SlideShare a Scribd company logo
1 of 6
Download to read offline
International Journal of Engineering Research and Development 
e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com 
Volume 10, Issue 7 (July 2014), PP.61-66 
Interval Valued Intuitionistic Fuzzy Subrings of A Ring 
1M.G.Somasundara Moorthy & 2K.Arjunan 
1. Department of Mathematics, Mookambigai College of Engineering, Keeranur, Tamilnadu, India. 
2. Department of Mathematics, H.H.The Rajahs College, Pudukkottai – 622001, Tamilnadu, India 
Abstract:- In this paper, we study some of the properties of interval valued intuitionistic fuzzy subring of a ring 
and prove some results on these. 
2000 AMS SUBJECT CLASSIFICATION: 03F55, 08A72, 20N25. 
Keywords:- Interval valued fuzzy subset, interval valued fuzzy subring, interval valued intuitionistic fuzzy 
subset, interval valued intuitionistic fuzzy subring. 
I. INTRODUCTION 
Interval-valued fuzzy sets were introduced independently by Zadeh [13], Grattan-Guiness [5], Jahn [7], 
in the seventies, in the same year. An interval valued fuzzy set (IVF) is defined by an interval-valued 
membership function. Jun.Y.B and Kin.K.H[8] defined an interval valued fuzzy R-subgroups of nearrings. 
Solairaju.A and Nagarajan.R[10] defined the charactarization of interval valued Anti fuzzy Left h-ideals over 
Hemirings. M.G.Somasundara Moorthy and K. Arjunan[11] have defined an interval valued fuzzy subring of a 
ring under homomorphism. We introduce the concept of interval valued intuitionistic fuzzy subring of a ring and 
established some results. 
1.PRELIMINARIES: 
1.1 Definition: Let X be any nonempty set. A mapping [M] : X  D[0, 1] is called an interval valued fuzzy 
subset (briefly, IVFS ) of X, where D[0,1] denotes the family of all closed subintervals of [0,1] and [M](x) = 
[M(x), M+(x)], for all x in X, where M and M+ are fuzzy subsets of X such that M(x) ≤ M+(x), for all x in X. 
Thus M(x) is an interval (a closed subset of [0,1] ) and not a number from the interval [0,1] as in the case of 
fuzzy subset. Note that [0] = [0, 0] and [1] = [1, 1]. 
1.2 Definition: Let ( R, +, ∙ ) be a ring. An interval valued fuzzy subset [M] of R is said to be an interval 
valued fuzzy subring(IVFSR) of R if the following conditions are satisfied: 
(i) [M](x+y)  rmin { [M](x), [M](y) }, 
(ii) [M](x)  [M](x), 
(iii) [M](xy)  rmin { [M](x), [M](y) }, for all x and y in R. 
1.3 Definition: An interval valued intuitionistic fuzzy subset (IVIFS) [A] in X is defined as an object of the 
form [A] = { < x, [A](x), [A](x) > / x in X}, where [A] : X  D[0, 1] and [A] : X  D[0, 1] 
define the degree of membership and the degree of non-membership of the element xX respectively and for 
every xX satisfying [A] 
61 
+(x) + [A] 
+(x)  1. 
1.4 Definition: Let ( R, +, .) be a ring. An interval valued intuitionistic fuzzy subset [A] of R is said to be an 
interval valued intuitionistic fuzzy subring of R if it satisfies the following axioms: 
(i) [A](x y) ≥ rmin {A](x), A](y)} = [min {+(+([[[A] 
(x), [A] 
(y)}, min{[A] 
x), [A] 
y)}] 
(ii) [A](xy) ≥ rmin {[A](x), [A](y)} = [ min {[A] 
(x), [A] 
(y)}, min{[A] 
+(x), [A] 
+(y)}] 
(iii) [A](xy) ≤ rmax{[A](x), [A](y)} = [max {[A] 
(x), [A] 
(y)}, max{[A] 
+(x), [A] 
+(y)}] 
(iv) [A](xy) ≤ rmax {[A](x), [A](y)} = [ max{[A] 
(x), [A] 
(y)}, max{[A] 
+(x), [A] 
+(y)}], for all x and y in R. 
1.5 Definition: Let X and X be any two sets. Let f : X  X be any function and [A] be an interval valued 
intuitionistic fuzzy subset in X, [V] be an interval valued intuitionistic fuzzy subset in f(X) = X, defined by 
[V](y) = sup 
r 
x f y   
( ) 1 
( ) 1 r 
x f y   
[A](x) and [V](y) = inf 
[A](x), for all x in X and y in X. [A] is called a preimage of [V] 
under f and is denoted by f-1([V]). 
1.6 Definition: Let [A] be an interval valued intuitionistic fuzzy subring of a ring R and a in R. Then the pseudo 
interval valued intuitionistic fuzzy coset (aA)p is defined by ((a[A])p )(x) = p(a)[A](x) and ((a[A])p)(x) = 
p(a)[A](x), for every x in R and for some p in P. 
1.7 Definition: Let [A] and [B] be interval valued intuitionistic fuzzy subsets of sets G and H, respectively. The 
product of [A] and [B], denoted by [A]×[B], is defined as [A]×[B] = { (x, y), [A]×[B](x,y), [A]×[B](x,y)  / for all
Interval Valued Intuitionistic Fuzzy Subrings of A Ring 
x in G and y in H }, where [A]×[B](x, y) = rmin { [A](x), [B](y) } and [A]×[B](x, y) = rmax { [A](x), 
[B](y) }. 
1.8 Definition: Let [A] be an interval valued intuitionistic fuzzy subset in a set S. The strongest interval 
valued intuitionistic fuzzy relation on S, that is an interval valued intuitionistic fuzzy relation on [A] is [V] 
given by [V](x, y) = rmin { [A](x), [A](y) } and [V](x, y) = rmax{ [A](x), [A](y) }, for all x, y in S. 
II. SOME PROPERTIES 
2.1 Theorem: Intersection of any two interval valued intuitionistic fuzzy subrings of a ring R is an interval 
valued intuitionistic fuzzy subring of R. 
Proof: Let [A] and [B] be any two interval valued intuitionistic fuzzy subrings of a ring R and x, y in R. Let [A] 
= {(x, [A](x), [A](x))/ xR} and [B] = { (x, [B](x), [B](x) ) / xR} and also let [C] = [A][B] = { (x, [C](x), 
[C](x) ) / xR}, where [C](x) = rmin {[A](x), [B](x) } and [C](x) = rmax {[A](x), [B](x) }. Now, [C](xy) = 
rmin {[A](xy), [B](xy) }≥ rmin{ rmin { [A](x), [A](y) }, rmin { [B](x), [B](y) }} = rmin {rmin{ [A](x), 
[B](x) }, rmin { [A](y), [B](y) }} = rmin { [C](x), [C](y) }. Therefore, [C](xy) ≥ rmin { [C](x), [C](y) }, for 
all x, y in R. And, [C](xy) = rmin { [A](xy), [B](xy) } ≥ rmin { rmin{ [A](x), [A](y) }, rmin { [B](x), [B](y) 
}} = rmin{ rmin {[A](x), [B](x) }, rmin { [A](y), [B](y) }} = rmin{ [C](x), [C](y) }. Therefore, [C](xy) ≥ 
rmin{ [C](x), [C](y) }, for all x, y in R. Now, [C](xy) = rmax { [A](xy), [B](xy)} ≤ rmax{rmax {[A](x), 
[A](y) }, rmax { [B](x), [B](y) }} = rmax{ rmax{[A](x), [B](x)}, rmax { [A](y), [B](y)}} = rmax { [C](x), 
[C](y) }. Therefore, [C](xy) ≤ rmax { [C](x), [C](y) }, for all x, y in R. And, [C](xy) = rmax { [A](xy), 
[B](xy) } ≤ rmax { rmax {[A](x), [A](y) }, rmax { [B](x), [B](y) }}= rmax{ rmax { [A](x), [B](x) }, rmax 
{[A](y), [B](y) }} = rmax{ [C](x), [C](y)}. Therefore, [C](xy) ≤ rmax{ [C](x), [C](y) }, for all x, y in R. 
Therefore [C] is an interval valued intuitionistic fuzzy subring of R. Hence the intersection of any two interval 
valued intuitionistic fuzzy subrings of a ring R is an interval valued intuitionistic fuzzy subring of R. 
2.2 Theorem: The intersection of a family of interval valued intuitionistic fuzzy subrings of a ring R is an 
interval valued intuitionistic fuzzy subring of R. 
Proof: Let { [V]i : iI} be a family of interval valued intuitionistic fuzzy subrings of a ring R and let [A] = 
inf [V]i(xy) ≥ r 
inf [V]i(y) } = rmin {[A](x), [A](y) }. Therefore, [A](xy) ≥ rmin{ 
sup [V]i(xy) ≤ r 
sup [V]i(y) } = rmax{ [A](x), [A](y) }. Therefore, [A](x-y) ≤ rmax{ [A](x), [A](y) }, for all x, y 
sup rmax{ [V]i(x), [V]i(y) } = rmax {r 
62 
i 
i I 
[V] 
  
. Let x and y in R. Then, [A](xy) = r 
iI 
inf rmin {[V]i(x), [V]i(y) } = rmin { 
iI 
r 
inf [V]i(x), r 
iI 
inf [V]i(y) }= rmin{[A](x), [A](y)}. 
iI 
Therefore, [A](xy) ≥ rmin { [A](x), [A](y) }, for all x, y in R. And, [A](xy) = r 
inf [V]i(xy) ≥ r 
iI 
inf rmin{ 
iI 
[V]i(x), [V]i(y) } = rmin{ r 
inf [V]i(x), r 
iI 
iI 
[A](x), [A](y) }, for all x, y in R. Now, [A](xy) = r 
iI 
sup rmax { [V]i(x), [V]i(y) } = rmax { 
iI 
r 
sup [V]i(x), r 
iI 
iI 
in R. And, [A](xy) = r 
sup [V]i(xy) ≤ r 
iI 
iI 
sup [V]i(x), r 
iI 
sup [V]i(y) } = 
iI 
rmax{ [A](x), [A](y) }. Therefore, [A](xy) ≤ rmax {[A](x), [A](y) }, for all x, y in R. That is, [A] is an interval 
valued intuitionistic fuzzy subring of R. Hence, the intersection of a family of interval valued intuitionistic fuzzy 
subrings of R is an interval valued intuitionistic fuzzy subring of R. 
2.3 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring (R, +, ∙ ), then [A](x)  [A](e) 
and [A](x) ≥ [A](e), for x in R, the identity element e in R. 
Proof: For x in R and e is the identity element of R. Now, [A](e) = [A](xx)  rmin {[A](x), [A](x) } = [A](x). 
Therefore, [A](e)  [A](x), for x in R. And, [A](e) = [A](xx)  rmax { [A](x), [A](x) } = [A](x). Therefore, 
[A](e)  [A](x), for x in R. 
2.4 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring (R, +, ∙ ), then (i) [A](xy) = 
[A](e) gives [A](x) = [A](y), for x and y in R, e in R. 
(ii) [A](xy) = [A](e) gives [A](x) = [A](y), for x and y in R, e in R. 
Proof: Let x and y in R, the identity e in R. (i) Now, [A](x) = [A](xy+y)  rmin {[A](xy), [A](y) } = rmin { 
[A](e), [A](y) } = [A](y) = [A]( x(xy) )  rmin {[A](xy), [A](x) } = rmin { [A](e), [A](x) } = [A](x). 
Therefore, [A](x) = [A](y), for x, y in R. (ii) Now, [A](x) = [A](xy+y)  rmax { [A](xy), [A](y) } = rmax 
{[A](e), [A](y) }= [A](y) = [A]( x(xy) )  rmax { [A](xy), [A](x) }= rmax { [A](e), [A](x) } = [A](x). 
Therefore, [A](x) = [A](y), for x and y in R.
Interval Valued Intuitionistic Fuzzy Subrings of A Ring 
2.5 Theorem: If [A] and [B] are any two interval valued intuitionistic fuzzy subrings of the rings R1 and R2 
respectively, then [A]×[B] is an interval valued intuitionistic fuzzy subring of R1×R2. 
Proof: Let [A] and [B] be two interval valued intuitionistic fuzzy subrings of the rings R1 and R2 respectively. 
Let x1, x2 in R1 and y1, y2 in R2. Then (x1, y1) and (x2, y2) are in R1×R2. Now, [A]×[B][(x1, y1)(x2, y2)] = 
[A]×[B](x1 x2, y1 y2) = rmin { [A](x1 x2), [B](y1y2)}  rmin{ rmin{ [A](x1), [A](x2) }, rmin{ [B](y1), 
[B](y2)}} = rmin{ rmin {[A](x1), [B](y1) }, rmin {[A](x2), [B](y2)}} = rmin{ [A]×[B](x1, y1), [A]×[B](x2, y2)}. 
Therefore, [A]×[B][(x1, y1)(x2, y2)]  rmin { [A]×[B](x1, y1), [A]×[B](x2, y2)}. Also, [A]×[B][(x1, y1)(x2, y2)] = 
[A]×[B] (x1x2, y1y2) = rmin { [A](x1x2), [B](y1y2) } rmin {rmin{ [A](x1), [A](x2) }, rmin{ [B](y1), [B](y2)}} = 
rmin{ rmin { [A](x1), [B](y1) }, rmin { [A](x2), [B](y2)}} = rmin { [A]×[B](x1, y1), [A]×[B](x2, y2) }. Therefore, 
[A]×[B][(x1, y1)(x2, y2)]  rmin{ [A]×[B](x1, y1), [A]×[B](x2, y2)}. Now, [A]×[B][(x1, y1)(x2, y2)] = 
[A]×[B](x1 x2, y1 y2) = rmax { [A](x1 x2), [B](y1 y2) } ≤ rmax{ rmax{ [A](x1), [A](x2)}, 
rmax{[B](y1), [B](y2)}} = rmax{ rmax{ [A](x1), [B](y1) }, rmax { [A](x2), [B](y2)}} = rmax{ [A]×[B](x1, y1), 
[A]×[B](x2, y2) }. Therefore, A×B[(x1, y1)(x2, y2)] ≤ rmax{[A]×[B](x1, y1), [A]×[B](x2, y2)}. Also, [A]×[B][(x1, y1) 
(x2, y2)] = [A]×[B] (x1x2, y1y2) = rmax { [A](x1x2), [B](y1y2) } ≤ rmax { rmax{ [A](x1), [A](x2) }, rmax{ [B](y1), 
[B](y2)}} = rmax{ rmax { [A](x1), [B](y1)}, rmax { [A](x2), [B](y2)}} = rmax { [A]×[B](x1, y1), [A]×[B](x2, y2)}. 
Therefore, [A]×[B][(x1, y1)(x2, y2)] ≤ rmax{ [A]×[B](x1, y1), [A]×[B](x2, y2)}. Hence [A]×[B] is an interval valued 
intuitionistic fuzzy subring of R1×R2. 
2.6 Theorem: Let [A] be an interval valued intuitionistic fuzzy subset of a ring R and [V] be the strongest 
interval valued intuitionistic fuzzy relation of R. Then [A] is an interval valued intuitionistic fuzzy subring of R 
if and only if [V] is an interval valued intuitionistic fuzzy subring of R×R. 
Proof: Suppose that [A] is an interval valued intuitionistic fuzzy subring of a ring R. Then for any x = ( x1, x2 ) 
and y = ( y1, y2 ) in R×R, we have, [V](x-y) = [V] [(x1, x2) (y1, y2)] = [V](x1 y1, x2 y2) = rmin { [A](x1y1), 
[A](x2y2)}  rmin { rmin {[A](x1), [A](y1) }, rmin { [A](x2), [A](y2)}} = rmin { rmin { [A](x1), [A](x2) }, 
rmin { [A](y1), [A](y2)}} = rmin { [V](x1, x2), [V](y1, y2) } = rmin { [V] (x), [V](y) }. Therefore, [V](xy)  
rmin { [V](x), [V](y)}, for all x, y in R×R. And, [V](xy) = [V] [(x1, x2) (y1, y2)] = [V](x1y1, x2y2) = rmin 
{ [A](x1y1), [A](x2y2) }  rmin { rmin{ [A](x1), [A](y1) }, rmin{ [A](x2), [A](y2)}} = rmin{ rmin { [A](x1), 
[A](x2) }, rmin{ [A](y1), [A](y2)}} = rmin { [V](x1, x2), [V](y1, y2) }= rmin{ [V](x), [V](y) }. Therefore, 
[V](xy)  rmin {[V](x), [V](y) }, for all x and y in R×R. We have, [V] (xy) = [V][(x1, x2) (y1, y2)] = 
[V](x1y1, x2y2) = rmax { [A](x1 y1), [A]( x2 y2) } ≤ rmax { rmax { [A](x1), [A](y1) }, rmax {[A](x2), 
[A](y2)}} = rmax{ rmax { [A](x1), [A](x2) }, rmax { [A](y1), [A](y2)}} = rmax{ [V](x1, x2), [V](y1, y2)} = 
rmax{[V](x), [V](y) }. Therefore,[V](xy) ≤ rmax{[V] (x), [V](y) }, for all x, y in R×R. And, [V](xy) = 
[V][(x1, x2)(y1, y2)] = [V](x1y1, x2y2) = rmax { [A](x1y1), [A](x2y2) } ≤ rmax { rmax{ [A](x1), [A](y1) }, rmax 
{[A](x2), [A](y2)}} = rmax{ rmax { [A](x1), [A](x2) }, rmax{ [A](y1), [A](y2) }} = rmax{ [V](x1, x2), 
[V](y1, y2) }= rmax{ [V](x), [V](y) }. Therefore, [V](xy) ≤ rmax {[V](x), [V](y) }, for all x, y in R×R. This 
proves that [V] is an interval valued intuitionistic fuzzy subring of R×R. Conversely assume that [V] is an 
interval valued intuitionistic fuzzy subring of R×R, then for any x = (x1, x2) and y = (y1, y2) in R×R, we have 
rmin { [A](x1y1), [A](x2y2) } = [V](x1 y1, x2 y2) = [V] [(x1, x2) (y1, y2)] = [V](xy)  rmin { [V] (x), 
[V](y) } = rmin { [V](x1, x2), [V](y1, y2) } = rmin { rmin {[A](x1), [A](x2) }, rmin { [A](y1), [A](y2) }}. If we 
put x2 = y2 = 0, we get, [A](x1y1)  rmin{[A](x1), [A](y1)}, for all x1, y1 in R. And, rmin { [A](x1y1), [A](x2y2) 
} = [V](x1y1, x2y2 ) = [V][(x1, x2)(y1, y2)] = [V](xy)  rmin{ [V](x), [V](y) } = rmin {[V](x1, x2), [V](y1, y2) } 
= rmin{ rmin { [A](x1), [A](x2) }, rmin { [A](y1), [A](y2)}}. If we put x2 = y2 = 0, we get [A](x1y1)  rmin{ 
[A](x1), [A](y1)}, for all x1, y1 in R. We have rmax{ [A](x1y1), [A](x2 y2) } = [V](x1y1, x2y2) = [V][(x1, 
x2)(y1, y2)] = [V](xy) ≤ rmax{ [V](x), [V](y) }= rmax{ [V](x1, x2), [V](y1, y2)} = rmax{ rmax {[A](x1), 
[A](x2) }, rmax {[A](y1), [A](y2) }}. If we put x2 = y2 = 0, we get [A](x1y1) ≤ rmax{ [A](x1), [A](y1)}, for all 
x1, y1 in R. And, rmax { [A](x1y1), [A](x2y2) } = [V](x1y1, x2y2) = [V][(x1, x2)(y1, y2)] = [V](xy) ≤ rmax{[V](x), 
[V](y)}= rmax{[V](x1, x2), [V](y1, y2)} = rmax{ rmax { [A](x1), [A](x2) }, rmax { [A](y1), [A](y2) }}. If we put 
x2 = y2 = 0, we get [A](x1y1) ≤ rmax{ [A](x1), [A](y1) }, for all x1, y1 in R. Therefore [A] is an interval valued 
intuitionistic fuzzy subring of R. 
2.7 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring 
(R, +, ∙ ), then H = { x / xR: [A](x) = [1], [A](x) = [0]} is either empty or is a subring of R. 
Proof: If no element satisfies this condition, then H is empty. If x, y in H, then [A](xy)  rmin { [A](x), [A](y) 
} = rmin { [1] , [1] } = [1]. Therefore, [A](xy) = [1]. And [A](xy)  rmin { [A](x), [A](y) }= rmin { [1] , [1] 
} = [1]. Therefore, [A](xy) = [1]. Now, [A](xy) ≤ rmax { [A](x), [A](y) } = rmax { [0], [0] } = [0]. Therefore, 
[A](xy) = [0]. And [A](xy) ≤ rmax { [A](x), [A](y) }= rmax { [0], [0] } = [0]. Therefore, [A](xy) = [0]. We 
get xy, xy in H. Therefore, H is a subring of R. Hence H is either empty or is a subring of R. 
2.8 Theorem: Let [A] be an interval valued intuitionistic fuzzy subring of a ring 
63
Interval Valued Intuitionistic Fuzzy Subrings of A Ring 
( R, +, ∙ ). (i) If [A](xy) = [0], then either [A](x) = [0] or [A](y) = [0], for all x, y in R. (ii) If [A](xy) = [1], 
then either [A](x) = [1] or [A](y) = [1], for all x, y in R. (iii) If [A](xy) = [0], then either [A](x) = [0] or [A](y) 
= [0], for all x, y in R. (iv) If [A](xy) = [1], then either [A](x) = [1] or [A](y) = [1], for all x, y in R. 
Proof: Let x and y in R. (i) By the definition [A](xy)  rmin { [A](x), [A](y) }, which implies that [0]  rmin 
{ [A](x), [A](y) }. Therefore, either [A](x) = [0] or [A](y) = [0]. (ii) By the definition [A](xy) ≤ rmax { 
[A](x), [A](y) }, which implies that [1] ≤ rmax {[A](x), [A](y) }. Therefore, either [A](x) = [1] or [A](y) = [1]. 
(iii) By the definition [A](xy)  rmin { [A](x), [A](y) } which implies that [0]  rmin { [A](x), [A](y) }. 
Therefore, either [A](x) = [0] or [A](y) = [0]. (iv) By the definition [A](xy) ≤ rmax {[A](x), [A](y) } which 
implies that [1] ≤ rmax { [A](x), [A](y) }. Therefore, either [A](x) = [1] or [A](y) = [1]. 
2.9 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring 
( R, +, ∙ ), then [A] is an interval valued intuitionistic fuzzy subring of R. 
Proof: Let [A] be an interval valued intuitionistic fuzzy subring of a ring R. Consider [A] = {  x, [A](x), [A](x) 
 }, for all x in R, we take [A] = [B] ={  x, [B](x), [B](x)  }, where [B](x) = [A](x), [B](x) = [1] [A](x). 
Clearly, [B](xy) ≥ rmin {[B](x), [B](y) }, for all x, y in R and [B](xy) ≥ rmin { [B](x), [B](y) }, for all x, y in 
R. Since [A] is an interval valued intuitionistic fuzzy subring of R, we have [A]( xy) ≥ rmin { [A](x), [A](y) }, 
for all x, y in R, which implies that [1]– [B](xy) ≥ rmin { [1]– [B](x), [1]– [B](y) } which implies that 
[B](xy) ≤ [1]– rmin { [1]– [B](x), [1]– [B](y) } = rmax {[B](x), [B](y) }. Therefore, [B](xy) ≤ rmax { 
[B](x), [B](y) }, for all x, y in R. And [A](xy) ≥ rmin { [A](x), [A](y) }, for all x, y in R, which implies that 
[1]– [B](xy) ≥ rmin { [1]– [B](x), [1]– [B](y) } which implies that [B](xy) ≤ [1]– rmin { [1]– [B](x), [1]– 
[B](y) } = rmax { [B](x), [B](y) }. Therefore, [B](xy) ≤ rmax { [B](x), [B](y) }, for all x, y in R. Hence [B] = 
[A] is an interval valued intuitionistic fuzzy subring of R. 
2.10 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring 
( R, +, ∙ ), then [A] is an interval valued intuitionistic fuzzy subring of R. 
Proof: Let [A] be an interval valued intuitionistic fuzzy subring of R. That is [A] = {  x, [A](x), [A](x)  }, for 
all x in R. Let [A] = [B] = { x, [B](x), [B](x)  }, where [B](x) = [1][A](x), [B](x) = [A](x). Clearly, 
[B](xy) ≤ rmax{ [B](x), [B](y) }, for all x, y in R and [B](xy) ≤ rmax{ [B](x), [B](y) }, for all x, y in R. Since 
[A] is an interval valued intuitionistic fuzzy subring of R, we have [A](xy) ≤ rmax{ [A](x), [A](y) }, for all x, 
y in R, which implies that [1]–[B](xy) ≤ rmax { [1]– [B](x), [1]– [B](y) } which implies that [B](xy) ≥ [1]– 
rmax { [1]– [B](x), [1]– [B](y)} = rmin { [B](x), [B](y) }. Therefore, [B](xy) ≥ rmin{ [B](x), [B](y) }, for all 
x, y in R. And [A](xy) ≤ rmax {[A](x), [A](y) }, for all x, y in R, which implies that [1]–[B](xy) ≤ rmax { [1]– 
[B](x), [1]–[B](y) } which implies that [B](xy) ≥ [1]– rmax { [1]–[B](x), [1]–[B](y) } = rmin {[B](x), [B](y) 
}. Therefore, [B](xy) ≥ rmin { [B](x), [B](y) }, for all x, y in R. Hence [B] = [A] is an interval valued 
intuitionistic fuzzy subring of R. 
2.11 Theorem: Let [A] be an interval valued intuitionistic fuzzy subring of a ring ( R, +, . ), then the 
pseudo interval valued intuitionistic fuzzy coset (a[A])p is an interval valued intuitionistic fuzzy subring of R, 
for every a in R. 
Proof: Let [A] be an interval valued intuitionistic fuzzy subring of R. For every x, y in R, we have, 
((a[A])p)(xy) = p(a)[A](xy) ≥ p(a) rmin {[A](x), [A](y) } = rmin {p(a)[A](x), p(a)[A](y) }= rmin { ( (a[A])p 
)(x), ( (a[A])p )(y) }. Therefore, ((a[A])p ) (xy) ≥ rmin { ((a[A])p)(x), ((a[A])p)(y) }, for all x, y in R. Now, 
((a[A])p)(xy) = p(a)[A](xy) ≥ p(a) rmin {[A](x), [A](y) }= rmin { p(a)[A](x), p(a)[A](y) } = rmin {((a[A])p 
)(x), ( (a[A])p )(y) }. Therefore, ((a[A])p )(xy) ≥ rmin { ( (a[A])p )(x), ( (a[A])p ) (y) }, for all x, y in R. For every 
x, y in R, we have, ((a[A])p )(xy) = p(a) [A](xy) ≤ p(a) rmax { [A](x), [A](y) } = rmax { p(a)[A](x), 
p(a)[A](y) } = rmax {((a[A])p)(x), ((a[A])p )(y) }. Therefore, ((a[A])p)(xy) ≤ rmax { ((a[A])p )(x), ((a[A])p )(y) 
}, for all x, y in R. Now, ((a[A])p )(xy) = p(a)[A](xy) ≤ p(a) rmax { [A](x), [A](y) } = rmax { p(a) [A](x), p(a) 
[A](y) } = rmax { ( (a[A])p )(x), ( (a[A])p )(y) }. Therefore, ( (a[A])p )(xy) ≤ rmax { ( (a[A])p )(x), ((a[A])p)(y) }, 
for all x, y in R. Hence (a[A])p is an interval valued intuitionistic fuzzy subring of R. 
2.12 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring R, then ?([A]) is an interval 
valued intuitionistic fuzzy subring of R. 
Proof: For every x, y in R, we have μ?([A]) (xy) = rmin { [½, ½ ], μ[A](xy) }  rmin { [½, 
½], rmin { μ[A](x), μ[A](y)}}= rmin { rmin {[½, ½ ], μ[A](x) }, rmin {[½, ½ ], μ[A](y) }} = rmin{μ?( [A])(x), μ?( 
[A])(y) }. Therefore μ?([A])(xy)  rmin{μ?( [A]) (x), μ?( [A]) (y) }, for all x, y in R. And μ?( [A])(xy) = rmin { [½, ½ ], 
μ[A](xy)} rmin { [½, ½ ], rmin {μ[A](x), μ[A](y) } }= rmin { rmin { [½, ½ ], μ[A](x) }, rmin { [½, ½ ], μ[A](y)}} = 
rmin {μ?( [A]) (x), μ?( [A]) (y) }. Therefore μ?( [A])(xy)  rmin { μ?( [A]) (x), μ?( [A]) (y) }, for all x, y in R. Also ?([A]) 
(xy) = rmax { [½, ½ ], [A](xy) }  rmax { [½, ½ ], rmax { [A](x), [A](y) } } = rmax { rmax {[½, ½ ], [A](x) 
}, rmax {[½, ½ ], [A](y)}} = rmax { ?([A]) (x), ?([A]) (y) }. Therefore ?([A])(xy)  rmax { ?([A])(x), ?([A])(y) }, 
for all x, y in R. And ?([A]) (xy) = rmax { [½, ½ ], [A](xy) } rmax { [½, ½ ], rmax { [A](x), [A](y) }} 
64
Interval Valued Intuitionistic Fuzzy Subrings of A Ring 
= rmax { rmax { [½, ½ ], [A](x) }, rmax { [½, ½ ], [A](y) }} = rmax { ?([A]) (x), ?([A]) (y) }. Therefore 
?([A])(xy)  rmax { ?([A])(x), ?([A])(y) }, for all x, y in R. Hence ?([A]) is an interval valued intuitionistic fuzzy 
subring of R. 
2.13 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring R, then ([A]) is an interval 
valued intuitionistic fuzzy subring of R. 
Proof: For every x, y in R, we have μ([A]) (xy) = rmax { [½, ½ ], μ[A](xy) } rmax {[½, ½ ], rmin { μ[A](x), 
μ[A](y) } }= rmin { rmax { [½, ½ ], μ[A](x) }, rmax { [½, ½ ], μ[A](y) } } = rmin { μ([A]) (x), μ([A])(y) }. Therefore 
μ([A])(xy)  rmin { μ([A])(x), μ([A])(y) }, for all x, y in R. And μ([A])(xy) = rmax { [½, ½ ], μ[A](xy) }  rmax { 
[½, ½ ], rmin { μ[A](x), μ[A](y) } } = rmin { rmax { [½, ½ ], μ[A](x) }, rmax { [½, ½ ], μ[A](y) }} 
= rmin { μ([A])(x), μ([A])(y) }. Therefore μ([A])(xy)  rmin { μ([A])(x), μ([A])(y) }, for all x, y in R. Also ([A]) 
(xy) = rmin { [½, ½ ], [A](xy) }  rmin { [½, ½ ], rmax { [A](x), [A](y) } } = rmax { rmin { [½, ½ ], [A](x) 
}, rmin { [½, ½ ], [A](y) } } = rmax {([A])(x), ([A])(y) }. Therefore ([A])(xy)  rmax { ([A])(x), ([A])(y) }, 
for all x, y in R. And ([A]) (xy) = rmin { [½, ½ ], [A](xy) }  rmin { [½, ½ ], rmax { [A](x), [A](y) }} 
= rmax { rmin{[½, ½], [A](x) }, rmin { [½, ½ ], [A](y) }} = rmax { ([A]) (x), ([A]) (y) }. 
Therefore ([A])(xy)  rmax { ([A])(x), ([A])(y) }, for all x, y in R. Hence ([A]) is an interval valued 
intuitionistic fuzzy subring of R. 
2.14 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring R, then Qα ,β ([A]) is an interval 
valued intuitionistic fuzzy subring of R. 
Proof: For every x, y in R, for α, β D[0,1] and α +β ≤ [1], we have ( ) Q , A 
 (xy) = rmin { α, μ[A](xy) }  rmin { α, rmin { μ[A](x), μ[A](y) } } = rmin { rmin { α, 
 (x), ( ) Q , A 
 (xy) = rmax { β, [A](xy) }  rmax { β, rmax { [A](x), [A](y) } } = rmax { rmax { β, [A](x) }, 
 (x), ( ) Q , A 
 (y) }, for all x, y in R. Hence Qα ,β ([A]) is an interval valued intuitionistic fuzzy subring of R. 
2.15 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring R, then Pα ,β ([A]) is an interval 
valued intuitionistic fuzzy subring of R. 
Proof: For every x, y in R, for α, β D[0,1] and α +β ≤ [1], we have ( ) P , A 
 (xy) = rmax { α, μ[A](xy)}  rmax { α, rmin { μ[A](x), μ[A](y) } } = rmin { rmax { α, μ[A](x) }, rmax { 
 (x), ( ) P , A 
65 
 (xy) = rmin { α, μ[A](xy) } 
 (x), 
rmin { α, rmin { μ[A](x), μ[A](y) }} = rmin { rmin { α, μ[A](x) }, rmin { α, μ[A](y) }} = rmin { ( ) Q , A 
 Q(A(y) }. Therefore  , ) 
Q , ( A 
)  (xy)  rmin { ( ) Q , A 
 (x), ( ) Q , A 
 (y) }, for all x, y in R. And 
Q , (A) 
μ[A](x) }, rmin { α, μ[A](y) }} = rmin { ( ) Q , A 
 (y) }. Therefore ( ) Q , A 
 (xy) 
 (x), ( ) Q , A 
 rmin { ( ) Q , A 
 (y) }, for all x, y in R. Also ( ) Q , A 
 (xy) = rmax { β, [A](xy) } 
 rmax { β, rmax { [A](x), [A](y) }} = rmax { rmax { β, [A](x) }, rmax { β, [A](y) }} = rmax 
{   (x),   (y) }. Therefore   (xy)  rmax {   (x),   (y) }, for all x, y in 
Q , (A 
) Q , (A 
) Q , (A 
) Q , (A 
) Q , (A 
) R. And ( ) Q , A 
rmax { β, [A](y) }} = rmax { ( ) Q , A 
 (y) }. Therefore ( ) Q , A 
 (xy)  rmax { ( ) Q , A 
 (x), 
Q , (A) 
 (xy) = rmax { α, μ[A](xy) }  
 (x), 
rmax { α, rmin { μ[A](x), μ[A](y) }} = rmin { rmax { α, μ[A](x) }, rmax {α, μ[A](y) } } = rmin { ( ) P , A 
 P(A(y) }. Therefore  , ) 
P , ( A 
)  (xy)  rmin { ( ) P , A 
 (x), ( ) P , A 
 (y) }, for all x, y in R. And 
P , (A) 
α, μ[A](y) }} = rmin { ( ) P , A 
 (y) }. Therefore ( ) P , A 
 (xy)  rmin { ( ) P , A 
 (x), 
 (y) }, for all x, y in R. Also P(A , ) 
P , ( A 
)  (xy) = rmin { β, [A](xy) }  rmin { β, rmax { [A](x), [A](y) } 
 (x), ( ) P , A 
} = rmax { rmin { β, [A](x) }, rmin { β, [A](y) }} = rmax { ( ) P , A 
 (y) }. Therefore 
 (xy)  rmax { P(A , ) 
P , ( A 
)  (x), ( ) P , A 
 (y) }, for all x, y in R. And ( ) P , A 
 (xy)= rmin {β, [A](xy)}  
rmin { β, rmax {[A](x), [A](y)}} = rmax { rmin { β, [A](x) }, rmin { β, [A](y) } } = rmax { 
 (x), P , (A) 
P , ( A 
)  (y) }. Therefore ( ) P , A 
 (xy) rmax{ ( ) P , A 
 (x), ( ) P , A 
 (y)}, for all x, y in R. 
Hence Pα ,β ([A]) is an interval valued intuitionistic fuzzy subring of R. 
2.16 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring R, then Gα ,β ([A]) is an interval 
valued intuitionistic fuzzy subring of R.
Interval Valued Intuitionistic Fuzzy Subrings of A Ring 
Proof: For every x, y in R, for α, β D[0,1] and α +β ≤ [1], we have ( ) G , A 
 (x), ( ) G , A 
66 
 (xy) = α μ[A] (xy)  α ( rmin { 
μ[A](x), μ[A](y) }) = rmin { α μ[A](x), α μ[A](y)}= rmin { ( ) G , A 
 (y) }. Therefore ( ) G , A 
 (xy) 
 (x), ( ) G , A 
 rmin { ( ) G , A 
 (y) }, for all x, y in R. And ( ) G , A 
 (xy) = α μ[A](xy)  α ( rmin { μ[A](x), 
 (x), ( ) G , A 
μ[A](y) }) = rmin { α μ[A](x), α μ[A](y) } = rmin { ( ) G , A 
 (y) }. Therefore 
 G(A(xy)  rmin {  , ) 
G , ( A 
)  (x), ( ) G , A 
 (y) }, for all x, y in R. Also ( ) G , A 
 (x-y) = β [A](xy)  β ( 
 (x), ( ) G , A 
rmax { [A](x), [A](y) } ) = rmax { β [A](x), β [A](y) } = rmax { ( ) G , A 
 (y) }. Therefore 
 (x-y)  rmax { G(A , ) 
G , ( A 
)  (x), ( ) G , A 
 (y) }, for all x, y in R. And ( ) G , A 
 (xy) = β [A](xy)  β 
 (x), ( ) G , A 
rmax { [A](x), [A](y) } ) = rmax { β [A](x), β [A](y) }= rmax { ( ) G , A 
 (y) }. 
 (xy)  rmax { ( ) G , A 
Therefore ( ) G , A 
 (x), ( ) G , A 
 (y) }, for all x, y in R. Hence Gα ,β ([A]) is an interval 
valued intuitionistic fuzzy subring of R. 
REFERENCES 
[1]. Akram.M and Dar.K.H, On fuzzy d-algebras, Punjab university journal of mathematics, 37(2005), 61- 
76. 
[2]. Asok Kumer Ray, On product of fuzzy subgroups, Fuzzy sets and systems, 105, 181-183 (1999 ). 
[3]. Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 
(1971). 
[4]. Biswas.R, Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35,121-124 ( 1990 ). 
[5]. Grattan-Guiness, Fuzzy membership mapped onto interval and many valued quantities, Z.Math.Logik. 
Grundladen Math. 22 (1975), 149-160. 
[6]. Indira.R, Arjunan.K and Palaniappan.N, Notes on interval valued fuzzy rw-Closed, interval valued 
fuzzy rw-Open sets in interval valued fuzzy topological space, International Journal of Fuzzy 
Mathematics and Systems, Vol. 3, Num.1, pp 23-38, 2013. 
[7]. Jahn.K.U., interval wertige mengen, Math Nach.68, 1975, 115-132. 
[8]. Jun.Y.B and Kin.K.H, interval valued fuzzy R-subgroups of nearrings, Indian Journal of Pure and 
Applied Mathematics, 33(1) (2002), 71-80. 
[9]. Palaniappan. N & K. Arjunan, 2007. Operation on fuzzy and anti fuzzy ideals, Antartica J. Math., 4(1): 
59-64. 
[10]. Solairaju.A and Nagarajan.R, Charactarization of interval valued Anti fuzzy Left h-ideals over 
Hemirings, Advances in fuzzy Mathematics, Vol.4, Num. 2 (2009), 129-136. 
[11]. Somasundara moorthy.M.G. & Arjunan.K., Interval valued fuzzy subring of a ring under 
homomorphism, International journal of scientific Research, Vol.3, Iss. 4, (2014), 292-296. 
[12]. Zadeh.L.A, Fuzzy sets, Information and control, Vol.8, 338-353 (1965). 
[13]. Zadeh.L.A, The concept of a linguistic variable and its application to approximation reasoning-1, 
Inform. Sci. 8(1975), 199-249.

More Related Content

What's hot

22 double integrals
22 double integrals22 double integrals
22 double integralsmath267
 
Homomorphism and Anti-homomorphism of Multi-Fuzzy Ideal and Multi-Anti Fuzzy ...
Homomorphism and Anti-homomorphism of Multi-Fuzzy Ideal and Multi-Anti Fuzzy ...Homomorphism and Anti-homomorphism of Multi-Fuzzy Ideal and Multi-Anti Fuzzy ...
Homomorphism and Anti-homomorphism of Multi-Fuzzy Ideal and Multi-Anti Fuzzy ...iosrjce
 
Fuzzy calculation
Fuzzy calculationFuzzy calculation
Fuzzy calculationAmir Rafati
 
23 general double integrals
23 general double integrals23 general double integrals
23 general double integralsmath267
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference SheetDaniel Nolan
 
A unique common fixed point theorem for four
A unique common fixed point theorem for fourA unique common fixed point theorem for four
A unique common fixed point theorem for fourAlexander Decker
 
29 conservative fields potential functions
29 conservative fields potential functions29 conservative fields potential functions
29 conservative fields potential functionsmath267
 
12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions xmath266
 
RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...
RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...
RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...AIRCC Publishing Corporation
 
Poggi analytics - star - 1a
Poggi   analytics - star - 1aPoggi   analytics - star - 1a
Poggi analytics - star - 1aGaston Liberman
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions iosrjce
 
On Bernstein Polynomials
On Bernstein PolynomialsOn Bernstein Polynomials
On Bernstein PolynomialsIOSR Journals
 
Unique fixed point theorems for generalized weakly contractive condition in o...
Unique fixed point theorems for generalized weakly contractive condition in o...Unique fixed point theorems for generalized weakly contractive condition in o...
Unique fixed point theorems for generalized weakly contractive condition in o...Alexander Decker
 

What's hot (17)

22 double integrals
22 double integrals22 double integrals
22 double integrals
 
Homomorphism and Anti-homomorphism of Multi-Fuzzy Ideal and Multi-Anti Fuzzy ...
Homomorphism and Anti-homomorphism of Multi-Fuzzy Ideal and Multi-Anti Fuzzy ...Homomorphism and Anti-homomorphism of Multi-Fuzzy Ideal and Multi-Anti Fuzzy ...
Homomorphism and Anti-homomorphism of Multi-Fuzzy Ideal and Multi-Anti Fuzzy ...
 
Fuzzy calculation
Fuzzy calculationFuzzy calculation
Fuzzy calculation
 
23 general double integrals
23 general double integrals23 general double integrals
23 general double integrals
 
58 slopes of lines
58 slopes of lines58 slopes of lines
58 slopes of lines
 
Math
MathMath
Math
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference Sheet
 
A unique common fixed point theorem for four
A unique common fixed point theorem for fourA unique common fixed point theorem for four
A unique common fixed point theorem for four
 
29 conservative fields potential functions
29 conservative fields potential functions29 conservative fields potential functions
29 conservative fields potential functions
 
FUZZY LOGIC
FUZZY LOGICFUZZY LOGIC
FUZZY LOGIC
 
12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x
 
RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...
RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...
RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...
 
Poggi analytics - star - 1a
Poggi   analytics - star - 1aPoggi   analytics - star - 1a
Poggi analytics - star - 1a
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions
 
On Bernstein Polynomials
On Bernstein PolynomialsOn Bernstein Polynomials
On Bernstein Polynomials
 
Unique fixed point theorems for generalized weakly contractive condition in o...
Unique fixed point theorems for generalized weakly contractive condition in o...Unique fixed point theorems for generalized weakly contractive condition in o...
Unique fixed point theorems for generalized weakly contractive condition in o...
 
Spherical interval-valued fuzzy bi-ideals of gamma near-rings
Spherical interval-valued fuzzy bi-ideals of gamma near-ringsSpherical interval-valued fuzzy bi-ideals of gamma near-rings
Spherical interval-valued fuzzy bi-ideals of gamma near-rings
 

Similar to I1076166

Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...
Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...
Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...AIRCC Publishing Corporation
 
ON ANNIHILATOR OF INTUITIONISTIC FUZZY SUBSETS OF MODULES
ON ANNIHILATOR OF INTUITIONISTIC FUZZY SUBSETS OF MODULESON ANNIHILATOR OF INTUITIONISTIC FUZZY SUBSETS OF MODULES
ON ANNIHILATOR OF INTUITIONISTIC FUZZY SUBSETS OF MODULEScsandit
 
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy SubgroupsA Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy Subgroupsmathsjournal
 
Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)nitishguptamaps
 
Some fixed point theorems in fuzzy mappings
Some fixed point theorems in fuzzy mappingsSome fixed point theorems in fuzzy mappings
Some fixed point theorems in fuzzy mappingsAlexander Decker
 
Relations & functions.pps
Relations  &  functions.ppsRelations  &  functions.pps
Relations & functions.ppsindu psthakur
 
Common fixed theorems for weakly compatible mappings via an
Common fixed theorems for weakly compatible mappings via anCommon fixed theorems for weakly compatible mappings via an
Common fixed theorems for weakly compatible mappings via anAlexander Decker
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...mathsjournal
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...mathsjournal
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...mathsjournal
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...mathsjournal
 
Fuzzy Group Ideals and Rings
Fuzzy Group Ideals and RingsFuzzy Group Ideals and Rings
Fuzzy Group Ideals and RingsIJERA Editor
 
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...mathsjournal
 
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible MappingsCommon Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappingsiosrjce
 

Similar to I1076166 (20)

Ip3614981501
Ip3614981501Ip3614981501
Ip3614981501
 
Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...
Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...
Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...
 
ON ANNIHILATOR OF INTUITIONISTIC FUZZY SUBSETS OF MODULES
ON ANNIHILATOR OF INTUITIONISTIC FUZZY SUBSETS OF MODULESON ANNIHILATOR OF INTUITIONISTIC FUZZY SUBSETS OF MODULES
ON ANNIHILATOR OF INTUITIONISTIC FUZZY SUBSETS OF MODULES
 
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy SubgroupsA Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
 
Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)
 
Some fixed point theorems in fuzzy mappings
Some fixed point theorems in fuzzy mappingsSome fixed point theorems in fuzzy mappings
Some fixed point theorems in fuzzy mappings
 
Relations & functions.pps
Relations  &  functions.ppsRelations  &  functions.pps
Relations & functions.pps
 
Common fixed theorems for weakly compatible mappings via an
Common fixed theorems for weakly compatible mappings via anCommon fixed theorems for weakly compatible mappings via an
Common fixed theorems for weakly compatible mappings via an
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
 
Fuzzy Group Ideals and Rings
Fuzzy Group Ideals and RingsFuzzy Group Ideals and Rings
Fuzzy Group Ideals and Rings
 
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
 
1523 double integrals
1523 double integrals1523 double integrals
1523 double integrals
 
Cubic BF-Algebra
Cubic BF-AlgebraCubic BF-Algebra
Cubic BF-Algebra
 
Relation and function_xii
Relation and function_xiiRelation and function_xii
Relation and function_xii
 
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible MappingsCommon Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
 
E025036043
E025036043E025036043
E025036043
 
Random Variable
Random Variable Random Variable
Random Variable
 

More from IJERD Editor

A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksA Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksIJERD Editor
 
MEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACEMEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACEIJERD Editor
 
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...IJERD Editor
 
Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’IJERD Editor
 
Reducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding DesignReducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding DesignIJERD Editor
 
Router 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and VerificationRouter 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and VerificationIJERD Editor
 
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...IJERD Editor
 
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVRMitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVRIJERD Editor
 
Study on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive ManufacturingStudy on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive ManufacturingIJERD Editor
 
Spyware triggering system by particular string value
Spyware triggering system by particular string valueSpyware triggering system by particular string value
Spyware triggering system by particular string valueIJERD Editor
 
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...IJERD Editor
 
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeSecure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeIJERD Editor
 
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...IJERD Editor
 
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraGesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraIJERD Editor
 
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...IJERD Editor
 
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...IJERD Editor
 
Moon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF DxingMoon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF DxingIJERD Editor
 
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...IJERD Editor
 
Importance of Measurements in Smart Grid
Importance of Measurements in Smart GridImportance of Measurements in Smart Grid
Importance of Measurements in Smart GridIJERD Editor
 
Study of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powderStudy of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powderIJERD Editor
 

More from IJERD Editor (20)

A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksA Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
 
MEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACEMEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACE
 
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
 
Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’
 
Reducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding DesignReducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding Design
 
Router 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and VerificationRouter 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and Verification
 
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
 
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVRMitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
 
Study on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive ManufacturingStudy on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive Manufacturing
 
Spyware triggering system by particular string value
Spyware triggering system by particular string valueSpyware triggering system by particular string value
Spyware triggering system by particular string value
 
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
 
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeSecure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
 
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
 
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraGesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
 
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
 
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
 
Moon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF DxingMoon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF Dxing
 
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
 
Importance of Measurements in Smart Grid
Importance of Measurements in Smart GridImportance of Measurements in Smart Grid
Importance of Measurements in Smart Grid
 
Study of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powderStudy of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powder
 

Recently uploaded

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01KreezheaRecto
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfRagavanV2
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 

Recently uploaded (20)

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 

I1076166

  • 1. International Journal of Engineering Research and Development e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com Volume 10, Issue 7 (July 2014), PP.61-66 Interval Valued Intuitionistic Fuzzy Subrings of A Ring 1M.G.Somasundara Moorthy & 2K.Arjunan 1. Department of Mathematics, Mookambigai College of Engineering, Keeranur, Tamilnadu, India. 2. Department of Mathematics, H.H.The Rajahs College, Pudukkottai – 622001, Tamilnadu, India Abstract:- In this paper, we study some of the properties of interval valued intuitionistic fuzzy subring of a ring and prove some results on these. 2000 AMS SUBJECT CLASSIFICATION: 03F55, 08A72, 20N25. Keywords:- Interval valued fuzzy subset, interval valued fuzzy subring, interval valued intuitionistic fuzzy subset, interval valued intuitionistic fuzzy subring. I. INTRODUCTION Interval-valued fuzzy sets were introduced independently by Zadeh [13], Grattan-Guiness [5], Jahn [7], in the seventies, in the same year. An interval valued fuzzy set (IVF) is defined by an interval-valued membership function. Jun.Y.B and Kin.K.H[8] defined an interval valued fuzzy R-subgroups of nearrings. Solairaju.A and Nagarajan.R[10] defined the charactarization of interval valued Anti fuzzy Left h-ideals over Hemirings. M.G.Somasundara Moorthy and K. Arjunan[11] have defined an interval valued fuzzy subring of a ring under homomorphism. We introduce the concept of interval valued intuitionistic fuzzy subring of a ring and established some results. 1.PRELIMINARIES: 1.1 Definition: Let X be any nonempty set. A mapping [M] : X  D[0, 1] is called an interval valued fuzzy subset (briefly, IVFS ) of X, where D[0,1] denotes the family of all closed subintervals of [0,1] and [M](x) = [M(x), M+(x)], for all x in X, where M and M+ are fuzzy subsets of X such that M(x) ≤ M+(x), for all x in X. Thus M(x) is an interval (a closed subset of [0,1] ) and not a number from the interval [0,1] as in the case of fuzzy subset. Note that [0] = [0, 0] and [1] = [1, 1]. 1.2 Definition: Let ( R, +, ∙ ) be a ring. An interval valued fuzzy subset [M] of R is said to be an interval valued fuzzy subring(IVFSR) of R if the following conditions are satisfied: (i) [M](x+y)  rmin { [M](x), [M](y) }, (ii) [M](x)  [M](x), (iii) [M](xy)  rmin { [M](x), [M](y) }, for all x and y in R. 1.3 Definition: An interval valued intuitionistic fuzzy subset (IVIFS) [A] in X is defined as an object of the form [A] = { < x, [A](x), [A](x) > / x in X}, where [A] : X  D[0, 1] and [A] : X  D[0, 1] define the degree of membership and the degree of non-membership of the element xX respectively and for every xX satisfying [A] 61 +(x) + [A] +(x)  1. 1.4 Definition: Let ( R, +, .) be a ring. An interval valued intuitionistic fuzzy subset [A] of R is said to be an interval valued intuitionistic fuzzy subring of R if it satisfies the following axioms: (i) [A](x y) ≥ rmin {A](x), A](y)} = [min {+(+([[[A] (x), [A] (y)}, min{[A] x), [A] y)}] (ii) [A](xy) ≥ rmin {[A](x), [A](y)} = [ min {[A] (x), [A] (y)}, min{[A] +(x), [A] +(y)}] (iii) [A](xy) ≤ rmax{[A](x), [A](y)} = [max {[A] (x), [A] (y)}, max{[A] +(x), [A] +(y)}] (iv) [A](xy) ≤ rmax {[A](x), [A](y)} = [ max{[A] (x), [A] (y)}, max{[A] +(x), [A] +(y)}], for all x and y in R. 1.5 Definition: Let X and X be any two sets. Let f : X  X be any function and [A] be an interval valued intuitionistic fuzzy subset in X, [V] be an interval valued intuitionistic fuzzy subset in f(X) = X, defined by [V](y) = sup r x f y   ( ) 1 ( ) 1 r x f y   [A](x) and [V](y) = inf [A](x), for all x in X and y in X. [A] is called a preimage of [V] under f and is denoted by f-1([V]). 1.6 Definition: Let [A] be an interval valued intuitionistic fuzzy subring of a ring R and a in R. Then the pseudo interval valued intuitionistic fuzzy coset (aA)p is defined by ((a[A])p )(x) = p(a)[A](x) and ((a[A])p)(x) = p(a)[A](x), for every x in R and for some p in P. 1.7 Definition: Let [A] and [B] be interval valued intuitionistic fuzzy subsets of sets G and H, respectively. The product of [A] and [B], denoted by [A]×[B], is defined as [A]×[B] = { (x, y), [A]×[B](x,y), [A]×[B](x,y)  / for all
  • 2. Interval Valued Intuitionistic Fuzzy Subrings of A Ring x in G and y in H }, where [A]×[B](x, y) = rmin { [A](x), [B](y) } and [A]×[B](x, y) = rmax { [A](x), [B](y) }. 1.8 Definition: Let [A] be an interval valued intuitionistic fuzzy subset in a set S. The strongest interval valued intuitionistic fuzzy relation on S, that is an interval valued intuitionistic fuzzy relation on [A] is [V] given by [V](x, y) = rmin { [A](x), [A](y) } and [V](x, y) = rmax{ [A](x), [A](y) }, for all x, y in S. II. SOME PROPERTIES 2.1 Theorem: Intersection of any two interval valued intuitionistic fuzzy subrings of a ring R is an interval valued intuitionistic fuzzy subring of R. Proof: Let [A] and [B] be any two interval valued intuitionistic fuzzy subrings of a ring R and x, y in R. Let [A] = {(x, [A](x), [A](x))/ xR} and [B] = { (x, [B](x), [B](x) ) / xR} and also let [C] = [A][B] = { (x, [C](x), [C](x) ) / xR}, where [C](x) = rmin {[A](x), [B](x) } and [C](x) = rmax {[A](x), [B](x) }. Now, [C](xy) = rmin {[A](xy), [B](xy) }≥ rmin{ rmin { [A](x), [A](y) }, rmin { [B](x), [B](y) }} = rmin {rmin{ [A](x), [B](x) }, rmin { [A](y), [B](y) }} = rmin { [C](x), [C](y) }. Therefore, [C](xy) ≥ rmin { [C](x), [C](y) }, for all x, y in R. And, [C](xy) = rmin { [A](xy), [B](xy) } ≥ rmin { rmin{ [A](x), [A](y) }, rmin { [B](x), [B](y) }} = rmin{ rmin {[A](x), [B](x) }, rmin { [A](y), [B](y) }} = rmin{ [C](x), [C](y) }. Therefore, [C](xy) ≥ rmin{ [C](x), [C](y) }, for all x, y in R. Now, [C](xy) = rmax { [A](xy), [B](xy)} ≤ rmax{rmax {[A](x), [A](y) }, rmax { [B](x), [B](y) }} = rmax{ rmax{[A](x), [B](x)}, rmax { [A](y), [B](y)}} = rmax { [C](x), [C](y) }. Therefore, [C](xy) ≤ rmax { [C](x), [C](y) }, for all x, y in R. And, [C](xy) = rmax { [A](xy), [B](xy) } ≤ rmax { rmax {[A](x), [A](y) }, rmax { [B](x), [B](y) }}= rmax{ rmax { [A](x), [B](x) }, rmax {[A](y), [B](y) }} = rmax{ [C](x), [C](y)}. Therefore, [C](xy) ≤ rmax{ [C](x), [C](y) }, for all x, y in R. Therefore [C] is an interval valued intuitionistic fuzzy subring of R. Hence the intersection of any two interval valued intuitionistic fuzzy subrings of a ring R is an interval valued intuitionistic fuzzy subring of R. 2.2 Theorem: The intersection of a family of interval valued intuitionistic fuzzy subrings of a ring R is an interval valued intuitionistic fuzzy subring of R. Proof: Let { [V]i : iI} be a family of interval valued intuitionistic fuzzy subrings of a ring R and let [A] = inf [V]i(xy) ≥ r inf [V]i(y) } = rmin {[A](x), [A](y) }. Therefore, [A](xy) ≥ rmin{ sup [V]i(xy) ≤ r sup [V]i(y) } = rmax{ [A](x), [A](y) }. Therefore, [A](x-y) ≤ rmax{ [A](x), [A](y) }, for all x, y sup rmax{ [V]i(x), [V]i(y) } = rmax {r 62 i i I [V]   . Let x and y in R. Then, [A](xy) = r iI inf rmin {[V]i(x), [V]i(y) } = rmin { iI r inf [V]i(x), r iI inf [V]i(y) }= rmin{[A](x), [A](y)}. iI Therefore, [A](xy) ≥ rmin { [A](x), [A](y) }, for all x, y in R. And, [A](xy) = r inf [V]i(xy) ≥ r iI inf rmin{ iI [V]i(x), [V]i(y) } = rmin{ r inf [V]i(x), r iI iI [A](x), [A](y) }, for all x, y in R. Now, [A](xy) = r iI sup rmax { [V]i(x), [V]i(y) } = rmax { iI r sup [V]i(x), r iI iI in R. And, [A](xy) = r sup [V]i(xy) ≤ r iI iI sup [V]i(x), r iI sup [V]i(y) } = iI rmax{ [A](x), [A](y) }. Therefore, [A](xy) ≤ rmax {[A](x), [A](y) }, for all x, y in R. That is, [A] is an interval valued intuitionistic fuzzy subring of R. Hence, the intersection of a family of interval valued intuitionistic fuzzy subrings of R is an interval valued intuitionistic fuzzy subring of R. 2.3 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring (R, +, ∙ ), then [A](x)  [A](e) and [A](x) ≥ [A](e), for x in R, the identity element e in R. Proof: For x in R and e is the identity element of R. Now, [A](e) = [A](xx)  rmin {[A](x), [A](x) } = [A](x). Therefore, [A](e)  [A](x), for x in R. And, [A](e) = [A](xx)  rmax { [A](x), [A](x) } = [A](x). Therefore, [A](e)  [A](x), for x in R. 2.4 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring (R, +, ∙ ), then (i) [A](xy) = [A](e) gives [A](x) = [A](y), for x and y in R, e in R. (ii) [A](xy) = [A](e) gives [A](x) = [A](y), for x and y in R, e in R. Proof: Let x and y in R, the identity e in R. (i) Now, [A](x) = [A](xy+y)  rmin {[A](xy), [A](y) } = rmin { [A](e), [A](y) } = [A](y) = [A]( x(xy) )  rmin {[A](xy), [A](x) } = rmin { [A](e), [A](x) } = [A](x). Therefore, [A](x) = [A](y), for x, y in R. (ii) Now, [A](x) = [A](xy+y)  rmax { [A](xy), [A](y) } = rmax {[A](e), [A](y) }= [A](y) = [A]( x(xy) )  rmax { [A](xy), [A](x) }= rmax { [A](e), [A](x) } = [A](x). Therefore, [A](x) = [A](y), for x and y in R.
  • 3. Interval Valued Intuitionistic Fuzzy Subrings of A Ring 2.5 Theorem: If [A] and [B] are any two interval valued intuitionistic fuzzy subrings of the rings R1 and R2 respectively, then [A]×[B] is an interval valued intuitionistic fuzzy subring of R1×R2. Proof: Let [A] and [B] be two interval valued intuitionistic fuzzy subrings of the rings R1 and R2 respectively. Let x1, x2 in R1 and y1, y2 in R2. Then (x1, y1) and (x2, y2) are in R1×R2. Now, [A]×[B][(x1, y1)(x2, y2)] = [A]×[B](x1 x2, y1 y2) = rmin { [A](x1 x2), [B](y1y2)}  rmin{ rmin{ [A](x1), [A](x2) }, rmin{ [B](y1), [B](y2)}} = rmin{ rmin {[A](x1), [B](y1) }, rmin {[A](x2), [B](y2)}} = rmin{ [A]×[B](x1, y1), [A]×[B](x2, y2)}. Therefore, [A]×[B][(x1, y1)(x2, y2)]  rmin { [A]×[B](x1, y1), [A]×[B](x2, y2)}. Also, [A]×[B][(x1, y1)(x2, y2)] = [A]×[B] (x1x2, y1y2) = rmin { [A](x1x2), [B](y1y2) } rmin {rmin{ [A](x1), [A](x2) }, rmin{ [B](y1), [B](y2)}} = rmin{ rmin { [A](x1), [B](y1) }, rmin { [A](x2), [B](y2)}} = rmin { [A]×[B](x1, y1), [A]×[B](x2, y2) }. Therefore, [A]×[B][(x1, y1)(x2, y2)]  rmin{ [A]×[B](x1, y1), [A]×[B](x2, y2)}. Now, [A]×[B][(x1, y1)(x2, y2)] = [A]×[B](x1 x2, y1 y2) = rmax { [A](x1 x2), [B](y1 y2) } ≤ rmax{ rmax{ [A](x1), [A](x2)}, rmax{[B](y1), [B](y2)}} = rmax{ rmax{ [A](x1), [B](y1) }, rmax { [A](x2), [B](y2)}} = rmax{ [A]×[B](x1, y1), [A]×[B](x2, y2) }. Therefore, A×B[(x1, y1)(x2, y2)] ≤ rmax{[A]×[B](x1, y1), [A]×[B](x2, y2)}. Also, [A]×[B][(x1, y1) (x2, y2)] = [A]×[B] (x1x2, y1y2) = rmax { [A](x1x2), [B](y1y2) } ≤ rmax { rmax{ [A](x1), [A](x2) }, rmax{ [B](y1), [B](y2)}} = rmax{ rmax { [A](x1), [B](y1)}, rmax { [A](x2), [B](y2)}} = rmax { [A]×[B](x1, y1), [A]×[B](x2, y2)}. Therefore, [A]×[B][(x1, y1)(x2, y2)] ≤ rmax{ [A]×[B](x1, y1), [A]×[B](x2, y2)}. Hence [A]×[B] is an interval valued intuitionistic fuzzy subring of R1×R2. 2.6 Theorem: Let [A] be an interval valued intuitionistic fuzzy subset of a ring R and [V] be the strongest interval valued intuitionistic fuzzy relation of R. Then [A] is an interval valued intuitionistic fuzzy subring of R if and only if [V] is an interval valued intuitionistic fuzzy subring of R×R. Proof: Suppose that [A] is an interval valued intuitionistic fuzzy subring of a ring R. Then for any x = ( x1, x2 ) and y = ( y1, y2 ) in R×R, we have, [V](x-y) = [V] [(x1, x2) (y1, y2)] = [V](x1 y1, x2 y2) = rmin { [A](x1y1), [A](x2y2)}  rmin { rmin {[A](x1), [A](y1) }, rmin { [A](x2), [A](y2)}} = rmin { rmin { [A](x1), [A](x2) }, rmin { [A](y1), [A](y2)}} = rmin { [V](x1, x2), [V](y1, y2) } = rmin { [V] (x), [V](y) }. Therefore, [V](xy)  rmin { [V](x), [V](y)}, for all x, y in R×R. And, [V](xy) = [V] [(x1, x2) (y1, y2)] = [V](x1y1, x2y2) = rmin { [A](x1y1), [A](x2y2) }  rmin { rmin{ [A](x1), [A](y1) }, rmin{ [A](x2), [A](y2)}} = rmin{ rmin { [A](x1), [A](x2) }, rmin{ [A](y1), [A](y2)}} = rmin { [V](x1, x2), [V](y1, y2) }= rmin{ [V](x), [V](y) }. Therefore, [V](xy)  rmin {[V](x), [V](y) }, for all x and y in R×R. We have, [V] (xy) = [V][(x1, x2) (y1, y2)] = [V](x1y1, x2y2) = rmax { [A](x1 y1), [A]( x2 y2) } ≤ rmax { rmax { [A](x1), [A](y1) }, rmax {[A](x2), [A](y2)}} = rmax{ rmax { [A](x1), [A](x2) }, rmax { [A](y1), [A](y2)}} = rmax{ [V](x1, x2), [V](y1, y2)} = rmax{[V](x), [V](y) }. Therefore,[V](xy) ≤ rmax{[V] (x), [V](y) }, for all x, y in R×R. And, [V](xy) = [V][(x1, x2)(y1, y2)] = [V](x1y1, x2y2) = rmax { [A](x1y1), [A](x2y2) } ≤ rmax { rmax{ [A](x1), [A](y1) }, rmax {[A](x2), [A](y2)}} = rmax{ rmax { [A](x1), [A](x2) }, rmax{ [A](y1), [A](y2) }} = rmax{ [V](x1, x2), [V](y1, y2) }= rmax{ [V](x), [V](y) }. Therefore, [V](xy) ≤ rmax {[V](x), [V](y) }, for all x, y in R×R. This proves that [V] is an interval valued intuitionistic fuzzy subring of R×R. Conversely assume that [V] is an interval valued intuitionistic fuzzy subring of R×R, then for any x = (x1, x2) and y = (y1, y2) in R×R, we have rmin { [A](x1y1), [A](x2y2) } = [V](x1 y1, x2 y2) = [V] [(x1, x2) (y1, y2)] = [V](xy)  rmin { [V] (x), [V](y) } = rmin { [V](x1, x2), [V](y1, y2) } = rmin { rmin {[A](x1), [A](x2) }, rmin { [A](y1), [A](y2) }}. If we put x2 = y2 = 0, we get, [A](x1y1)  rmin{[A](x1), [A](y1)}, for all x1, y1 in R. And, rmin { [A](x1y1), [A](x2y2) } = [V](x1y1, x2y2 ) = [V][(x1, x2)(y1, y2)] = [V](xy)  rmin{ [V](x), [V](y) } = rmin {[V](x1, x2), [V](y1, y2) } = rmin{ rmin { [A](x1), [A](x2) }, rmin { [A](y1), [A](y2)}}. If we put x2 = y2 = 0, we get [A](x1y1)  rmin{ [A](x1), [A](y1)}, for all x1, y1 in R. We have rmax{ [A](x1y1), [A](x2 y2) } = [V](x1y1, x2y2) = [V][(x1, x2)(y1, y2)] = [V](xy) ≤ rmax{ [V](x), [V](y) }= rmax{ [V](x1, x2), [V](y1, y2)} = rmax{ rmax {[A](x1), [A](x2) }, rmax {[A](y1), [A](y2) }}. If we put x2 = y2 = 0, we get [A](x1y1) ≤ rmax{ [A](x1), [A](y1)}, for all x1, y1 in R. And, rmax { [A](x1y1), [A](x2y2) } = [V](x1y1, x2y2) = [V][(x1, x2)(y1, y2)] = [V](xy) ≤ rmax{[V](x), [V](y)}= rmax{[V](x1, x2), [V](y1, y2)} = rmax{ rmax { [A](x1), [A](x2) }, rmax { [A](y1), [A](y2) }}. If we put x2 = y2 = 0, we get [A](x1y1) ≤ rmax{ [A](x1), [A](y1) }, for all x1, y1 in R. Therefore [A] is an interval valued intuitionistic fuzzy subring of R. 2.7 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring (R, +, ∙ ), then H = { x / xR: [A](x) = [1], [A](x) = [0]} is either empty or is a subring of R. Proof: If no element satisfies this condition, then H is empty. If x, y in H, then [A](xy)  rmin { [A](x), [A](y) } = rmin { [1] , [1] } = [1]. Therefore, [A](xy) = [1]. And [A](xy)  rmin { [A](x), [A](y) }= rmin { [1] , [1] } = [1]. Therefore, [A](xy) = [1]. Now, [A](xy) ≤ rmax { [A](x), [A](y) } = rmax { [0], [0] } = [0]. Therefore, [A](xy) = [0]. And [A](xy) ≤ rmax { [A](x), [A](y) }= rmax { [0], [0] } = [0]. Therefore, [A](xy) = [0]. We get xy, xy in H. Therefore, H is a subring of R. Hence H is either empty or is a subring of R. 2.8 Theorem: Let [A] be an interval valued intuitionistic fuzzy subring of a ring 63
  • 4. Interval Valued Intuitionistic Fuzzy Subrings of A Ring ( R, +, ∙ ). (i) If [A](xy) = [0], then either [A](x) = [0] or [A](y) = [0], for all x, y in R. (ii) If [A](xy) = [1], then either [A](x) = [1] or [A](y) = [1], for all x, y in R. (iii) If [A](xy) = [0], then either [A](x) = [0] or [A](y) = [0], for all x, y in R. (iv) If [A](xy) = [1], then either [A](x) = [1] or [A](y) = [1], for all x, y in R. Proof: Let x and y in R. (i) By the definition [A](xy)  rmin { [A](x), [A](y) }, which implies that [0]  rmin { [A](x), [A](y) }. Therefore, either [A](x) = [0] or [A](y) = [0]. (ii) By the definition [A](xy) ≤ rmax { [A](x), [A](y) }, which implies that [1] ≤ rmax {[A](x), [A](y) }. Therefore, either [A](x) = [1] or [A](y) = [1]. (iii) By the definition [A](xy)  rmin { [A](x), [A](y) } which implies that [0]  rmin { [A](x), [A](y) }. Therefore, either [A](x) = [0] or [A](y) = [0]. (iv) By the definition [A](xy) ≤ rmax {[A](x), [A](y) } which implies that [1] ≤ rmax { [A](x), [A](y) }. Therefore, either [A](x) = [1] or [A](y) = [1]. 2.9 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring ( R, +, ∙ ), then [A] is an interval valued intuitionistic fuzzy subring of R. Proof: Let [A] be an interval valued intuitionistic fuzzy subring of a ring R. Consider [A] = {  x, [A](x), [A](x)  }, for all x in R, we take [A] = [B] ={  x, [B](x), [B](x)  }, where [B](x) = [A](x), [B](x) = [1] [A](x). Clearly, [B](xy) ≥ rmin {[B](x), [B](y) }, for all x, y in R and [B](xy) ≥ rmin { [B](x), [B](y) }, for all x, y in R. Since [A] is an interval valued intuitionistic fuzzy subring of R, we have [A]( xy) ≥ rmin { [A](x), [A](y) }, for all x, y in R, which implies that [1]– [B](xy) ≥ rmin { [1]– [B](x), [1]– [B](y) } which implies that [B](xy) ≤ [1]– rmin { [1]– [B](x), [1]– [B](y) } = rmax {[B](x), [B](y) }. Therefore, [B](xy) ≤ rmax { [B](x), [B](y) }, for all x, y in R. And [A](xy) ≥ rmin { [A](x), [A](y) }, for all x, y in R, which implies that [1]– [B](xy) ≥ rmin { [1]– [B](x), [1]– [B](y) } which implies that [B](xy) ≤ [1]– rmin { [1]– [B](x), [1]– [B](y) } = rmax { [B](x), [B](y) }. Therefore, [B](xy) ≤ rmax { [B](x), [B](y) }, for all x, y in R. Hence [B] = [A] is an interval valued intuitionistic fuzzy subring of R. 2.10 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring ( R, +, ∙ ), then [A] is an interval valued intuitionistic fuzzy subring of R. Proof: Let [A] be an interval valued intuitionistic fuzzy subring of R. That is [A] = {  x, [A](x), [A](x)  }, for all x in R. Let [A] = [B] = { x, [B](x), [B](x)  }, where [B](x) = [1][A](x), [B](x) = [A](x). Clearly, [B](xy) ≤ rmax{ [B](x), [B](y) }, for all x, y in R and [B](xy) ≤ rmax{ [B](x), [B](y) }, for all x, y in R. Since [A] is an interval valued intuitionistic fuzzy subring of R, we have [A](xy) ≤ rmax{ [A](x), [A](y) }, for all x, y in R, which implies that [1]–[B](xy) ≤ rmax { [1]– [B](x), [1]– [B](y) } which implies that [B](xy) ≥ [1]– rmax { [1]– [B](x), [1]– [B](y)} = rmin { [B](x), [B](y) }. Therefore, [B](xy) ≥ rmin{ [B](x), [B](y) }, for all x, y in R. And [A](xy) ≤ rmax {[A](x), [A](y) }, for all x, y in R, which implies that [1]–[B](xy) ≤ rmax { [1]– [B](x), [1]–[B](y) } which implies that [B](xy) ≥ [1]– rmax { [1]–[B](x), [1]–[B](y) } = rmin {[B](x), [B](y) }. Therefore, [B](xy) ≥ rmin { [B](x), [B](y) }, for all x, y in R. Hence [B] = [A] is an interval valued intuitionistic fuzzy subring of R. 2.11 Theorem: Let [A] be an interval valued intuitionistic fuzzy subring of a ring ( R, +, . ), then the pseudo interval valued intuitionistic fuzzy coset (a[A])p is an interval valued intuitionistic fuzzy subring of R, for every a in R. Proof: Let [A] be an interval valued intuitionistic fuzzy subring of R. For every x, y in R, we have, ((a[A])p)(xy) = p(a)[A](xy) ≥ p(a) rmin {[A](x), [A](y) } = rmin {p(a)[A](x), p(a)[A](y) }= rmin { ( (a[A])p )(x), ( (a[A])p )(y) }. Therefore, ((a[A])p ) (xy) ≥ rmin { ((a[A])p)(x), ((a[A])p)(y) }, for all x, y in R. Now, ((a[A])p)(xy) = p(a)[A](xy) ≥ p(a) rmin {[A](x), [A](y) }= rmin { p(a)[A](x), p(a)[A](y) } = rmin {((a[A])p )(x), ( (a[A])p )(y) }. Therefore, ((a[A])p )(xy) ≥ rmin { ( (a[A])p )(x), ( (a[A])p ) (y) }, for all x, y in R. For every x, y in R, we have, ((a[A])p )(xy) = p(a) [A](xy) ≤ p(a) rmax { [A](x), [A](y) } = rmax { p(a)[A](x), p(a)[A](y) } = rmax {((a[A])p)(x), ((a[A])p )(y) }. Therefore, ((a[A])p)(xy) ≤ rmax { ((a[A])p )(x), ((a[A])p )(y) }, for all x, y in R. Now, ((a[A])p )(xy) = p(a)[A](xy) ≤ p(a) rmax { [A](x), [A](y) } = rmax { p(a) [A](x), p(a) [A](y) } = rmax { ( (a[A])p )(x), ( (a[A])p )(y) }. Therefore, ( (a[A])p )(xy) ≤ rmax { ( (a[A])p )(x), ((a[A])p)(y) }, for all x, y in R. Hence (a[A])p is an interval valued intuitionistic fuzzy subring of R. 2.12 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring R, then ?([A]) is an interval valued intuitionistic fuzzy subring of R. Proof: For every x, y in R, we have μ?([A]) (xy) = rmin { [½, ½ ], μ[A](xy) }  rmin { [½, ½], rmin { μ[A](x), μ[A](y)}}= rmin { rmin {[½, ½ ], μ[A](x) }, rmin {[½, ½ ], μ[A](y) }} = rmin{μ?( [A])(x), μ?( [A])(y) }. Therefore μ?([A])(xy)  rmin{μ?( [A]) (x), μ?( [A]) (y) }, for all x, y in R. And μ?( [A])(xy) = rmin { [½, ½ ], μ[A](xy)} rmin { [½, ½ ], rmin {μ[A](x), μ[A](y) } }= rmin { rmin { [½, ½ ], μ[A](x) }, rmin { [½, ½ ], μ[A](y)}} = rmin {μ?( [A]) (x), μ?( [A]) (y) }. Therefore μ?( [A])(xy)  rmin { μ?( [A]) (x), μ?( [A]) (y) }, for all x, y in R. Also ?([A]) (xy) = rmax { [½, ½ ], [A](xy) }  rmax { [½, ½ ], rmax { [A](x), [A](y) } } = rmax { rmax {[½, ½ ], [A](x) }, rmax {[½, ½ ], [A](y)}} = rmax { ?([A]) (x), ?([A]) (y) }. Therefore ?([A])(xy)  rmax { ?([A])(x), ?([A])(y) }, for all x, y in R. And ?([A]) (xy) = rmax { [½, ½ ], [A](xy) } rmax { [½, ½ ], rmax { [A](x), [A](y) }} 64
  • 5. Interval Valued Intuitionistic Fuzzy Subrings of A Ring = rmax { rmax { [½, ½ ], [A](x) }, rmax { [½, ½ ], [A](y) }} = rmax { ?([A]) (x), ?([A]) (y) }. Therefore ?([A])(xy)  rmax { ?([A])(x), ?([A])(y) }, for all x, y in R. Hence ?([A]) is an interval valued intuitionistic fuzzy subring of R. 2.13 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring R, then ([A]) is an interval valued intuitionistic fuzzy subring of R. Proof: For every x, y in R, we have μ([A]) (xy) = rmax { [½, ½ ], μ[A](xy) } rmax {[½, ½ ], rmin { μ[A](x), μ[A](y) } }= rmin { rmax { [½, ½ ], μ[A](x) }, rmax { [½, ½ ], μ[A](y) } } = rmin { μ([A]) (x), μ([A])(y) }. Therefore μ([A])(xy)  rmin { μ([A])(x), μ([A])(y) }, for all x, y in R. And μ([A])(xy) = rmax { [½, ½ ], μ[A](xy) }  rmax { [½, ½ ], rmin { μ[A](x), μ[A](y) } } = rmin { rmax { [½, ½ ], μ[A](x) }, rmax { [½, ½ ], μ[A](y) }} = rmin { μ([A])(x), μ([A])(y) }. Therefore μ([A])(xy)  rmin { μ([A])(x), μ([A])(y) }, for all x, y in R. Also ([A]) (xy) = rmin { [½, ½ ], [A](xy) }  rmin { [½, ½ ], rmax { [A](x), [A](y) } } = rmax { rmin { [½, ½ ], [A](x) }, rmin { [½, ½ ], [A](y) } } = rmax {([A])(x), ([A])(y) }. Therefore ([A])(xy)  rmax { ([A])(x), ([A])(y) }, for all x, y in R. And ([A]) (xy) = rmin { [½, ½ ], [A](xy) }  rmin { [½, ½ ], rmax { [A](x), [A](y) }} = rmax { rmin{[½, ½], [A](x) }, rmin { [½, ½ ], [A](y) }} = rmax { ([A]) (x), ([A]) (y) }. Therefore ([A])(xy)  rmax { ([A])(x), ([A])(y) }, for all x, y in R. Hence ([A]) is an interval valued intuitionistic fuzzy subring of R. 2.14 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring R, then Qα ,β ([A]) is an interval valued intuitionistic fuzzy subring of R. Proof: For every x, y in R, for α, β D[0,1] and α +β ≤ [1], we have ( ) Q , A  (xy) = rmin { α, μ[A](xy) }  rmin { α, rmin { μ[A](x), μ[A](y) } } = rmin { rmin { α,  (x), ( ) Q , A  (xy) = rmax { β, [A](xy) }  rmax { β, rmax { [A](x), [A](y) } } = rmax { rmax { β, [A](x) },  (x), ( ) Q , A  (y) }, for all x, y in R. Hence Qα ,β ([A]) is an interval valued intuitionistic fuzzy subring of R. 2.15 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring R, then Pα ,β ([A]) is an interval valued intuitionistic fuzzy subring of R. Proof: For every x, y in R, for α, β D[0,1] and α +β ≤ [1], we have ( ) P , A  (xy) = rmax { α, μ[A](xy)}  rmax { α, rmin { μ[A](x), μ[A](y) } } = rmin { rmax { α, μ[A](x) }, rmax {  (x), ( ) P , A 65  (xy) = rmin { α, μ[A](xy) }  (x), rmin { α, rmin { μ[A](x), μ[A](y) }} = rmin { rmin { α, μ[A](x) }, rmin { α, μ[A](y) }} = rmin { ( ) Q , A  Q(A(y) }. Therefore  , ) Q , ( A )  (xy)  rmin { ( ) Q , A  (x), ( ) Q , A  (y) }, for all x, y in R. And Q , (A) μ[A](x) }, rmin { α, μ[A](y) }} = rmin { ( ) Q , A  (y) }. Therefore ( ) Q , A  (xy)  (x), ( ) Q , A  rmin { ( ) Q , A  (y) }, for all x, y in R. Also ( ) Q , A  (xy) = rmax { β, [A](xy) }  rmax { β, rmax { [A](x), [A](y) }} = rmax { rmax { β, [A](x) }, rmax { β, [A](y) }} = rmax {   (x),   (y) }. Therefore   (xy)  rmax {   (x),   (y) }, for all x, y in Q , (A ) Q , (A ) Q , (A ) Q , (A ) Q , (A ) R. And ( ) Q , A rmax { β, [A](y) }} = rmax { ( ) Q , A  (y) }. Therefore ( ) Q , A  (xy)  rmax { ( ) Q , A  (x), Q , (A)  (xy) = rmax { α, μ[A](xy) }   (x), rmax { α, rmin { μ[A](x), μ[A](y) }} = rmin { rmax { α, μ[A](x) }, rmax {α, μ[A](y) } } = rmin { ( ) P , A  P(A(y) }. Therefore  , ) P , ( A )  (xy)  rmin { ( ) P , A  (x), ( ) P , A  (y) }, for all x, y in R. And P , (A) α, μ[A](y) }} = rmin { ( ) P , A  (y) }. Therefore ( ) P , A  (xy)  rmin { ( ) P , A  (x),  (y) }, for all x, y in R. Also P(A , ) P , ( A )  (xy) = rmin { β, [A](xy) }  rmin { β, rmax { [A](x), [A](y) }  (x), ( ) P , A } = rmax { rmin { β, [A](x) }, rmin { β, [A](y) }} = rmax { ( ) P , A  (y) }. Therefore  (xy)  rmax { P(A , ) P , ( A )  (x), ( ) P , A  (y) }, for all x, y in R. And ( ) P , A  (xy)= rmin {β, [A](xy)}  rmin { β, rmax {[A](x), [A](y)}} = rmax { rmin { β, [A](x) }, rmin { β, [A](y) } } = rmax {  (x), P , (A) P , ( A )  (y) }. Therefore ( ) P , A  (xy) rmax{ ( ) P , A  (x), ( ) P , A  (y)}, for all x, y in R. Hence Pα ,β ([A]) is an interval valued intuitionistic fuzzy subring of R. 2.16 Theorem: If [A] is an interval valued intuitionistic fuzzy subring of a ring R, then Gα ,β ([A]) is an interval valued intuitionistic fuzzy subring of R.
  • 6. Interval Valued Intuitionistic Fuzzy Subrings of A Ring Proof: For every x, y in R, for α, β D[0,1] and α +β ≤ [1], we have ( ) G , A  (x), ( ) G , A 66  (xy) = α μ[A] (xy)  α ( rmin { μ[A](x), μ[A](y) }) = rmin { α μ[A](x), α μ[A](y)}= rmin { ( ) G , A  (y) }. Therefore ( ) G , A  (xy)  (x), ( ) G , A  rmin { ( ) G , A  (y) }, for all x, y in R. And ( ) G , A  (xy) = α μ[A](xy)  α ( rmin { μ[A](x),  (x), ( ) G , A μ[A](y) }) = rmin { α μ[A](x), α μ[A](y) } = rmin { ( ) G , A  (y) }. Therefore  G(A(xy)  rmin {  , ) G , ( A )  (x), ( ) G , A  (y) }, for all x, y in R. Also ( ) G , A  (x-y) = β [A](xy)  β (  (x), ( ) G , A rmax { [A](x), [A](y) } ) = rmax { β [A](x), β [A](y) } = rmax { ( ) G , A  (y) }. Therefore  (x-y)  rmax { G(A , ) G , ( A )  (x), ( ) G , A  (y) }, for all x, y in R. And ( ) G , A  (xy) = β [A](xy)  β  (x), ( ) G , A rmax { [A](x), [A](y) } ) = rmax { β [A](x), β [A](y) }= rmax { ( ) G , A  (y) }.  (xy)  rmax { ( ) G , A Therefore ( ) G , A  (x), ( ) G , A  (y) }, for all x, y in R. Hence Gα ,β ([A]) is an interval valued intuitionistic fuzzy subring of R. REFERENCES [1]. Akram.M and Dar.K.H, On fuzzy d-algebras, Punjab university journal of mathematics, 37(2005), 61- 76. [2]. Asok Kumer Ray, On product of fuzzy subgroups, Fuzzy sets and systems, 105, 181-183 (1999 ). [3]. Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 (1971). [4]. Biswas.R, Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35,121-124 ( 1990 ). [5]. Grattan-Guiness, Fuzzy membership mapped onto interval and many valued quantities, Z.Math.Logik. Grundladen Math. 22 (1975), 149-160. [6]. Indira.R, Arjunan.K and Palaniappan.N, Notes on interval valued fuzzy rw-Closed, interval valued fuzzy rw-Open sets in interval valued fuzzy topological space, International Journal of Fuzzy Mathematics and Systems, Vol. 3, Num.1, pp 23-38, 2013. [7]. Jahn.K.U., interval wertige mengen, Math Nach.68, 1975, 115-132. [8]. Jun.Y.B and Kin.K.H, interval valued fuzzy R-subgroups of nearrings, Indian Journal of Pure and Applied Mathematics, 33(1) (2002), 71-80. [9]. Palaniappan. N & K. Arjunan, 2007. Operation on fuzzy and anti fuzzy ideals, Antartica J. Math., 4(1): 59-64. [10]. Solairaju.A and Nagarajan.R, Charactarization of interval valued Anti fuzzy Left h-ideals over Hemirings, Advances in fuzzy Mathematics, Vol.4, Num. 2 (2009), 129-136. [11]. Somasundara moorthy.M.G. & Arjunan.K., Interval valued fuzzy subring of a ring under homomorphism, International journal of scientific Research, Vol.3, Iss. 4, (2014), 292-296. [12]. Zadeh.L.A, Fuzzy sets, Information and control, Vol.8, 338-353 (1965). [13]. Zadeh.L.A, The concept of a linguistic variable and its application to approximation reasoning-1, Inform. Sci. 8(1975), 199-249.