 35. 34 3.2.5.2.2 Result of analyzing To analyzing the oscillation of building taking 100% Dead load + 50% Live load Table 3.19 Analyzing oscillation export from ETABS Mode Period Frequency UX UY UZ Oscillation state sec Hz 1 2.018 0.50 0.001 0.999 0 Y - direction 2 1.613 0.62 0.977 0.001 0 X - direction 3 1.291 0.77 0.022 0 0 X - direction 4 0.507 1.97 0 0.991 0 Y - direction 5 0.424 2.36 0.046 0.009 0 X - direction 6 0.341 2.93 0.954 0 0 X - direction 7 0.239 4.18 0.008 0.079 0 Y - direction 8 0.214 4.67 0.001 0.919 0 Y - direction 9 0.157 6.37 0.005 0.018 0 Torsion 10 0.148 6.76 0.99 0 0 X - direction 11 0.121 8.26 0 0.882 0 Y - direction 12 0.115 8.70 0.002 0.05 0 Y - direction  From the result, based on frequency taking 3 first mode for calculating. Because 1 L f f  The dynamic composition of the wind load must include the effect of the wind velocity impulse and the inertial force of the building. And the procedure like above
  • 36. 35  Considering mode 1 with the oscillation in 2 direction X, Y 1 0.5 f  , 1 0.072   , 1 1.75   Table 3.20 Calculating dynamic wind load in X – direction yxji yxji 2 WFjx Mj [m] [kN/ m2 ] [m2 ] [kN] [kN] [kN] Roof 69.7 1.88 97.58 53.96 0.409 567.53 1.00E-03 5.40E-02 5.68E-04 95.08 94.43 Elevator.T 66.3 1.86 97.58 53.71 0.41 6661.88 9.55E-04 5.13E-02 6.07E-03 8.45 93.99 Terrace 62.9 1.85 97.58 53.59 0.412 9119.33 9.05E-04 4.85E-02 7.46E-03 6.50 93.78 Attic 59.5 1.84 97.58 53.46 0.414 9851.97 8.51E-04 4.55E-02 7.13E-03 6.38 93.55 14 56.1 1.81 97.58 52.94 0.416 9914.82 8.00E-04 4.23E-02 6.34E-03 6.68 92.64 13 52.7 1.8 97.58 52.93 0.419 10012.39 7.46E-04 3.95E-02 5.58E-03 7.08 92.63 12 49.3 1.78 97.58 52.91 0.422 10026.04 6.92E-04 3.66E-02 4.79E-03 7.63 92.60 11 45.9 1.76 97.58 52.49 0.425 10125.07 6.37E-04 3.34E-02 4.11E-03 8.14 91.86 10 42.5 1.73 97.58 51.94 0.427 10009.85 5.80E-04 3.01E-02 3.36E-03 8.95 90.90 9 39.1 1.69 97.58 51.10 0.43 10131.55 5.25E-04 2.68E-02 2.79E-03 9.61 89.42 8 35.7 1.66 97.58 50.88 0.435 10207.01 4.69E-04 2.39E-02 2.25E-03 10.63 89.04 7 32.3 1.64 97.58 50.53 0.439 10205.41 4.12E-04 2.08E-02 1.73E-03 12.01 88.42 6 28.9 1.6 97.58 49.41 0.44 10238.38 3.57E-04 1.77E-02 1.31E-03 13.50 86.46 5 25.5 1.57 97.58 49.69 0.45 10292.84 3.03E-04 1.50E-02 9.43E-04 15.95 86.95 4 22.1 1.53 97.58 48.85 0.454 10245.53 2.49E-04 1.22E-02 6.36E-04 19.14 85.49 3 18.7 1.49 97.58 48.21 0.46 10320.16 1.99E-04 9.60E-03 4.09E-04 23.47 84.36 Technical 15.3 1.44 111.9 54.48 0.47 8287.91 1.51E-04 8.25E-03 1.90E-04 43.44 95.34 2 11.4 1.36 103.3 48.51 0.48 8092.16 1.01E-04 4.91E-03 8.30E-05 59.19 84.89 Mezzanine 7.8 1.26 103.3 47.06 0.5 8126.52 6.17E-05 2.90E-03 3.09E-05 93.86 82.36 1 4.2 1.13 120.5 42.25 0.43 8779.30 3.03E-05 1.28E-03 8.04E-06 158.99 73.93 Story  yxji  i Mj Z Wtj Sjx WFjx   xpj W
  • 37. 36 Table 3.21 Calculating dynamic wind load in Y – direction yyji yyji 2 WFjy Mj [m] [kN/ m2 ] [m2 ] [kN] [kN] [kN] Roof 69.7 1.88 99.62 51.27 0.409 567.53 1.00E-03 5.13E-02 5.68E-04 90.34 89.72 Elevator.T 66.3 1.86 99.62 51.03 0.41 6661.88 9.57E-04 4.88E-02 6.10E-03 8.01 89.30 Terrace 62.9 1.85 99.62 50.91 0.412 9119.33 9.15E-04 4.66E-02 7.64E-03 6.10 89.10 Attic 59.5 1.84 99.62 50.79 0.414 9851.97 8.71E-04 4.43E-02 7.48E-03 5.92 88.89 14 56.1 1.81 99.62 50.30 0.416 9914.82 8.25E-04 4.15E-02 6.76E-03 6.15 88.02 13 52.7 1.8 99.62 50.29 0.419 10012.39 7.78E-04 3.91E-02 6.05E-03 6.46 88.00 12 49.3 1.78 99.62 50.27 0.422 10026.04 7.27E-04 3.65E-02 5.30E-03 6.90 87.98 11 45.9 1.76 99.62 49.88 0.425 10125.07 6.74E-04 3.36E-02 4.60E-03 7.30 87.28 10 42.5 1.73 99.62 49.35 0.427 10009.85 6.20E-04 3.06E-02 3.84E-03 7.96 86.36 9 39.1 1.69 99.62 48.55 0.43 10131.55 5.63E-04 2.73E-02 3.21E-03 8.52 84.96 8 35.7 1.66 99.62 48.34 0.435 10207.01 5.04E-04 2.44E-02 2.60E-03 9.39 84.60 7 32.3 1.64 99.62 48.01 0.439 10205.41 4.45E-04 2.14E-02 2.02E-03 10.57 84.01 6 28.9 1.6 99.62 46.94 0.44 10238.38 3.86E-04 1.81E-02 1.52E-03 11.89 82.15 5 25.5 1.57 99.62 47.21 0.45 10292.84 3.27E-04 1.54E-02 1.10E-03 14.03 82.61 4 22.1 1.53 99.62 46.42 0.454 10245.53 2.69E-04 1.25E-02 7.44E-04 16.82 81.23 3 18.7 1.49 99.62 45.80 0.46 10320.16 2.14E-04 9.82E-03 4.75E-04 20.70 80.16 Technical 15.3 1.44 114.3 51.76 0.47 8287.91 1.63E-04 8.46E-03 2.21E-04 38.23 90.59 2 11.4 1.36 105.5 46.09 0.48 8092.16 1.10E-04 5.08E-03 9.84E-05 51.65 80.65 Mezzanine 7.8 1.26 105.5 44.71 0.5 8126.52 6.75E-05 3.02E-03 3.71E-05 81.47 78.25 1 4.2 1.13 123.1 40.14 0.43 8779.30 3.26E-05 1.31E-03 9.31E-06 140.41 70.25 Mj Wypj i yyji Z Wtj Sjy WFjy Story j   
  • 38. 37  Considering mode 3 with the oscillation in 2 direction X, Y 3 0.77 f  , 3 0.05   , 3 1.58   Table 3.22 Calculating dynamic wind load in X – direction yxji yxji 2 WFjx Mj [m] [kN/m2 ] [m2 ] [kN] [kN] [kN] Roof 69.7 1.8753 97.58 53.96 0.409 567.53 0.001000 5.40E-02 5.68E-04 95.08 85.26 Elevator. T 66.3 1.862 97.58 53.71 0.41 6661.88 0.000989 5.31E-02 6.52E-03 8.15 84.86 Terrace 62.9 1.8487 97.58 53.59 0.412 9119.33 0.000935 5.01E-02 7.97E-03 6.29 84.67 Attic 59.5 1.8354 97.58 53.46 0.414 9851.97 0.000864 4.62E-02 7.36E-03 6.28 84.47 14 56.1 1.8088 97.58 52.94 0.416 9914.82 0.000803 4.25E-02 6.39E-03 6.65 83.64 13 52.7 1.7955 97.58 52.93 0.419 10012.39 0.000739 3.91E-02 5.47E-03 7.15 83.63 12 49.3 1.7822 97.58 52.91 0.422 10026.04 0.000672 3.55E-02 4.52E-03 7.86 83.60 11 45.9 1.7556 97.58 52.49 0.425 10125.07 0.000611 3.21E-02 3.78E-03 8.48 82.94 10 42.5 1.729 97.58 51.94 0.427 10009.85 0.000536 2.78E-02 2.87E-03 9.68 82.07 9 39.1 1.6891 97.58 51.10 0.43 10131.55 0.000481 2.46E-02 2.35E-03 10.48 80.74 8 35.7 1.6625 97.58 50.88 0.435 10207.01 0.000420 2.14E-02 1.80E-03 11.86 80.39 7 32.3 1.6359 97.58 50.53 0.439 10205.41 0.000359 1.82E-02 1.32E-03 13.77 79.83 6 28.9 1.596 97.58 49.41 0.44 10238.38 0.000301 1.49E-02 9.29E-04 16.02 78.06 5 25.5 1.5694 97.58 49.69 0.45 10292.84 0.000245 1.22E-02 6.19E-04 19.69 78.51 4 22.1 1.5295 97.58 48.85 0.454 10245.53 0.000190 9.28E-03 3.70E-04 25.10 77.19 3 18.7 1.4896 97.58 48.21 0.46 10320.16 0.000146 7.06E-03 2.21E-04 31.91 76.17 Technical 15.3 1.4364 111.93 54.48 0.47 8287.91 0.000110 5.99E-03 1.00E-04 59.82 86.08 2 11.4 1.3566 103.32 48.51 0.48 8092.16 0.000074 3.59E-03 4.44E-05 80.91 76.64 Mezzanine 7.8 1.2635 103.32 47.06 0.5 8126.52 0.000046 2.18E-03 1.74E-05 125.30 74.36 1 4.2 1.1305 120.54 42.25 0.43 8779.30 2.6E-05 1.12E-03 6.15E-06 181.87 66.75 Story yxji  i Z Wtj Sjx WFjx Mj j    xpj W
  • 39. 38 Table 3.23 Calculating dynamic wind load in Y – direction yyji yyji 2 Wfjy Mj [m] [kN/m2 ] [m2 ] [kN] [kN] [kN] Roof 69.7 1.8753 99.62 51.27 0.409 567.53 0.001000 5.13E-02 5.68E-04 9.03E+01 81.01 Elevator. T 66.3 1.862 99.62 51.03 0.41 6661.88 0.000423 2.16E-02 1.19E-03 1.81E+01 80.63 Terrace 62.9 1.8487 99.62 50.91 0.412 9119.33 0.000434 2.21E-02 1.71E-03 1.29E+01 80.44 Attic 59.5 1.8354 99.62 50.79 0.414 9851.97 0.000483 2.46E-02 2.30E-03 1.07E+01 80.25 14 56.1 1.8088 99.62 50.30 0.416 9914.82 0.000487 2.45E-02 2.35E-03 1.04E+01 79.47 13 52.7 1.7955 99.62 50.29 0.419 10012.39 0.000409 2.06E-02 1.67E-03 1.23E+01 79.46 12 49.3 1.7822 99.62 50.27 0.422 10026.04 0.000419 2.11E-02 1.76E-03 1.20E+01 79.43 11 45.9 1.7556 99.62 49.88 0.425 10125.07 0.000348 1.74E-02 1.23E-03 1.41E+01 78.80 10 42.5 1.729 99.62 49.35 0.427 10009.85 0.000322 1.59E-02 1.04E-03 1.53E+01 77.97 9 39.1 1.6891 99.62 48.55 0.43 10131.55 0.000322 1.56E-02 1.05E-03 1.49E+01 76.71 8 35.7 1.6625 99.62 48.34 0.435 10207.01 0.000263 1.27E-02 7.06E-04 1.80E+01 76.38 7 32.3 1.6359 99.62 48.01 0.439 10205.41 0.000239 1.15E-02 5.85E-04 1.97E+01 75.85 6 28.9 1.596 99.62 46.94 0.44 10238.38 0.000214 1.01E-02 4.71E-04 2.14E+01 74.17 5 25.5 1.5694 99.62 47.21 0.45 10292.84 0.000181 8.56E-03 3.38E-04 2.53E+01 74.59 4 22.1 1.5295 99.62 46.42 0.454 10245.53 0.000167 7.75E-03 2.86E-04 2.71E+01 73.34 3 18.7 1.4896 99.62 45.80 0.46 10320.16 0.000152 6.95E-03 2.37E-04 2.93E+01 72.37 Technical 15.3 1.4364 114.27 51.76 0.47 8287.91 0.000047 2.45E-03 1.86E-05 1.32E+02 81.79 2 11.4 1.3566 105.48 46.09 0.48 8092.16 0.000038 1.75E-03 1.16E-05 1.50E+02 72.82 Mezzanine 7.8 1.2635 105.48 44.71 0.5 8126.52 0.000046 2.07E-03 1.74E-05 1.19E+02 70.65 1 4.2 1.1305 123.06 40.14 0.43 8779.30 1.8E-05 7.13E-04 2.77E-06 2.57E+02 63.42 Wypj Sjy WFjy Mj yyji  i Z Wtj Story j   
  • 40. 39 3.2.5.3 Combination of static wind load and dynamic wind load According to 4.12 TCXD 229-1999 Internal force combination, displacement cause static and dynamic wind load   s 2 t d I i 1 X X X     Where  X: Internal force cause by static and dynamic wind load.  Xt : Internal force cause by static wind load acting on building.  Xd : Internal force cause by dynamic wind load acting on building.  s: The number of the calculated oscillation
  • 41. 40 Table 3.24 Combination of static wind load and dynamic wind load X - direction X - direction Y - direction Y - direction Mode 1 Mode 3 Mode 1 Mode 3 [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] Roof 84.16 79.57 94.43396 85.26 89.72 81.01 210.65 200.45 Elevator. 218.03 222.59 93.99347 84.86 89.30 80.63 455.46 342.91 Terrace 216.48 221 93.77731 84.67 89.10 80.44 452.40 341.04 Attic 214.92 219.41 93.55461 84.47 88.89 80.25 449.32 339.17 14 211.8 216.23 92.64415 83.64 88.02 79.47 442.98 334.82 13 210.25 214.64 92.62614 83.63 88.00 79.46 440.00 333.21 12 208.69 213.05 92.5983 83.60 87.98 79.43 437.00 331.58 11 205.57 209.87 91.86469 82.94 87.28 78.80 430.73 327.46 10 202.46 206.69 90.89856 82.07 86.36 77.97 424.39 323.05 9 197.79 201.92 89.42479 80.74 84.96 76.71 414.86 316.39 8 194.67 198.74 89.03998 80.39 84.60 76.38 408.74 312.72 7 192.93 196.96 88.421 79.83 84.01 75.85 405.16 310.14 6 191.56 195.56 86.46089 78.06 82.15 74.17 401.73 306.23 5 186.89 190.79 86.95214 78.51 82.61 74.59 393.02 302.09 4 183.77 187.61 85.49475 77.19 81.23 73.34 386.45 297.05 3 179.1 182.84 84.36487 76.17 80.16 72.37 377.08 290.83 Technical 174.43 178.07 95.34393 86.08 90.59 81.79 373.22 300.12 2 168.2 171.71 84.88887 76.64 80.65 72.82 356.61 280.37 Mezzanine 156.65 159.93 82.35746 74.36 78.25 70.65 333.63 265.35 1 163.52 166.94 73.93388 66.75 70.25 63.42 342.98 261.58 Story X - direction Y - direction Static wind load Dynamic wind load Combination GX GY
  • 42. 41 3.2.6.2.3 Load combination Load Combination Load Combination Type Case Name Scale factor DL Add SW,WL,SDL 1,1,1 Comb1 Add DL,LL 1,1 Comb2 Add DL,WX 1,1 Comb3 Add DL,WX 1,-1 Comb4 Add DL,WY 1,1 Comb5 Add DL,WY 1,-1 Comb6 Add DL,WX,WY 1,0.7,0.7 Comb7 Add DL,WX,WY 1,0.7,-0.7 Comb8 Add DL,WX,WY 1,-0.7,0.7 Comb9 Add DL,WX,WY 1,-0.7,-0.7 Comb10 Add DL,LL,WX 1,0.9,0.9 Comb11 Add DL,LL,WX 1,0.9,-0.9 Comb12 Add DL,LL,WY 1,0.9,0.9 Comb13 Add DL,LL,WY 1,0.9,-0.9 Comb14 Add DL,LL,WX,WY 1,0.9,0.63,0.63 Comb15 Add DL,LL,WX,WY 1,0.9,0.63,-0.63 Comb16 Add DL,LL,WX,WY 1,0.9,-0.63,0.63 Comb17 Add DL,LL,WX,WY 1,0.9,-0.63,-0.63 ENVE Add Comb1,Comb2,…,Comb17 1,1,…,1
  • 43. 42 CHAPTER 4: DESIGNING TYPICAL – FLOOR 4.1 General introduction 4.1.1 Preliminary size of beam – slab system Thickness of slab: 140mm. Beam – system: 600x300; 500x300; 200x400. 4.1.2 Structural solution Height floor: 3.4m, largest span l = 11m. Using beam – slab system with some advantages (table 1.4) can be applied to this structure. Figure 4.1.2: Structural layout of typical – floor
  • 44. 43 4.1.3 Material used (2.5 – CHAPTER 2) 4.1.4 Loads applied and loads combination 4.1.4.1 Loads applied (3.2 – CHAPTER3) Figure 4.1.4.1a: Super dead load on slab
  • 45. 44 Figure 4.1.4.1b: Wall load on beam 4.1.4.2 Loads combination  For displacement Long – term deflection: f = f1 – f2 + f3 f1: acting of short – term loads of whole loads. f2: acting of short – term loads of long – term loads. f3: acting of long – term loads of long – term loads. Table 4.1.4.2 Load cases Name Load Cases Analysis Type NH1 1SW+1SDL+1WL Nonlinear (cracked) NH2 1LL NH3 1LL1 DH1 1SW+1SDL+1WL Nonlinear(Long- term cracked) DH2 1LL1
  • 46. 45 Table 4.1.2 Load combination Name Load name Significant COMBO Displacement Short Term 1SW+1SDL+1WL+1LL Checking short term deflection COMBO Displacement Long Term 1NH1+1NH2-1NH3+1DH2 Checking long term deflection COMBO Calculation Rebar 1.1SW+1.2SDL+1.1WL+1.2LL Calculating slab reinforcement
  • 47. 46 4.2Slab analysis model Figure 4.2.1: Strip A in X – direction
  • 48. 47 Figure 4.2.2: Strip B in Y – direction
  • 49. 48 Figure 4.2.3: Moment diagram in strip A
  • 50. 49 Figure 4.2.4: Moment diagram in strip B
  • 51. 50 4.3Calculating slab reinforcement Effective height of slab: 140 15 125 ( ) o h h a mm      Percentage of area: min max 17 0.05% 0.533 2.58% 350 s b R o s A R b h R               Summary reinforcement:  Span: X – direction 8a200,8a150; Y – direction 8a200,10a150.  Support: X – direction 10a200,10a100, 12a100; Y – direction 8a200,10a100,10a200.  More detail in drawing Table 4.3: Calculating rebars in span and support of two - way slab Note: Full calculating results in appendix 1 Station M3 Width Strip b As As/Strip μ As choose μchoose [m] [kN.m] [m] [mm²] [mm²] % Ø @ [mm²] % CSA6 0 2.610 1 0.014 0.014 70.5 0.0007 0.07 10 100 785 0.75 0.16 0.14 26.98 CSA6 0.3725 -0.289 1 0.002 0.002 7.8 0.0001 0.01 10 100 785 0.75 0.16 0.14 -26.98 CSA6 0.3725 0.236 1 0.001 0.001 6.3 0.0001 0.01 10 100 785 0.75 0.16 0.14 26.98 CSA6 0.75 -6.946 1 0.037 0.038 189.9 0.0018 0.18 10 100 785 0.75 0.16 0.14 -26.98 CSA6 0.75 -0.351 1 0.002 0.002 9.4 0.0001 0.01 10 100 785 0.75 0.16 0.14 -26.98 CSA6 1.2 -0.526 1 0.003 0.003 14.1 0.0001 0.01 10 100 785 0.75 0.16 0.14 -26.98 CSA6 1.2 -0.189 1 0.001 0.001 5.1 0.0000 0.00 10 100 785 0.75 0.16 0.14 -26.98 CSA6 1.65 -0.724 1 0.004 0.004 19.5 0.0002 0.02 10 100 785 0.75 0.16 0.14 -26.98 CSA6 1.65 -25.580 1 0.136 0.147 740.8 0.0071 0.71 10 100 785 0.75 0.16 0.14 -26.98 CSA6 2.1 -4.335 1 0.023 0.023 117.7 0.0011 0.11 10 100 785 0.75 0.16 0.14 -26.98 CSA6 2.1 -9.043 1 0.048 0.049 248.8 0.0024 0.24 10 100 785 0.75 0.16 0.14 -26.98 CSA6 2.55 -3.685 1 0.020 0.020 99.9 0.0010 0.10 10 100 785 0.75 0.16 0.14 -26.98 CSA6 2.55 -7.662 1 0.041 0.042 209.9 0.0020 0.20 10 100 785 0.75 0.16 0.14 -26.98 CSA6 3 -1.996 1 0.011 0.011 53.8 0.0005 0.05 10 100 785 0.75 0.16 0.14 -26.98 CSA6 3 -5.670 1 0.030 0.031 154.5 0.0015 0.15 10 100 785 0.75 0.16 0.14 -26.98 CSA6 3.45 0.006 1 0.000 0.000 0.2 0.0000 0.00 10 100 785 0.75 0.16 0.14 26.98 CSA6 3.45 -3.226 1 0.017 0.017 87.3 0.0008 0.08 10 100 785 0.75 0.16 0.14 -26.98 CSA6 3.9 1.927 1 0.010 0.010 52.0 0.0005 0.05 10 100 785 0.75 0.16 0.14 26.98 CSA6 3.9 -0.876 1 0.005 0.005 23.6 0.0002 0.02 10 100 785 0.75 0.16 0.14 -26.98 CSA6 4.35 3.697 1 0.020 0.020 100.2 0.0010 0.10 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 4.35 1.283 1 0.007 0.007 34.5 0.0003 0.03 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 4.8 5.237 1 0.028 0.028 142.5 0.0014 0.14 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 4.8 3.166 1 0.017 0.017 85.7 0.0008 0.08 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 5.25 6.431 1 0.034 0.035 175.6 0.0017 0.17 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 5.25 4.619 1 0.025 0.025 125.5 0.0012 0.12 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 5.7 8.380 1 0.045 0.046 230.1 0.0022 0.22 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 5.7 7.547 1 0.040 0.041 206.7 0.0020 0.20 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 6.19558 5.779 1 0.031 0.031 157.5 0.0015 0.15 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 6.19558 6.160 1 0.033 0.033 168.1 0.0016 0.16 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 6.69116 4.853 1 0.026 0.026 131.9 0.0013 0.13 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 6.69116 4.818 1 0.026 0.026 131.0 0.0012 0.12 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 7.18675 3.498 1 0.019 0.019 94.7 0.0009 0.09 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 7.18675 3.458 1 0.018 0.019 93.6 0.0009 0.09 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 7.68233 1.871 1 0.010 0.010 50.4 0.0005 0.05 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 7.68233 1.826 1 0.010 0.010 49.2 0.0005 0.05 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 8.17791 0.002 1 0.000 0.000 0.0 0.0000 0.00 8 200 251.3 0.24 0.05 0.05 9.13 CSA6 8.17791 -0.050 1 0.000 0.000 1.3 0.0000 0.00 8 100 453 0.43 0.09 0.09 -16.12  am [M] Strip Arrangement am 
  • 52. 51 4.4Checking displacement Figure 4.4 Displacement of slab Maximum displacement exported from SAFE     19 [ ] 60 150 ' L f mm f mm It satisfied     
  • 53. 52 4.5Checking crack width f1: f2: acting of short – term loads of long – term loads f3: acting of long – term loads of long – term loads Checking for strip MSA7 (TCVN5574:2012) Mr≤ Mcrc Which  Mr = M (For bending element).  Mcrc = Rbt.serWpl  Wpl : Approximate bending-resisted moment: Wpl = γWred  γ : coefficient of calculation with rectangular section: γ = 1.75  Wred : Bending-resisted moment of the section of the tensile edge.     ' red s s ' 2 s s 2 red s b t red 8 4 red 6 3 red red t crc bt,se A A (A A ) A 0;A 251.3(mm ) A 121633(mm ) E 2100000 6.5 E 325000 h 140 bh As(h a) 1000 140 6.5 251.3 140 15 2 2 y 60.6(mm) A 121633 I 1.45 10 (mm ) I W 2.4 10 (mm ) h y M R   a     a     a                      r red W 1.8 2.4 1.75 7.56(kN.m) M 8.44(kN.m) Crack appeared        
  • 54. 53 Crack width         3 s crc c l s 6 2 2 o b,ser 2 2 o f s s a 20 3.5 100 E M 8.44 10 0; 0.3 bh R 1000 125 1.8 1.8for heavyconcrete 1 1 0.02 1 5 0.3 1 5 1.8 10 0.002 6.5 10 0.02 z 1 h 1 125 123.75mm 2 2 0.02 M 8.44 zA                                   a                              6 3 crc cr 10 271(MPa) 123.75 251 271 a 1 1 1.3 20 3.5 100 0.002 10 0.15(mm) [a ] 0.3mm 200000             
  • 55. 54 CHAPTER 5: STAIRCASE DESIGN 5.1 General features Figure 5.1: Overview of staircase 5.1.1 Size and dimension of stairs Table 5.1.1 Detailing of typical staircase Height of floor 3.4 [m] Step height 150 [mm] Stair flight 1 1650 [mm] Stair flight 2 1650 [mm] Step width 300 [mm] Flight distance 225 [mm] Step number 21 Angle 0 b b h 150 tan = = 26 l 300 a  a  cos 0.894 a  [degree]
  • 56. 55 5.1.2 Preliminary section a. Thickness of landing and flight 0 1 1 1 1 4560 152 182.4 30 25 30 25 150 s s h L h mm                      5.1.3 Load applied and combination a. Landing  Dead load Table 5.1.3.a: Load of layers for the structure of the landing No Layers Thickness Specific Gravity Safety Factor n Standard Loads Design Loads mm kN/m³ kN/m² kN/m² 1 Granite Tile 20 24 1.2 0.48 0.576 2 Mortar 20 18 1.3 0.36 0.47 3 Plasters 15 18 1.2 0.27 0.324 Total load (kN/m2) 1.11 1.37 Ladder load 0.3 (kN/ m)  Live load 2 tt tc p = n×p =1.2×3 = 3.6 (kN/ m )  Distributed load on 1m – length of landing:   (3.6 1.37) 1 5 / q m kN m     b. Flight  Dead load Granite Tile: 1 tđ g = n , b b tđ b l + h = × ×cos l   a Mortar: 2 tđ g = n  , b b tđ b l + h = × ×cos l   a
  • 57. 56 Brick step: tđ n g  . . 3  ; a  cos 2 1    b tđ h Plaster:  . . 5 n g  Table 5.1.3.b: Load of layers for the structure of the flight No Layers  Thickness δtđ Safety factor gtc kN/m3 (mm) (n) kN/m2 1 Granite Tile 24 26.82 1.1 0.7 2 Mortar 18 26.82 1.3 0.63 3 Brick step 16 67.4 1.1 1.18 4 Plaster 18 15 1.3 0.35 Total dead load 2.86 Ladder load 0.3 (kN/ m)  Live load tc 2 p = p ×cos = 3×0.894 1.2 = 3.218(kN/ m ) tt n a    Distributed load on 1m – length of flight:   (2.86 3.218) 1 6.078 / q m kN m     5.2 Calculating staircase Stair diagram is modeled as a beam with cross-section converted 1000 x hs. Connecting directly the landing into shear wall and considering these connection is fixed and the ratio 400 2.67 3 150 d s h h    . Considering the connection between beam and flight 2 is hinged connection.
  • 58. 57 5.2.1 Modelling Using ETABS 2D for calculating internal forces Dimension: Flight: D150X1000 Load combination: 1Dead load + 1Live load Figure 5.2.1a: Moment diagram of staircase
  • 59. 58 Table 5.2.1a: Value of moment diagram for staircase Position Moment (kN.m) Span 9.056 Support 9.84 Calculating reinforcement Calculating the longitudinal bars as a bending element putting single reinforcement with section   1000 150 s b h mm    Choosing a = 20mm 0 150 20 130 h h a mm       2 0 m b M R bh a  ; 1 1 2 m  a    ; 0 b s s R bh A R   0 s A bh    Table 5.2.2: Table of calculating reinforcement for flight Position M (kN.m/m) m a  As (cm2 )  (%) Ø (mm) As ,ch (cm2 ) @ (mm)  ch (%) Span 9.056 0.032 0.033 3.24 0.25 8 4.52 100 0.35 Support 9.84 0.034 0.035 3.43 0.26 8 4.52 100 0.35 Calculating reinforcement for beam Considering the beam is a simple beam subjecting by the load of flight 2 transferred into it. Internal forces Value Mmax 79.74 (kN.m) Qmax 83.71 (kN)
  • 60. 59 Choosing a = 40mm 0 400 40 360 h h a mm       2 0 m b M R bh a  ; 1 1 2 m  a    ; 0 b s s R bh A R   0 s A bh    Table 5.2.3: Table of calculating reinforcement for beam Position M (kN.m/m) m a  As (cm2 )  (%) Ø (mm) As ,ch (cm2 )  ch (%) Support 79.74 0.18 0.2 6.7 0.9 4Ø16 8.04 1.1
  • 61. 60 CHAPTER 6: FRAME DESIGN 6.1 Checking the stability of the building 6.1.1 Horizontal displacement at the top of building (Appendix C, TCVN5574:2012) The horizontal limitation for high-rise building   69700 f 139.4( ) 500 500 h f mm     Story Combo UX UY h h/500 Checking [m] [m] [m] [m] Roofing Maximum displacement 0.088 0.1 69.7 0.1394 Satisfied 6.1.2 Displacement between each story (Table C.4 TCVN 5574:2012) From the table: 500 : of s u s h f f h height each story  
  • 62. 61 Table 6.1.3: Horizontal displacement of each story Story Height (m) u f (mm) Drift X (mm) Drift Y (mm) Checking Roofing 3.4 6.8 1.397 1.542 Satisfied Technical 3.4 6.8 1.406 1.55 Satisfied Terrace 3.4 6.8 1.419 1.587 Satisfied Attic 3.4 6.8 1.429 1.627 Satisfied 14 3.4 6.8 1.443 1.676 Satisfied 13 3.4 6.8 1.455 1.729 Satisfied 12 3.4 6.8 1.459 1.777 Satisfied 11 3.4 6.8 1.462 1.822 Satisfied 10 3.4 6.8 1.457 1.86 Satisfied 9 3.4 6.8 1.441 1.88 Satisfied 8 3.4 6.8 1.417 1.9 Satisfied 7 3.4 6.8 1.382 1.897 Satisfied 6 3.4 6.8 1.332 1.87 Satisfied 5 3.4 6.8 1.268 1.814 Satisfied 4 3.4 6.8 1.186 1.72 Satisfied 3 3.9 7.8 1.083 1.612 Satisfied Technical 3.6 7.2 0.94 1.476 Satisfied 2 3.6 7.2 0.8 1.28 Satisfied Mezzanine 4.2 8.4 0.65 1.05 Satisfied 1 3.25 6.5 0.47 0.7 Satisfied B1 3 6 0.105 0.124 Satisfied B2 0 0 0.048 0.067 Satisfied
  • 63. 62 6.1.3 Anti – roll stability checking Ratio between rolled moment by horizontal load had to satisfy 1.5 CL L M M  Where: CL M : Anti – roll moment L M : Rolled moment However, the building with 69.7 2.37 5 29.3 H B    . Hence, it doesn’t need to check this condition.
  • 64. 63 6.2 Calculating reinforcement for beams of typical floor and frame in axis 2 6.2.1 Internal forces and load combination Figure 6.2.1: Internal force of typical floor Using COMBOENVELOP to calculate bars for all typical floor beam
  • 65. 64 6.2.2 Calculating detail for beam B2 Figure 6.2.2 Internal force diagram B2 Table 6.2 Data for calculating Beam Combo Section bxh Mmax [mm] [kNm] B2 ComENVE Max 300x600 220 B2 ComENVE Min -364.13 B2 ComENVE Min -343.68
  • 66. 65  Longitudinal reinforcement  Span reinforcement M = 220 kN.m Supposing a = 50mm, effective height: ho = h – a = 600 – 50 =550mm. 6 m R 2 2 b o m 2 b 0 s s s b min max R 0 s M 220 10 α = 0.142 α 0.39 Single reinf orcement R ×b×h 17 300 550 1 1 2 1 1 2 0.142 0.15 R b h 0.15 17 300 550 A 1187(mm ) R 365 A R 1187 17 μ 0.05% 0.72% μ ξ 0.53 2.5% b h 300 550 R 365             a                             Arranging 320 + 220  Span reinforcement M = -364.13 kN.m 6 m R 2 2 b o m 2 b 0 s s s b min max R 0 s M 364.13 10 α = 0.24 α 0.39 Single reinf orcement R ×b×h 17 300 550 1 1 2 1 1 2 0.24 0.27 R b h 0.27 17 300 550 A 2101(mm ) R 365 A R 2101 17 μ 0.05% 1.27% μ ξ 0.53 2.5 b h 300 550 R 365             a                             % Arranging 422 + 222 Note: Full calculating results in appendix.
  • 67. 66  Stirrup reinforcement Maximum shear force in beam Qmax = 193.6kN Shear resistance of concrete: 3 3 0 max (1 ) 0.6 1.2 10 300 550 118.8 193.6 bt b n bt Q R bh kN Q kN              Choosing 2 number of transverses Ø8: Spacing of stirrup in 1 L 4 : h > 450 ct ct h 200(mm) S min min S 150mm 3 300(mm) 300                     Spacing of stirrup in 1 L 2 : h >300 ct ct 3h 450(mm) S min min S 200mm 4 500(mm) 500                     3 w w w w 280 10 50.24 2 0.14 / 200 s s s R A q n kN mm s         Checking shear resistance of concrete and stirrup: 2 3 2 2 0 113.85 2 118.8 2 2 1.2 10 300 550 0.14 468 bt sw b bt sw Q Q R bh q kN              Checking the main compressive stress of beam: s s w1 b nE A 2 210000 50.24 1 5 1 5 1.06 E bs 30000 300 200            1 1 0.01 1 0.01 17 0.855 b b R        3 1 w1 max 0.3 0.3 0.855 1.06 17 10 300 550 762.6 193.6 mc b b o Q R bh kN Q kN              
  • 68. 67  Calculate hanging rebars (TCVN 5574:2012, Appendix C) Concentrated load by the sub-beam acting on the main beam: F = P + G =163.3 (kN) Rebar diameter Ø8, number of branch n =2 asw = 50.3 (mm2 ) Number of hanging rebar needed: (1 ) w w hs F ho x n a R s s     hs = hmb – hsb – a = 600 – 500 – 50 = 50mm  0 3 50 (1 ) 163.3(1 ) 550 5.3( ) 2 50.3 280 10           s sw sw h F h x mm n a R Total length of hanging bars: 2 2 50 300 400( )       s a h b mm Choose x = 8 (transverses), arrange each sub-beam 3 stirrups, at the length hs = 50 (mm) approximate distance between two rebar is 20 (mm).  Checking deflection for B2   2 6 2 u 3 5ML 5 220 10 9000 L 9000 f f 13(mm) 60(mm) 300 600 48EI 150 150 48 26000 12             
  • 69. 68  Checking crack for B2 Mr≤ Mcrc Which  Mr = M (For bending element).  Mcrc = Rbt.serWpl  Wpl : Approximate bending-resisted moment: Wpl = γWred  γ : coefficient of calculation with rectangular section: γ = 1.75  Wred : Bending-resisted moment of the section of the tensile edge.     ' red s s ' 2 s s 2 red s b t red 9 4 red 7 3 red red t crc bt,ser red A A (A A ) A 0;A 1571(mm ) A 190211(mm ) E 2100000 6.5 E 325000 h 600 bh As(h a) 300 600 6.5 1571 600 35 2 2 y 314(mm) A 190211 I 8 10 (mm ) I W 2.8 10 (mm ) h y M R W   a     a     a                       1.8 28 1.75 88.2(kN.m) M 200(kN.m) Crack appeared      
  • 70. 69  Crack width         3 s crc c l s 6 2 2 o b,ser 2 2 o f s s a 20 3.5 100 E M 200 10 0; 1.16 bh R 300 565 1.8 1.8for heavyconcrete 1 1 0.07 1 5 1.16 1 5 1.8 10 0.009 6.5 10 0.07 z 1 h 1 565 545.23mm 2 2 0.07 M 200 1 zA                                   a                              6 3 crc cr 0 233.5(MPa) 545.23 1571 233.5 a 1 1 1 20 3.5 100 0.009 20 0.16(mm) [a ] 0.3mm 200000               6.3 Calculating reinforcement for columns of axis 2 6.3.1 Eccentrically compression column Theory of calculation (Following to TCVN 5574:2012 and Tính toán thực hành cấu kiện BTCT tập 2 – Nguyễn Đình Cống). Calculation for column Table 6.3.1: Internal force and eccentricity of C1 Story Load P M2 M3 [kN] [kN.m] [kN.m] Technical Elevator Comb1 -372.467 -106.083 -64.89 Technical Elevator Comb1 -355.676 33.386 23.84 ….. Technical Elevator Comb17 -360.145 -182.735 -153.28
  • 71. 70 Effective length: ox oy l l 0.7 3.4 2.38     Calculate the typical case of Nmax, Mxcorrespond, Mycorrespond. More detail for all cases in appendix. Bending in X – direction: ox x x x l 2.38 1000 13.77 28 1 c 0.288 600           Accidental eccentricity: x ax c lox 600 2.38 1000 e Max ; Max ; 20 (mm) 30 600 30 600                 Statics eccentricity: 3 x 1x M 64.89 e 10 127 (mm) N 372.467     For statically indeterminate structures   ox 1x ax * x x ox e Max e ;e 127 M N e 380.164 1 0.127 48.28 (kN.m)           Bending in Y – direction: oy y y y l 2.38 1000 13.77 28 1 c 0.288 600           Accidental eccentricity: y ay c l 600 2.38 1000 e Max ; Max ; 20 (mm) 30 600 30 600                 Statics eccentricity: y 3 1y M 176.1 e 10 463.2 (mm) N 380.164     For statically indeterminate structures   oy 1y ay * y y oy e Max e ;e 463.2 M N e 380.164 1 0.4632 176 (kN.m)           Considering: * * y x x y * * y x y x M M 48.28 176 80.467 (kN); 293.3(kN) c 0.6 c 0.6 M M c c      
  • 72. 71  Calculating in Y-direction, then exchanging from compressive eccentricity to axial compression: y x * * 1 y 2 x h c 600 (mm); b c 600 (mm); M M 176 (kN.m); M M 48.28 (kN.m)         Assuming gt o gt a gt a 50 (mm); h h a 600 50 550 (mm) z h 2a 500 (mm)          Position of neutral axis: 1 1 o b o 0.6 x N 380.164 1000 0.6 32.27 x 32.27 (mm)<2agt=100mm;m 1 1 0.96 R b 17 600 h 550              Moment corresponding: 1 o 2 h 600 M M m M 176 0.96 48.28 222 (kN.m) b 600          Statics eccentricity: 1 M 222 1000 e 584 (mm) N 380.164     Accidental eccentricity: a ay ax e e 0.2e 20 0.2 20 24 (mm)         o 1 a o e Max e ;e 584 (mm) e e 0.5h a 584 0.5 600 50 834(mm)            o 1 R o o e 584 1.06 0.3;x <ξ h 0.546 550 300.3mm h 550         Calculating for a big eccentricity case. Reinforcement area:       1 o ' s sc 2 N× e+0.5x -h A =A 0.4 R ×z 380.164 1000 834 0.5 32.27 550 1563 mm 0.4 365 500 s a            Checking the percentage of reinforcements: s min tt max o A 1563 0.05% 100 0.5% 6% bh 600 550             Table 6.3.2: Summary reinforcement of column in axis 2 (C1, C18) Story Arranging  [%] B2 – 3rd 20Ø28 1.5 4th – 6th 12Ø28 1.5 7th – Technical Elevator 8Ø28 1.4
  • 73. 72 Stirrup of the column Table 6.3.3: Calculating stirrup Direction Qmax s Qb Qsw Qsbw Checking [kN] [mm] [kN] [kN] [kN] x -32.62 200 100.8 203.5 304.26 Satisfied y -92.57 200 100.8 203.5 304.26 Satisfied Calculating stirrup as the case for beams, but the shear force is quite small and concrete capacity can resist. Therefore, the stirrups put as secondary reinforcement with the detail as follows (TCVN 5574 : 2012 8.7) ar ar 0.25 min(10 ,400); 15 oosin 8@200 st longitudinal b s longitudinal b s d s Ch g    a      Figure 6.3.1: Arranging stirrup
  • 74. 73 6.4 Calculating reinforcement for shear wall 6.4.1 Layout and dimension Figure 6.4.1: Layout of shear wall in typical floor Dimension of shear wall SW1 300x3850 SW2 300x3100
  • 75. 74 6.4.2 Method of boundary zone element for SW1 Table 6.4.2 Internal force of SW1 Story Load Location P M2 M3 V2 B2 [kN] [kNm] [kNm] [kN] Combo1 Top -6762.71 196.4 -446.75 200.09 Combo1 Bottom -6359.59 5.29 -218.74 246.44 Combo2 Top -2857.8 144.15 -466.4 172.11 …….. Roofing Combo17 Top -8782.89 9.35 -708.248 Longitudinal reinforcement Calculate the typical case of Nmax, Mxcorrespond, Mycorrespond. More detail for all cases in appendix. Dimension of SW1 tw = 0.3 m; L = 3.85 m Suppose the width of boundary B =0.95m L R B  Left boundary 1 3 2 1 9367.25 356.874 4806( ) 2 0.5 0.5 2 3.85 0.5 0.95 0.5 0.95 4806 10 13169( ) 365                 L R s s Tension r N M N kN L B B N einforcemen mm R t A  Arranging 2022.  Right boundary 1 3 1 w 9367.25 356.874 4560( ) 2 0.5 0.5 2 3.85 0.5 0.95 0.5 0.95 Bendingcoefficient 0.9) 4560 10 17 950 300 0.9 607 ( 365                      L R b r s s Compression reinforc N M N kN L B B N R eme B t A R nt  
  • 76. 75 Middle zone           w w 3 w 9367.25 2 3.85 2 0.95 0.3 4744( ) 3.85 0.3 2 17 10 3.85 2 0.95 0.3 944                   m r m b r Compression force the middle wall is subjected The capacity of middle wall for subjecting compression f N N L B t kN Lt N R B t o e L rc 5( ) 4744( )  kN kN  Arranging the secondary reinforcement for middle zone 22200  Calculating and comparing with the result of SW1 with the program for reinforcement design using Matlab writing by student. Figure 6.4.2a: Interface of the program for calculating reinforcement  The same result. Therefore, using this program for calculating all shear wall
  • 77. 76  Then checking for all the cases of internal forces by the interaction chart. Figure 6.4.2b: Interface of the program for calculating reinforcement Table 6.4.2: Summary reinforcement of SW1 in axis 2 Story Arranging  [%] Left zone Middle zone Right zone B2 – 3rd 20Ø22 22200 20Ø22 1.4 4th – 10th 16Ø22 16Ø22 1.15 11th – Technical Elevator 12Ø22 12Ø22 0.94
  • 78. 77 Stirrup reinforcement Suppose 0.8 0.8 3.85 3.08 ( ) o h L m     Qmax s Qb Qsw Qsbw Checking [kN] [mm] [kN] [kN] [kN] -890.11 200 587.52 1955 2543.3 Satisfied  Arranging 8@200 (5890mm2 )
  • 79. 78 CHAPTER 7: FOUNDATION DESIGN 7.1 Soil Report Layers Parameters Clayey sand, yellowish grey, plastic   3 sub 10.7 kN / m   o 19 36     2 u c 20.6 kN / m  L I 0.58  Clay with sand, yellowish brown, stiff plastic   3 sub 10 kN / m   o 11 02     2 u c 30.3 kN / m  L I 0.22  Silty clayey sand, greyish blue, loose to dense   3 sub 10.9 kN / m   o 30 07     2 u c 12.2 kN / m  L I 0.27  Clay, pinkish brown, yellowish brown, stiff   3 sub 10.9 kN / m   o 15 41     2 u c 113.7 kN / m 
  • 80. 79 Figure 7.1: Layout of bored pile foundation
  • 81. 80 7.2 Ultimate bearing capacity of pile according to the material vl b b sc s Q =R .A +R .A Where:   2 2 2 0.8 0.5 4 4 b d A m       , d is diameter of bored pile. 2 2 3 2 0.016 14 2.8 10 ( ) 4 4 s A n m          ,is diameter of reinforcement. Hence, Ultimate bearing capacity of pile according to the material:   vl b b sc s 3 3 3 3 vl Q =R .A +R .A Q =17 10 0.5 2.8 10 355 10 2.8 10 9446( ) kN            7.3 Pile load capacity by criteria of soil strength TCVN 10304:2012 (G.2) c,u b b i i R q .A u f l    Where  c,u R : Ultimate bearing capacity of pile (kN)  Ab – Area of end bearing,   2 b A 0.5 m   u – Perimeter of body pile, u = 2.51 (m)  p q : strength of soil resistance below pile tip because the pile embedded at sand layer (c=0) then the formula is: ' ' b ,p q b q q .N A   Where  ' q N the soil load-bearing factors under the pile tip. It cab be determined by Table G1 take from AS 2159 - 1978, TCVN 10304 : 2014
  • 82. 81 Or 3 2 tan 4 2 ' q 2 e N 2cos 2 2                      i l (m) Length of body pile at layer “i”  i f (kPa) Average strength of resistance. In cohesive soil: i u,i u,i f c c :Undrainedshearstrengthof layeri :The coefficient depends on the characteristics of the soil layer on the adhesive layer, the type of pile and the method of lowering the pile, consolidation  a a of the soil during construction and the method of determining cu. When there is not enough information, this can be found on the G1, TCVN 10304: 2014
  • 83. 82 In coarse-grained soil: i i i v,z i v,z i f k tg k :Horizontalpressure coefficient :Averageverticaleffectivestressinlayeri : frictionangelbetween pileandsoil        Table 7.1: Calculate the pile load capacity 7.4 Pile load capacity by SPT (formula of the Japanese Institute of Architecture 1988)   c,u b b c,i c,i s,i s,i R q A u f l f l     Where:  p q : strength of soil resistance below pile tip because the pile embedded at sand layer then the formula is: b p q 300N  For driven pile:  Average resistance strength for the pile section at coarse-grained soil layer i s,i s,i 10N f 3   Average resistance strength for the pile section at cohesive soil layer i c,i L L u,i f f c  a d Depth li Ab u cu,i   - 'v fili (m) (m) (m) (m2 ) (m) (kPa) (o ) (kPa) kN/m 4 Sand -18.9 11.15 12.2 30 139.5 0.40 359.51 4a Cohesive -20.8 1.9 30.3 1 11 198.5 0.65 57.57 4 Sand -36.3 15.5 12.2 - 30 311.2 0.40 1114.7 5 Clay (Stiff) -52.4 9.45 113.7 1 15 483.4 0.59 1074.5 6550.3 342.91 6893.2 6 0.8 0.50 2.51 Rc,u u(fili) qbAb Type a ki N'c Layers
  • 84. 83 Where  P a Adjustment coefficient for the driving pile, depending on the ratio between the undrained shear strength of Cu cohesive soil and the average value of effective vertical normal stress, determined according to the graph in Figure G.2a  L f adjustment coefficient according to the slenderness h / d of the piles.  Cu he intensity of the undrained shear strength of the cohesive soil, which can be determined from the compression test of a horizontal expansion axis, or from the SPT index in the cohesive soil calculated u,i c,i c 6.25N  by kPa  c,i N Average SPT index in cohesive of layer i  s,i N Average SPT index in coarse-grained soil of layer i Table 7.2: Calculate the pile load capacity 7.5 Pile load capacity by Meyerhof   c,u b b c,i c,i s,i s,i b 1 p i 2 s,i R q A u f l f l q k N f k N       Where:  1 k is coefficient, k1 = 40h/d < 400 for driven pile, k1=120 for bored pile.  p N is the average SPT index in the distance 4d below pile tip and 1d above  2 k is coefficient take 2 for driven pile and 1 for bored pile  s,i N is the average SPT index in the ith layer Depth d li Ab u cu,i  - 'v fc,ili fs.ili (m) (m) (m) (m2 ) (m) (kPa) (kPa) kN/m kN/m 4 -18.9 Sand 11.15 8 12.2 - 139.5 - - 297.33 4a -20.8 Cohesive 1.9 14 30.3 0.99 198.5 1.2 66.51 - 4 -36.3 Sand 15.5 18 12.2 311.2 - 930.00 5 -52.4 Clay(Stiff) 9.45 38.00 113.7 0.99 483.4 1.2 1276.46 - 6459.9 342.91 6802.8 Rc,u Abqb u(fc.ili + fs,ili) 0.8 0.50 2.51 Type fL aP Layers Ns,i
  • 85. 84 For the case the body pile in cohesive layer calculate skin friction by the formula i u,i u,i f c c :Undrainedshearstrengthof layeri :The coefficient depends on the characteristics of the soil layer on the adhesive layer, the type of pile and the method of lowering the pile, consolidation  a a of the soil during construction and the method of determining cu. When there is not enough information, this can be found on the G1, TCVN 10304: 2014 Table 7.3: Calculate the pile load capacity Depth d li Ab u cu,i fili (m) (m) (m) (m2 ) (m) (kPa) kN/m 4 -18.9 Sand 11.15 8 12.2 178.4 4a -20.8 Cohesive 1.9 14 30.3 1 57.57 4 -36.3 Sand 15.5 18 12.2 - 558 5 -52.4 Clay(Stiff) 9.45 38.00 113.7 1 1074 4696 2413 7109 k2 a Layers Type Np Ns,i k1 Rc,u 40.00 u(fili) Abqb 0.8 2 120 2.51 0.50
  • 86. 85 7.6 Design the typical foundation M1 7.6.1 Bearing capacity of pile  Ultimate bearing capacity of pile:     c,u vl R min 6893.2,6802.8,7108.6 6802.8 kN Q 9446(kN)      Design bearing capacity of pile: c,u a R 6802.8 Q 4122.9(kN) FS 1.65    7.6.2 The number of piles in pile cap Table 7.4 Internal forces at base Foundation Cases Ntt max Mtt x Mtt y Fx Fy M1 Nmax, Mcorresponding [kN] [kNm] [kNm] [kN] [kN] 16927.95 -145.11 67.3 40.33 125.16     tt N 16927.95 n 1 1.4 1 1.4 4.1 5.7 Qa 4122.9         Figure 7.1: Geometry of pile cap M1 The distance between them from center to center 3d, and from the center of outer pile to edge pile cap 1d. Choosing 6 bored pile 3x3 for pile cap of foundation of the core, the group factor will be:         1 2 2 1 1 2 n 1 n n 1 n d 1 arctg s 90n n 3 1 3 3 1 3 0.8 1 arctg 0.7 1 2.4 90 3 3                                     
  • 87. 86 Pile group capacity:         1 2 2 1 group c,u 1 2 n 1 n n 1 n d P 1 arctg nR s 90n n 3 1 3 3 1 3 0.8 1 arctg 6 4122.9 17316.2(kN) 16927.95(kN) 2.4 90 3 3                                             7.6.3 Checking the horizontal load bearing capacity of piles The preliminary horizontal force of each pile: tt 2 2 2 2 x y H F F 40.33 125.16 131.5(kN)      pile tt tt H 131.5 H 22(kN) 6 6    Calculating for the horizontal load bearing capacity of piles by the method of calculating the beam on the elastic ground with the support is spring and beam is pile. The bending equation of pile: 4 0 4 d y EI K zy 0 dz   Where Ko the ground coefficient (kN/m4 ) y displacement of pile (m) z depth (m) EI the spring stiffness (kN.m2 ) Following to TCVN 205 – 1998, G.7 giving the formula to calculate the design of pressure, moment and shear force: 0 0 0 z c 0 1 1 1 1 2 3 bd bd bd bd 2 0 z bd 0 3 bd 0 3 0 3 3 bd 3 2 z bd 0 4 bd 0 4 bd 0 4 0 4 M H K z y A B C D EI EI H M EIy A EI B M C D Q EIy A EIy B M C H D           a a a a    a  a    a  a  a  a 
  • 88. 87 Where 0 0 HH 0 HM 0 0 0 0 2 3 bd bd 0 0 MH 0 MM 0 0 0 0 2 3 bd bd 1 1 y H M H A M B EI EI 1 1 H M H B M C EI EI       a a        a a A0, B0, C0 take from the table with the coefficient 0 P 5 c bd pile pile K b l L L EI  a  A1, A3, A4, B1, B3, B4, C1, C3, C4, D1, D3, D4 take from the table
  • 89. 88 Table 7.5: Calculation of pile subjected to horizontal force At the depth 2m from the basement B2. There is the maximum horizontal pressure:       ' max 1 2 v u 4 5.39(kPa) tan c cos 4 1 0.7 21.8 tan30.1 12.2 80.4(kPa) cos30.1                    It’s satisfied the ground stability around piles d 0.80 m lp 16.128 L 38.00 m Ao 2.441 I 0.02 m4 Bo 1.621 E 32500000 kPa Co 1.751 bp 1.8 m H 22 K 5000.0 kN/m4 M 0 abd 0.4244 z zc HH MH yo o D  z Mz Qz m m m/kN m/kN m rad m rad kPa kN.m kN 0 0.0 0.00 0.00 22.00 0.1 0.0 0.54 0.00 22.00 0.3 0.1 1.51 5.18 21.73 0.7 0.3 3.02 15.13 19.90 0.9 0.4 3.57 19.51 18.45 1.2 0.5 4.36 23.68 16.76 1.6 0.7 4.79 30.70 12.78 2 0.8 5.39 33.52 10.67 2.4 1.0 5.14 37.37 6.35 2.6 1.1 4.90 38.66 4.23 2.9 1.2 4.76 39.54 2.23 3.1 1.3 4.40 39.80 0.30 3.4 1.4 4.13 39.62 -1.42 3.7 1.6 3.17 38.21 -4.53 3.9 1.7 2.73 37.00 -5.81 4.6 2.0 1.49 31.87 -8.56 5.4 2.2 0.74 27.58 -9.52 6.8 3.0 -1.37 9.92 -7.93 8.6 4.0 -2.31 -0.28 0.11 0.0003 0.0011 1.38E-05 4.89E-05 0.0003 0.0011
  • 90. 89 Figure 7.2: The Diagram of pile subjected to horizontal forces 0 2 4 6 8 10 -20.00 0.00 20.00 40.00 60.00 Depth (m) Value (kN.m) Moment Diagram 0 2 4 6 8 10 -4.00-2.000.00 2.00 4.00 6.00 8.00 Depth (m) Value (kPa) Horizontal Pressure Diagram 0 2 4 6 8 10 -20.00 0.00 20.00 40.00 Depth (m) Value (kN) Shear Force Diagram
  • 91. 90 7.6.4 Determine the spring stiffness Settlement of single pile following to the formula B.1 – Appendix B- TCVN 10304:2014: pile D QL s 100 AE   Where: pile D diameter of pile (m). 16927.95 Q 3527(kN) 6 0.8    The load acted on pile (kN) L Length of pile (m). A Area of pile (m2 ). E Young modulus of the material pile (kN/m2 ). pile 6 D QL 0.8 3527 37.8 s 0.016m 16(mm) 100 AE 100 0.5 32.5 10          The spring stiffness: a Q 4122.9 k 258(kN / mm) s 16    Choosing height of pile cap H 1.5(m)  Using SAFE to calculate the reaction force at pile head Exporting from SAFE: max a min P 2259(kN) Q 4122.9(kN) P 1633(kN) 0     