SlideShare a Scribd company logo
1 of 26
IN-LINE MONITORING OF NITRIDED GATE DIELECTRIC FILMS James Chapman Sr. Engineer, Fab Parametrics Micron Technology, Inc. Boise, ID Kwame N. Eason Key Accounts Technologist KLA-Tencor Inc. San Jose, CA
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object]
Gate Oxide History ,[object Object],[object Object],[object Object]
Gate Oxide Materials Challenges ,[object Object],[object Object],[object Object],[object Object],[object Object]
Mechanics of Boron Penetration ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],   B penetration    N content     V T      channel doping  Silicon Substrate - - - - - - - - - - - - - - - - - - - - -  - - - - - - - - -  Field Oxide
[object Object],[object Object],[object Object],Advantages of Gate Nitridation 1 Gate Polysilicon Poly Si Si Poly Si SiON Si SiO 2 Si Oxidation (BASE OX) SiO 2 Si Gate Oxidation (BASE OX) SiON Si SiON Si Nitridation
Long Channel V T  is Sensitive to Boron Penetration ,[object Object],[object Object],Poly Gate Si Substrate Sub-nom Channel Drain Controlled S D V DD
Long Channel V T  is Sensitive to Boron Penetration ,[object Object],[object Object],[object Object],Poly Gate Si Substrate Sub-nom Channel Drain Controlled S D V DD Long Channel  Gate Controlled S D V DD
Threshold Voltage as a Monitor ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Need an in-line electrical V T  monitor
In-Line Nitridation Monitoring with Quantox ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],   B penetration    N content     V T      channel doping
Quantox Approach ,[object Object],[object Object],Capacitance:   GateTox™ Leakage:   V tunnel
Quantox Approach, Cont’d ,[object Object],[object Object],[object Object],Fixed Charge: Q tot
Sensitivity of In-line Monitoring ,[object Object],[object Object],[object Object],Poly - Si RPNO Si Deposition Poly - Si SiON Si Polysilicon Deposition SiO 2 Si Oxidation (BASE OX) SiO 2 Si Gate Oxidation (BASE OX) SiON Si SiON Si Nitridation Quantox
Quantox Data Compared to V T   ,[object Object],[object Object],[object Object],[object Object],Capacitance
Leakage and Q tot   Correlation Results N content Leakage
Confirmation of Monitoring Strategy ,[object Object],[object Object],[object Object],Forced Excursion Double Nitridation Nitr. Poly Ox Processing Step
In-line Measured After Nitridation V tunnel  V tunnel  identifies the excursion  Forced Excursion Double Nitridation:
In-line Correlation to Capacitance C ox    1/ Thickness ,[object Object],[object Object],[object Object],[object Object]
Conclusion ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],97% Q tot 95% V Tunnel 95% GateTox R 2  to P ch  long V T   Parameter
Acknowledgements ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Back-Up Slides
Quantox Technology Overview Corona Charge Bias, Q SILICON OXIDE High Voltage Corona Ions 1. Repeat Non-Contact  Voltmeter, V surf Electronics V surf 2. Surface Photovoltage, SPV -  - +  + SPV LIGHT Transient  Detection 3.
Q-V Sweep Parameter Extraction Inversion Accumulation C ox :  Q-V slope V tunnel
Q-SPV Sweep Parameter Extraction Q total  = -Q (SPV = 0)
V T  as a Monitor (cont.) ,[object Object],[object Object],[object Object],[object Object],[object Object],Boron  counter-doping will move E f  closer to E i , thus reducing voltage required to reach threshold condition
V T  as a Monitor (cont.) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

More Related Content

What's hot

schottky barrier and contact resistance
schottky barrier and contact resistanceschottky barrier and contact resistance
schottky barrier and contact resistancepaneliya sagar
 
minimisation of crosstalk in VLSI routing
minimisation of crosstalk in VLSI routingminimisation of crosstalk in VLSI routing
minimisation of crosstalk in VLSI routingChandrajit Pal
 
Field-Effect Transistors
Field-Effect TransistorsField-Effect Transistors
Field-Effect Transistorsguest3b5d8a
 
Lect10_Analog Layout and Process Concern
Lect10_Analog Layout and Process ConcernLect10_Analog Layout and Process Concern
Lect10_Analog Layout and Process Concernvein
 
Metal semiconductor contact
Metal semiconductor contactMetal semiconductor contact
Metal semiconductor contactAnchit Biswas
 
Cmos fabrication process
Cmos fabrication processCmos fabrication process
Cmos fabrication processAnanda Mohan
 
Leakage effects in mos-fets
Leakage effects in mos-fetsLeakage effects in mos-fets
Leakage effects in mos-fetsArya Ls
 
Nanometer layout handbook at high speed design
Nanometer layout handbook at high speed designNanometer layout handbook at high speed design
Nanometer layout handbook at high speed designMinho Park
 
45nm transistor properties
45nm transistor properties45nm transistor properties
45nm transistor propertiesDeiptii Das
 
optimazation of standard cell layout
optimazation of standard cell layoutoptimazation of standard cell layout
optimazation of standard cell layoutE ER Yash nagaria
 

What's hot (20)

schottky barrier and contact resistance
schottky barrier and contact resistanceschottky barrier and contact resistance
schottky barrier and contact resistance
 
MOS Capacitor
MOS CapacitorMOS Capacitor
MOS Capacitor
 
minimisation of crosstalk in VLSI routing
minimisation of crosstalk in VLSI routingminimisation of crosstalk in VLSI routing
minimisation of crosstalk in VLSI routing
 
Channel length Modulation
Channel length ModulationChannel length Modulation
Channel length Modulation
 
Short channel effects
Short channel effectsShort channel effects
Short channel effects
 
Field-Effect Transistors
Field-Effect TransistorsField-Effect Transistors
Field-Effect Transistors
 
Boolean difference examples
Boolean difference examplesBoolean difference examples
Boolean difference examples
 
3673 mosfet
3673 mosfet3673 mosfet
3673 mosfet
 
Mosfet
MosfetMosfet
Mosfet
 
Lect10_Analog Layout and Process Concern
Lect10_Analog Layout and Process ConcernLect10_Analog Layout and Process Concern
Lect10_Analog Layout and Process Concern
 
Metal semiconductor contact
Metal semiconductor contactMetal semiconductor contact
Metal semiconductor contact
 
MOSFET Amplifier
MOSFET AmplifierMOSFET Amplifier
MOSFET Amplifier
 
Cmos fabrication process
Cmos fabrication processCmos fabrication process
Cmos fabrication process
 
Leakage effects in mos-fets
Leakage effects in mos-fetsLeakage effects in mos-fets
Leakage effects in mos-fets
 
WPE
WPEWPE
WPE
 
Nanometer layout handbook at high speed design
Nanometer layout handbook at high speed designNanometer layout handbook at high speed design
Nanometer layout handbook at high speed design
 
45nm transistor properties
45nm transistor properties45nm transistor properties
45nm transistor properties
 
optimazation of standard cell layout
optimazation of standard cell layoutoptimazation of standard cell layout
optimazation of standard cell layout
 
Impedance Matching
Impedance MatchingImpedance Matching
Impedance Matching
 
MOS transistor 13
MOS transistor 13MOS transistor 13
MOS transistor 13
 

Similar to Yms Micron

20EC602 VLSI Design.ppt
20EC602 VLSI Design.ppt20EC602 VLSI Design.ppt
20EC602 VLSI Design.pptASureshkumar13
 
VLSI D PPT.pdf
VLSI D PPT.pdfVLSI D PPT.pdf
VLSI D PPT.pdfAMohan12
 
Cmos design
Cmos designCmos design
Cmos designMahi
 
Lect2 up030 (100324)
Lect2 up030 (100324)Lect2 up030 (100324)
Lect2 up030 (100324)aicdesign
 
Double gate mosfet
Double gate mosfetDouble gate mosfet
Double gate mosfetPooja Shukla
 
Lab inv l
Lab inv lLab inv l
Lab inv lmkkalai
 
2008 IEDM presentation
2008 IEDM presentation2008 IEDM presentation
2008 IEDM presentationslrommel
 
Cnt vacuum electronics 9 may 09
Cnt vacuum electronics  9 may 09Cnt vacuum electronics  9 may 09
Cnt vacuum electronics 9 may 09Danilo Mascolo
 
Lect2 up060 (100324)
Lect2 up060 (100324)Lect2 up060 (100324)
Lect2 up060 (100324)aicdesign
 
Cathodic protection fundamentals
Cathodic protection fundamentalsCathodic protection fundamentals
Cathodic protection fundamentalsAbinash Padhy
 
Cathodic protection fundamentals
Cathodic protection fundamentalsCathodic protection fundamentals
Cathodic protection fundamentalsAbinash Padhy
 
Lect2 up080 (100324)
Lect2 up080 (100324)Lect2 up080 (100324)
Lect2 up080 (100324)aicdesign
 
Dielectric Q-V Measurements using COS technique
Dielectric Q-V Measurements using COS techniqueDielectric Q-V Measurements using COS technique
Dielectric Q-V Measurements using COS techniqueMichael Shifrin
 
Threshold Voltage & Channel Length Modulation
Threshold Voltage & Channel Length ModulationThreshold Voltage & Channel Length Modulation
Threshold Voltage & Channel Length ModulationBulbul Brahma
 

Similar to Yms Micron (20)

1 Technology
1 Technology1 Technology
1 Technology
 
1 Technology
1 Technology1 Technology
1 Technology
 
20EC602 VLSI Design.ppt
20EC602 VLSI Design.ppt20EC602 VLSI Design.ppt
20EC602 VLSI Design.ppt
 
VLSI D PPT.pdf
VLSI D PPT.pdfVLSI D PPT.pdf
VLSI D PPT.pdf
 
Cmos design
Cmos designCmos design
Cmos design
 
Lect2 up030 (100324)
Lect2 up030 (100324)Lect2 up030 (100324)
Lect2 up030 (100324)
 
Double gate mosfet
Double gate mosfetDouble gate mosfet
Double gate mosfet
 
CNTFET
CNTFETCNTFET
CNTFET
 
Lab inv l
Lab inv lLab inv l
Lab inv l
 
2008 IEDM presentation
2008 IEDM presentation2008 IEDM presentation
2008 IEDM presentation
 
Cnt vacuum electronics 9 may 09
Cnt vacuum electronics  9 may 09Cnt vacuum electronics  9 may 09
Cnt vacuum electronics 9 may 09
 
P045078991
P045078991P045078991
P045078991
 
Lect2 up060 (100324)
Lect2 up060 (100324)Lect2 up060 (100324)
Lect2 up060 (100324)
 
Cathodic protection fundamentals
Cathodic protection fundamentalsCathodic protection fundamentals
Cathodic protection fundamentals
 
Cathodic protection fundamentals
Cathodic protection fundamentalsCathodic protection fundamentals
Cathodic protection fundamentals
 
vlsippt.pdf
vlsippt.pdfvlsippt.pdf
vlsippt.pdf
 
Lect2 up080 (100324)
Lect2 up080 (100324)Lect2 up080 (100324)
Lect2 up080 (100324)
 
Dielectric Q-V Measurements using COS technique
Dielectric Q-V Measurements using COS techniqueDielectric Q-V Measurements using COS technique
Dielectric Q-V Measurements using COS technique
 
project
projectproject
project
 
Threshold Voltage & Channel Length Modulation
Threshold Voltage & Channel Length ModulationThreshold Voltage & Channel Length Modulation
Threshold Voltage & Channel Length Modulation
 

Yms Micron

  • 1. IN-LINE MONITORING OF NITRIDED GATE DIELECTRIC FILMS James Chapman Sr. Engineer, Fab Parametrics Micron Technology, Inc. Boise, ID Kwame N. Eason Key Accounts Technologist KLA-Tencor Inc. San Jose, CA
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15. Leakage and Q tot Correlation Results N content Leakage
  • 16.
  • 17. In-line Measured After Nitridation V tunnel V tunnel identifies the excursion Forced Excursion Double Nitridation:
  • 18.
  • 19.
  • 20.
  • 22. Quantox Technology Overview Corona Charge Bias, Q SILICON OXIDE High Voltage Corona Ions 1. Repeat Non-Contact Voltmeter, V surf Electronics V surf 2. Surface Photovoltage, SPV - - + + SPV LIGHT Transient Detection 3.
  • 23. Q-V Sweep Parameter Extraction Inversion Accumulation C ox : Q-V slope V tunnel
  • 24. Q-SPV Sweep Parameter Extraction Q total = -Q (SPV = 0)
  • 25.
  • 26.

Editor's Notes

  1. This is a representation of the locations in the silicon dioxide where the nitrogen will reside. This picture is not a true representation of the lattice structure, but merely a diagram of where nitrogen is located in the oxide. Hydrogen will also take places in the oxide near the interface and act as fixed charge or will also occupy locations in the interface. The size of nitrogen is much larger then oxygen and will stack at the interface like boulders next to marbles. There are spatial effects, the position of the nitrogen influences the electrical parameters, if N2 in the bulk then no charge just changes the dielectric constant at the interface changes. Hydrogen passivates the bonds. Luckily for us when N2 goes into the film it messes up the interface - we exploit that leads to COS or electrical characterization.
  2. 2 2