SlideShare a Scribd company logo
1 of 16
Download to read offline
Old Dominion University
ODU Digital Commons
OEAS Faculty Publications Ocean, Earth & Atmospheric Sciences
2001
Holocene Sediment Records From the Continental
Shelf of Mac. Robertson Land, East Antarctica
Peter N. Sedwick
Old Dominion University, Psedwick@odu.edu
Peter T. Harris
Lisette G. Robertson
Gary M. McMurtry
Maximilian D. Cremer
See next page for additional authors
Follow this and additional works at: https://digitalcommons.odu.edu/oeas_fac_pubs
Part of the Biogeochemistry Commons, Marine Biology Commons, Oceanography Commons,
and the Paleontology Commons
This Article is brought to you for free and open access by the Ocean, Earth & Atmospheric Sciences at ODU Digital Commons. It has been accepted for
inclusion in OEAS Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.
Repository Citation
Sedwick, Peter N.; Harris, Peter T.; Robertson, Lisette G.; McMurtry, Gary M.; Cremer, Maximilian D.; and Robinson, Philip,
"Holocene Sediment Records From the Continental Shelf of Mac. Robertson Land, East Antarctica" (2001). OEAS Faculty
Publications. 106.
https://digitalcommons.odu.edu/oeas_fac_pubs/106
Original Publication Citation
Sedwick, P.N., Harris, P.T., Robertson, L.G., McMurtry, G.M., Cremer, M.D., & Robinson, P. (2001). Holocene sediment records from
the continental shelf of Mac. Robertson Land, East Antarctica. Paleoceanography, 16(2), 212-225. doi: 10.1029/2000pa000504
brought to you by CORE
View metadata, citation and similar papers at core.ac.uk
provided by Old Dominion University
Authors
Peter N. Sedwick, Peter T. Harris, Lisette G. Robertson, Gary M. McMurtry, Maximilian D. Cremer, and
Philip Robinson
This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/oeas_fac_pubs/106
PALEOCEANOGRAPHY,
VOL. 16,NO. 2, PAGES212-225,APRIL 2001
Holocene sediment records from the continental shelf of
Mac. Robertson Land, East Antarctica
Peter
N. Sedwick,
1Peter
T.Harris,
•,2Lisette
G.Robertson,
• Gary
M. McMurtry,
3
Maximilian
D.Cremer,
3and
Philip
Robinson
4
Abstract. Geochemicalrecordsarepresented
for five sedimentcoresfrom basinson the continentalshelfof Mac.
Robertson
Land, EastAntarctica. The corescontain2-4 m thick sequences
of hemipelagic,siliceousmud andooze
(SMO) deposited
underseasonally
openmarineconditions.The innerandmiddleshelfSMO sequences
aremassive
darkolive greenmaterial,whereas
theoutershelfSMO sequences
aredarkolivematerialinterspersed
with lightolive
greenlayers~1-10 cm thick. The biogenic
materialis dominated
by marinediatomsincludingFragilariopsis
curta,
Fragilariopsis
cylindrus,
andChaetoceros
spp.in thedark-colored
SMO andCorethron
criophilum
in thelight-colored
layers.Radiocarbon
dates
suggest
thatthecores
provide
continuous
accumulation
records
extending
from< 1kyrbefore
present
(B.P.)back
asfaras4-15kyrB.P.,withestimated
accumulation
rates
of0.07-5mmyr'•. Thethree
core
records
fromthemiddleandoutershelfsuggest
sixepisodes
of increased
accumulation
of biogenic
materialat -5.5 kyrB.P.(all
threecores),1,2, and6.2kyrB.P.(twoof thethreecores),
and3.8and10.8kyrB.P.(onecore),mostof whichcoincide
with Corethron
layers.We interpret
these
features
astheresultof enhanced
diatomproduction
overtheoutershelf,
possibly
relatedto climaticwarmperiods.Theabsence
of suchfeatures
in theinnershelfcorerecords
is thought
to
reflectarelativelyconstant
levelof seasonal
diatom
production
in adjacent
waters
maintained
byacoastal
polynya.
1. Introduction
The Antarctic continentalshelf accountsfor a significant
fractionof SouthernOceanprimaryproduction
andis a major
areaof oceanic
deepwater
formation[Comiso
etal., 1993;Arrigo
et al., 1998a;Deacon, 1984;Orsi et al., 1999]. Algal production
in Antarcticshelfwatersmay thusplay a significant
role in the
biogeochemical
cyclesof carbonandsilicon,andin definingthe
composition
of oceanic
bottomwaters[Smith
andGordon,1997;
Nelson et al., 1996;Arrigo et al., 1999]. At present,little is
known aboutalgal productionand its relationship
to environ-
mental conditions on the Antarctic shelf during the late
Quaternary. This largely reflectsthe dynamicnatureof this
continental margin, where seafloor sedimentsare widely
reworked and redistributedby the action of ice and currents
[Dunbar et al., 1985; Andersonand Molnia, 1989;Harris and
O'Brien, 1996;Anderson,1999]. However,somefjordsandshelf
basins provide natural sediment traps, where there are
accumulations
of hemipelagic
sediments
derivedfromoverlying
watersand adjacentshelfareas[Domack,1982;Domackand
McClennen, 1996;Harris and O'Brien, 1996;Barkeret al., 1998;
Harris and O'Brien, 1998]. A numberof studieshavemadeuse
of sedimentcoresfrom suchlocationsto infer paleoenvironmen-
•AntarcticCRC, Hobart,Tasmania,Australia.
2Australian
GeologicalSurveyOrganization,
Hobart,Tasmania,
Australia.
3Department
of Oceanography,
University
of Hawaii,Honolulu,
Hawaii.
4Department
ofGeology,
University
ofTasmania,
Hobart,
Tasmania,
Australia.
Copyfight
2001bytheAmerican
Geophysical
Union.
Papernumber
2000PA000504.
0883-8305/01/2000PA000504512.00
talconditions
ontheAntarcticshelfduringtheHolocene
andlate
Pleistocene
[e.g.,Leventer
andDunbar,1988;Domack
etal.,
1993; Leventer et al., 1993, 1996; Shevenellet al., 1996;
Frignani
etal., 1998;Sedwick
etal., 1998;Cunningham
etal.,
1999;
Domack
andMayewski,
1999;
Domack
etal., 1999].
In theseinvestigations,
downcorechemical,
physical,
and
micropaleontological
datatogether
withradiocarbon
chronolo-
gies
have
been
used
toconstruct
regional
records
oftherelative
accumulation
of biogenic
versus
lithogenic
material,
fromwhich
paleoenvironmental
conditions
havebeeninferred. A mid-
Holocene
climaticwarming
hasbeenpostulated
onthebasis
of
sedimentrecordsfrom the continentalshelf of GeorgeV and
Ad61ie
Land,PrydzBay, andthewestern
RossSea[Domacket
al., 1991;Jacobson,
1997;Frignaniet al., 1998;Cunningham
et
al., 1999], whereassedimentsfrom the westernmarginof the
Antarctic Peninsula and the continental shelf of Mac. Robertson
Landcontainevidenceof century-to millennium-scale
variations
in accumulation
of biogenic
matterduringtheHolocene
[Domack
etal., 1993;DomackandMayewski,1999;Leventer
etal., 1996;
Sedwick
etal., 1998]. Suchchanges
havealsobeeninferredfrom
a high-resolution
OceanDrillingProgram
sediment
record
from
the PalmerDeep on the AntarcticPeninsula,whichcontains
evidence
of ~400, 200, and50-70 yearcyclesin accumulation
of
pelagicbiogenicmaterialaswell aslonger-term
paleoenviron-
mentalchanges,
includinga lateHolocene
neoglacial
period,a
mid-Holoceneclimatic optimum, an early Holoceneclimatic
cooling,anda latePleistocene
deglacial
episode
[Domack
etal.,
200•1.
Theseresults
naturally
raisequestions
concerning
theregional
coherence
of suchrecords
andthespatialscaleof theinferredpa-
leoenvironmental
variations,given that present-day
environ-
mentalconditions
on theAntarcticmargin,suchasseaice cover
andalgalbiomass,
areknownto be highlyvariable[Comiso
et
al., 1993;Arrigoet al., 1998b;Barkeret al., 1998;Parkinson,
1998]. Suchquestions
canonlybeaddressed
by examining
the
212
SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF 213
coherence
of paleoenvironmental
records
fromtheAntarcticshelf
overa widerangeof spatialscales.Herewe present
geochemical
and sedimentological
recordsfor five sedimentcorescollected
from shelf basinson the continentalmargin of Mac. Robertson
Land, EastAntarctica(the Mac. RobertsonShelf),a regionwhich
sustains
relativelyhigh algalbiomass[Comisoet al., 1993] and
may be a significantsourceof AntarcticBottomWater [Orsi et
al., 1999]. Preliminaryanalysesof two of thesecoresindicated
significantdifferencesin the sedimentary
recordsfrom the inner
andoutershelfover distancesof < 100 km [Sedwicket al., 1998].
The new datapresented
hereindicatethattherehaveindeedbeen
significantsmall-scaleregionalvariationsin the accumulation
of
biogenicmaterialin the Mac. Robertson
Shelfbasinsduringthe
Holocene,but our resultsalsoprovideevidencefor millennial-
scale environmental variations in common with sedimentary
records
from otherpartsof theAntarcticmargin.
2. Materials and Methods
2.1. Study Area
The Mac. Robertson
Shelfextends
some400 km westof Prydz
Bay, East Antarctica,with a typicalwidth of 90 km (Figure 1).
Herethe continentalshelfis madeup of relativelyshallowbanks
< 200 m in depth,separated
by steep-sided
basins
andvalleysup
to 1200m in depthwhichareinterpreted
asrelictglacialtroughs
[O'Brien,et al., 1994;Harris and O'Brien, 1998]. Dense,high-
salinity shelf water forms along the shelf in association
with
coastalpolynyas,andthis watersinksand flows off the shelf,
probablyfilling the perched
basins[Bainesand Condie,1998;
Harris and O'Brien, 1998; Harris, 2000]. On the outer shelf and
uppercontinentalslopea large-scale
westwardflowing current
follows the AntarcticSlopeFront, extendingfrom the surface
watersto the seafloor,wherecurrentspeeds
up to severalmeters
per second
havebeenmeasured
[Smithet al., 1984;Harris and
O'Brien, 1998; Bindoffet al., 2000]. Coarse-grained
sandand
gravel depositsoccuron the shallowerareasof the outer shelf
andupperslope,whereas
finer-grained
mudsoccurin thedeep
basins,particularlyon theinnershelf[Harris and O'Brien, 1996,
1998]. These basinscontainup to severalmeters(at least) of
siliceous
mudandooze(SMO) deposited
underseasonally
open
marineconditions,
overlyingsandysilt andglacialmarinemuds
thatwereprobablydeposited
underor neara permanent
ice shelf
[Harris and O'Brien, 1998; Anderson, 1999]. The radiocarbon
agesof thesefacies in sedimentcoresfrom the Mac. Robertson
shelfsuggest
thatseasonally
openmarineconditions
commenced
around10-12 kyr before present(B.P.) on the outer shelf and
around6 kyr B.P. on theinnershelf,thedifferencerepresenting
the period over which a permanentice canopyretreatedacross
the continental shelf during the early Holocene [Harris and
O'Brien, 1998; $edwicket al., 1998].
2.2. SampleMaterials
The sedimentcoresusedin thisstudywerecollectedfrom the
Nielsen Basin (maximum water depth -1200 m) and Iceberg
Alley (maximumwater depth-500 m), which are two of the
largerbasinsontheMac. Robertson
Shelf(Figure1). The 9 cm
diametergravity coreswere collectedduringcruisesof RSV
Aurora Australis in 1993, 1995, and 1997. Five cores were
examined in this study (approximate water depths in
parentheses):
AA186-GC34(470 m) andKROCK-GCI (478 m)
from theoutershelfin IcebergAlley, AA149-GC2 (1100 m) and
KROCK-GC2 (1090 m) from the inner shelf in the Nielsen
Basin, and AA149-GC12 (626 m) from midshelfin the Nielsen
Basin(Figure1). Thesesitesareseparated
by distances
ranging
from -5 to 100 km. All of the cores contain continuous
sequences
of SMO rangingin thickness
from 267 to 374 cm
(Figure2). In coresKROCK-GC2 andAA149-GCI2 the SMO
unitsoverliesandyglacialmarinemuds. The SMO sequences
areprimarilya mixtureof diatomooze,fine-sand
to coarse-silt
quartz,andotherfine lithogenicmaterial.The SMO unitsof the
ii• AN•,-R•TICA
-....:,..-.-.:.-..-¾"-"--'---:-'....-"::•.....-"•i•?/-'.
::'-•'•i
500m •-:'--:•:•::!•!•i:•:"..i•?'•"
""•'"'"•"
' '
'--
'"••:-•...•i:--:.-'i::iiiii'"'"'""':':'"•:-
"•. -"..-'i•iiii"-"-'J•'"•!ii":"=""""'""•-
•:-.-'-•::ii:::..:-•--'•i'"'"'"•'"'•'"':"
' '"
"•-
- -
'"•---
-
-:•• :"-":•::
....................
:':•iii::"'"'"'•'"':'"•""--
-'•..---'•i•ii ,
'....:.:• 86 .... ':':•?'-:--':•..-"•i-..':ili•i
.......... -'--'":"---'""•--"•.-'•
.............
•F--'::•i•i•.:::?--'-":----"...-:•i•.::i•i?•-.-:::•i•i•?.•i•i
Maws•
•n MAC. ROBERTS
63øE 64
ø ......
'6•
ø --
-••6• •'_:
:1
water
depth: •1 0-200m,..-•>a00m 0 20 40 km
I I I
Figure 1. Map of theMac. RobertsonShelf,showingsedimentcollectionsites.
214 SEDWICKET AL.:SEDIMENTRECORDS
FROMTHEEASTANTARCTICSHELF
10o
200
3OO
AA186-GC34
o 20
0 50 1O0
KROCK-GC1
o 20
50 100
AA149-GC2
o 20
5O 100
KROCK-GC2
o 20
5O 100
AA149-GC12
o 20
..
o 50 lOO
Grain size
% gravel
% •and
% mud
Magnetic
susceptibility
(xllY
6cgs)
o 2o
Facies
Corethron
layers
Holocene SMO
cross-bedded
sandy silt
glacial marine mud
ice-rafted
debris
Figure 2. Grainsize,magnetic
susceptibility
andfaciesclassification
forcoresin thisstudy.
innerandmiddleshelfcores(AA149-GC2,KROCK-GC2,and
AA149-GC12) are massive,
generallyfeatureless,
darkolive
green sediment, whereas the SMO units from the outer shelf
cores(AA186-GC34andKROCK-GC1)aredarkolivegreen
material
interspersed
withfluffy,lightolivegreen
bands,
which
range
in thickness
from~1to 10cm. Finer-scale
lightanddark
laminations
wereapparent
in coresAA186-GC34 andKROCK-
GC1 whenthey werefirst split,but thesefeatures
fadedafter
severalweeksof storage.
The cores were split and describedimmediatelyafter
collection,
thenwrapped
in polyethylene
andstored
at 2øC. The
coreswere subsampled
for variouschemicaland physical
measurements
in Hobart. Subsamples
weretakenover 10 cm
intervalsfor geochemical
analysis,
andthegeochemical
data
presented
in section3.2 represent
the depth-averaged
bulk
compositions
of these10cmthicksubsamples.
In addition,1-2
cmthicksubsamples
weretakenfromsel•ted depths
forradio-
carbon
datingandgrain-size
analysis,
1 cmthicksubsamples
weretaken
fromtheupper
5-10cmofthecores
forgamma
spec-
trometric
analysis,
and1 cm
3subsamples
weretaken
at 10cm
intervals
fordetermination
of drybulkdensity.Theuppermost
v-',--,,,• of the outer .•...,c
•,,•,, coressuffered
somecompaction
(< 10
cm)andminorstratigraphic
disturbance
aftercollection
owing
to
the high water contentof the sediment,but we have madeno
attempt to correct our data for these effects. In addition, the
uppermost
section
of coreKROCK-GC1shrank
in lengthfrom
100to ~90 cmpriorto subsampling
owingto waterlossduring
storage.In thepresentation
of dataforthiscore,average
sample
depths
between
0 and90 cmhavebeenmultiplied
by a factorof
100/90in anefforttocorrect
forthisshrinkage.
2.3. Core ChronologyandIsotopicAnalyses
The near absence of carbonate microfossils in the cores
precludes
useof standard
•5180
stratigraphy
and/or
radiocarbon
dating of calcium carbonate, whereas the likelihood of non-
uniform sedimentation
ratesand the presence
of significant
concentrations
of authigenic
uranium(seesection
3.2) precludes
the estimationof accumulation
ratesusingthe uraniumseries
radionuclides
226Ra,
23øTh,
and23•pa.
Theprimary
chronostrati-
graphic
toolwehaveusedin thisstudyisradiocarbon
dating
of
bulkorganic
carbon(typically1-2%by mass
in these
sediments),
which has been successfullyemployedin other studiesof
sediments
fromtheAntarcticcontinental
shelf[e.g.,Domacket
al., 1989; Leventeret al., 1996;Domacket al., 2001]. Radio-
carbon
agesweredetermined
byaccelerator
mass
spectrometry
at
eithertheAustralian
NuclearScience
andTechnology
Organiza-
tion (ANSTO) or theNew Zealandinstituteof Geological
and
NuclearSciences
(NZI). Radiocarbon
datesarereported
hereas
conventionalradiocarbonyearsbeforepresent,as definedby
Stuiver
andPolach[1977].The•5•3C
values
used
tocalculate
the
radiocarbonages were either measured(NZI analyses)or
SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF 215
assumed
(ANSTO analyses),
with theassumed
valuesbasedon
•513C
measurements
ofsubsamples
fromcores
KROCK-GC1
and
KROCK-GC2 performedby the AustralianGeologicalSurvey
Organization.The errorsintroduced
in theradiocarbon
agesdue
totheuse
ofassumed
•5'3C
values
arelikelytobeless
than
the
analytical
uncertainties
inthe'4Cmeasurements,
given
therange
ofmeasured
•5•3C
values
(-24.1to-34.1%o).
Inaddition,
unsup-
ported
2'øPb
wasdetermined
incore
topsubsamples
bygamma
spectrometry
[McMurtry et al., 1995]in aneffortto evaluatethe
possible
lossof coretopmaterialduringsample
collection.
2.4. Physicaland GeochemicalMeasurements
Down coremagneticsusceptibility,
whichprovidesa relative
measureof ferromagnetic (i.e., lithogenic) mineral content
[Leventer
et al., 1996], wasdetermined
with a Battington
MS-2
magneticsusceptibility
meter. The coreswerealsoX-rayed in
orderto identify macroscopic
sedimentary
structures,
anddown
coresubsamples
were wet sievedto determinepercentage
gravel,
sand,andmud by dry weight[Harris and O'Brien, 1998]. The
followinggeochemical
measurements
wereperformedon the 10
cm thicksubsamples:
(1) bulkmajorandminorelements
(A1,Si,
Ti, Mn, Fe, Ni, Cu, Zn, Br, Mo, Ba, and U) were determinedin
crushed,60øC dried (and, for major elements,aleionized
water
washed)materialby X-ray fluorescence
spectroscopy,
following
a modification
of themethodof Shimmield[1984]; (2) biogenic
silica(opal),with assumed
composition
SiO2.0.4H:O,wasdeter-
minedin freeze-driedsedimentby themethodof Mortlockand
Froelich[1989]; and (3) totalorganiccarbon(TOC) wasdeter-
mined in crushed, 60øC dried, acid-treated, deionized water
washedmaterial usingan elementalanalyzerat the Australian
Geological
SurveyOrganization
or theUniversityof Tasmania.
Analyticaluncertainties,
as estimated
from repeatedmeasure-
mentsof in-housestandards,are presentedin Table 1 (the
geochemical
datapresented
hereareavailableelectronically
at
http
://www.antcrc.utas.edu.au/antcrc/research/sediment_web/data
/geochem.html).
3. Results
3.1. Core Preservationand Chronostratigraphy
Table 2 presents
the radiocarbon
agesand measured
or
assumed
•5'3C
values
of bulkorganic
carbon
in subsamples
from
thefivecores.Themeasured
•5'3C
values
aregenerally
consistent
withtherangeof-20 to -30%oreported
for Southern
Ocean
pelagic
phytoplankton
[Gibson
etal., 1999;
Poppetal., 1999],
although
slightly
lowervalues
(< -32%o)
intheupper
portion
of
core
AA149-GC
12may
reflect
the
presence
of'•C-depleted
relict
terrestrial
organic
matter
[Harrisetal.,1996].Downcore
radio-
carbon
ages
generally
increase
inaregular
fashion
(Figure
3)and
suggest
thatthecores
preserve
continuous
records
of sediment
accumulation
overtimeperiods
ranging
from-3.8 kyr(AA149-
GC2)to 15kyr(AA149-GC12).Ourinitialanalyses
ofcoretop
samples
fromcores
KROCK-GC1
andKROCK-GC2
detected
no
unsupported
•'øPb
[Sedwick
etal., 1998],
suggesting
theloss
of
sediments
corresponding
tothepast
~100-200
years
(atleast)
of
accumulation
duringcollection
of thesecores. Subsequent
analyses
(datanotshown)
indicate
lowlevels
of unsupported
•øPb
inonlytheupper
2cmofcores
AA186-GC34
andKROCK-
GC2,and
nounsupported
vøPb
incore
KROCK-GC1,
consistent
withsome
lossofcoretopmaterial
during
collection,
whereas
the
Table 1. Estimated
AnalyticalUncertainties
Species Uncertainty
a
AI 0.5
Si 0.2
Ti 5
Mn 10
Fe 2
Ni 10
Cu 10
Zn 1
Br 10
Mo 5
Ba 1
U 20
Opal 5
TOC 0.2b
aRelative standarddeviation on mean.
bAbsolutestandarddeviation (wt %).
lowto moderate
levels
of unsupported
21øpb
measured
in the
upper5 cmof cores
AA149-GC2andAA149-GC
12suggest
that
therewereno significantcoretoplosses.
In our studyregionthe radiocarbon
ageof organicmatterat
thesediment-water
interfaceis expected
tobegreaterthanzeroas
a resultof (1) thenonzeroradiocarbon
ageof thedissolved
inor-
ganiccarbonthatis converted
intoorganicmatterin theeuphotic
zone(assumed
to betheprincipalsource
of organic
carbonin our
sediment
cores),termedthereservoireffect,whichis ~1300years
in surfacewaters of the SouthernOcean [Gordon and Harkness,
1992;Berkmanand Forman, 1996];(2) bioturbation
in theupper
sedimentcolumn,whichverticallymixesmaterialoverdepthsof
the orderof 10 cm [Berner, 1980; Libes, 1992]; and (3) dilution
of fresh sedimentsby older, resuspended
particulatecarbon
[Harris et al., 1996]. In an effort to correctour radiocarbon-
basedchronologies
for thecombinedeffectsof theseprocesses,
we havesubtracted
1730radiocarbon
yearsfrom ourraw radio-
carbonages. This valueof 1730radiocarbon
yearsis theraw
radiocarbonage of a well-stratified, water-saturated,
surface
sediment
grabsample
(AA186-GB9)thatwasrecovered
nearthe
location of AA149-GC2 in the inner Nielsen Basin (E. Domack,
personalcommunication,
1997). The radiocarbon
ageof this
surfacesedimentsampleis assumedto be representative
of
surfacesediments
withintheshelfbasins
of ourstudyarea.
We recognize
thattherearea number
of significant
uncertain-
ties included in our radiocarbonage correction. One is the
possiblegeographicvariationin radiocarbonage of surface
sedimentsin theseshelf basins,which might be expected,for
example,
because
of differences
in theproportion
of resuspended
materialaccumulating
at differentlocations.Anotheruncertainty
is introducedby the likely variation in the reservoirage of
Antarctic waters between the Last Glacial Maximum and the
earlyHolocene,
whichmaybeof theorderof thousands
of years,
basedon our knowledgeof changesin the radiocarbon
age of
oceanic
deepwatersoverthisperiod[Samson,
1999;Sikesetal.,
2000] andgiventhatupwelleddeepwatersdominatetheradio-
carbon inventory of Antarctic surfacewaters [Berkmanand
Forman, 1996]. Yet an additional complicationto the radio-
carbonagecorrection
is introduced
by the presence
of bomb-
216 SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF
Table 2. Radiocarbon
Ages
Sample Depth, •13C, Age,
a Corrected
Age,
b Analysis
cm %0 yearsB.P. yearsB.P. Numbeft
AA 186-GB9/0-2 1 -24.3 1733 + 83 0 NZA 7716
AA186-GC34/0-1 0.5 -25.8 1987 + 83 254 NZA 7712
AA186-GC34/180-181 180.5 -30.5 3881 + 83 2148 NZA 7713
AA186-GC34/272-273 272.5 -25.7 5611 + 84 3878 NZA 7714
AA 186-GC34/367-368 367.5 -26.1 7949 + 84 6216 NZA 7715
KROCK-GCI/0-1 0.5 (-25)a 2630+ 80 897 OZB 995
KROCK-GC 1/85.5-86 99.5 -24.9 3838 + 84 2105 NZA 7717
KROCK-GC1/85.5-86.5 99.5 (-25) 3980 + 80 2247 OZB 996
KROCK-GC1/181-182 181.5 (-25) 5940 + 80 4207 OZB 997
KROCK-GC1/272-273 272.5 (-25) 7200+ 130 5467 OZB 998
KROCK-GC1/356.5-357.5 357 -24.14 13390 + 150 11657 NZA 4639
AA149-GC2/0-1 0.5 -24.5 1786 + 71 53 NZA 5779
AA 149-GC2/35-36 35.5 (-25) 1710+ 100 0 OZC 080
AA149-GC2/70-71 70.5 (-25) 2250 + 70 517 OZC 081
AA 149-GC2/105-106 105.5 (-25) 3040 + 140 1307 OZC 082
AA149-GC2/140-141 140.5 (-25) 2390+ 110 657 OZC 083
AA149-GC2/175-176 175.5 (-25) 2910 + 70 1177 OZC 084
AA149-GC2/210-211 210.5 (-25) 3350+ 70 1617 OZC 085
AA 149-GC2/245-246 245.5 (-25) 4070 + 90 2337 OZC 086
AA149-GC2/273.5-275.5 274.5 (-25) 4420 + 150 2687 OZC 087
AA149-GC2/302-303 302.5 -24.4 5498 + 88 3765 NZA 5782
KROCK-GC2/7.5-8.5 0.5 (-24.4) 2030 + 310 297 OZB 098
KROCK-GC2/42.5-43.5 35.5 (-25) 1940+ 70 207 OZC 076
KROCK-GC2/77.5-78.5 70.5 (-24.2) 2420 + 80 687 OZB 099
KROCK-GC2/112.5-113.5 105.5 (-25) 2750 + 60 1017 OZC 077
KROCK-GC2/147.5-148.5 140.5 (-23.9) 3330+ 100 1597 OZB 100
KROCK-GC2/182.5-183.5 175.5 (-25) 3950+ 100 2217 OZC 078
KROCK-GC2/217.5-218.5 210.5 (-23.9) 5060+ 180 3327 OZB 101
KROCK-GC2/252.5-253.5 245.5 (-25) 5970 + 150 4237 OZC 079
KROCK-GC2/281-283 274.5 -26.87 7673 + 84 5940 NZA 4640
AA149-GC12/2-3 2.5 -25.6 2171 + 66 438 NZA 5964
AA149-GC12/40-41 40.5 -34.1 5519 + 71 3786 NZA 6754
AA149-GC12/80-81 80.5 -32.3 5380 + 78 3647 NZA 6755
AA149-GC12/120-121 120.5 -29.6 7124 + 77 5391 NZA 6756
AA149-GC12/200-201 200.5 -28.1 8102 + 81 6369 NZA 6749
AA149-GC12/250-251 250.5 -25.5 11410 + 110 9677 NZA 6063
AA149-GC12/265-266 265.5 -25.1 12122 + 92 10389 NZA 7718
AA149-GC12/301-302 300.5 -26.3 17150 + 280 15417 NZA 5763
aRadiocarbon
years
B.P.asdefined
byStuiver
andPolach[1977].
bCorrected
ageassumes
surface
sediment
ageof 1733radiocarbon
years
B.P.
CSample
numbers
beginning
withOZanalyzed
bytheAustralian
Nuclear
Science
andTechnology
Organization,
andsample
numbers
beginning
withNZ analyzed
bytheNewZealand
Institute
ofGeological
andNuclear
Sciences.
aValues
inparentheses
areassumed
forthecalculation
ofradiocarbon
ages.
derivedradiocarbon
in sediments
deposited
duringthe past50
years,which will havethe effect of decreasing
the radiocarbon
ageof recentsediments
by asmuchas500 years[Berkmanand
Forman, 1996]. However,in theabsence
of specificinformation
regarding
theeffectof thesevariousprocesses
ontheradiocarbon
ageof surfacesediments
in basinson theMac. Robertson
Shelf,
we havecorrected
all of ourrawradiocarbon
agesby subtracting
1730radiocarbon
years. The thuscorrected
agesof oursed:,ment
coresamples,which we compareagainsttheconventional
radio-
carbon
timescale,
arepresented
in Table2.
Sediment accumulation rates have been calculated between
dated samples in the cores as shown in Figure 3. These
calculated
sedimentation
ratesrange
from7 to 500cmkyr
'•
(0.07-5mmyr'l),although
thehighest
rates,
calculated
forthe
uppermost
sections
of thecores,
havelargeuncertainties
resulting
fromtheanalytical
uncertainties
in theradiocarbon
ages.Typical
accumulation
rates
appear
to beof theorder
of 50cmkyr".
Several
datedsamples
wereexcluded
fromtheaccumulation
rate
calculations
in cases
whereeither(1) thesampleageisolderthan
theageof thesample
immediately
below(cores
AA149-GC2
and
AA149-GC12),suggesting
thepossible
inputof oldermaterial
due to slumping,or (2) the sampleage is within analytical
uncertainty
of theageof thecoretopsample
immediately
above
(coresAA149-GC2 and KROCK-GC2). The correctedradio-
SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF 217
o
50
lOO
15o
200
250
300
350
400
AA186-GC34
(outer shelf)
/ . ,
53.2
•40.6
KROCK-GC1
(outer shelf)
_-! _ ß . i _ ß
•' 77.4
crn.
kyY'
1
0.4
•-13.7
AA149-GC2 KROCK-GC2 AA149-GC12
(inner shelf) (inner shelf) (mid-outer shelf)
crn.
kyY
'1
48.6
crn.
kyr
-1
-17.0
_ ß _ ß _ ß _ ß
3crn.
kyY
'1
46.8
39.6
15.1
21.1
•
7'.0
'"•'•
uncorrected radiocarbon age (kyr B.P.)
Figure 3. Uncorrectedradiocarbonagesversusdepthand calculatedsedimentaccumulation
ratesbetweendated samples.
Sampleswereexcludedfrom accumulation
rate calculations
where(1) a sampleis olderthanthat immediatelybelow it (open
circles)or(2) a sample
ageis withinanalytical
uncertainty
of thecoretopsample
age(stippled
circles).
carbon
ages
of thecoretopsamples
range
from~50to900radio-
carbonyears, which may reflect the previouslymentioned
uncertainties
in ouragecorrection,
aswell assomelossof core
topmaterial,although
thelatteris onlylikely to be significant
(i.e., greaterthan --100-200 years)for coresAA186-GC34,
KROCK-GC1, and KROCK-GC2, on the basis of our excess
2•øPb
analyses.
Thecorrected
coretopageof KROCK-GC1,
if
duesolely
tocoretoploss,
suggests
that--70cmof theuppermost
sediment
columnis missing,usingourestimated
accumulation
rates. However, as noted above, these accumulation rate
estimatesand thusestimatesof core top lossesare very poorly
constrained.
Corechronologies
wereestablished
by linearinterpolation
of
the age versusdepthdataas shownin Figure3, usingthe
correctedradiocarbonagespresented
in Table 2. With the
exception
of coreAA149-GC12 (seebelow),the downcore
physicaldata(Figure2) andX-ray imagesprovideno clear
evidence
of graded
bedsor erosional
surfaces
withintheSMO
units,andcoarse
materialtypicalof shallower
areas
ontheshelf,
including
calcareous
biotawhichoccuron nearbyFramBank
[Rathburn
etal., 1997],israre. Thisandtheabsence
of signifi-
cantagereversals
orhiatuses
in thedowncoreradiocarbon
ages
argues
against
significant
episodic
downslopetransport
of
sedimentsinto these basins, or significant erosional events,
althoughthe sustainedtransportof fine sedimentsfrom the
shallow shelf areasinto thesebasinsis clearly an important
process
[Harris and O'Brien,1996,1998]. Thus,in ourinterpre-
tationof the down core geochemicaldata we assumethat each
core contains a continuous record of sediment accumulation that
hasnotbeensignificantly
disturbed
by slumps,
turbidityflows,or
erosionalevents. In the caseof core AA149-GC12, however, X-
rayimagesindicateripplecross
bedding
concentrated
between
50
and 150 cm depth,which alongwith radiocarbon
agereversals
(Figure
3) andrelatively
depleted
15•3C
values
(< 30%0)
between
40 and 120cm depth(Table2), suggest
thatthesediment
record
in this core may reflect episodesof down slope sediment
transport
byrelativelystrong
density
currents
[Harris,2000].
3.2. Physicaland GeochemicalData
The SMO units are madeup of ~70-95% mud and ~5-30%
sand (Figure 2) and contain 16-46% opal (mean is 37%) and
0.66-2.3% TOC (meanis 1.3%) by weight. Downcoremagnetic
susceptibility
valuesareuniformlylow (< 5 x 10'6cgs)and
featureless
within theSMO facies(Figure2), indicatinga paucity
of ferromagneticminerals and lithogenic material in general.
Microscopic examinationof core material indicatesthat the
majority of organic matter is associatedwith the remainsof
diatomsthat are typical of Antarcticcoastaland shelf waters,
with lithogenicparticles(fine sandto coarsesilt) accounting
for
the remainder of the SMO facies material. A detailed microfossil
studyof coresKROCK-GC1 andKROCK-GC2 [Taylor,1999;F.
Taylor and A. McMinn, Evideace from diatomsfor Holocene
climatefluctuationalongtheEastAntarcticmargin,submitted
to
The Holocene, 2000] indicatesthat the diatomsFragilariopsis
curtaandFragilariopsiscylindrusdominate
thedarkolivegreen
SMO, exceptnearthebaseof bothcoreswhereChaetoceros
spp.
restingspores
aredominant,whereas
thelighter-colored
bandsin
coreKROCK-GC1 are characterized
by an increased
abundance
of the diatomCorethron criophilurn. Preliminarymicroscopic
examinationof materialfrom core AA186-GC34 suggests
that
the light and dark bandingin this core reflectsdiatom species
218 SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF
assemblages
similarto thosein coreKROCK-GC1 (L. Armand,
personal
communication,
1999). Theoccurrence
of thelarger
visible
"Corethron
layers"
inthese
cores
isindicated
inFigure
2.
In examining
thepaleoenvironmental
record
preserved
inthese
cores,
specifically
therecord
of accumulation
of biogenic
versus
lithogenicmaterial,the physicalmeasurements
are of only
limiteduseatthelevelof resolution
used
in thisstudy
because
of
the relatively homogeneous
grain size distributionand the
relatively
lowandconstant
values
ofmagnetic
susceptibility.
We
havetherefore
focused
onchemical
proxies
for theaccumulation
of lithogenicand biogenicmaterial in an effort to infer the
sedimentation histories for these core sites. The chemical data
considered
herearedivided
intothefollowing
groups
onthebasis
oftheirutilityaspaleoenvironmental
proxies.
1. Ti, A1,andFe,themajorfractions
of whicharegenerally
associated
with lithogenic
materialin pelagicandhemipelagic
sediments[Calvert and Pedersen,1993;Kuntaret at, 1995].
Bulk sediment
concentrations
of these
elements
thusprovidea
relativemeasure
of theaccumulation
of lithogenic
material.
2. TOC andBr, whichproviderelativemeasures
of theaccu-
mulationof organicmatterin marinesediments.
TOC provides
a
directmeasureof the depositedorganicmatterremainingafter
diagenetic
remineralization,
whereas
Br is thoughtto beuniquely
controlledby the organicfractionin marinesediments
[Price et
al., 1970; Calvert andPedersen,1993].
3. Opal and total Si/A1, both of which provide relative
measures
of theaccumulation
of biogenicsiliceous
matterwhere
postdepositionalpreservationis high or relatively constant
[Charles et al., 1991; Mortlock et al., 1991; McManus et al.,
1995]. Opaldetermined
by themethod
of MortlockandFroelich
[1989]providesa directmeasure
of thisbiogenicsilica,whereas
total Si (determinedby X-ray fluorescence),
whennormalizedto
A1,providesan indirectestimateof thissamequantity,assuming
thatthemajorityof A1islithogenic.
4. Mo, U, and Mn, which changevalenceand are thusad-
sorbedor precipitated
in response
to changes
in sedimentary
re-
dox conditions. Sedimentary
enrichments
in Mo/A1, U/A1, and
MrdA1,relativeto crustalabundances
(assuming
all A1is litho-
genic),areindicativeof anoxic(sulfidic),suboxic,andoxiccon-
ditions,respectively
[CalvertandPedersen,
1993, 1996;Crusius
et al., 1996]. Thustheseelementsserveassensitive
proxiesof
sedimentaryredox conditions,with down core changesin A1-
normalized concentrationsindicating past variationsin redox
conditions,
asmay resultfrom variationsin theaccumulation
of
organicmatter.
5. Ni, Cu, and Zn, which form insoluble metal sulfides and
may thus precipitate in reducing sedimentswhere dissolved
sulfideis present[Calvert and Pedersen,1993]. Sedimentary
enrichments in Ni/A1, Cu/A1, and Zn/A1 relative to crustal
abundance
(assuming
all A1is lithogenic)
areindicativeof anoxic
(sulfidic)conditions,
asmay resultfrom increased
accumulation
of organicmatter.
6. Biogenic (or excess)Ba, calculatedas the difference
between
totalandlithogenic
Ba, wherelithogenic
Ba isestimated
fromA1usingtheaverage
crustalweightratioof Ba/A1(0.0075).
BiogenicBa is thoughtto bedeliveredto thesediments
asbarite
containedin organicmatterfrom the surfaceoceanandis well
preserved
in oxicsediments,
whereit serves
asa proxyforexport
production
in overlyingwaters[Dyntond
etal., 1992].
Thesechemicaldataarepresented
in Figure4, in whichbulk
sediment
concentrations
(dry weightbasis)areplottedagainst
the
agecorresponding
to theaverage
depthof eachsubsample
in the
core. Theseageswerelinearlyinterpolated
usingthechronologi-
cal schemedescribed
in section3.1. The periodsof deposition
integrated
bythese10cmthicksubsamples
rangefrom-20 years
(baseof AA149-GC12) to 1400years(upperportionof AA149-
GC2), basedon the estimatedsedimentaccumulationratesshown
in Figure3, with a typicaltemporal
resolution
of-200 yearsfor a
sediment
accumulation
rateof50cmkyr
'•.
4. Discussion
4.1. Down Core CompositionalRecords
The SMO unitsof thefive coresaregenerally
similarin terms
of bulkcomposition,
with coresKROCK-GC1 andAA149-GC12
displayingthegreatestcompositional
ranges,asis evidentin the
downcoreopal data (Figure4). Manganese
concentrations
are
uniformlylow in all of the cores,with Mn/A1 values(meanis
0.16+ 0.27)statistically
indistinguishable
fromtheaverage
shale
ratioof 0.08 [Wedepohl,1971], whereas
theratiosMo/A1 (mean
is1.3+0.6x 10
'4)and
U/A1
(mean
is0.9_+
0.3x 10
.4)
aresignifi-
cantly
enriched
relative
totheaverage
shale
ratios
of-0.3 x 10
'4
and-0.4 x 10
'4,respectively
[Wedepohl,
1971]. These
geo-
chemical trends together with shipboardobservationsof
hydrogen
sulfideodoruponrecovery
of thesecoresandgrab
sampleAA186-GB9 indicatethattheentiresediment
columnand
possiblythe sediment-water
interfacewere anoxic(sulfidic) at
eachof thesesites. This wouldact to limit bioturbation
by
benthicorganisms,
thus favoringthe preservation
of high-
resolution records of sediment accumulation. However, the
presenceof hydrogen sulfide in the sedimentcolumn also
precludes
theuseof biogenic
Ba asa productivity
proxy,since
dissolution
of sedimentary
bariteaccompanies
sulfatereduction
[Dyntondet al., 1992]. Indeed,thedowncorerecordsshowthat
biogenic
Ba doesnot varyin concert
with theotherproxiesof
organic
matteraccumulation,
withsome
calculated
values
being
closetoor lessthanzero(Figure4). A similarsituation
islikely
toapplyin sediments
fromotherbasins
ontheAntarctic
margin,
suchasthePalmerDeep,wheresedimentary
A1andBa concen-
trations
[Rodriguez
andDontack,
1994]sometimes
yieldnegative
values
for biogenic
Ba.
The geochemical
recordsof thetwo outershelfcoresAA 186-
GC34 and KROCK-GC1 (Figures4a and 4b) showseveral
prominentminima in the lithogenicelementsTi, A1, and Fe,
which are generallycoincidentwith small maximain the bio-
geniccomponents
TOC, Br, opal,andSi/A1andalsocoincident
with maxima in Mo/A1 and, in some cases, U/AI and Zn/A1.
Thesefeaturesareindicatedby thestippled
bandsin Figure4,
eachof whichis 500yearsin thickness.
We suggest
500yearsas
a conservative
estimate
of theuncertainty
in thetimingof these
chemicalfeatures,given that the subsamples
usedfor geo-
chemical analysis typically integrate several centuries of
accumulation
andthechronological
uncertainties
of 60-280years
in ourradiocarbon
dates. Theseminimain lithogenic
compo-
nentsare also generally coincidentwith down core minima in
sandcontent(Figure 2) and maximain watercontent(data not
shown). In coreAA 186-GC34, all of thesefeaturescoincidewith
light-colored
Corethronlayers,whereas
for KROCK-GC1, three
of fivelithogenic
minimacoincide
withCorethron
layers,
whilea
fourthoccursin theChaetoceroslayer nearthebottomof the
core. Theseobservations
immediately
suggest
thatthedowncore
AA
186-G
034
(outer
shelf)
2
corrected
3
radi•arbon
age(kyr
B.P.) 4
5 .......
.....
......
6
7 , , ,
o • • • •,o o ; • o ;o ;o o , • • • o ,'o ;o •o •oo ,oo •oo
(b) o
KFIOOK-•Ol
•
(outershelf)
4
corrected
radiocarbon 6
age (kyrB.P.)
10
12
(c) 0
AA149-GC2
(inner
shelf) 1
corrected
radiocarbon 2
age (kyr B.P.)
3
i i i i
0 2 4 6 8 10 0 I 2 0 20 40 0 I 2 3 4 0 10 20 30 40 0 100 200
ß •
I '
(d) o
1
KROCK-GC2
(innershelf) 2
corrected 3
radiocarbon
age(kyr
B.P.)4
5
(e) o
2
AA149-GC12
(mid-outer
shelf)
4
6
corrected
radiocarbon 8
age (kyr B.P.)
10
12
glacial marine mud
14
16
0 2 4 6 8 10 0 I 2 0 20 40 0 I 2 3 4 0 10 20 30 40 0 100 200
•:•. - . . , • • . • :' .... , ,. .,:....•,•
....
....... •
0 2 4 6 8 10 0 1 2 0 20 40 0 1 2 3 4 0 10 20 30 40 0 100 200
• Ti(•/o)x20 • TOC(•/•) • opal(•/•) • (Mo/AI)x104 ß (Zn/AI)x104 ßbiogenic
Ba(ppm)
o AI(•/•) • Br(ppm)x1000 o total
Si/AI • (U/AI)x104 o (Cu/AI)x104
ß Fe(•%) ß (MWAI)x10 ß (Ni/AI)x104
Figure 4.
220 SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF
sediment sources to Mac. Robertson Shelf basins
Iresuspension,
reworking
and
I .^.
r ...................  Iice-rafted
debris
I
ß ,
Iaeolian
dust
J
sea surface
rainI
shelf basins
~500-1000m
Figure 5. Major sediment
sources
totheMac. Robertson
Shelfbasins.ModifiedfromFigure10ofHarris andO'Brien[1996],¸
Springer-Verlag
1996.
minima in lithogenicelementsmay recordenhanced
deposition
of pelagicbiogenicmaterial on the surrounding
shelf,perhaps
due to blooms of Corethron or Chaetoceros in these waters.
The inner shelf cores AA 149-GC2 and KROCK-GC2 contain
generallyfiner-grainedsediments
(Figure2) andhigherconcen-
trationsof TOC, opal,andMo (Figures4c and4d) thantheouter
shelfcores,suggesting
either enhanced
deposition
of biogenic
materialrelativeto lithogenicmaterialin theinnershelfbasinsor
enhanced
preservation
of organicmatterin theselocations,
which
would createmore reducingconditionsin the sedimentcolumn.
In contrast to the outer shelf cores, the down core records of the
two coresfrom the inner Nielsen Basin containno significant
minima in lithogeniccomponents.Rather,the relativepropor-
tionsof lithogenicandbiogenicmaterialwhichhasaccumulated
at thesesiteshasbeenremarkablyuniformduringthe middleto
lateHolocene,beforewhichthisareawasprobablycoveredby a
floatingice shelf [Harris and O'Brien, 1998]. In bothcores,
thereare significant
decreases
in TOC contentwith increasing
sediment
age,whichmayreflectanincrease
in theaccumulation
of organic
carbon
duringthelateHolocene
or,morelikely,since
there are no correspondingtrends in biogenic silica, the
progressivediageneticremineralizationof TOC within the
sediment
column[Berner,1980;DontackandMcClennen,1996].
Not surprisingly,
thechemicalrecordof coreAA149-GC12
(Figure4e), from midshelfof the NielsenBasin,is generally
intermediate between the inner and outer shelf core records.
Minima in lithogenic
components
arediscernible
at -6 kyr B.P.
andpossibly
---1kyr B.P., asaresmallmaximain thebiogenic
components,
andthereis a steady
decrease
in theproportion
of
lithogenic
components
from--.
11to6 kyrB.P. In contrast
tothe
othercores,Mo/A1 valuesare lessthanU/A1, suggesting
lower
concentrations
ofhydrogen
sulfide,
thuslessreducing
conditions,
within the sediment column at this site. This observation
suggests
a slower
accumulation
of organic
matter
atthislocation
duringtheHolocene
compared
withtheothercoresitesandis
consistent with the sediment accumulation rates calculated for
AA149-GC12,whicharegenerally
lessthanthose
calculated
for
contemporaneous
sections
of theother
cores
inthisstudy
(Figure
3). Thislikelyreflects
a lesser
degree
of sediment
focusing
(see
below)at thesiteof coreAA149-GC12, whichis notwithinthe
centralaxisof theNielsenBasin(Figure1), aswell asepisodic
ventilation
by sinking,
oxygenated
surface
waters
in thisareaof
the shelf [Harris, 2000].
4.2. Paleoenvironmental Interpretation
In orderto interpret
ourproxyrecords
for theaccumulation
of
biogenic and lithogenic material we must first considerthe
sources of the SMO facies sediments in the Mac. Robertson Shelf
basins.The majorsources
of sediments
in thesebasins
areshown
schematically
in Figure5, asproposed
by Harris and O'Brien
[1996]. Underseasonally
openmarineconditions
thebasins
will
have receivedsedimentsfrom overlyingwatersin the form of
pelagicrain (biogenicmaterial), ice-rafteddebris(lithogenic
material), glacial meltwater plumes(lithogenicmaterial),and
aeoliandust(lithogenic
material). In addition,
a mixtureof bio-
genicandlithogenic
materialwill havebeentransported
laterally
into the basins from the shallower areas of the shelf as a result of
Figure 4. Down coregeochemical
datafor thefive coresin thisstudy. Stippled
bands
indicateinferredproduction
episodes;
hatching
indicates
sandy
siltor glacialmarinefacies.Estimated
analytical
uncertainties
(+ 2(;) shown
by widthof symbols/bars
alongbottomaxis.
SEDWlCK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF 221
resuspension
and erosionby currents,icebergs,and turbidity
flows. Harris and O'Brien[1996] have notedthat net erosional
conditions exist over ~90% of the Mac. Robertson Shelf, where
coarse-grained
sediments
dominatetheshallowbanksandslopes,
whereasnetdepositional
conditions
existon theremaining10%
of the shelf area, as represented
by the accumulation
of fine-
grainedSMO deposits
in theshelfbasins. A similarsedimenta-
tion patternhasbeendescribed
for otherpartsof the Antarctic
margin, including the Ross Sea, the Northern Victoria Land
Shelf, andtheWilkes Land Shelf [Andersonet al., 1984;Dunbar
et al., 1985;Anderson,1999].
The generalabsenceof coarselithogenicmaterial,graded
beds, and erosional surfaces in our cores argues against
significant
lateraltransport
of sediments
intotheshelfbasins
by
icebergs,
slumps,andturbidityflows,exceptin thecaseof core
AA149-GC12, which showsevidenceof episodicdown slope
sediment
transport
bydensity
currents
(asdescribed
in section
3.1
andHarris [2000]). In addition,swellwavesandtidal currents
arethought
toplaya minorrolein reworking
shelfsediments
in
ourstudyregion[Harris and O'Brien,1998]. On thebasis
of
theseconsiderations
and the observations
of relatively strong
bottom currents on the Mac. Robertson Shelf [Harris and
O'Brien,1998]we suggest
thattheshelf-basin
SMO deposits
are
dominated
by fine-grained
materialwhichhasbeenwinnowed
from the shallow banksand slopes,mainly by the action of
currents,with a lessercontributionof sedimentsderived from
overlyingwaters. The majorcurrentinvolvedin thisprocess
would be the AntarcticCoastalCurrent,a strong,circumpolar
currentdrivenby theEastWind Drift andthedensitygradient
across
theAntarctic
SlopeFront[Sntith
etal., 1984;Harris and
O'Brien,1998;Bindoff
etal., 2000]. Current
measurements
from
the Mac. RobertsonShelf suggestthat this current flows
consistently
towardthewest,withmaximum
speeds
of 50-200
cms'• ontheoutershelf,withsomereduction
in strength
during
thewinterandspring[HarrisandO'Brien,1998]. Suchcurrent
speeds
wouldcertainlybe sufficient
to mobilizemudandfine
sandfrom the shallowbanksand slopes,which would be re-
deposited
in thedownstream
shelfbasins
andwouldaccount
for
the accumulation of finer sediments in basins on the inner shelf,
wherecurrentspeeds
areless.
Thiswestflowingcurrent
regimehasprobably
existed
onthe
Mac. Robertson
Shelfduringmostof theHolocene,
sothatthere
hasbeena roughlycontinuous
transport
of fine biogenicand
lithogenic
material
(i.e.,SMO)intothese
basins
fromtheshallow
shelf areas to the east. Thus the undisturbed sediments which
haveaccumulated
in thesebasins
duringtheHolocene
will most
likelyprovide
uswitha record
of theproduction
anddeposition
of finesediments,
bothbiogenic
andlithogenic,
overlargerareas
of theadjacent,
upstream
banks.Thisscenario
provides
a likely
explanation
fortheapparent
increases
in sediment
accumulation
rates
during
thecourse
of theHolocene
thatareindicated
bythe
datain Figure3. HarrisandO'Brien[1998]haveargued
thatthe
glacialicesheet
began
toretreat
fromitsgrounding
position
on
themiddleto outershelfat ~10o
12kyr B.P., andthatthecalving
frontofthefloating
icesheet
hadretreated
totheinnershelf,
near
the locationof KROCKoGC2,by ~6 kyr B.P. If so,thenthe
seasonally
ice-free
areaof theMac.Robertson
Shelfwouldhave
increased
significantlybetweenthe early and late Holocene,
whichwouldbeexpected
toallowthecurrent-driven
transport
of
fine material into the shelf basinsfrom progressivelylarger
"catchmentareas"on the shelf. In the remainingdiscussion,
we
assumethat the SMO sequences
containedin our five sediment
coresprovide a recordof the depositionand erosionof fine
sedimentson the shallowshelf areasimmediatelyto the east,
with the exceptionof the sectionof core AA149-GC12 that is
thought
tobedisturbed
by downslopesediment
transport.
Whatprocesses
mightexplainthedowncorevariations
in the
proportions
of lithogenicandbiogeniccomponents
preserved
in
our middle and outer shelf cores? There are two likely
alternatives.The firstis thatthesevariations
mayreflectchanges
in thecurrent-driven
transport
of biogenic
andlithogenic
material
into the basins from the shallow areas of the shelf, such that the
lithogenicminima in our coresmay recordperiodsof lower
currentspeeds,which favor the transportof only the finer bio-
genicmaterial,suchasdiatomfrustules,
fromtheshelfbanksinto
the basins. This would lead us to expect significantlylower
sediment
accumulation
ratesin association
with theselithogenic
minima; however, we see no evidence for such variations in
accumulationrates. Moreover, it is difficult to explain the
corresponding
down core variationsin diatom speciesabun-
dances,
specificallytheoccurrence
of Corethron-rich
layers,as
the result of changesin current-drivenresuspension.A more
likely alternativeis that the downcorevariationsin thepropor-
tionsof lithogenicandbiogenicmaterialmay reflectchanges
in
the productionand depositionof biogenic material over the
shallowshelfareas,suchthatthe lithogenicminimamay record
periodsof enhanceddiatomproductionin shelfwatersupstream
of the core sites.
A similar interpretationof down core minima in lithogenic
componentsand corresponding
variationsin diatom species
assemblages
hasbeenadopted
in otherstudies
of sediment
cores
from Antarcticshelfbasins[e.g.,Dontacket al., 1993;Leventer
et al., 1996;LeventerandDunbar,1996;DontackandMayewski,
1999;Dontacket al., 2001]. Thuswe interpretthe downcore
minimain lithogeniccomponents
in our middleandoutershelf
cores as indicative of "production episodes," representing
sustained
periodsof high exportproduction
by diatomsin the
shelfwatersimmediatelyto the eastof theseshelfbasins. The
increasedaccumulationof organicmatter in the shelf basins
associated
with suchproduction
episodes
wouldbe expectedto
createmorereducing,
sulfide-rich
conditions
withinthesediment
column,as suggested
by theMo/A1, U/A1 andZn/A1maxima,
which approximately coincide with minima in lithogenic
components. That most of thesechemicalfeaturesroughly
coincide with Corethron layers in coresAA186-GC34 and
KROCK-GC1 suggests
thattheseproduction
episodes
entailed
massivebloomsof thisdiatomspecies
in theoutershelfregion,
giventhatCorethroncriophilunt
is a relativelylightlysilicified
diatomspecies
thatis thought
to bepoorlypreserved
in seafloor
sediments
[Jordanet al., 1991;Leventeretal., 1993, 1996].
4.3. TimingandForcingofProduction
Episodes
We assume
that the transport
of fine sediments
from the
shallow shelf areasinto the basinsis relatively rapid, so that
within the resolution of our radiocarbon chronologiesthe
compositional
changes
preserved
in themiddle
andouter
shelf
coresare coevalwith depositional
changes
overtheupstream
areasof the Mac. RobertsonShelf. However, the actualduration
of theproduction
episodes
inferred
fromthese
corerecords
is
222 SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF
AA186-GC34 KROCK-GC1 AA149-GC12
corrected
radiocarbon
age (kyr B.P.)
2
4
6
8
10
12
i
I I I I I I
810
••)•
trecord
disturbed
by
J• t• Iepisødes
ofdown
slope
•.•' ?s'.'•' .• "* '<*•*"•
0 2 4 6 8 10 0 2 4 6 8 10
ß Ti (wt%)x20 ß Ti (wt%)x20 ß Ti (wt%)x20
o AI (wt%) o AI (wt%) o AI (wt%)
ß Fe (wt%) ß Fe (wt%) ß Fe (wt%)
, Corethron
layer , Corethron
layer
(3of29 layersshown) (alllayersshown)
Figure6. Comparison
oftimingofproduction
episodes
(stippled
bands)
recorded
intheouter
andmiddle
shelfcores.
highly uncertain. On the basisof our rathercoarse-resolution
radiocarbon
chronologies,
these
production
episodes
lasted
ofthe
order
of 100-1000
years,
although
such
sediment
layers
might
haveaccumulated
over muchshorterperiods,giventheir
relativelyhigh watercontent
andour limitedstratigraphic
resolution.
Wealso
note
thatmany
ofthelight-colored
layers
in
theoutershelfcores
areonly-1-3 cmin thickness,
in whichcase
it would
beunlikely
thatsuch
features
would
beresolved
byour
geochemical
data,whichapplyto 10 cm thickdowncoresub-
samples.Thustheproduction
episodes
whichwe haveinferred
from
ourdown
core
composition
data
probably
represent
onlythe
moresustained
and/orfrequent
episodes
of exportproduction
in
adjacentshelfwaters.
In Figure6, we comparethe approximate
timingof these
productionepisodes
in coresAA186-GC34, KROCK-GC1, and
AA149-GC12, as indicatedby concentration
minimain Ti, AI,
andFe andtheoccurrence
of Corethronlayersin theIceberg
Alleycores.Relativetoourcorrected
radiocarbon
chronology,
production
episodes
areindicated
ataround
1,2, and6.2kyrB.P.
in two of thethreerecords,whereasall threecorerecordsindicate
an episodeat -5.5 kyr B.P. Only core KROCK-GC1 shows
evidence
of production
episodes
at --.3.8and 10.8 kyr B.P.,
althoughtheseepisodes
may be obscured
or unresolved
in core
AA149-GC
12andtheAA186-GC34
record
extends
backonlyas
faras-6.2 kyr B.P. Theonlyotherreported
Holocene
sediment
recordsfrom this region of the East Antarctic shelf are those
inferredfrom microfossilassemblages
in two coresfrom Fram
Bank, -100 km to the eastof the Nielsen Basin, where there is
evidence
of enhanced
exportproduction
duringtheperiod-2.6-
3.4 kyr B.P. [Rathburnet al., 1997]. This periodof higher
production
doesnotcorrespond
withthetimingof theproduction
episodes
in our Mac. RobertsonShelfrecords;however,we note
thatRathburnet al. [1997]corrected
theirradiocarbon
agesby
subtracting1300 radiocarbonyears, accountingonly for the
reservoir
effect. Applyinga largerradiocarbon
agecorrection
of
theorderof 1700 years(seesection3.1) to the raw radiocarbon
datesof Rathburnet al. [1997] placesthe Fram Bank high-
productionperiodat -2.2-3 kyr B.P., whichthenoverlapswith
the -1.6-2.5 kyr B.P. production episodesindicated in our
IcebergAlley cores(Figure6).
On the basisof comparisonsof sedimentrecordsfrom the
AntarcticPeninsula
shelfwithNorthernHemisphere
paleoclimate
records
it hasbeensuggested
thatperiods
of elevatedproductiv-
ity inferred from the Antarcticmarinerecordsreflect global
warmcycleswith periodsof-400, 200, and50-70 yearssuper-
imposedupon longer-termperiodsof low-productivitycorre-
sponding
to globalcoolingevents[Leventeret al., 1996;Domack
and Mayewski,1999;Domacket al., 2001]. To date,the most
detailed Holocene sediment records from the Antarctic shelf
regionare thosepreservedin corescollectedfrom the Palmer
Deep,off theAntarctic
Peninsula,
duringOceanDrillingProgram
Leg 178. High-resolutionpaleoproductivity
recordshave been
derived
fromthese
cores
using
downcoremagnetic
susceptibility
measurements
and radiocarbondating [Dornacket al., 2001].
The production
episodes
inferredfromourMac. Robertson
Shelf
cores
AA 186-GC34,KROCK-GC1,andAA149-GC12(Figure6)
SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF 223
areroughlycoevalwith high-productivity
periodsinferredfrom
thePalmerDeeprecords[Domacketal., 2001] aswell asa mid-
Holoceneproductivityhigh inferred from RossSea sediment
records
[Jacobson,
1997;Frignani et al., 1998;Cunninghamet
al., 1999],suggesting
thattheremayhavebeencircum-Antarctic
periodsof enhancedexportproduction
duringthe Holocenein
response
to globalclimaticforcing. However,suchcomparisons
mustbe madewith caution,andtheapparent
agreement
between
corerecordsfrom the Mac. Robertson
Shelf,thePalmerDeep,
and the Ross Sea may be simply fortuitous, given the
uncertaintiesin our radiocarbonchronologyand the limited
temporal
resolution
of ourgeochemical
data.,,
What weretheimmediateforcingmechanisms
responsible
for
theseinferred episodesof enhancedproductionon the Mac.
RobertsonShelf, and why are no such productionepisodes
indicatedby the inner shelf cores? The factorswhich control
algal export productionand communitystructurein Antarctic
watersare not well understood
but are likely to includevertical
stabilityof the upperwater column[Smithand Nelson, 1990;
Sakshaug
etal., 1991;Arrigo etal., 1998a,1999],seeding
by sea
icealgae[SmithandNelson,1986;LeventerandDunbar, 1996],
grazing by zooplankton[Lancelot et al., 1993; DiTullio and
Smith, 1996], light limitation due to sea ice cover and self
shading [Smith et al., 1996], availability of micronutrient
elementssuchasiron [Martin et al., 1990;Sedwickand DiTullio,
1997;Sedwick
et al., 2000], andmorerarely,depletionof macro-
nutrients[Trdguer and Jacques,1992]. In studiesof sediment
recordsfromthe AntarcticPeninsula
continental
shelf,periodsof
enhancedorganicmatter accumulationhave been attributedto
enhanced
biologicalproductionduringperiodsof warm and/or
lesswindyclimate,asa consequence
of decreased
seaice cover
and increasedwater column stratification,the latter resulting
from decreased
wind mixing, warmerseasurfacetemperatures,
and increasedmeltwater inputs [e.g., Leventer et al., 1996;
Domack and Mayewski, 1999]. In addition, an increased
abundanceof Corethron criophilum andChaetoceros resting
sporesin sedimentsfrom the Ross Sea and the Antarctic
Peninsula shelf has been ascribed to enhanced water column
stratification[Leventeret al., 1993, 1996].
In considering
possible
causes
for theproductivity
episodes
recorded in our cores from the Mac. Robertson Shelf, we note
thatmostof thesefeatures
mayreflectmassive
Corethron
blooms
in adjacent
shelfwaters,with theexception
of theproduction
episode
recorded
at~10.8kyrB.P.incoreKROCK-GC1,
which
apparentlyrecordsproductionof Chaetoceros restingspores
associated
with theretreatof a permanent
ice cover. In contrast,
the sediment cores from the inner Nielsen Basin suggest
relatively uniform exportproductionin upstreamshelf waters.
With theexceptionof thebaseof coreKROCK-GC2, biogenic
materialin theseSMO sequences
is dominatedby the diatom
Fragilariopsis curta, which is thoughtto be favoredin ice-
marginalenvironments
[Leventeret al., 1993]. Satelliteobserva-
tions obtainedin recent years have revealed the existencea
persistent
coastalpolynyaontheinnerMac. Robertson
Shelf,the
Cape Darnley polynya, which is probablymaintainedby the
presenceof icebergsgroundedon the shallowbanksoff Cape
Damley (~70øE) [Massomet al., 1998]. Satelliteadvanced
very
high resolutionradiometerimagesobtainedduring 1997-1999
(seehttp://www.antcrc.utas.edu.au/avhrr/mawson/archive/)
reveal
thatthe ice-freewatersof thispolynyaextendwestfrom Cape
Damleyasfar astheinnerNielsenBasinduringthespringand
summer,whereasthe outershelfwatersare coveredby packice
duringthespringandsometimes
intothesummer.If we assume
thata similarpatternof seasonal
icecoverhasexistedsincethe
middle Holocene, by which time the glacial ice shelf had
retreated to the inner continental shelf, then the location of the
Cape Darnley polynyaprovidesa likely explanationfor the
differences between the inner and outer shelf core records.
Duringthe middleto late Holocene,the ice-marginal,
well-
mixed open waters of the Cape Darnley polynya may have
favoredconsistent
interannual
production
by F. curtaduringthe
springandsummer,whichwouldhaveresultedin theconsistent
transport
of fine, biogenic-rich
sediments
intotheinnerNielsen
Basin by the relatively weak inner shelf bottom currents. In
contrast, the often ice-covered waters of the outer Mac. Robert-
son Shelf may have experiencedmuch more variable algal
productionduringthe springandsummerasa resultof interan-
nual variations in sea ice cover. Moreover, unlike the wind-
mixedopenwatersof thepolynya,theoutershelfwaterswould
bemorelikely to maintaina stableupperwatercolumnasa result
of enhancedsea ice melting during warmer years. In this
scenario,
algalproduction
andcommunity
composition
upstream
of the outershelfbasinswould havebeenstronglymodulatedby
the extent of sea ice melting during the spring and summer,
whereas
watercolumnconditions
andalgalproduction
to theeast
of theinnerNielsenBasinwere"buffered"
by thepresence
of the
Cape Darnley polynya. From theseconsiderations
we suggest
that the productionepisodes
recordedin our outershelfcores
fromIcebergAlley andmoreweaklyin themidshelfcorefrom
the Nielsen Basin record years of enhancedsea ice melting
duringclimaticwarmperiods,whenfactorssuchasa meltwater-
stratified water column [Leventer et al., 1996] and ice-derived
ironinputs[Sedwick
et al., 2000] stimulated
massive
bloomsof
diatoms,particularlyCorethroncriophilum,on theouterMac.
Robertson Shelf.
4.4. Conclusions and Future Work
Our interpretations of sediment records from the Mac.
RobertsonShelf basins are generally consistentwith other
Holocene
sediment
records
fromtheAntarctic
margin
inthatthey
provide evidence of millennial-scaleepisodesof enhanced
diatom productionin outer shelf waters,includinga mid-
Holocene"warm period"between~5 and 7 kyr B.P. Such
production
episodes
mayberelatedtoincreased
seaicemelting
duringglobal climatic warm periods,althoughlocal forcing
mechanisms
cannot
bediscounted
atthistime,giventhedearth
of
sediment
recordsfrom our studyarea. Our resultsalsoindicate
thatsmall-scale
regional
phenomena,
suchascoastal
polynyas,
may stronglyinfluencethe sedimentrecordsin Antarctic shelf
basins,which highlightsthe needfor carefulconsideration
of
regionalsediment
dynamics
in paleoenvironmental
studies
of the
Antarcticmargin. Furtherstudies
areclearlyrequired
in orderto
establish
theextentandtimingof Holocene
paleoenvironmental
changes
ontheEastAntarcticmarginand,at a morebasiclevel,
toclarifytherelationship
between
thesediments
accumulating
in
shelfbasinsandthe processes
occurringin overlyingwaters.
Suchinformation
canonlybeprovided
by increasing
thespatial
coverageand temporalresolutionof sedimentary
recordsfrom
this region for comparisonwith emerging high-resolution
paleoenvironmental
recordsfrom otherareas.
224 SEDWlCK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF
Acknowledgements.
Theauthors
thank
PhilO'Brien
forcollecting
coresamples
andproviding
initialencouragement,
BobConnell
and
Suenor
Woonfor laboratory
assistance,
andFionaTaylorandLeanne
Armandfor diatomspecies
identification.
LesleyDowlingandRoger
Summons
of theAustralian
Geological
Survey
Organization
arethanked
forproviding
TOCand•5•3C
data.John
Anderson,
Eugene
Domack,
and
AmyLeventer
arethanked
for theirthorough
reviews,
whichgreatly
improved the manuscript. Uranium series measurementswere
accomplished
withtravel
funding
provided
bytheAustralian
Department
ofIndustry,
Science
and
Technology.
Thestaff
oftheAustralian
Nuclear
Science
andTechnology
Organization
AMS facilityarethanked
for
radiocarbon
analyses,
funded
bygrants
fromtheAustralian
Institute
of
Nuclear
Science
andEngineering.
Principal
funding
forthisworkwas
provided
bytheAntarctic
CRC.
References
Anderson,J. B., Antarctic Marine Geology, Cam-
bridge
Univ.Press,
NewYork,1999.
Anderson,J. B., and B. F. Molnia (Eds.), Glacial-
Marine Sedimentation,Short Course in Geol., vol.
9,AGU, Washington,
D.C., 1989.
Anderson,
J. B., C. F. Brake,andN. C. Myers, Sedi-
mentation on the Ross Sea continental shelf,
Antarctica,Mar. Geol., 57, 295-333, 1984.
Arrigo, K. R., D. Worthen,A. Schnell,andM.P.
Lizotte,Primaryproduction
in Southern
Ocean
waters,J. Geophys.Res.,103, 15,587-15,600,
1998a.
Arrigo,K. R., A.M. Weiss,andW. O. Smith,Jr.,
Physical
forcing
of phytoplankton
dynamics
in the
southwestern
RossSea, J. Geophys.Res.,103,
1007-1021, 1998b.
Arrigo,K. R., D. H. Robinson,
D. L. Worthen,
R. B.
Dunbar,G. R. DiTullio, M. VanWoert, andM.P.
Lizotte,Phytoplankton
community
structure
and
thedrawdown
ofnutrients
andCO2intheSouthern
Ocean,Science,
283,365-367, 1999.
Baines,P. G., and S. Condie, Observationsandmodel-
ling of Antarcticdownslopeflows: A review,
Ocean,Ice and Atmosphere:Interactionsat the
AntarcticContinental
Margin, Antarct.Res.Set.,
vol.75,editedbyS.S. Jacobs
andR. F. Weiss,
pp.
29-49,AGU, Washington,
D.C., 1998.
Barker, P. F., P. J. Barrett, A. Camerlenghi,A. K.
Cooper,
F.J.Davey,E. W. Domack,
C. Escutia,
Y.
Kristoffersen,
andP. E. O'Brien,Ice sheethistory
fromAntarctic
continental
marginsediments:
The
ANTOSTRAT approach,
Terra Antarct.,5, 737-
760, 1998.
Berkman, P. A., and S. L. Forman, Pre-bomb radio-
carbon and the reservoir correction for calcareous
marinespecies
in theSouthern
Ocean,Geophyso
Res.Lett., 23, 363-366, 1996.
Berner,R., Early Diagenesis,PrincetonUniv. Press,
Princeton,N. J., 1980.
Bindoff,N. L., M. A. Rosenberg,
andM. J. Warner,
On the circulation of the waters over the Antarctic
continentalriseandslopebetween80 and 150øE,
DeepSeaRes.,Part11,47, 2299-2326,2000.
Calvert,S.E., andT. F. Pedersen,
Geochemistry
ofre-
centoxicandanoxicmarinesediments:Implica-
tionsfor thegeological
record,Mar. Geol.,113,
67-88, 1993.
Calvert,S. E., andT. F. Pedersen,
Sedimentary
geo-
chemistry
of manganese:Implications
for theen-
vironmentof formationof manganiferous
black
shales,Econ. Geol., 91, 36-47, 1996.
Charles, C. D., P. N. Froelich, M. A. Zibello, R. A.
Mortlock, and J. J. Morley, Biogenicopal in
Southern Ocean sediments over the last 450,000
years: Implications
for surfacewaterchemistry
andcirculation,Paleoceanography,
6, 697-728,
1991.
Comiso, J. C., C. R. McClain, C. W. Sullivan, J.P.
Ryan, and C. L. Leonard, Coastal zone color
scannerpigmentconcentrations
in the Southern
Ocean,
J. Geophys.
Res.,
98,2419-2451,1993.
Crusius,J., S. Calvert, T. Pedersen,and D. Sage,
Rhenium and molybdenum enrichments in
sediments as indicators of oxic, suboxic and
sulfidic
conditions
of deposition,
Ea•thPlanet.Sci.
Lett., 145, 65-78, 1996.
Cunningham,
W. L., A. Leventer,
J.T. Andrews,
A. E.
Jennings,and K. J. Licht, Late Pleistocene-
Holocene marine conditions in the Ross Sea,
Antarctica: Evidence from the marine record,
Holocene,9, 129-139, 1999.
Deacon, G., The Antarctic Circumpolar Ocean,
Cambridge
Univ.Press,
NewYork,1984.
DiTullio, G. R., andW. O. SmithJr.,Spatialpatterns
in phytoplankton
biomass
andpigment
distribu-
tions in the Ross Sea, J. Geophys.Res.,101,
18,467-18,477, 1996.
Domack,E. W., Sedimentology
of glacialandglacial-
marine deposits on the George V-Adelie
continentalshelf, East Antarctica,Boreas, 11, 79-
97, 1982.
Domack,E. W., andC. McClennen,Accumulation
of
glacialmarine
sediments
in fjordsof theAntarctic
Peninsulaand their use as late Holocenepaleoen-
vironmental
indicators,
Foundations
for Ecosystem
Research
West
oftheAntarcticPeninsula,
Antarct.
Res.Ser.,vol. 70, editedby R. Ross,E. Hofmann,
andL. Quetin,pp.135-154,AGU, Washington,
D.
C., 1996.
Domack,E. W., andP. A. Mayewski,Bi-polarocean
linkages:Evidence
from late-Holocene
Antarctic
marine and Greenland ice-core records, Holocene,
9, 247-251, 1999.
Domack,E. W., A. J. T. Jull, J. B. Anderson,T. W.
Linick,andC. R. Williams,Application
of tandem
accelerator mass spectrometry dating to
Pleistocene-Holocene sediments of the East
Antarcticcontinentalshelf, Quat. Res., 31, 277-
287, 1989.
Domack,E. W., A. J. T. Jull, andS. Nakao, Advance
of East Antarctic outlet glaciers during the
Hypsithermal:
Implicatitms
forthevolume
state
of
the Antarctic ice sheet under global warming,
Geology,
19, 1059-1062,
1991.
Domack,E. W., T. A. Mashiotta,S. E. Ishman,andL.
A. Burkley,300-yearcyclicityin organicmatter
preservation
in Antarcticfjord sediments,
The
Antarctic Paleoenvironment: A Perspectiveon
GlobalChange,
Antarct.Res.$er.,vol.60,edited
byJ.Kennett
andD. Warnke,
pp.262-272,AGU,
Washington,
D.C., 1993.
Domack,E. W., E. A Jacobson,
S. Shipp,andJ. B.
Anderson,
Late Pleistocene-Holocene
retreatof the
WestAntarcticice-sheet
system
in theRossSea,
part2, Sedimentologic
andstratigraphic
signature,
Geol. Soc.Am. Bull., 111, 1517-1536, 1999.
Domack,E. W., A. Leventer,R. Dunbar,F. Taylor,S.
Brachfeld,C. Sjunneskog,
and ODP Leg 178
ScientificParty,Chronologyof thePalmerDeep
site, Antarctic Peninsula: A Holocene
paleoenvironmental
referencefor the Circum-
Antarctic,Holocene,11, 1-9, 2001.
Dunbar, R. B., J. B. Anderson,and E. W. Domack,
Oceanographic
influences
onsedimentation
along
theAntarcticcontinental
shelf,Oceanology
of the
AntarcticContinental
Shelf,Antarct.Res.Ser.,vol.
43, editedby S.S. Jacobs,
pp. 291-312,AGU,
Washington,
D.C., 1985.
Dymond,
J.,E. Suess,
andM. Lyle,Bariumin deep-
seasediment:
A geochemical
proxyforpaleopro-
ductivity,
Paleoceanography,
7, 163-181,
1992.
Frignani,
M., F. Giglio,L. Langone,
M. Ravaioli,
and
M. Mangini,LatePleistocene-Holocene
fluxes
of
organic
carbon
andbiogenic
silicain thenorth-
westernRossSea, Antarctica,Ann. Glaciol., 27,
697-703, 1998.
Gordon,J. E., and D. D. Harkness,Magnitudeand
geographic
variation
of theradiocarbon
content
in
Antarcticmarinelife: Implications
for reservoir
corrections
in radiocarbon
dating, Quat.Sci.Rev.,
11,697-708, 1992.
Gibson, J. A. E., T. W. Trull, P. D. Nicholls, R. E.
Summons,
andA. McMinn,Sedimentation
of •3C-
richorganicmatterfromAntarctic
sea-ice
algae:
A potential indicator of past sea-iceextent,
Geology,
27, 331-334,1999.
Harris,P. T., Ripplecross-bedded
sediments
on the
EastAntarctic
shelf:Evidence
forepisodic
bottom
waterproduction
in theHolocene?,
Mar. Geol.,
170, 317-330, 2000.
Harris,P. T., andP. E. O'Brien,Geomorphology
and
sedimentology
of thecontinental
shelfadjacent
to
Mac. Robertson
Land,EastAntarctica:A scalped
shelf,Geo.Mar. Lett., 16, 287-296, 1996.
Harris, P. T., and P. E. O'Brien, Bottom currents,
sedimentation and ice-sheet retreat facies
successions on the Mac Robertson shelf, East
Antarctica,Mar. Geol., 151, 47-72, 1998.
Harris, P. T., P. E. O'Brien, P. Sedwick, and E. M.
Truswell,LateQuaternary
historyof sedimentation
on the Mac. Robertson Shelf, East Antarctica:
Problems
with tnC-datingof marinesediment
cores,Pap. Proc.R. Soc.Tasmania,130, 47-53,
1996.
Jacobson,
E. A., Ice shelf sedimentation
andthe Holo-
ceneclimaticoptimum
in theRossSea,Antarctica,
B.A. thesis,Hamilton Coil., Cinton,N.Y., 1997.
Jordan,R. W., J. Priddle,C. J. Pudsey,P. F. Barker,
andM. J. Whitehouse,Unusualdiatomlayersin
upperPleistocene
sediments
from the northern
Weddell
Sea,DeepSeaRes.,38,829-843,1991.
Kumar, N., R. F. Anderson,R. A. Mortlock, P. N.
Froelich, P. Kubik, B. Dittrich-Hannen, and M.
Surer,Increased
biologicalproductivity
andexport
production
in theglacialSouthern
Ocean,Nature,
378, 675-680, 1995.
Lancelot, C., S. Mathot, C. Veth, and H. de Baar,
Factors
controlling
phytoplankton
ice-edge
blooms
in the marginal ice-zone of the northwestern
WeddellSeaduringseaice retreat1988: Field
observations
and mathematical
modelling,Polar
Biol., 13, 377-387, 1993.
Leventer,A., and R. B. Dunbar,Recentdiatomrecord
of McMurdoSound,Antarctica:
Implications
for
historyof seaice extent,Paleoceanography,
3,
259-274, 1988.
Leventer,A., and R. B. Dunbar, Factorsinfluencing
thedistribution
of diatomsandotheralgaein the
RossSea,J. Geophys.
Res.,I01, 18,489-18,500,
1996.
Leventer, A., R. B. Dunbar, and D. J. DeMaster,
Diatom evidence for late Holocene climatic events
in GraniteHarbor, Antarctica,Paleoceanography,
8,373-386, 1993.
Leventer,A., E. W. Domack,S. Ishman,S. Brachfeld,
C. McClennen, and P. Manley, 200-300 year
productivitycyclesin the AntarcticPeninsula
region: Understanding
linkages
among
theSun,
atmosphere,
oceans,
seaiceandbiota,Geol.Soc.
Am. Bull, 108, 1626-1644, 1996.
Libes,S. M., An Introductionto Marine Biogeochem-
istry,John
Wiley,NewYork,1992.
Martin, J. H., S. E. Fitzwater, and R. M. Gordon, Iron
deficiencylimits planktongrowthin Antarctic
waters,
GlobalBiogeochem.
Cycles,
4, 5-12,1990.
Massom,R. A., P. T. Harris,K. J. Michael,andM. J.
Potter,
Thedistribution
andformative
processes
of
latent-heatpolynyasin East Antarctica,Ann.
Glaciol., 27, 420-426, 1998.
SEDWICK ET AL.: SEDIMENT RECORDSFROM THE EAST ANTARCTIC SHELF 225
McManus, J., W. M. Berelson, D. E. Hammond, T. E.
Kilgore,D. J.DeMaster,O. Ragueneau,
andR. W.
Collier, Early aliagenesisof biogenic silica:
Dissolution
rates,kinetics,
andpaleoceanographic
implications,
DeepSeaRes.,Part II, 42, 871-903,
1995.
McMurtry, G. M., A. Snidvongs,
and C. R. Glenn,
Modelingsedimentaccumulation
andsoilerosion
with •37Csand :•øPb in the Ala Wai Canal and
centralHonolulu watershed,Hawai'i, Pac. Sci., 49,
412-451, 1995.
Mortlock,R. A., andP. N. Froelich,A simplemethod
for the rapid determinationof biogenicopal in
pelagicmarinesediments,
DeepSeaRes.,Part I,
36, 1415-1426, 1989.
Mortlock, R. A., C. D. Charles, P. N. Froelich, M. A.
Zibello, J. Saltzmann, J. D. Hays, and L. H.
Burckle,Evidencefor lower productivityin the
AntarcticOceanduringthelastglaciation,
Nature,
351,220-222, 1991.
Nelson, D. M., D. J. DeMaster, R. B. Dunbar, and W.
O. Smith,Cyclingof organic
carbon
andbiogenic
silica in the Southern
Ocean: Large-scale
estimates
ofwater
column
andsedimentary
fluxes
in theRoss
Sea,J. Geophys.
Res.,101, 18,519-
18,532, 1996.
O'Brien, P. E., E. M. Truswell, and H. Burton,
Morphology,seismicstratigraphy
and sedi-
mentation
historyof theMac Robertson
shelf,East
Antarctica,
Terr.Antarct.,1,407-408, 1994.
Orsi, A. H., G. C. Johnson,and J. L. Bullister,
Circulation,
mixing,andproduction
of Antarctic
Bottom
Water,Prog.Oceanogr.,
43,55-109,1999.
Parkinson,
C. L., Lengthof theseaice season
in the
Southern
Ocean,
in Antarctic
SeaIce: Physical
Processes,
Interactions
and Variability,
Antarct.
Res.Ser.,vol.74, edited
byM. O. Jeffries,
pp.
173-186,
AGU,Washington,
D.C., 1998.
Popp,
B. N. etal.,Controls
onthecarbon
isotopic
composition
of Southern
Oceanphytoplankton,
Global
Biogeochem.
Cycles,
13,827-843,
1999.
Price,N. B., S. E. Calvert,andP. G. W. Jones,
The
distributionof iodine andbrominein the sediments
of thesouthwestern
Barents
Sea,J.Mar. Res.,28,
22-34, 1970.
Rathburn,
A. E.,J.-J.
Pichon,
M. A. Ayress,
andP.De
Deckker,
Microfossil
andstable-isotope
evidence
forchanges
inlateHolocene
paleoproductivity
and
paleoceanographic
conditions
in the PrydzBay
regionof Antarctica,
Palaeogeogr.
Palaeoclima-
tol.Palaeoecol.,131,485-510, 1997.
Rodriguez,
A. B.,andE. W. Domack,
A geochemical
sedimentological
analysis of glacial marine
sediments from the Palmer Deep Basin,
Bellingshausen
Sea, Antarctica,Antarct. J. U.S.,
29, 128-130, 1994.
Sakshaug,
E., D. Slagstad,
and O. Holm-Hansen,
Factors controlling the development of
phytoplankton
bloomsin theAntarcticOcean- A
mathematical
model,Mar. Chem.,35, 259-271,
1991.
Samson,
C.,Structure
andtiming
ofthelastdeglacia-
tion in the subtropical
and subpolar
southwest
Pacific:
Implications
fordriving
forces
forclimate,
Ph.D. thesis, Univ. of Tasmania, Hobart,
Tasmania,Australia, 1999.
Sedwick,
P. N., andG. R. DiTullio,Regulation
of
algalblooms
in Antarcticshelfwatersby the
release
ofironfrommelting
sea
ice,Geophys.
Res.
Lett., 24, 2515-2518, 1997.
Sedwick,P. N., P. T. Harris,L. G. Robertson,
G. M.
McMurtry, M.D. Cremer, and P. Robinson,A
geochemical
studyof marinesediments
from the
Mac. RobertsonShelf, East Antarctica: Initial
results
andpalaeonvironmental
implications,
Ann.
Glaciol., 27, 268-274, 1998.
Sedwick,
P.N.,G.R.DiTullio,
and
D.J.Mackey,
Iron
andmanganese
in theRossSea,Antarctica: Sea-
sonaliron limitationin Antarcticshelfwaters,J.
Geophys.
Res.,105, I 1,321-11,336,2000.
Shevenell,
A. E., E. W. Domack,andG. M. Kernan,
Record
of Holocene
palaeoclimate
change
along
theAntarctic
Peninsula:
Evidence
fromglacial
marine
sediments,
Lallemand
Fjord,Pap.Proc.R.
Soc.Tasmania,130, 55-64, 1996.
Shimmield,
G. B.,Thegeochemistry
andmineralogy
of Pacific
sediments,
BajaCalifornia,
Ph.D.thesis,
Univ.of Edinburgh,
Edinburgh,
Scotland,
1984.
Sikes,E. L., C. R. Samson,
T. P. Guilderson,
andW.
R. Howard,
Oldradiocarbon
ages
in thesouthwest
PacificOcean
duringthelastglacialperiodand
deglaciation,
Nature,405, 555-557,2000.
Smith,
N. R., D. Zhaoquian,
andS.Wright,
Water
masses
andcirculation
intheregion
ofPrydz
Bay,
Antarctica,
DeepSeaRes.,
31, 1121-1147,
1984.
Smith,
W.O.,Jr.,and
L.1.Gordon,
Hyperproductivity
oftheRoss
Sea
(Antarctica)
polynya
during
austral
spring,
Geophys.
Res.Lett.,24, 233-236,1997.
Smith,
W. O.,Jr.,andD. M. Nelson,
Importance
of
ice-edge
phytoplankton
production
in theSouthern
Ocean,
BioScience,
36, 251-256,1986
Smith,
W. O.,Jr.,andD. M. Nelson,
Phytoplankton
growthand new productionin the Weddell Sea
marginal
icezoneintheaustral
spring
andautumn,
Limnol.Oceanogr.,
35, 809-821,1990.
Smith,W. O., Jr., D. M. Nelson,G. R. DiTullio, and
A. R. Leventer,
Temporal
andspatial
patterns
in
theRossSea: Phytoplankton
biomass,
elemental
composition,
productivityand growth rates,J.
Geophys.
Res.,101, 18,455-18,465,
1996.
Stuiver,
M., andH. A. Polach,
Discussion:
Reporting
of •4C
data,
Radiocarbon,
19,355-363,
1977.
Taylor,
F.,Sedimentary
diatom
assemblages
ofPrydz
Bay, Ph.D. thesis,Univ. of Tasmania,Hobart,
Tasmania,Australia, 1999.
Trtguer,
P.,andG.Jacques,
Dynamics
ofnutrients
and
phytoplankton,
andfluxes
ofcarbon,
nitrogen
and
siliconin the AntarcticOcean,Polar Biol., 12,
149-162, 1992.
Wedepohl, K. H., Environmentalinfluenceson the
chemical
composition
of shales
andclays,
Physics
and Chemistry
of the Earth,editedby L. H.
Ahrens,
pp.307-331,
Pergamon,
Tarrytown,
N.Y.,
1971.
M.D. Cremer
andG.M. McMurtry,
Department
of
Oceanography,
Universityof Hawaii, Honolulu,HI
96822.
P. T. Harris,L. G. Robertson,
andP. N. Sedwick,
AntarcticCRC, GPO Box 252-80,Hobart,Tasmania
7001,Australia.
(P.Sedwick@utas.edu.au.)
P.Robinson,
Department
of Geology,
University
of Tasmania,GPO Box 252-79, Hobart,Tasmania
7001, Australia.
(Received
February
1,2000;
revised
October15,2000;
accepted
November27, 2000.)

More Related Content

What's hot

Pearce and Mann 2006
Pearce and Mann 2006Pearce and Mann 2006
Pearce and Mann 2006Vicky Mann
 
Analysis of Microstructural Properties of Pliocene Aquifer in the Benin Forma...
Analysis of Microstructural Properties of Pliocene Aquifer in the Benin Forma...Analysis of Microstructural Properties of Pliocene Aquifer in the Benin Forma...
Analysis of Microstructural Properties of Pliocene Aquifer in the Benin Forma...IOSR Journals
 
The age and extent of tropical alpine glaciation in the cordillera blanca per...
The age and extent of tropical alpine glaciation in the cordillera blanca per...The age and extent of tropical alpine glaciation in the cordillera blanca per...
The age and extent of tropical alpine glaciation in the cordillera blanca per...WilJaIn
 
Paleoclimate: past-climate as the key to understand the future. Example from ...
Paleoclimate: past-climate as the key to understand the future. Example from ...Paleoclimate: past-climate as the key to understand the future. Example from ...
Paleoclimate: past-climate as the key to understand the future. Example from ...Fernando Reche
 
Comparing rock and fossil records in the deep sea
Comparing rock and fossil records in the deep seaComparing rock and fossil records in the deep sea
Comparing rock and fossil records in the deep seaGraeme Lloyd
 
Applied_Geochemistry_Somenath
Applied_Geochemistry_SomenathApplied_Geochemistry_Somenath
Applied_Geochemistry_SomenathSomenath Ganguly
 
Inva_poster_FINAL
Inva_poster_FINALInva_poster_FINAL
Inva_poster_FINALInva Braha
 
Holocene plaeoclimate proxies
Holocene plaeoclimate proxiesHolocene plaeoclimate proxies
Holocene plaeoclimate proxiesPankaj kumar
 
Stepped Pilo-Pleistocene climate variablity at Lake E
Stepped Pilo-Pleistocene climate variablity at Lake EStepped Pilo-Pleistocene climate variablity at Lake E
Stepped Pilo-Pleistocene climate variablity at Lake EUmassGeo
 
Bot deptlecture20110310(1)
Bot deptlecture20110310(1)Bot deptlecture20110310(1)
Bot deptlecture20110310(1)Edie Barbour
 
Abstract_Findabhair_Ni_Fhaolain
Abstract_Findabhair_Ni_FhaolainAbstract_Findabhair_Ni_Fhaolain
Abstract_Findabhair_Ni_FhaolainFindabhair N
 
Hadlari etal. 2006 baker lake rift basin sedimentology
Hadlari etal. 2006 baker lake rift basin sedimentologyHadlari etal. 2006 baker lake rift basin sedimentology
Hadlari etal. 2006 baker lake rift basin sedimentologyrad8
 
Well Protection Program - Groundwater Modeling Presentation
Well Protection Program - Groundwater Modeling PresentationWell Protection Program - Groundwater Modeling Presentation
Well Protection Program - Groundwater Modeling PresentationHudbay Minerals Inc.
 
Swift etal 2008 SAJB
Swift etal 2008 SAJBSwift etal 2008 SAJB
Swift etal 2008 SAJBMari Brand
 

What's hot (20)

Pearce and Mann 2006
Pearce and Mann 2006Pearce and Mann 2006
Pearce and Mann 2006
 
Analysis of Microstructural Properties of Pliocene Aquifer in the Benin Forma...
Analysis of Microstructural Properties of Pliocene Aquifer in the Benin Forma...Analysis of Microstructural Properties of Pliocene Aquifer in the Benin Forma...
Analysis of Microstructural Properties of Pliocene Aquifer in the Benin Forma...
 
The age and extent of tropical alpine glaciation in the cordillera blanca per...
The age and extent of tropical alpine glaciation in the cordillera blanca per...The age and extent of tropical alpine glaciation in the cordillera blanca per...
The age and extent of tropical alpine glaciation in the cordillera blanca per...
 
R_KingSpreeDayPoster'16
R_KingSpreeDayPoster'16R_KingSpreeDayPoster'16
R_KingSpreeDayPoster'16
 
Paleoclimate: past-climate as the key to understand the future. Example from ...
Paleoclimate: past-climate as the key to understand the future. Example from ...Paleoclimate: past-climate as the key to understand the future. Example from ...
Paleoclimate: past-climate as the key to understand the future. Example from ...
 
Writing Sample
Writing SampleWriting Sample
Writing Sample
 
Comparing rock and fossil records in the deep sea
Comparing rock and fossil records in the deep seaComparing rock and fossil records in the deep sea
Comparing rock and fossil records in the deep sea
 
Applied_Geochemistry_Somenath
Applied_Geochemistry_SomenathApplied_Geochemistry_Somenath
Applied_Geochemistry_Somenath
 
CCG Paleoclimate
CCG PaleoclimateCCG Paleoclimate
CCG Paleoclimate
 
Inva_poster_FINAL
Inva_poster_FINALInva_poster_FINAL
Inva_poster_FINAL
 
Paleoclimatology
PaleoclimatologyPaleoclimatology
Paleoclimatology
 
Holocene plaeoclimate proxies
Holocene plaeoclimate proxiesHolocene plaeoclimate proxies
Holocene plaeoclimate proxies
 
1102422
11024221102422
1102422
 
Stepped Pilo-Pleistocene climate variablity at Lake E
Stepped Pilo-Pleistocene climate variablity at Lake EStepped Pilo-Pleistocene climate variablity at Lake E
Stepped Pilo-Pleistocene climate variablity at Lake E
 
Bot deptlecture20110310(1)
Bot deptlecture20110310(1)Bot deptlecture20110310(1)
Bot deptlecture20110310(1)
 
Abstract_Findabhair_Ni_Fhaolain
Abstract_Findabhair_Ni_FhaolainAbstract_Findabhair_Ni_Fhaolain
Abstract_Findabhair_Ni_Fhaolain
 
RPuta_Thesis
RPuta_ThesisRPuta_Thesis
RPuta_Thesis
 
Hadlari etal. 2006 baker lake rift basin sedimentology
Hadlari etal. 2006 baker lake rift basin sedimentologyHadlari etal. 2006 baker lake rift basin sedimentology
Hadlari etal. 2006 baker lake rift basin sedimentology
 
Well Protection Program - Groundwater Modeling Presentation
Well Protection Program - Groundwater Modeling PresentationWell Protection Program - Groundwater Modeling Presentation
Well Protection Program - Groundwater Modeling Presentation
 
Swift etal 2008 SAJB
Swift etal 2008 SAJBSwift etal 2008 SAJB
Swift etal 2008 SAJB
 

Similar to Holocene Sediment Records Reveal Environmental Changes in East Antarctica

The CARCACE project deepwater platforms - modular designs for in situ experim...
The CARCACE project deepwater platforms - modular designs for in situ experim...The CARCACE project deepwater platforms - modular designs for in situ experim...
The CARCACE project deepwater platforms - modular designs for in situ experim...Ædel Aerospace GmbH
 
2010 effects of fish farming on the biological and geochemical properties of ...
2010 effects of fish farming on the biological and geochemical properties of ...2010 effects of fish farming on the biological and geochemical properties of ...
2010 effects of fish farming on the biological and geochemical properties of ...earambulm3
 
Ancient aqueous environments_at_endeavour_crater_mars
Ancient aqueous environments_at_endeavour_crater_marsAncient aqueous environments_at_endeavour_crater_mars
Ancient aqueous environments_at_endeavour_crater_marsSérgio Sacani
 
Beyond water on mars
Beyond water on marsBeyond water on mars
Beyond water on marsAwad Albalwi
 
climate change in the past: Palaeoclimate
climate change in the past: Palaeoclimateclimate change in the past: Palaeoclimate
climate change in the past: Palaeoclimatecdenef
 
Update Pamphlet for Hui Aloha O Kiholo Community Group
Update Pamphlet for Hui Aloha O Kiholo Community GroupUpdate Pamphlet for Hui Aloha O Kiholo Community Group
Update Pamphlet for Hui Aloha O Kiholo Community GroupChristine A. Waters
 
Delineation of Upper Jurassic Reservoirs Witch Ground Graben North Sea CSPG 1995
Delineation of Upper Jurassic Reservoirs Witch Ground Graben North Sea CSPG 1995Delineation of Upper Jurassic Reservoirs Witch Ground Graben North Sea CSPG 1995
Delineation of Upper Jurassic Reservoirs Witch Ground Graben North Sea CSPG 1995Jock McCracken
 
Whanganui Basin Report 2015
Whanganui Basin Report 2015Whanganui Basin Report 2015
Whanganui Basin Report 2015Harrison Corbett
 
how do the masses of the earth, oceans, atmosphere, and biosphere co.pdf
how do the masses of the earth, oceans, atmosphere, and biosphere co.pdfhow do the masses of the earth, oceans, atmosphere, and biosphere co.pdf
how do the masses of the earth, oceans, atmosphere, and biosphere co.pdfarpitcomputronics
 
Analysis of Surface Materials by Curiosity Mars Rover - Special Collection
Analysis of Surface Materials by Curiosity Mars Rover - Special CollectionAnalysis of Surface Materials by Curiosity Mars Rover - Special Collection
Analysis of Surface Materials by Curiosity Mars Rover - Special CollectionCarlos Bella
 
Gold in Oceans-EPSL
Gold in Oceans-EPSLGold in Oceans-EPSL
Gold in Oceans-EPSLRoss Large
 
final dissertation report
final dissertation reportfinal dissertation report
final dissertation reportLuis Duprat
 
Hydrology of High Arctic Lakes
Hydrology of High Arctic LakesHydrology of High Arctic Lakes
Hydrology of High Arctic Lakeschris benston
 
Soil diversity and_hydration_as_observed_by_chemcam_at_gale_crater_mars
Soil diversity and_hydration_as_observed_by_chemcam_at_gale_crater_marsSoil diversity and_hydration_as_observed_by_chemcam_at_gale_crater_mars
Soil diversity and_hydration_as_observed_by_chemcam_at_gale_crater_marsSérgio Sacani
 
Paleoecology_Paleolimnology _ Encyclopedia.com.pdf
Paleoecology_Paleolimnology _ Encyclopedia.com.pdfPaleoecology_Paleolimnology _ Encyclopedia.com.pdf
Paleoecology_Paleolimnology _ Encyclopedia.com.pdfArvindKumar904250
 

Similar to Holocene Sediment Records Reveal Environmental Changes in East Antarctica (20)

The CARCACE project deepwater platforms - modular designs for in situ experim...
The CARCACE project deepwater platforms - modular designs for in situ experim...The CARCACE project deepwater platforms - modular designs for in situ experim...
The CARCACE project deepwater platforms - modular designs for in situ experim...
 
cggv_0000025472
cggv_0000025472cggv_0000025472
cggv_0000025472
 
2010 effects of fish farming on the biological and geochemical properties of ...
2010 effects of fish farming on the biological and geochemical properties of ...2010 effects of fish farming on the biological and geochemical properties of ...
2010 effects of fish farming on the biological and geochemical properties of ...
 
Ancient aqueous environments_at_endeavour_crater_mars
Ancient aqueous environments_at_endeavour_crater_marsAncient aqueous environments_at_endeavour_crater_mars
Ancient aqueous environments_at_endeavour_crater_mars
 
Beyond water on mars
Beyond water on marsBeyond water on mars
Beyond water on mars
 
3 - ABSTRACT TESI
3 - ABSTRACT TESI3 - ABSTRACT TESI
3 - ABSTRACT TESI
 
climate change in the past: Palaeoclimate
climate change in the past: Palaeoclimateclimate change in the past: Palaeoclimate
climate change in the past: Palaeoclimate
 
Update Pamphlet for Hui Aloha O Kiholo Community Group
Update Pamphlet for Hui Aloha O Kiholo Community GroupUpdate Pamphlet for Hui Aloha O Kiholo Community Group
Update Pamphlet for Hui Aloha O Kiholo Community Group
 
Leporacci_Nicole_Poster
Leporacci_Nicole_PosterLeporacci_Nicole_Poster
Leporacci_Nicole_Poster
 
Delineation of Upper Jurassic Reservoirs Witch Ground Graben North Sea CSPG 1995
Delineation of Upper Jurassic Reservoirs Witch Ground Graben North Sea CSPG 1995Delineation of Upper Jurassic Reservoirs Witch Ground Graben North Sea CSPG 1995
Delineation of Upper Jurassic Reservoirs Witch Ground Graben North Sea CSPG 1995
 
Whanganui Basin Report 2015
Whanganui Basin Report 2015Whanganui Basin Report 2015
Whanganui Basin Report 2015
 
how do the masses of the earth, oceans, atmosphere, and biosphere co.pdf
how do the masses of the earth, oceans, atmosphere, and biosphere co.pdfhow do the masses of the earth, oceans, atmosphere, and biosphere co.pdf
how do the masses of the earth, oceans, atmosphere, and biosphere co.pdf
 
Analysis of Surface Materials by Curiosity Mars Rover - Special Collection
Analysis of Surface Materials by Curiosity Mars Rover - Special CollectionAnalysis of Surface Materials by Curiosity Mars Rover - Special Collection
Analysis of Surface Materials by Curiosity Mars Rover - Special Collection
 
fmicb-05-00679
fmicb-05-00679fmicb-05-00679
fmicb-05-00679
 
Gold in Oceans-EPSL
Gold in Oceans-EPSLGold in Oceans-EPSL
Gold in Oceans-EPSL
 
final dissertation report
final dissertation reportfinal dissertation report
final dissertation report
 
Hydrology of High Arctic Lakes
Hydrology of High Arctic LakesHydrology of High Arctic Lakes
Hydrology of High Arctic Lakes
 
Soil diversity and_hydration_as_observed_by_chemcam_at_gale_crater_mars
Soil diversity and_hydration_as_observed_by_chemcam_at_gale_crater_marsSoil diversity and_hydration_as_observed_by_chemcam_at_gale_crater_mars
Soil diversity and_hydration_as_observed_by_chemcam_at_gale_crater_mars
 
Alvarenga et al. 2008
Alvarenga et al. 2008Alvarenga et al. 2008
Alvarenga et al. 2008
 
Paleoecology_Paleolimnology _ Encyclopedia.com.pdf
Paleoecology_Paleolimnology _ Encyclopedia.com.pdfPaleoecology_Paleolimnology _ Encyclopedia.com.pdf
Paleoecology_Paleolimnology _ Encyclopedia.com.pdf
 

Recently uploaded

Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Recently uploaded (20)

Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 

Holocene Sediment Records Reveal Environmental Changes in East Antarctica

  • 1. Old Dominion University ODU Digital Commons OEAS Faculty Publications Ocean, Earth & Atmospheric Sciences 2001 Holocene Sediment Records From the Continental Shelf of Mac. Robertson Land, East Antarctica Peter N. Sedwick Old Dominion University, Psedwick@odu.edu Peter T. Harris Lisette G. Robertson Gary M. McMurtry Maximilian D. Cremer See next page for additional authors Follow this and additional works at: https://digitalcommons.odu.edu/oeas_fac_pubs Part of the Biogeochemistry Commons, Marine Biology Commons, Oceanography Commons, and the Paleontology Commons This Article is brought to you for free and open access by the Ocean, Earth & Atmospheric Sciences at ODU Digital Commons. It has been accepted for inclusion in OEAS Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu. Repository Citation Sedwick, Peter N.; Harris, Peter T.; Robertson, Lisette G.; McMurtry, Gary M.; Cremer, Maximilian D.; and Robinson, Philip, "Holocene Sediment Records From the Continental Shelf of Mac. Robertson Land, East Antarctica" (2001). OEAS Faculty Publications. 106. https://digitalcommons.odu.edu/oeas_fac_pubs/106 Original Publication Citation Sedwick, P.N., Harris, P.T., Robertson, L.G., McMurtry, G.M., Cremer, M.D., & Robinson, P. (2001). Holocene sediment records from the continental shelf of Mac. Robertson Land, East Antarctica. Paleoceanography, 16(2), 212-225. doi: 10.1029/2000pa000504 brought to you by CORE View metadata, citation and similar papers at core.ac.uk provided by Old Dominion University
  • 2. Authors Peter N. Sedwick, Peter T. Harris, Lisette G. Robertson, Gary M. McMurtry, Maximilian D. Cremer, and Philip Robinson This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/oeas_fac_pubs/106
  • 3. PALEOCEANOGRAPHY, VOL. 16,NO. 2, PAGES212-225,APRIL 2001 Holocene sediment records from the continental shelf of Mac. Robertson Land, East Antarctica Peter N. Sedwick, 1Peter T.Harris, •,2Lisette G.Robertson, • Gary M. McMurtry, 3 Maximilian D.Cremer, 3and Philip Robinson 4 Abstract. Geochemicalrecordsarepresented for five sedimentcoresfrom basinson the continentalshelfof Mac. Robertson Land, EastAntarctica. The corescontain2-4 m thick sequences of hemipelagic,siliceousmud andooze (SMO) deposited underseasonally openmarineconditions.The innerandmiddleshelfSMO sequences aremassive darkolive greenmaterial,whereas theoutershelfSMO sequences aredarkolivematerialinterspersed with lightolive greenlayers~1-10 cm thick. The biogenic materialis dominated by marinediatomsincludingFragilariopsis curta, Fragilariopsis cylindrus, andChaetoceros spp.in thedark-colored SMO andCorethron criophilum in thelight-colored layers.Radiocarbon dates suggest thatthecores provide continuous accumulation records extending from< 1kyrbefore present (B.P.)back asfaras4-15kyrB.P.,withestimated accumulation rates of0.07-5mmyr'•. Thethree core records fromthemiddleandoutershelfsuggest sixepisodes of increased accumulation of biogenic materialat -5.5 kyrB.P.(all threecores),1,2, and6.2kyrB.P.(twoof thethreecores), and3.8and10.8kyrB.P.(onecore),mostof whichcoincide with Corethron layers.We interpret these features astheresultof enhanced diatomproduction overtheoutershelf, possibly relatedto climaticwarmperiods.Theabsence of suchfeatures in theinnershelfcorerecords is thought to reflectarelativelyconstant levelof seasonal diatom production in adjacent waters maintained byacoastal polynya. 1. Introduction The Antarctic continentalshelf accountsfor a significant fractionof SouthernOceanprimaryproduction andis a major areaof oceanic deepwater formation[Comiso etal., 1993;Arrigo et al., 1998a;Deacon, 1984;Orsi et al., 1999]. Algal production in Antarcticshelfwatersmay thusplay a significant role in the biogeochemical cyclesof carbonandsilicon,andin definingthe composition of oceanic bottomwaters[Smith andGordon,1997; Nelson et al., 1996;Arrigo et al., 1999]. At present,little is known aboutalgal productionand its relationship to environ- mental conditions on the Antarctic shelf during the late Quaternary. This largely reflectsthe dynamicnatureof this continental margin, where seafloor sedimentsare widely reworked and redistributedby the action of ice and currents [Dunbar et al., 1985; Andersonand Molnia, 1989;Harris and O'Brien, 1996;Anderson,1999]. However,somefjordsandshelf basins provide natural sediment traps, where there are accumulations of hemipelagic sediments derivedfromoverlying watersand adjacentshelfareas[Domack,1982;Domackand McClennen, 1996;Harris and O'Brien, 1996;Barkeret al., 1998; Harris and O'Brien, 1998]. A numberof studieshavemadeuse of sedimentcoresfrom suchlocationsto infer paleoenvironmen- •AntarcticCRC, Hobart,Tasmania,Australia. 2Australian GeologicalSurveyOrganization, Hobart,Tasmania, Australia. 3Department of Oceanography, University of Hawaii,Honolulu, Hawaii. 4Department ofGeology, University ofTasmania, Hobart, Tasmania, Australia. Copyfight 2001bytheAmerican Geophysical Union. Papernumber 2000PA000504. 0883-8305/01/2000PA000504512.00 talconditions ontheAntarcticshelfduringtheHolocene andlate Pleistocene [e.g.,Leventer andDunbar,1988;Domack etal., 1993; Leventer et al., 1993, 1996; Shevenellet al., 1996; Frignani etal., 1998;Sedwick etal., 1998;Cunningham etal., 1999; Domack andMayewski, 1999; Domack etal., 1999]. In theseinvestigations, downcorechemical, physical, and micropaleontological datatogether withradiocarbon chronolo- gies have been used toconstruct regional records oftherelative accumulation of biogenic versus lithogenic material, fromwhich paleoenvironmental conditions havebeeninferred. A mid- Holocene climaticwarming hasbeenpostulated onthebasis of sedimentrecordsfrom the continentalshelf of GeorgeV and Ad61ie Land,PrydzBay, andthewestern RossSea[Domacket al., 1991;Jacobson, 1997;Frignaniet al., 1998;Cunningham et al., 1999], whereassedimentsfrom the westernmarginof the Antarctic Peninsula and the continental shelf of Mac. Robertson Landcontainevidenceof century-to millennium-scale variations in accumulation of biogenic matterduringtheHolocene [Domack etal., 1993;DomackandMayewski,1999;Leventer etal., 1996; Sedwick etal., 1998]. Suchchanges havealsobeeninferredfrom a high-resolution OceanDrillingProgram sediment record from the PalmerDeep on the AntarcticPeninsula,whichcontains evidence of ~400, 200, and50-70 yearcyclesin accumulation of pelagicbiogenicmaterialaswell aslonger-term paleoenviron- mentalchanges, includinga lateHolocene neoglacial period,a mid-Holoceneclimatic optimum, an early Holoceneclimatic cooling,anda latePleistocene deglacial episode [Domack etal., 200•1. Theseresults naturally raisequestions concerning theregional coherence of suchrecords andthespatialscaleof theinferredpa- leoenvironmental variations,given that present-day environ- mentalconditions on theAntarcticmargin,suchasseaice cover andalgalbiomass, areknownto be highlyvariable[Comiso et al., 1993;Arrigoet al., 1998b;Barkeret al., 1998;Parkinson, 1998]. Suchquestions canonlybeaddressed by examining the 212
  • 4. SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF 213 coherence of paleoenvironmental records fromtheAntarcticshelf overa widerangeof spatialscales.Herewe present geochemical and sedimentological recordsfor five sedimentcorescollected from shelf basinson the continentalmargin of Mac. Robertson Land, EastAntarctica(the Mac. RobertsonShelf),a regionwhich sustains relativelyhigh algalbiomass[Comisoet al., 1993] and may be a significantsourceof AntarcticBottomWater [Orsi et al., 1999]. Preliminaryanalysesof two of thesecoresindicated significantdifferencesin the sedimentary recordsfrom the inner andoutershelfover distancesof < 100 km [Sedwicket al., 1998]. The new datapresented hereindicatethattherehaveindeedbeen significantsmall-scaleregionalvariationsin the accumulation of biogenicmaterialin the Mac. Robertson Shelfbasinsduringthe Holocene,but our resultsalsoprovideevidencefor millennial- scale environmental variations in common with sedimentary records from otherpartsof theAntarcticmargin. 2. Materials and Methods 2.1. Study Area The Mac. Robertson Shelfextends some400 km westof Prydz Bay, East Antarctica,with a typicalwidth of 90 km (Figure 1). Herethe continentalshelfis madeup of relativelyshallowbanks < 200 m in depth,separated by steep-sided basins andvalleysup to 1200m in depthwhichareinterpreted asrelictglacialtroughs [O'Brien,et al., 1994;Harris and O'Brien, 1998]. Dense,high- salinity shelf water forms along the shelf in association with coastalpolynyas,andthis watersinksand flows off the shelf, probablyfilling the perched basins[Bainesand Condie,1998; Harris and O'Brien, 1998; Harris, 2000]. On the outer shelf and uppercontinentalslopea large-scale westwardflowing current follows the AntarcticSlopeFront, extendingfrom the surface watersto the seafloor,wherecurrentspeeds up to severalmeters per second havebeenmeasured [Smithet al., 1984;Harris and O'Brien, 1998; Bindoffet al., 2000]. Coarse-grained sandand gravel depositsoccuron the shallowerareasof the outer shelf andupperslope,whereas finer-grained mudsoccurin thedeep basins,particularlyon theinnershelf[Harris and O'Brien, 1996, 1998]. These basinscontainup to severalmeters(at least) of siliceous mudandooze(SMO) deposited underseasonally open marineconditions, overlyingsandysilt andglacialmarinemuds thatwereprobablydeposited underor neara permanent ice shelf [Harris and O'Brien, 1998; Anderson, 1999]. The radiocarbon agesof thesefacies in sedimentcoresfrom the Mac. Robertson shelfsuggest thatseasonally openmarineconditions commenced around10-12 kyr before present(B.P.) on the outer shelf and around6 kyr B.P. on theinnershelf,thedifferencerepresenting the period over which a permanentice canopyretreatedacross the continental shelf during the early Holocene [Harris and O'Brien, 1998; $edwicket al., 1998]. 2.2. SampleMaterials The sedimentcoresusedin thisstudywerecollectedfrom the Nielsen Basin (maximum water depth -1200 m) and Iceberg Alley (maximumwater depth-500 m), which are two of the largerbasinsontheMac. Robertson Shelf(Figure1). The 9 cm diametergravity coreswere collectedduringcruisesof RSV Aurora Australis in 1993, 1995, and 1997. Five cores were examined in this study (approximate water depths in parentheses): AA186-GC34(470 m) andKROCK-GCI (478 m) from theoutershelfin IcebergAlley, AA149-GC2 (1100 m) and KROCK-GC2 (1090 m) from the inner shelf in the Nielsen Basin, and AA149-GC12 (626 m) from midshelfin the Nielsen Basin(Figure1). Thesesitesareseparated by distances ranging from -5 to 100 km. All of the cores contain continuous sequences of SMO rangingin thickness from 267 to 374 cm (Figure2). In coresKROCK-GC2 andAA149-GCI2 the SMO unitsoverliesandyglacialmarinemuds. The SMO sequences areprimarilya mixtureof diatomooze,fine-sand to coarse-silt quartz,andotherfine lithogenicmaterial.The SMO unitsof the ii• AN•,-R•TICA -....:,..-.-.:.-..-¾"-"--'---:-'....-"::•.....-"•i•?/-'. ::'-•'•i 500m •-:'--:•:•::!•!•i:•:"..i•?'•" ""•'"'"•" ' ' '-- '"••:-•...•i:--:.-'i::iiiii'"'"'""':':'"•:- "•. -"..-'i•iiii"-"-'J•'"•!ii":"=""""'""•- •:-.-'-•::ii:::..:-•--'•i'"'"'"•'"'•'"':" ' '" "•- - - '"•--- - -:•• :"-":•:: .................... :':•iii::"'"'"'•'"':'"•""-- -'•..---'•i•ii , '....:.:• 86 .... ':':•?'-:--':•..-"•i-..':ili•i .......... -'--'":"---'""•--"•.-'• ............. •F--'::•i•i•.:::?--'-":----"...-:•i•.::i•i?•-.-:::•i•i•?.•i•i Maws• •n MAC. ROBERTS 63øE 64 ø ...... '6• ø -- -••6• •'_: :1 water depth: •1 0-200m,..-•>a00m 0 20 40 km I I I Figure 1. Map of theMac. RobertsonShelf,showingsedimentcollectionsites.
  • 5. 214 SEDWICKET AL.:SEDIMENTRECORDS FROMTHEEASTANTARCTICSHELF 10o 200 3OO AA186-GC34 o 20 0 50 1O0 KROCK-GC1 o 20 50 100 AA149-GC2 o 20 5O 100 KROCK-GC2 o 20 5O 100 AA149-GC12 o 20 .. o 50 lOO Grain size % gravel % •and % mud Magnetic susceptibility (xllY 6cgs) o 2o Facies Corethron layers Holocene SMO cross-bedded sandy silt glacial marine mud ice-rafted debris Figure 2. Grainsize,magnetic susceptibility andfaciesclassification forcoresin thisstudy. innerandmiddleshelfcores(AA149-GC2,KROCK-GC2,and AA149-GC12) are massive, generallyfeatureless, darkolive green sediment, whereas the SMO units from the outer shelf cores(AA186-GC34andKROCK-GC1)aredarkolivegreen material interspersed withfluffy,lightolivegreen bands, which range in thickness from~1to 10cm. Finer-scale lightanddark laminations wereapparent in coresAA186-GC34 andKROCK- GC1 whenthey werefirst split,but thesefeatures fadedafter severalweeksof storage. The cores were split and describedimmediatelyafter collection, thenwrapped in polyethylene andstored at 2øC. The coreswere subsampled for variouschemicaland physical measurements in Hobart. Subsamples weretakenover 10 cm intervalsfor geochemical analysis, andthegeochemical data presented in section3.2 represent the depth-averaged bulk compositions of these10cmthicksubsamples. In addition,1-2 cmthicksubsamples weretakenfromsel•ted depths forradio- carbon datingandgrain-size analysis, 1 cmthicksubsamples weretaken fromtheupper 5-10cmofthecores forgamma spec- trometric analysis, and1 cm 3subsamples weretaken at 10cm intervals fordetermination of drybulkdensity.Theuppermost v-',--,,,• of the outer .•...,c •,,•,, coressuffered somecompaction (< 10 cm)andminorstratigraphic disturbance aftercollection owing to the high water contentof the sediment,but we have madeno attempt to correct our data for these effects. In addition, the uppermost section of coreKROCK-GC1shrank in lengthfrom 100to ~90 cmpriorto subsampling owingto waterlossduring storage.In thepresentation of dataforthiscore,average sample depths between 0 and90 cmhavebeenmultiplied by a factorof 100/90in anefforttocorrect forthisshrinkage. 2.3. Core ChronologyandIsotopicAnalyses The near absence of carbonate microfossils in the cores precludes useof standard •5180 stratigraphy and/or radiocarbon dating of calcium carbonate, whereas the likelihood of non- uniform sedimentation ratesand the presence of significant concentrations of authigenic uranium(seesection 3.2) precludes the estimationof accumulation ratesusingthe uraniumseries radionuclides 226Ra, 23øTh, and23•pa. Theprimary chronostrati- graphic toolwehaveusedin thisstudyisradiocarbon dating of bulkorganic carbon(typically1-2%by mass in these sediments), which has been successfullyemployedin other studiesof sediments fromtheAntarcticcontinental shelf[e.g.,Domacket al., 1989; Leventeret al., 1996;Domacket al., 2001]. Radio- carbon agesweredetermined byaccelerator mass spectrometry at eithertheAustralian NuclearScience andTechnology Organiza- tion (ANSTO) or theNew Zealandinstituteof Geological and NuclearSciences (NZI). Radiocarbon datesarereported hereas conventionalradiocarbonyearsbeforepresent,as definedby Stuiver andPolach[1977].The•5•3C values used tocalculate the radiocarbonages were either measured(NZI analyses)or
  • 6. SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF 215 assumed (ANSTO analyses), with theassumed valuesbasedon •513C measurements ofsubsamples fromcores KROCK-GC1 and KROCK-GC2 performedby the AustralianGeologicalSurvey Organization.The errorsintroduced in theradiocarbon agesdue totheuse ofassumed •5'3C values arelikelytobeless than the analytical uncertainties inthe'4Cmeasurements, given therange ofmeasured •5•3C values (-24.1to-34.1%o). Inaddition, unsup- ported 2'øPb wasdetermined incore topsubsamples bygamma spectrometry [McMurtry et al., 1995]in aneffortto evaluatethe possible lossof coretopmaterialduringsample collection. 2.4. Physicaland GeochemicalMeasurements Down coremagneticsusceptibility, whichprovidesa relative measureof ferromagnetic (i.e., lithogenic) mineral content [Leventer et al., 1996], wasdetermined with a Battington MS-2 magneticsusceptibility meter. The coreswerealsoX-rayed in orderto identify macroscopic sedimentary structures, anddown coresubsamples were wet sievedto determinepercentage gravel, sand,andmud by dry weight[Harris and O'Brien, 1998]. The followinggeochemical measurements wereperformedon the 10 cm thicksubsamples: (1) bulkmajorandminorelements (A1,Si, Ti, Mn, Fe, Ni, Cu, Zn, Br, Mo, Ba, and U) were determinedin crushed,60øC dried (and, for major elements,aleionized water washed)materialby X-ray fluorescence spectroscopy, following a modification of themethodof Shimmield[1984]; (2) biogenic silica(opal),with assumed composition SiO2.0.4H:O,wasdeter- minedin freeze-driedsedimentby themethodof Mortlockand Froelich[1989]; and (3) totalorganiccarbon(TOC) wasdeter- mined in crushed, 60øC dried, acid-treated, deionized water washedmaterial usingan elementalanalyzerat the Australian Geological SurveyOrganization or theUniversityof Tasmania. Analyticaluncertainties, as estimated from repeatedmeasure- mentsof in-housestandards,are presentedin Table 1 (the geochemical datapresented hereareavailableelectronically at http ://www.antcrc.utas.edu.au/antcrc/research/sediment_web/data /geochem.html). 3. Results 3.1. Core Preservationand Chronostratigraphy Table 2 presents the radiocarbon agesand measured or assumed •5'3C values of bulkorganic carbon in subsamples from thefivecores.Themeasured •5'3C values aregenerally consistent withtherangeof-20 to -30%oreported for Southern Ocean pelagic phytoplankton [Gibson etal., 1999; Poppetal., 1999], although slightly lowervalues (< -32%o) intheupper portion of core AA149-GC 12may reflect the presence of'•C-depleted relict terrestrial organic matter [Harrisetal.,1996].Downcore radio- carbon ages generally increase inaregular fashion (Figure 3)and suggest thatthecores preserve continuous records of sediment accumulation overtimeperiods ranging from-3.8 kyr(AA149- GC2)to 15kyr(AA149-GC12).Ourinitialanalyses ofcoretop samples fromcores KROCK-GC1 andKROCK-GC2 detected no unsupported •'øPb [Sedwick etal., 1998], suggesting theloss of sediments corresponding tothepast ~100-200 years (atleast) of accumulation duringcollection of thesecores. Subsequent analyses (datanotshown) indicate lowlevels of unsupported •øPb inonlytheupper 2cmofcores AA186-GC34 andKROCK- GC2,and nounsupported vøPb incore KROCK-GC1, consistent withsome lossofcoretopmaterial during collection, whereas the Table 1. Estimated AnalyticalUncertainties Species Uncertainty a AI 0.5 Si 0.2 Ti 5 Mn 10 Fe 2 Ni 10 Cu 10 Zn 1 Br 10 Mo 5 Ba 1 U 20 Opal 5 TOC 0.2b aRelative standarddeviation on mean. bAbsolutestandarddeviation (wt %). lowto moderate levels of unsupported 21øpb measured in the upper5 cmof cores AA149-GC2andAA149-GC 12suggest that therewereno significantcoretoplosses. In our studyregionthe radiocarbon ageof organicmatterat thesediment-water interfaceis expected tobegreaterthanzeroas a resultof (1) thenonzeroradiocarbon ageof thedissolved inor- ganiccarbonthatis converted intoorganicmatterin theeuphotic zone(assumed to betheprincipalsource of organic carbonin our sediment cores),termedthereservoireffect,whichis ~1300years in surfacewaters of the SouthernOcean [Gordon and Harkness, 1992;Berkmanand Forman, 1996];(2) bioturbation in theupper sedimentcolumn,whichverticallymixesmaterialoverdepthsof the orderof 10 cm [Berner, 1980; Libes, 1992]; and (3) dilution of fresh sedimentsby older, resuspended particulatecarbon [Harris et al., 1996]. In an effort to correctour radiocarbon- basedchronologies for thecombinedeffectsof theseprocesses, we havesubtracted 1730radiocarbon yearsfrom ourraw radio- carbonages. This valueof 1730radiocarbon yearsis theraw radiocarbonage of a well-stratified, water-saturated, surface sediment grabsample (AA186-GB9)thatwasrecovered nearthe location of AA149-GC2 in the inner Nielsen Basin (E. Domack, personalcommunication, 1997). The radiocarbon ageof this surfacesedimentsampleis assumedto be representative of surfacesediments withintheshelfbasins of ourstudyarea. We recognize thattherearea number of significant uncertain- ties included in our radiocarbonage correction. One is the possiblegeographicvariationin radiocarbonage of surface sedimentsin theseshelf basins,which might be expected,for example, because of differences in theproportion of resuspended materialaccumulating at differentlocations.Anotheruncertainty is introducedby the likely variation in the reservoirage of Antarctic waters between the Last Glacial Maximum and the earlyHolocene, whichmaybeof theorderof thousands of years, basedon our knowledgeof changesin the radiocarbon age of oceanic deepwatersoverthisperiod[Samson, 1999;Sikesetal., 2000] andgiventhatupwelleddeepwatersdominatetheradio- carbon inventory of Antarctic surfacewaters [Berkmanand Forman, 1996]. Yet an additional complicationto the radio- carbonagecorrection is introduced by the presence of bomb-
  • 7. 216 SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF Table 2. Radiocarbon Ages Sample Depth, •13C, Age, a Corrected Age, b Analysis cm %0 yearsB.P. yearsB.P. Numbeft AA 186-GB9/0-2 1 -24.3 1733 + 83 0 NZA 7716 AA186-GC34/0-1 0.5 -25.8 1987 + 83 254 NZA 7712 AA186-GC34/180-181 180.5 -30.5 3881 + 83 2148 NZA 7713 AA186-GC34/272-273 272.5 -25.7 5611 + 84 3878 NZA 7714 AA 186-GC34/367-368 367.5 -26.1 7949 + 84 6216 NZA 7715 KROCK-GCI/0-1 0.5 (-25)a 2630+ 80 897 OZB 995 KROCK-GC 1/85.5-86 99.5 -24.9 3838 + 84 2105 NZA 7717 KROCK-GC1/85.5-86.5 99.5 (-25) 3980 + 80 2247 OZB 996 KROCK-GC1/181-182 181.5 (-25) 5940 + 80 4207 OZB 997 KROCK-GC1/272-273 272.5 (-25) 7200+ 130 5467 OZB 998 KROCK-GC1/356.5-357.5 357 -24.14 13390 + 150 11657 NZA 4639 AA149-GC2/0-1 0.5 -24.5 1786 + 71 53 NZA 5779 AA 149-GC2/35-36 35.5 (-25) 1710+ 100 0 OZC 080 AA149-GC2/70-71 70.5 (-25) 2250 + 70 517 OZC 081 AA 149-GC2/105-106 105.5 (-25) 3040 + 140 1307 OZC 082 AA149-GC2/140-141 140.5 (-25) 2390+ 110 657 OZC 083 AA149-GC2/175-176 175.5 (-25) 2910 + 70 1177 OZC 084 AA149-GC2/210-211 210.5 (-25) 3350+ 70 1617 OZC 085 AA 149-GC2/245-246 245.5 (-25) 4070 + 90 2337 OZC 086 AA149-GC2/273.5-275.5 274.5 (-25) 4420 + 150 2687 OZC 087 AA149-GC2/302-303 302.5 -24.4 5498 + 88 3765 NZA 5782 KROCK-GC2/7.5-8.5 0.5 (-24.4) 2030 + 310 297 OZB 098 KROCK-GC2/42.5-43.5 35.5 (-25) 1940+ 70 207 OZC 076 KROCK-GC2/77.5-78.5 70.5 (-24.2) 2420 + 80 687 OZB 099 KROCK-GC2/112.5-113.5 105.5 (-25) 2750 + 60 1017 OZC 077 KROCK-GC2/147.5-148.5 140.5 (-23.9) 3330+ 100 1597 OZB 100 KROCK-GC2/182.5-183.5 175.5 (-25) 3950+ 100 2217 OZC 078 KROCK-GC2/217.5-218.5 210.5 (-23.9) 5060+ 180 3327 OZB 101 KROCK-GC2/252.5-253.5 245.5 (-25) 5970 + 150 4237 OZC 079 KROCK-GC2/281-283 274.5 -26.87 7673 + 84 5940 NZA 4640 AA149-GC12/2-3 2.5 -25.6 2171 + 66 438 NZA 5964 AA149-GC12/40-41 40.5 -34.1 5519 + 71 3786 NZA 6754 AA149-GC12/80-81 80.5 -32.3 5380 + 78 3647 NZA 6755 AA149-GC12/120-121 120.5 -29.6 7124 + 77 5391 NZA 6756 AA149-GC12/200-201 200.5 -28.1 8102 + 81 6369 NZA 6749 AA149-GC12/250-251 250.5 -25.5 11410 + 110 9677 NZA 6063 AA149-GC12/265-266 265.5 -25.1 12122 + 92 10389 NZA 7718 AA149-GC12/301-302 300.5 -26.3 17150 + 280 15417 NZA 5763 aRadiocarbon years B.P.asdefined byStuiver andPolach[1977]. bCorrected ageassumes surface sediment ageof 1733radiocarbon years B.P. CSample numbers beginning withOZanalyzed bytheAustralian Nuclear Science andTechnology Organization, andsample numbers beginning withNZ analyzed bytheNewZealand Institute ofGeological andNuclear Sciences. aValues inparentheses areassumed forthecalculation ofradiocarbon ages. derivedradiocarbon in sediments deposited duringthe past50 years,which will havethe effect of decreasing the radiocarbon ageof recentsediments by asmuchas500 years[Berkmanand Forman, 1996]. However,in theabsence of specificinformation regarding theeffectof thesevariousprocesses ontheradiocarbon ageof surfacesediments in basinson theMac. Robertson Shelf, we havecorrected all of ourrawradiocarbon agesby subtracting 1730radiocarbon years. The thuscorrected agesof oursed:,ment coresamples,which we compareagainsttheconventional radio- carbon timescale, arepresented in Table2. Sediment accumulation rates have been calculated between dated samples in the cores as shown in Figure 3. These calculated sedimentation ratesrange from7 to 500cmkyr '• (0.07-5mmyr'l),although thehighest rates, calculated forthe uppermost sections of thecores, havelargeuncertainties resulting fromtheanalytical uncertainties in theradiocarbon ages.Typical accumulation rates appear to beof theorder of 50cmkyr". Several datedsamples wereexcluded fromtheaccumulation rate calculations in cases whereeither(1) thesampleageisolderthan theageof thesample immediately below(cores AA149-GC2 and AA149-GC12),suggesting thepossible inputof oldermaterial due to slumping,or (2) the sampleage is within analytical uncertainty of theageof thecoretopsample immediately above (coresAA149-GC2 and KROCK-GC2). The correctedradio-
  • 8. SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF 217 o 50 lOO 15o 200 250 300 350 400 AA186-GC34 (outer shelf) / . , 53.2 •40.6 KROCK-GC1 (outer shelf) _-! _ ß . i _ ß •' 77.4 crn. kyY' 1 0.4 •-13.7 AA149-GC2 KROCK-GC2 AA149-GC12 (inner shelf) (inner shelf) (mid-outer shelf) crn. kyY '1 48.6 crn. kyr -1 -17.0 _ ß _ ß _ ß _ ß 3crn. kyY '1 46.8 39.6 15.1 21.1 • 7'.0 '"•'• uncorrected radiocarbon age (kyr B.P.) Figure 3. Uncorrectedradiocarbonagesversusdepthand calculatedsedimentaccumulation ratesbetweendated samples. Sampleswereexcludedfrom accumulation rate calculations where(1) a sampleis olderthanthat immediatelybelow it (open circles)or(2) a sample ageis withinanalytical uncertainty of thecoretopsample age(stippled circles). carbon ages of thecoretopsamples range from~50to900radio- carbonyears, which may reflect the previouslymentioned uncertainties in ouragecorrection, aswell assomelossof core topmaterial,although thelatteris onlylikely to be significant (i.e., greaterthan --100-200 years)for coresAA186-GC34, KROCK-GC1, and KROCK-GC2, on the basis of our excess 2•øPb analyses. Thecorrected coretopageof KROCK-GC1, if duesolely tocoretoploss, suggests that--70cmof theuppermost sediment columnis missing,usingourestimated accumulation rates. However, as noted above, these accumulation rate estimatesand thusestimatesof core top lossesare very poorly constrained. Corechronologies wereestablished by linearinterpolation of the age versusdepthdataas shownin Figure3, usingthe correctedradiocarbonagespresented in Table 2. With the exception of coreAA149-GC12 (seebelow),the downcore physicaldata(Figure2) andX-ray imagesprovideno clear evidence of graded bedsor erosional surfaces withintheSMO units,andcoarse materialtypicalof shallower areas ontheshelf, including calcareous biotawhichoccuron nearbyFramBank [Rathburn etal., 1997],israre. Thisandtheabsence of signifi- cantagereversals orhiatuses in thedowncoreradiocarbon ages argues against significant episodic downslopetransport of sedimentsinto these basins, or significant erosional events, althoughthe sustainedtransportof fine sedimentsfrom the shallow shelf areasinto thesebasinsis clearly an important process [Harris and O'Brien,1996,1998]. Thus,in ourinterpre- tationof the down core geochemicaldata we assumethat each core contains a continuous record of sediment accumulation that hasnotbeensignificantly disturbed by slumps, turbidityflows,or erosionalevents. In the caseof core AA149-GC12, however, X- rayimagesindicateripplecross bedding concentrated between 50 and 150 cm depth,which alongwith radiocarbon agereversals (Figure 3) andrelatively depleted 15•3C values (< 30%0) between 40 and 120cm depth(Table2), suggest thatthesediment record in this core may reflect episodesof down slope sediment transport byrelativelystrong density currents [Harris,2000]. 3.2. Physicaland GeochemicalData The SMO units are madeup of ~70-95% mud and ~5-30% sand (Figure 2) and contain 16-46% opal (mean is 37%) and 0.66-2.3% TOC (meanis 1.3%) by weight. Downcoremagnetic susceptibility valuesareuniformlylow (< 5 x 10'6cgs)and featureless within theSMO facies(Figure2), indicatinga paucity of ferromagneticminerals and lithogenic material in general. Microscopic examinationof core material indicatesthat the majority of organic matter is associatedwith the remainsof diatomsthat are typical of Antarcticcoastaland shelf waters, with lithogenicparticles(fine sandto coarsesilt) accounting for the remainder of the SMO facies material. A detailed microfossil studyof coresKROCK-GC1 andKROCK-GC2 [Taylor,1999;F. Taylor and A. McMinn, Evideace from diatomsfor Holocene climatefluctuationalongtheEastAntarcticmargin,submitted to The Holocene, 2000] indicatesthat the diatomsFragilariopsis curtaandFragilariopsiscylindrusdominate thedarkolivegreen SMO, exceptnearthebaseof bothcoreswhereChaetoceros spp. restingspores aredominant,whereas thelighter-colored bandsin coreKROCK-GC1 are characterized by an increased abundance of the diatomCorethron criophilurn. Preliminarymicroscopic examinationof materialfrom core AA186-GC34 suggests that the light and dark bandingin this core reflectsdiatom species
  • 9. 218 SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF assemblages similarto thosein coreKROCK-GC1 (L. Armand, personal communication, 1999). Theoccurrence of thelarger visible "Corethron layers" inthese cores isindicated inFigure 2. In examining thepaleoenvironmental record preserved inthese cores, specifically therecord of accumulation of biogenic versus lithogenicmaterial,the physicalmeasurements are of only limiteduseatthelevelof resolution used in thisstudy because of the relatively homogeneous grain size distributionand the relatively lowandconstant values ofmagnetic susceptibility. We havetherefore focused onchemical proxies for theaccumulation of lithogenicand biogenicmaterial in an effort to infer the sedimentation histories for these core sites. The chemical data considered herearedivided intothefollowing groups onthebasis oftheirutilityaspaleoenvironmental proxies. 1. Ti, A1,andFe,themajorfractions of whicharegenerally associated with lithogenic materialin pelagicandhemipelagic sediments[Calvert and Pedersen,1993;Kuntaret at, 1995]. Bulk sediment concentrations of these elements thusprovidea relativemeasure of theaccumulation of lithogenic material. 2. TOC andBr, whichproviderelativemeasures of theaccu- mulationof organicmatterin marinesediments. TOC provides a directmeasureof the depositedorganicmatterremainingafter diagenetic remineralization, whereas Br is thoughtto beuniquely controlledby the organicfractionin marinesediments [Price et al., 1970; Calvert andPedersen,1993]. 3. Opal and total Si/A1, both of which provide relative measures of theaccumulation of biogenicsiliceous matterwhere postdepositionalpreservationis high or relatively constant [Charles et al., 1991; Mortlock et al., 1991; McManus et al., 1995]. Opaldetermined by themethod of MortlockandFroelich [1989]providesa directmeasure of thisbiogenicsilica,whereas total Si (determinedby X-ray fluorescence), whennormalizedto A1,providesan indirectestimateof thissamequantity,assuming thatthemajorityof A1islithogenic. 4. Mo, U, and Mn, which changevalenceand are thusad- sorbedor precipitated in response to changes in sedimentary re- dox conditions. Sedimentary enrichments in Mo/A1, U/A1, and MrdA1,relativeto crustalabundances (assuming all A1is litho- genic),areindicativeof anoxic(sulfidic),suboxic,andoxiccon- ditions,respectively [CalvertandPedersen, 1993, 1996;Crusius et al., 1996]. Thustheseelementsserveassensitive proxiesof sedimentaryredox conditions,with down core changesin A1- normalized concentrationsindicating past variationsin redox conditions, asmay resultfrom variationsin theaccumulation of organicmatter. 5. Ni, Cu, and Zn, which form insoluble metal sulfides and may thus precipitate in reducing sedimentswhere dissolved sulfideis present[Calvert and Pedersen,1993]. Sedimentary enrichments in Ni/A1, Cu/A1, and Zn/A1 relative to crustal abundance (assuming all A1is lithogenic) areindicativeof anoxic (sulfidic)conditions, asmay resultfrom increased accumulation of organicmatter. 6. Biogenic (or excess)Ba, calculatedas the difference between totalandlithogenic Ba, wherelithogenic Ba isestimated fromA1usingtheaverage crustalweightratioof Ba/A1(0.0075). BiogenicBa is thoughtto bedeliveredto thesediments asbarite containedin organicmatterfrom the surfaceoceanandis well preserved in oxicsediments, whereit serves asa proxyforexport production in overlyingwaters[Dyntond etal., 1992]. Thesechemicaldataarepresented in Figure4, in whichbulk sediment concentrations (dry weightbasis)areplottedagainst the agecorresponding to theaverage depthof eachsubsample in the core. Theseageswerelinearlyinterpolated usingthechronologi- cal schemedescribed in section3.1. The periodsof deposition integrated bythese10cmthicksubsamples rangefrom-20 years (baseof AA149-GC12) to 1400years(upperportionof AA149- GC2), basedon the estimatedsedimentaccumulationratesshown in Figure3, with a typicaltemporal resolution of-200 yearsfor a sediment accumulation rateof50cmkyr '•. 4. Discussion 4.1. Down Core CompositionalRecords The SMO unitsof thefive coresaregenerally similarin terms of bulkcomposition, with coresKROCK-GC1 andAA149-GC12 displayingthegreatestcompositional ranges,asis evidentin the downcoreopal data (Figure4). Manganese concentrations are uniformlylow in all of the cores,with Mn/A1 values(meanis 0.16+ 0.27)statistically indistinguishable fromtheaverage shale ratioof 0.08 [Wedepohl,1971], whereas theratiosMo/A1 (mean is1.3+0.6x 10 '4)and U/A1 (mean is0.9_+ 0.3x 10 .4) aresignifi- cantly enriched relative totheaverage shale ratios of-0.3 x 10 '4 and-0.4 x 10 '4,respectively [Wedepohl, 1971]. These geo- chemical trends together with shipboardobservationsof hydrogen sulfideodoruponrecovery of thesecoresandgrab sampleAA186-GB9 indicatethattheentiresediment columnand possiblythe sediment-water interfacewere anoxic(sulfidic) at eachof thesesites. This wouldact to limit bioturbation by benthicorganisms, thus favoringthe preservation of high- resolution records of sediment accumulation. However, the presenceof hydrogen sulfide in the sedimentcolumn also precludes theuseof biogenic Ba asa productivity proxy,since dissolution of sedimentary bariteaccompanies sulfatereduction [Dyntondet al., 1992]. Indeed,thedowncorerecordsshowthat biogenic Ba doesnot varyin concert with theotherproxiesof organic matteraccumulation, withsome calculated values being closetoor lessthanzero(Figure4). A similarsituation islikely toapplyin sediments fromotherbasins ontheAntarctic margin, suchasthePalmerDeep,wheresedimentary A1andBa concen- trations [Rodriguez andDontack, 1994]sometimes yieldnegative values for biogenic Ba. The geochemical recordsof thetwo outershelfcoresAA 186- GC34 and KROCK-GC1 (Figures4a and 4b) showseveral prominentminima in the lithogenicelementsTi, A1, and Fe, which are generallycoincidentwith small maximain the bio- geniccomponents TOC, Br, opal,andSi/A1andalsocoincident with maxima in Mo/A1 and, in some cases, U/AI and Zn/A1. Thesefeaturesareindicatedby thestippled bandsin Figure4, eachof whichis 500yearsin thickness. We suggest 500yearsas a conservative estimate of theuncertainty in thetimingof these chemicalfeatures,given that the subsamples usedfor geo- chemical analysis typically integrate several centuries of accumulation andthechronological uncertainties of 60-280years in ourradiocarbon dates. Theseminimain lithogenic compo- nentsare also generally coincidentwith down core minima in sandcontent(Figure 2) and maximain watercontent(data not shown). In coreAA 186-GC34, all of thesefeaturescoincidewith light-colored Corethronlayers,whereas for KROCK-GC1, three of fivelithogenic minimacoincide withCorethron layers, whilea fourthoccursin theChaetoceroslayer nearthebottomof the core. Theseobservations immediately suggest thatthedowncore
  • 10. AA 186-G 034 (outer shelf) 2 corrected 3 radi•arbon age(kyr B.P.) 4 5 ....... ..... ...... 6 7 , , , o • • • •,o o ; • o ;o ;o o , • • • o ,'o ;o •o •oo ,oo •oo (b) o KFIOOK-•Ol • (outershelf) 4 corrected radiocarbon 6 age (kyrB.P.) 10 12 (c) 0 AA149-GC2 (inner shelf) 1 corrected radiocarbon 2 age (kyr B.P.) 3 i i i i 0 2 4 6 8 10 0 I 2 0 20 40 0 I 2 3 4 0 10 20 30 40 0 100 200 ß • I ' (d) o 1 KROCK-GC2 (innershelf) 2 corrected 3 radiocarbon age(kyr B.P.)4 5 (e) o 2 AA149-GC12 (mid-outer shelf) 4 6 corrected radiocarbon 8 age (kyr B.P.) 10 12 glacial marine mud 14 16 0 2 4 6 8 10 0 I 2 0 20 40 0 I 2 3 4 0 10 20 30 40 0 100 200 •:•. - . . , • • . • :' .... , ,. .,:....•,• .... ....... • 0 2 4 6 8 10 0 1 2 0 20 40 0 1 2 3 4 0 10 20 30 40 0 100 200 • Ti(•/o)x20 • TOC(•/•) • opal(•/•) • (Mo/AI)x104 ß (Zn/AI)x104 ßbiogenic Ba(ppm) o AI(•/•) • Br(ppm)x1000 o total Si/AI • (U/AI)x104 o (Cu/AI)x104 ß Fe(•%) ß (MWAI)x10 ß (Ni/AI)x104 Figure 4.
  • 11. 220 SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF sediment sources to Mac. Robertson Shelf basins Iresuspension, reworking and I .^. r ................... Iice-rafted debris I ß , Iaeolian dust J sea surface rainI shelf basins ~500-1000m Figure 5. Major sediment sources totheMac. Robertson Shelfbasins.ModifiedfromFigure10ofHarris andO'Brien[1996],¸ Springer-Verlag 1996. minima in lithogenicelementsmay recordenhanced deposition of pelagicbiogenicmaterial on the surrounding shelf,perhaps due to blooms of Corethron or Chaetoceros in these waters. The inner shelf cores AA 149-GC2 and KROCK-GC2 contain generallyfiner-grainedsediments (Figure2) andhigherconcen- trationsof TOC, opal,andMo (Figures4c and4d) thantheouter shelfcores,suggesting either enhanced deposition of biogenic materialrelativeto lithogenicmaterialin theinnershelfbasinsor enhanced preservation of organicmatterin theselocations, which would createmore reducingconditionsin the sedimentcolumn. In contrast to the outer shelf cores, the down core records of the two coresfrom the inner Nielsen Basin containno significant minima in lithogeniccomponents.Rather,the relativepropor- tionsof lithogenicandbiogenicmaterialwhichhasaccumulated at thesesiteshasbeenremarkablyuniformduringthe middleto lateHolocene,beforewhichthisareawasprobablycoveredby a floatingice shelf [Harris and O'Brien, 1998]. In bothcores, thereare significant decreases in TOC contentwith increasing sediment age,whichmayreflectanincrease in theaccumulation of organic carbon duringthelateHolocene or,morelikely,since there are no correspondingtrends in biogenic silica, the progressivediageneticremineralizationof TOC within the sediment column[Berner,1980;DontackandMcClennen,1996]. Not surprisingly, thechemicalrecordof coreAA149-GC12 (Figure4e), from midshelfof the NielsenBasin,is generally intermediate between the inner and outer shelf core records. Minima in lithogenic components arediscernible at -6 kyr B.P. andpossibly ---1kyr B.P., asaresmallmaximain thebiogenic components, andthereis a steady decrease in theproportion of lithogenic components from--. 11to6 kyrB.P. In contrast tothe othercores,Mo/A1 valuesare lessthanU/A1, suggesting lower concentrations ofhydrogen sulfide, thuslessreducing conditions, within the sediment column at this site. This observation suggests a slower accumulation of organic matter atthislocation duringtheHolocene compared withtheothercoresitesandis consistent with the sediment accumulation rates calculated for AA149-GC12,whicharegenerally lessthanthose calculated for contemporaneous sections of theother cores inthisstudy (Figure 3). Thislikelyreflects a lesser degree of sediment focusing (see below)at thesiteof coreAA149-GC12, whichis notwithinthe centralaxisof theNielsenBasin(Figure1), aswell asepisodic ventilation by sinking, oxygenated surface waters in thisareaof the shelf [Harris, 2000]. 4.2. Paleoenvironmental Interpretation In orderto interpret ourproxyrecords for theaccumulation of biogenic and lithogenic material we must first considerthe sources of the SMO facies sediments in the Mac. Robertson Shelf basins.The majorsources of sediments in thesebasins areshown schematically in Figure5, asproposed by Harris and O'Brien [1996]. Underseasonally openmarineconditions thebasins will have receivedsedimentsfrom overlyingwatersin the form of pelagicrain (biogenicmaterial), ice-rafteddebris(lithogenic material), glacial meltwater plumes(lithogenicmaterial),and aeoliandust(lithogenic material). In addition, a mixtureof bio- genicandlithogenic materialwill havebeentransported laterally into the basins from the shallower areas of the shelf as a result of Figure 4. Down coregeochemical datafor thefive coresin thisstudy. Stippled bands indicateinferredproduction episodes; hatching indicates sandy siltor glacialmarinefacies.Estimated analytical uncertainties (+ 2(;) shown by widthof symbols/bars alongbottomaxis.
  • 12. SEDWlCK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF 221 resuspension and erosionby currents,icebergs,and turbidity flows. Harris and O'Brien[1996] have notedthat net erosional conditions exist over ~90% of the Mac. Robertson Shelf, where coarse-grained sediments dominatetheshallowbanksandslopes, whereasnetdepositional conditions existon theremaining10% of the shelf area, as represented by the accumulation of fine- grainedSMO deposits in theshelfbasins. A similarsedimenta- tion patternhasbeendescribed for otherpartsof the Antarctic margin, including the Ross Sea, the Northern Victoria Land Shelf, andtheWilkes Land Shelf [Andersonet al., 1984;Dunbar et al., 1985;Anderson,1999]. The generalabsenceof coarselithogenicmaterial,graded beds, and erosional surfaces in our cores argues against significant lateraltransport of sediments intotheshelfbasins by icebergs, slumps,andturbidityflows,exceptin thecaseof core AA149-GC12, which showsevidenceof episodicdown slope sediment transport bydensity currents (asdescribed in section 3.1 andHarris [2000]). In addition,swellwavesandtidal currents arethought toplaya minorrolein reworking shelfsediments in ourstudyregion[Harris and O'Brien,1998]. On thebasis of theseconsiderations and the observations of relatively strong bottom currents on the Mac. Robertson Shelf [Harris and O'Brien,1998]we suggest thattheshelf-basin SMO deposits are dominated by fine-grained materialwhichhasbeenwinnowed from the shallow banksand slopes,mainly by the action of currents,with a lessercontributionof sedimentsderived from overlyingwaters. The majorcurrentinvolvedin thisprocess would be the AntarcticCoastalCurrent,a strong,circumpolar currentdrivenby theEastWind Drift andthedensitygradient across theAntarctic SlopeFront[Sntith etal., 1984;Harris and O'Brien,1998;Bindoff etal., 2000]. Current measurements from the Mac. RobertsonShelf suggestthat this current flows consistently towardthewest,withmaximum speeds of 50-200 cms'• ontheoutershelf,withsomereduction in strength during thewinterandspring[HarrisandO'Brien,1998]. Suchcurrent speeds wouldcertainlybe sufficient to mobilizemudandfine sandfrom the shallowbanksand slopes,which would be re- deposited in thedownstream shelfbasins andwouldaccount for the accumulation of finer sediments in basins on the inner shelf, wherecurrentspeeds areless. Thiswestflowingcurrent regimehasprobably existed onthe Mac. Robertson Shelfduringmostof theHolocene, sothatthere hasbeena roughlycontinuous transport of fine biogenicand lithogenic material (i.e.,SMO)intothese basins fromtheshallow shelf areas to the east. Thus the undisturbed sediments which haveaccumulated in thesebasins duringtheHolocene will most likelyprovide uswitha record of theproduction anddeposition of finesediments, bothbiogenic andlithogenic, overlargerareas of theadjacent, upstream banks.Thisscenario provides a likely explanation fortheapparent increases in sediment accumulation rates during thecourse of theHolocene thatareindicated bythe datain Figure3. HarrisandO'Brien[1998]haveargued thatthe glacialicesheet began toretreat fromitsgrounding position on themiddleto outershelfat ~10o 12kyr B.P., andthatthecalving frontofthefloating icesheet hadretreated totheinnershelf, near the locationof KROCKoGC2,by ~6 kyr B.P. If so,thenthe seasonally ice-free areaof theMac.Robertson Shelfwouldhave increased significantlybetweenthe early and late Holocene, whichwouldbeexpected toallowthecurrent-driven transport of fine material into the shelf basinsfrom progressivelylarger "catchmentareas"on the shelf. In the remainingdiscussion, we assumethat the SMO sequences containedin our five sediment coresprovide a recordof the depositionand erosionof fine sedimentson the shallowshelf areasimmediatelyto the east, with the exceptionof the sectionof core AA149-GC12 that is thought tobedisturbed by downslopesediment transport. Whatprocesses mightexplainthedowncorevariations in the proportions of lithogenicandbiogeniccomponents preserved in our middle and outer shelf cores? There are two likely alternatives.The firstis thatthesevariations mayreflectchanges in thecurrent-driven transport of biogenic andlithogenic material into the basins from the shallow areas of the shelf, such that the lithogenicminima in our coresmay recordperiodsof lower currentspeeds,which favor the transportof only the finer bio- genicmaterial,suchasdiatomfrustules, fromtheshelfbanksinto the basins. This would lead us to expect significantlylower sediment accumulation ratesin association with theselithogenic minima; however, we see no evidence for such variations in accumulationrates. Moreover, it is difficult to explain the corresponding down core variationsin diatom speciesabun- dances, specificallytheoccurrence of Corethron-rich layers,as the result of changesin current-drivenresuspension.A more likely alternativeis that the downcorevariationsin thepropor- tionsof lithogenicandbiogenicmaterialmay reflectchanges in the productionand depositionof biogenic material over the shallowshelfareas,suchthatthe lithogenicminimamay record periodsof enhanceddiatomproductionin shelfwatersupstream of the core sites. A similar interpretationof down core minima in lithogenic componentsand corresponding variationsin diatom species assemblages hasbeenadopted in otherstudies of sediment cores from Antarcticshelfbasins[e.g.,Dontacket al., 1993;Leventer et al., 1996;LeventerandDunbar,1996;DontackandMayewski, 1999;Dontacket al., 2001]. Thuswe interpretthe downcore minimain lithogeniccomponents in our middleandoutershelf cores as indicative of "production episodes," representing sustained periodsof high exportproduction by diatomsin the shelfwatersimmediatelyto the eastof theseshelfbasins. The increasedaccumulationof organicmatter in the shelf basins associated with suchproduction episodes wouldbe expectedto createmorereducing, sulfide-rich conditions withinthesediment column,as suggested by theMo/A1, U/A1 andZn/A1maxima, which approximately coincide with minima in lithogenic components. That most of thesechemicalfeaturesroughly coincide with Corethron layers in coresAA186-GC34 and KROCK-GC1 suggests thattheseproduction episodes entailed massivebloomsof thisdiatomspecies in theoutershelfregion, giventhatCorethroncriophilunt is a relativelylightlysilicified diatomspecies thatis thought to bepoorlypreserved in seafloor sediments [Jordanet al., 1991;Leventeretal., 1993, 1996]. 4.3. TimingandForcingofProduction Episodes We assume that the transport of fine sediments from the shallow shelf areasinto the basinsis relatively rapid, so that within the resolution of our radiocarbon chronologiesthe compositional changes preserved in themiddle andouter shelf coresare coevalwith depositional changes overtheupstream areasof the Mac. RobertsonShelf. However, the actualduration of theproduction episodes inferred fromthese corerecords is
  • 13. 222 SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF AA186-GC34 KROCK-GC1 AA149-GC12 corrected radiocarbon age (kyr B.P.) 2 4 6 8 10 12 i I I I I I I 810 ••)• trecord disturbed by J• t• Iepisødes ofdown slope •.•' ?s'.'•' .• "* '<*•*"• 0 2 4 6 8 10 0 2 4 6 8 10 ß Ti (wt%)x20 ß Ti (wt%)x20 ß Ti (wt%)x20 o AI (wt%) o AI (wt%) o AI (wt%) ß Fe (wt%) ß Fe (wt%) ß Fe (wt%) , Corethron layer , Corethron layer (3of29 layersshown) (alllayersshown) Figure6. Comparison oftimingofproduction episodes (stippled bands) recorded intheouter andmiddle shelfcores. highly uncertain. On the basisof our rathercoarse-resolution radiocarbon chronologies, these production episodes lasted ofthe order of 100-1000 years, although such sediment layers might haveaccumulated over muchshorterperiods,giventheir relativelyhigh watercontent andour limitedstratigraphic resolution. Wealso note thatmany ofthelight-colored layers in theoutershelfcores areonly-1-3 cmin thickness, in whichcase it would beunlikely thatsuch features would beresolved byour geochemical data,whichapplyto 10 cm thickdowncoresub- samples.Thustheproduction episodes whichwe haveinferred from ourdown core composition data probably represent onlythe moresustained and/orfrequent episodes of exportproduction in adjacentshelfwaters. In Figure6, we comparethe approximate timingof these productionepisodes in coresAA186-GC34, KROCK-GC1, and AA149-GC12, as indicatedby concentration minimain Ti, AI, andFe andtheoccurrence of Corethronlayersin theIceberg Alleycores.Relativetoourcorrected radiocarbon chronology, production episodes areindicated ataround 1,2, and6.2kyrB.P. in two of thethreerecords,whereasall threecorerecordsindicate an episodeat -5.5 kyr B.P. Only core KROCK-GC1 shows evidence of production episodes at --.3.8and 10.8 kyr B.P., althoughtheseepisodes may be obscured or unresolved in core AA149-GC 12andtheAA186-GC34 record extends backonlyas faras-6.2 kyr B.P. Theonlyotherreported Holocene sediment recordsfrom this region of the East Antarctic shelf are those inferredfrom microfossilassemblages in two coresfrom Fram Bank, -100 km to the eastof the Nielsen Basin, where there is evidence of enhanced exportproduction duringtheperiod-2.6- 3.4 kyr B.P. [Rathburnet al., 1997]. This periodof higher production doesnotcorrespond withthetimingof theproduction episodes in our Mac. RobertsonShelfrecords;however,we note thatRathburnet al. [1997]corrected theirradiocarbon agesby subtracting1300 radiocarbonyears, accountingonly for the reservoir effect. Applyinga largerradiocarbon agecorrection of theorderof 1700 years(seesection3.1) to the raw radiocarbon datesof Rathburnet al. [1997] placesthe Fram Bank high- productionperiodat -2.2-3 kyr B.P., whichthenoverlapswith the -1.6-2.5 kyr B.P. production episodesindicated in our IcebergAlley cores(Figure6). On the basisof comparisonsof sedimentrecordsfrom the AntarcticPeninsula shelfwithNorthernHemisphere paleoclimate records it hasbeensuggested thatperiods of elevatedproductiv- ity inferred from the Antarcticmarinerecordsreflect global warmcycleswith periodsof-400, 200, and50-70 yearssuper- imposedupon longer-termperiodsof low-productivitycorre- sponding to globalcoolingevents[Leventeret al., 1996;Domack and Mayewski,1999;Domacket al., 2001]. To date,the most detailed Holocene sediment records from the Antarctic shelf regionare thosepreservedin corescollectedfrom the Palmer Deep,off theAntarctic Peninsula, duringOceanDrillingProgram Leg 178. High-resolutionpaleoproductivity recordshave been derived fromthese cores using downcoremagnetic susceptibility measurements and radiocarbondating [Dornacket al., 2001]. The production episodes inferredfromourMac. Robertson Shelf cores AA 186-GC34,KROCK-GC1,andAA149-GC12(Figure6)
  • 14. SEDWICK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF 223 areroughlycoevalwith high-productivity periodsinferredfrom thePalmerDeeprecords[Domacketal., 2001] aswell asa mid- Holoceneproductivityhigh inferred from RossSea sediment records [Jacobson, 1997;Frignani et al., 1998;Cunninghamet al., 1999],suggesting thattheremayhavebeencircum-Antarctic periodsof enhancedexportproduction duringthe Holocenein response to globalclimaticforcing. However,suchcomparisons mustbe madewith caution,andtheapparent agreement between corerecordsfrom the Mac. Robertson Shelf,thePalmerDeep, and the Ross Sea may be simply fortuitous, given the uncertaintiesin our radiocarbonchronologyand the limited temporal resolution of ourgeochemical data.,, What weretheimmediateforcingmechanisms responsible for theseinferred episodesof enhancedproductionon the Mac. RobertsonShelf, and why are no such productionepisodes indicatedby the inner shelf cores? The factorswhich control algal export productionand communitystructurein Antarctic watersare not well understood but are likely to includevertical stabilityof the upperwater column[Smithand Nelson, 1990; Sakshaug etal., 1991;Arrigo etal., 1998a,1999],seeding by sea icealgae[SmithandNelson,1986;LeventerandDunbar, 1996], grazing by zooplankton[Lancelot et al., 1993; DiTullio and Smith, 1996], light limitation due to sea ice cover and self shading [Smith et al., 1996], availability of micronutrient elementssuchasiron [Martin et al., 1990;Sedwickand DiTullio, 1997;Sedwick et al., 2000], andmorerarely,depletionof macro- nutrients[Trdguer and Jacques,1992]. In studiesof sediment recordsfromthe AntarcticPeninsula continental shelf,periodsof enhancedorganicmatter accumulationhave been attributedto enhanced biologicalproductionduringperiodsof warm and/or lesswindyclimate,asa consequence of decreased seaice cover and increasedwater column stratification,the latter resulting from decreased wind mixing, warmerseasurfacetemperatures, and increasedmeltwater inputs [e.g., Leventer et al., 1996; Domack and Mayewski, 1999]. In addition, an increased abundanceof Corethron criophilum andChaetoceros resting sporesin sedimentsfrom the Ross Sea and the Antarctic Peninsula shelf has been ascribed to enhanced water column stratification[Leventeret al., 1993, 1996]. In considering possible causes for theproductivity episodes recorded in our cores from the Mac. Robertson Shelf, we note thatmostof thesefeatures mayreflectmassive Corethron blooms in adjacent shelfwaters,with theexception of theproduction episode recorded at~10.8kyrB.P.incoreKROCK-GC1, which apparentlyrecordsproductionof Chaetoceros restingspores associated with theretreatof a permanent ice cover. In contrast, the sediment cores from the inner Nielsen Basin suggest relatively uniform exportproductionin upstreamshelf waters. With theexceptionof thebaseof coreKROCK-GC2, biogenic materialin theseSMO sequences is dominatedby the diatom Fragilariopsis curta, which is thoughtto be favoredin ice- marginalenvironments [Leventeret al., 1993]. Satelliteobserva- tions obtainedin recent years have revealed the existencea persistent coastalpolynyaontheinnerMac. Robertson Shelf,the Cape Darnley polynya, which is probablymaintainedby the presenceof icebergsgroundedon the shallowbanksoff Cape Damley (~70øE) [Massomet al., 1998]. Satelliteadvanced very high resolutionradiometerimagesobtainedduring 1997-1999 (seehttp://www.antcrc.utas.edu.au/avhrr/mawson/archive/) reveal thatthe ice-freewatersof thispolynyaextendwestfrom Cape Damleyasfar astheinnerNielsenBasinduringthespringand summer,whereasthe outershelfwatersare coveredby packice duringthespringandsometimes intothesummer.If we assume thata similarpatternof seasonal icecoverhasexistedsincethe middle Holocene, by which time the glacial ice shelf had retreated to the inner continental shelf, then the location of the Cape Darnley polynyaprovidesa likely explanationfor the differences between the inner and outer shelf core records. Duringthe middleto late Holocene,the ice-marginal, well- mixed open waters of the Cape Darnley polynya may have favoredconsistent interannual production by F. curtaduringthe springandsummer,whichwouldhaveresultedin theconsistent transport of fine, biogenic-rich sediments intotheinnerNielsen Basin by the relatively weak inner shelf bottom currents. In contrast, the often ice-covered waters of the outer Mac. Robert- son Shelf may have experiencedmuch more variable algal productionduringthe springandsummerasa resultof interan- nual variations in sea ice cover. Moreover, unlike the wind- mixedopenwatersof thepolynya,theoutershelfwaterswould bemorelikely to maintaina stableupperwatercolumnasa result of enhancedsea ice melting during warmer years. In this scenario, algalproduction andcommunity composition upstream of the outershelfbasinswould havebeenstronglymodulatedby the extent of sea ice melting during the spring and summer, whereas watercolumnconditions andalgalproduction to theeast of theinnerNielsenBasinwere"buffered" by thepresence of the Cape Darnley polynya. From theseconsiderations we suggest that the productionepisodes recordedin our outershelfcores fromIcebergAlley andmoreweaklyin themidshelfcorefrom the Nielsen Basin record years of enhancedsea ice melting duringclimaticwarmperiods,whenfactorssuchasa meltwater- stratified water column [Leventer et al., 1996] and ice-derived ironinputs[Sedwick et al., 2000] stimulated massive bloomsof diatoms,particularlyCorethroncriophilum,on theouterMac. Robertson Shelf. 4.4. Conclusions and Future Work Our interpretations of sediment records from the Mac. RobertsonShelf basins are generally consistentwith other Holocene sediment records fromtheAntarctic margin inthatthey provide evidence of millennial-scaleepisodesof enhanced diatom productionin outer shelf waters,includinga mid- Holocene"warm period"between~5 and 7 kyr B.P. Such production episodes mayberelatedtoincreased seaicemelting duringglobal climatic warm periods,althoughlocal forcing mechanisms cannot bediscounted atthistime,giventhedearth of sediment recordsfrom our studyarea. Our resultsalsoindicate thatsmall-scale regional phenomena, suchascoastal polynyas, may stronglyinfluencethe sedimentrecordsin Antarctic shelf basins,which highlightsthe needfor carefulconsideration of regionalsediment dynamics in paleoenvironmental studies of the Antarcticmargin. Furtherstudies areclearlyrequired in orderto establish theextentandtimingof Holocene paleoenvironmental changes ontheEastAntarcticmarginand,at a morebasiclevel, toclarifytherelationship between thesediments accumulating in shelfbasinsandthe processes occurringin overlyingwaters. Suchinformation canonlybeprovided by increasing thespatial coverageand temporalresolutionof sedimentary recordsfrom this region for comparisonwith emerging high-resolution paleoenvironmental recordsfrom otherareas.
  • 15. 224 SEDWlCK ET AL.: SEDIMENT RECORDS FROM THE EAST ANTARCTIC SHELF Acknowledgements. Theauthors thank PhilO'Brien forcollecting coresamples andproviding initialencouragement, BobConnell and Suenor Woonfor laboratory assistance, andFionaTaylorandLeanne Armandfor diatomspecies identification. LesleyDowlingandRoger Summons of theAustralian Geological Survey Organization arethanked forproviding TOCand•5•3C data.John Anderson, Eugene Domack, and AmyLeventer arethanked for theirthorough reviews, whichgreatly improved the manuscript. Uranium series measurementswere accomplished withtravel funding provided bytheAustralian Department ofIndustry, Science and Technology. Thestaff oftheAustralian Nuclear Science andTechnology Organization AMS facilityarethanked for radiocarbon analyses, funded bygrants fromtheAustralian Institute of Nuclear Science andEngineering. Principal funding forthisworkwas provided bytheAntarctic CRC. References Anderson,J. B., Antarctic Marine Geology, Cam- bridge Univ.Press, NewYork,1999. Anderson,J. B., and B. F. Molnia (Eds.), Glacial- Marine Sedimentation,Short Course in Geol., vol. 9,AGU, Washington, D.C., 1989. Anderson, J. B., C. F. Brake,andN. C. Myers, Sedi- mentation on the Ross Sea continental shelf, Antarctica,Mar. Geol., 57, 295-333, 1984. Arrigo, K. R., D. Worthen,A. Schnell,andM.P. Lizotte,Primaryproduction in Southern Ocean waters,J. Geophys.Res.,103, 15,587-15,600, 1998a. Arrigo,K. R., A.M. Weiss,andW. O. Smith,Jr., Physical forcing of phytoplankton dynamics in the southwestern RossSea, J. Geophys.Res.,103, 1007-1021, 1998b. Arrigo,K. R., D. H. Robinson, D. L. Worthen, R. B. Dunbar,G. R. DiTullio, M. VanWoert, andM.P. Lizotte,Phytoplankton community structure and thedrawdown ofnutrients andCO2intheSouthern Ocean,Science, 283,365-367, 1999. Baines,P. G., and S. Condie, Observationsandmodel- ling of Antarcticdownslopeflows: A review, Ocean,Ice and Atmosphere:Interactionsat the AntarcticContinental Margin, Antarct.Res.Set., vol.75,editedbyS.S. Jacobs andR. F. Weiss, pp. 29-49,AGU, Washington, D.C., 1998. Barker, P. F., P. J. Barrett, A. Camerlenghi,A. K. Cooper, F.J.Davey,E. W. Domack, C. Escutia, Y. Kristoffersen, andP. E. O'Brien,Ice sheethistory fromAntarctic continental marginsediments: The ANTOSTRAT approach, Terra Antarct.,5, 737- 760, 1998. Berkman, P. A., and S. L. Forman, Pre-bomb radio- carbon and the reservoir correction for calcareous marinespecies in theSouthern Ocean,Geophyso Res.Lett., 23, 363-366, 1996. Berner,R., Early Diagenesis,PrincetonUniv. Press, Princeton,N. J., 1980. Bindoff,N. L., M. A. Rosenberg, andM. J. Warner, On the circulation of the waters over the Antarctic continentalriseandslopebetween80 and 150øE, DeepSeaRes.,Part11,47, 2299-2326,2000. Calvert,S.E., andT. F. Pedersen, Geochemistry ofre- centoxicandanoxicmarinesediments:Implica- tionsfor thegeological record,Mar. Geol.,113, 67-88, 1993. Calvert,S. E., andT. F. Pedersen, Sedimentary geo- chemistry of manganese:Implications for theen- vironmentof formationof manganiferous black shales,Econ. Geol., 91, 36-47, 1996. Charles, C. D., P. N. Froelich, M. A. Zibello, R. A. Mortlock, and J. J. Morley, Biogenicopal in Southern Ocean sediments over the last 450,000 years: Implications for surfacewaterchemistry andcirculation,Paleoceanography, 6, 697-728, 1991. Comiso, J. C., C. R. McClain, C. W. Sullivan, J.P. Ryan, and C. L. Leonard, Coastal zone color scannerpigmentconcentrations in the Southern Ocean, J. Geophys. Res., 98,2419-2451,1993. Crusius,J., S. Calvert, T. Pedersen,and D. Sage, Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition, Ea•thPlanet.Sci. Lett., 145, 65-78, 1996. Cunningham, W. L., A. Leventer, J.T. Andrews, A. E. Jennings,and K. J. Licht, Late Pleistocene- Holocene marine conditions in the Ross Sea, Antarctica: Evidence from the marine record, Holocene,9, 129-139, 1999. Deacon, G., The Antarctic Circumpolar Ocean, Cambridge Univ.Press, NewYork,1984. DiTullio, G. R., andW. O. SmithJr.,Spatialpatterns in phytoplankton biomass andpigment distribu- tions in the Ross Sea, J. Geophys.Res.,101, 18,467-18,477, 1996. Domack,E. W., Sedimentology of glacialandglacial- marine deposits on the George V-Adelie continentalshelf, East Antarctica,Boreas, 11, 79- 97, 1982. Domack,E. W., andC. McClennen,Accumulation of glacialmarine sediments in fjordsof theAntarctic Peninsulaand their use as late Holocenepaleoen- vironmental indicators, Foundations for Ecosystem Research West oftheAntarcticPeninsula, Antarct. Res.Ser.,vol. 70, editedby R. Ross,E. Hofmann, andL. Quetin,pp.135-154,AGU, Washington, D. C., 1996. Domack,E. W., andP. A. Mayewski,Bi-polarocean linkages:Evidence from late-Holocene Antarctic marine and Greenland ice-core records, Holocene, 9, 247-251, 1999. Domack,E. W., A. J. T. Jull, J. B. Anderson,T. W. Linick,andC. R. Williams,Application of tandem accelerator mass spectrometry dating to Pleistocene-Holocene sediments of the East Antarcticcontinentalshelf, Quat. Res., 31, 277- 287, 1989. Domack,E. W., A. J. T. Jull, andS. Nakao, Advance of East Antarctic outlet glaciers during the Hypsithermal: Implicatitms forthevolume state of the Antarctic ice sheet under global warming, Geology, 19, 1059-1062, 1991. Domack,E. W., T. A. Mashiotta,S. E. Ishman,andL. A. Burkley,300-yearcyclicityin organicmatter preservation in Antarcticfjord sediments, The Antarctic Paleoenvironment: A Perspectiveon GlobalChange, Antarct.Res.$er.,vol.60,edited byJ.Kennett andD. Warnke, pp.262-272,AGU, Washington, D.C., 1993. Domack,E. W., E. A Jacobson, S. Shipp,andJ. B. Anderson, Late Pleistocene-Holocene retreatof the WestAntarcticice-sheet system in theRossSea, part2, Sedimentologic andstratigraphic signature, Geol. Soc.Am. Bull., 111, 1517-1536, 1999. Domack,E. W., A. Leventer,R. Dunbar,F. Taylor,S. Brachfeld,C. Sjunneskog, and ODP Leg 178 ScientificParty,Chronologyof thePalmerDeep site, Antarctic Peninsula: A Holocene paleoenvironmental referencefor the Circum- Antarctic,Holocene,11, 1-9, 2001. Dunbar, R. B., J. B. Anderson,and E. W. Domack, Oceanographic influences onsedimentation along theAntarcticcontinental shelf,Oceanology of the AntarcticContinental Shelf,Antarct.Res.Ser.,vol. 43, editedby S.S. Jacobs, pp. 291-312,AGU, Washington, D.C., 1985. Dymond, J.,E. Suess, andM. Lyle,Bariumin deep- seasediment: A geochemical proxyforpaleopro- ductivity, Paleoceanography, 7, 163-181, 1992. Frignani, M., F. Giglio,L. Langone, M. Ravaioli, and M. Mangini,LatePleistocene-Holocene fluxes of organic carbon andbiogenic silicain thenorth- westernRossSea, Antarctica,Ann. Glaciol., 27, 697-703, 1998. Gordon,J. E., and D. D. Harkness,Magnitudeand geographic variation of theradiocarbon content in Antarcticmarinelife: Implications for reservoir corrections in radiocarbon dating, Quat.Sci.Rev., 11,697-708, 1992. Gibson, J. A. E., T. W. Trull, P. D. Nicholls, R. E. Summons, andA. McMinn,Sedimentation of •3C- richorganicmatterfromAntarctic sea-ice algae: A potential indicator of past sea-iceextent, Geology, 27, 331-334,1999. Harris,P. T., Ripplecross-bedded sediments on the EastAntarctic shelf:Evidence forepisodic bottom waterproduction in theHolocene?, Mar. Geol., 170, 317-330, 2000. Harris,P. T., andP. E. O'Brien,Geomorphology and sedimentology of thecontinental shelfadjacent to Mac. Robertson Land,EastAntarctica:A scalped shelf,Geo.Mar. Lett., 16, 287-296, 1996. Harris, P. T., and P. E. O'Brien, Bottom currents, sedimentation and ice-sheet retreat facies successions on the Mac Robertson shelf, East Antarctica,Mar. Geol., 151, 47-72, 1998. Harris, P. T., P. E. O'Brien, P. Sedwick, and E. M. Truswell,LateQuaternary historyof sedimentation on the Mac. Robertson Shelf, East Antarctica: Problems with tnC-datingof marinesediment cores,Pap. Proc.R. Soc.Tasmania,130, 47-53, 1996. Jacobson, E. A., Ice shelf sedimentation andthe Holo- ceneclimaticoptimum in theRossSea,Antarctica, B.A. thesis,Hamilton Coil., Cinton,N.Y., 1997. Jordan,R. W., J. Priddle,C. J. Pudsey,P. F. Barker, andM. J. Whitehouse,Unusualdiatomlayersin upperPleistocene sediments from the northern Weddell Sea,DeepSeaRes.,38,829-843,1991. Kumar, N., R. F. Anderson,R. A. Mortlock, P. N. Froelich, P. Kubik, B. Dittrich-Hannen, and M. Surer,Increased biologicalproductivity andexport production in theglacialSouthern Ocean,Nature, 378, 675-680, 1995. Lancelot, C., S. Mathot, C. Veth, and H. de Baar, Factors controlling phytoplankton ice-edge blooms in the marginal ice-zone of the northwestern WeddellSeaduringseaice retreat1988: Field observations and mathematical modelling,Polar Biol., 13, 377-387, 1993. Leventer,A., and R. B. Dunbar,Recentdiatomrecord of McMurdoSound,Antarctica: Implications for historyof seaice extent,Paleoceanography, 3, 259-274, 1988. Leventer,A., and R. B. Dunbar, Factorsinfluencing thedistribution of diatomsandotheralgaein the RossSea,J. Geophys. Res.,I01, 18,489-18,500, 1996. Leventer, A., R. B. Dunbar, and D. J. DeMaster, Diatom evidence for late Holocene climatic events in GraniteHarbor, Antarctica,Paleoceanography, 8,373-386, 1993. Leventer,A., E. W. Domack,S. Ishman,S. Brachfeld, C. McClennen, and P. Manley, 200-300 year productivitycyclesin the AntarcticPeninsula region: Understanding linkages among theSun, atmosphere, oceans, seaiceandbiota,Geol.Soc. Am. Bull, 108, 1626-1644, 1996. Libes,S. M., An Introductionto Marine Biogeochem- istry,John Wiley,NewYork,1992. Martin, J. H., S. E. Fitzwater, and R. M. Gordon, Iron deficiencylimits planktongrowthin Antarctic waters, GlobalBiogeochem. Cycles, 4, 5-12,1990. Massom,R. A., P. T. Harris,K. J. Michael,andM. J. Potter, Thedistribution andformative processes of latent-heatpolynyasin East Antarctica,Ann. Glaciol., 27, 420-426, 1998.
  • 16. SEDWICK ET AL.: SEDIMENT RECORDSFROM THE EAST ANTARCTIC SHELF 225 McManus, J., W. M. Berelson, D. E. Hammond, T. E. Kilgore,D. J.DeMaster,O. Ragueneau, andR. W. Collier, Early aliagenesisof biogenic silica: Dissolution rates,kinetics, andpaleoceanographic implications, DeepSeaRes.,Part II, 42, 871-903, 1995. McMurtry, G. M., A. Snidvongs, and C. R. Glenn, Modelingsedimentaccumulation andsoilerosion with •37Csand :•øPb in the Ala Wai Canal and centralHonolulu watershed,Hawai'i, Pac. Sci., 49, 412-451, 1995. Mortlock,R. A., andP. N. Froelich,A simplemethod for the rapid determinationof biogenicopal in pelagicmarinesediments, DeepSeaRes.,Part I, 36, 1415-1426, 1989. Mortlock, R. A., C. D. Charles, P. N. Froelich, M. A. Zibello, J. Saltzmann, J. D. Hays, and L. H. Burckle,Evidencefor lower productivityin the AntarcticOceanduringthelastglaciation, Nature, 351,220-222, 1991. Nelson, D. M., D. J. DeMaster, R. B. Dunbar, and W. O. Smith,Cyclingof organic carbon andbiogenic silica in the Southern Ocean: Large-scale estimates ofwater column andsedimentary fluxes in theRoss Sea,J. Geophys. Res.,101, 18,519- 18,532, 1996. O'Brien, P. E., E. M. Truswell, and H. Burton, Morphology,seismicstratigraphy and sedi- mentation historyof theMac Robertson shelf,East Antarctica, Terr.Antarct.,1,407-408, 1994. Orsi, A. H., G. C. Johnson,and J. L. Bullister, Circulation, mixing,andproduction of Antarctic Bottom Water,Prog.Oceanogr., 43,55-109,1999. Parkinson, C. L., Lengthof theseaice season in the Southern Ocean, in Antarctic SeaIce: Physical Processes, Interactions and Variability, Antarct. Res.Ser.,vol.74, edited byM. O. Jeffries, pp. 173-186, AGU,Washington, D.C., 1998. Popp, B. N. etal.,Controls onthecarbon isotopic composition of Southern Oceanphytoplankton, Global Biogeochem. Cycles, 13,827-843, 1999. Price,N. B., S. E. Calvert,andP. G. W. Jones, The distributionof iodine andbrominein the sediments of thesouthwestern Barents Sea,J.Mar. Res.,28, 22-34, 1970. Rathburn, A. E.,J.-J. Pichon, M. A. Ayress, andP.De Deckker, Microfossil andstable-isotope evidence forchanges inlateHolocene paleoproductivity and paleoceanographic conditions in the PrydzBay regionof Antarctica, Palaeogeogr. Palaeoclima- tol.Palaeoecol.,131,485-510, 1997. Rodriguez, A. B.,andE. W. Domack, A geochemical sedimentological analysis of glacial marine sediments from the Palmer Deep Basin, Bellingshausen Sea, Antarctica,Antarct. J. U.S., 29, 128-130, 1994. Sakshaug, E., D. Slagstad, and O. Holm-Hansen, Factors controlling the development of phytoplankton bloomsin theAntarcticOcean- A mathematical model,Mar. Chem.,35, 259-271, 1991. Samson, C.,Structure andtiming ofthelastdeglacia- tion in the subtropical and subpolar southwest Pacific: Implications fordriving forces forclimate, Ph.D. thesis, Univ. of Tasmania, Hobart, Tasmania,Australia, 1999. Sedwick, P. N., andG. R. DiTullio,Regulation of algalblooms in Antarcticshelfwatersby the release ofironfrommelting sea ice,Geophys. Res. Lett., 24, 2515-2518, 1997. Sedwick,P. N., P. T. Harris,L. G. Robertson, G. M. McMurtry, M.D. Cremer, and P. Robinson,A geochemical studyof marinesediments from the Mac. RobertsonShelf, East Antarctica: Initial results andpalaeonvironmental implications, Ann. Glaciol., 27, 268-274, 1998. Sedwick, P.N.,G.R.DiTullio, and D.J.Mackey, Iron andmanganese in theRossSea,Antarctica: Sea- sonaliron limitationin Antarcticshelfwaters,J. Geophys. Res.,105, I 1,321-11,336,2000. Shevenell, A. E., E. W. Domack,andG. M. Kernan, Record of Holocene palaeoclimate change along theAntarctic Peninsula: Evidence fromglacial marine sediments, Lallemand Fjord,Pap.Proc.R. Soc.Tasmania,130, 55-64, 1996. Shimmield, G. B.,Thegeochemistry andmineralogy of Pacific sediments, BajaCalifornia, Ph.D.thesis, Univ.of Edinburgh, Edinburgh, Scotland, 1984. Sikes,E. L., C. R. Samson, T. P. Guilderson, andW. R. Howard, Oldradiocarbon ages in thesouthwest PacificOcean duringthelastglacialperiodand deglaciation, Nature,405, 555-557,2000. Smith, N. R., D. Zhaoquian, andS.Wright, Water masses andcirculation intheregion ofPrydz Bay, Antarctica, DeepSeaRes., 31, 1121-1147, 1984. Smith, W.O.,Jr.,and L.1.Gordon, Hyperproductivity oftheRoss Sea (Antarctica) polynya during austral spring, Geophys. Res.Lett.,24, 233-236,1997. Smith, W. O.,Jr.,andD. M. Nelson, Importance of ice-edge phytoplankton production in theSouthern Ocean, BioScience, 36, 251-256,1986 Smith, W. O.,Jr.,andD. M. Nelson, Phytoplankton growthand new productionin the Weddell Sea marginal icezoneintheaustral spring andautumn, Limnol.Oceanogr., 35, 809-821,1990. Smith,W. O., Jr., D. M. Nelson,G. R. DiTullio, and A. R. Leventer, Temporal andspatial patterns in theRossSea: Phytoplankton biomass, elemental composition, productivityand growth rates,J. Geophys. Res.,101, 18,455-18,465, 1996. Stuiver, M., andH. A. Polach, Discussion: Reporting of •4C data, Radiocarbon, 19,355-363, 1977. Taylor, F.,Sedimentary diatom assemblages ofPrydz Bay, Ph.D. thesis,Univ. of Tasmania,Hobart, Tasmania,Australia, 1999. Trtguer, P.,andG.Jacques, Dynamics ofnutrients and phytoplankton, andfluxes ofcarbon, nitrogen and siliconin the AntarcticOcean,Polar Biol., 12, 149-162, 1992. Wedepohl, K. H., Environmentalinfluenceson the chemical composition of shales andclays, Physics and Chemistry of the Earth,editedby L. H. Ahrens, pp.307-331, Pergamon, Tarrytown, N.Y., 1971. M.D. Cremer andG.M. McMurtry, Department of Oceanography, Universityof Hawaii, Honolulu,HI 96822. P. T. Harris,L. G. Robertson, andP. N. Sedwick, AntarcticCRC, GPO Box 252-80,Hobart,Tasmania 7001,Australia. (P.Sedwick@utas.edu.au.) P.Robinson, Department of Geology, University of Tasmania,GPO Box 252-79, Hobart,Tasmania 7001, Australia. (Received February 1,2000; revised October15,2000; accepted November27, 2000.)