SlideShare a Scribd company logo
1 of 100
In The Name of GodIn The Name of God
Advance MathematicsAdvance Mathematics
Theory of Fuzzy SetsTheory of Fuzzy Sets
Amir RafatiAmir Rafati
8612100486121004
Computerizing DecisionComputerizing Decision
Chapter 1:Chapter 1:
IntroductionIntroduction
IntroductionIntroduction
 PragmatismPragmatism
 AmbiguityAmbiguity
 FuzzyFuzzy
PreliminariesPreliminaries
Forms of fuzzy sets:Forms of fuzzy sets:
Type I:Type I:
Normal Sets:Normal Sets: A={2,3,4}A={2,3,4}
Fuzzy Sets:Fuzzy Sets: Ã={(1,0),(2,1),(3,1),(4,1),(7,0)}Ã={(1,0),(2,1),(3,1),(4,1),(7,0)}
Or Ĩ ={(2,0.7),(9,1),(8,0),(4,0.3)}Or Ĩ ={(2,0.7),(9,1),(8,0),(4,0.3)}
Type II:Type II:
Normal Sets:Normal Sets: A={X| 1<X<3}A={X| 1<X<3}
Fuzzy Sets:Fuzzy Sets: Ã={(x,Ã={(x, μμÃà (x))| x(x))| xЄЄX}X}
((μμÃà : Member function): Member function)
Some Useful Definitions:Some Useful Definitions:
 Fuzzy Support Set: S(Ã)Fuzzy Support Set: S(Ã)
Ĩ ={(2,0.7),(9,1),(8,0),(4,0.3),(7,0),(1,0.2)} => S(Ĩ)={1,2,9,4}Ĩ ={(2,0.7),(9,1),(8,0),(4,0.3),(7,0),(1,0.2)} => S(Ĩ)={1,2,9,4}
Fuzzy Set in stage ofFuzzy Set in stage of αα: A: Aαα
AAαα ={x={xЄЄX|X| μμà (x)≥à (x)≥ αα} =>} => AA0.70.7 = {2,9}= {2,9} (Strong(Strong A0.7:A0.7: A’0.7={9}A’0.7={9}))
 Main number of finite à is shown by: |Ã|Main number of finite à is shown by: |Ã|
|Ã|=∑|Ã|=∑ μμà (x)à (x)
 Relative Main number is shown by: ||Ã||Relative Main number is shown by: ||Ã||
||Ã||= |Ã|/|X|||Ã||= |Ã|/|X|
Example:Example:
|Ã|=0.7+1+0.3+0.2=2.2|Ã|=0.7+1+0.3+0.2=2.2
||Ã||=2.2/5=0.44||Ã||=2.2/5=0.44
Some Useful Definitions:Some Useful Definitions:
 Two fuzzy Sets are Equal if & only if:Two fuzzy Sets are Equal if & only if:
 if and only if:if and only if:
Example:Example:
Ã={(1,0.2),(2,0.8),(4,0)} & Ĩ ={(1,0.2),(2,1),(3,0.3)}Ã={(1,0.2),(2,0.8),(4,0)} & Ĩ ={(1,0.2),(2,1),(3,0.3)}
 SUP Ã means upper limit of :SUP Ã means upper limit of :
Hgt (Ã)= SupHgt (Ã)= Sup
Example: Ã={(1,0.2),(2,0.8),(4,0)} => hgt (Ã)= 0.8Example: Ã={(1,0.2),(2,0.8),(4,0)} => hgt (Ã)= 0.8
Types of fuzzy sets:Types of fuzzy sets:
 S function:S function:  Z functionZ function
Types of fuzzy sets:Types of fuzzy sets:
 ππ functionfunction  V functionV function
Degree of Fuzzy SetsDegree of Fuzzy Sets
 Fuzzy Sets with Degree of ONE:Fuzzy Sets with Degree of ONE:
Ĩ ={(2,0.7),(9,1),(8,0),(4,0.3)}Ĩ ={(2,0.7),(9,1),(8,0),(4,0.3)}
 Fuzzy Sets with Degree of TWO:Fuzzy Sets with Degree of TWO:
Ĩ ={(2,Ĩ ={(2,μμĨ (2)),(9,Ĩ (2)),(9, μμĨ (9)),(4,Ĩ (9)),(4, μμĨ (4))}Ĩ (4))}
μμĨ (2)={uĨ (2)={uii ,, μμ(u(uii )| i=1,..,3})| i=1,..,3}
μμĨ (2)={(0.6,0.9),(0.7,1),(0.9,0.4)}Ĩ (2)={(0.6,0.9),(0.7,1),(0.9,0.4)}
 Fuzzy Sets with Higher Degrees:Fuzzy Sets with Higher Degrees:
Ĩ ={(2,Ĩ ={(2,μμĨ (2)),(9,Ĩ (2)),(9, μμĨ (9)),(4,Ĩ (9)),(4, μμĨ (4))}Ĩ (4))}
μμĨ (2)={uĨ (2)={uii ,, μμ(u(uii )| i=1,..,3})| i=1,..,3}
μμĨ (2)={(0.6,Ĩ (2)={(0.6, μμĨ (0.6)),(0.7,Ĩ (0.6)),(0.7, μμĨ (0.7)),(0.9,Ĩ (0.7)),(0.9, μμĨ (0.9))}Ĩ (0.9))}
μμĨ (0.6)={(0.4,0.1),(0.9,1),(1,0.9)}Ĩ (0.6)={(0.4,0.1),(0.9,1),(1,0.9)}
Operators of Fuzzy Sets:Operators of Fuzzy Sets:
There is no-unique definition forThere is no-unique definition for
operators of fuzzy sets andoperators of fuzzy sets and
their definitions are related totheir definitions are related to
their application but one simpletheir application but one simple
definition will be introduced indefinition will be introduced in
this sectionthis section
Operators of Fuzzy Sets:Operators of Fuzzy Sets:
Ễ={(1,0.1),(2,0.3),(3,0.4)}Ễ={(1,0.1),(2,0.3),(3,0.4)}
Ễ={(1,0.5),(2,0.8),(3,0.4),Ễ={(1,0.5),(2,0.8),(3,0.4),
(4,0.9)}(4,0.9)}
Ã={(1,0.5),(2,0.8),(3,0.4)}Ã={(1,0.5),(2,0.8),(3,0.4)}
ĨĨ ={(1,0.1),(2,0.3),(3,0.5),(4,0.9)}={(1,0.1),(2,0.3),(3,0.5),(4,0.9)}
~Ã={(1,0.5),(2,0.2),(3,0.6)}~Ã={(1,0.5),(2,0.2),(3,0.6)}
Graphical Example:Graphical Example:
Conditions & LimitationsConditions & Limitations
μμ(S and T)=f((S and T)=f(μμs,s, μμT)T)
μμ(S or T)=g((S or T)=g(μμs,s, μμT)T)
 μμS ^S ^ μμT=T= μμT ^T ^ μμSS
 μμS vS v μμT=T= μμT vT v μμSS
 ((μμS ^S ^ μμT) ^T) ^ μμQ =Q = μμS ^ (S ^ (μμT ^T ^ μμQ)Q)
 ((μμS vS v μμT) vT) v μμQ =Q = μμS v (S v (μμT vT v μμQ)Q)
 ((μμS ^S ^ μμT) vT) v μμQ = (Q = (μμS vS v μμQ) ^ (Q) ^ (μμT vT v μμQ)Q)
 ((μμS vS v μμT) ^T) ^ μμQ = (Q = (μμS ^S ^ μμQ) v (Q) v (μμT ^T ^ μμQ)Q)
 ((μμS ^S ^ μμT) ≤ Min(T) ≤ Min(μμS,S,μμT)T)
 ((μμS vS v μμT) ≥ Max(T) ≥ Max(μμS,S,μμT)T)
 1 ^ 1=11 ^ 1=1
 0 v 0=00 v 0=0
Multiplication:Multiplication:
×:×:
D(Ã1, Ã2,…, Ãn)={X1,X2,…,Xn}D(Ã1, Ã2,…, Ãn)={X1,X2,…,Xn}
μμ(Ã1×Ã2×…×Ãn)=Min(i) {(Ã1×Ã2×…×Ãn)=Min(i) {μμÃi(xi)| x=(x1,x2,…,xn), xiÃi(xi)| x=(x1,x2,…,xn), xiЄЄ Xi}Xi}
μμ (Power (Ã (x), m)= Power ((Power (Ã (x), m)= Power (μμ (Ã (x)), m)(Ã (x)), m)
Summation:Summation:
 Ễ=Ã+Ĩ:Ễ=Ã+Ĩ:
Ễ={(x,Ễ={(x, μμÃ+ĨÃ+Ĩ (x))| x(x))| xЄЄX}X}
μμÃ+ĨÃ+Ĩ (x)=(x)= μμÃà ++ μμĨĨ –– μμà *à * μμĨĨ
 Ễ=Ã + Ĩ (finite Sum)Ễ=Ã + Ĩ (finite Sum)
Ễ={(x,Ễ={(x, μμà + Ĩà + Ĩ (x))| x(x))| xЄЄX}X}
μμà + Ĩà + Ĩ (x)= Min((x)= Min(μμÃà ++ μμĨĨ,1),1)
Finite Difference & Dot Product:Finite Difference & Dot Product:
 Ễ=ÃỄ=Ã ΘΘ Ĩ:Ĩ:
Ễ={(x,Ễ={(x, μμÃà ΘΘ Ĩ (x))| xĨ (x))| xЄЄX}X}
μμÃà ΘΘ Ĩ (x)=Max (Ĩ (x)=Max (μμà +à + μμĨ – 1,0)Ĩ – 1,0)
 Ễ=Ã . Ĩ:Ễ=Ã . Ĩ:
Ễ={(x,Ễ={(x, μμà . Ĩ (x))| xà . Ĩ (x))| xЄЄX}X}
μμà . Ĩ (x)=à . Ĩ (x)=μμà .à . μμĨĨ
An Example:An Example:
à (x)={(3,0.5),(5,1),(7,0.6)}à (x)={(3,0.5),(5,1),(7,0.6)}
Ĩ (x)={(3,1),(5,0.6)}Ĩ (x)={(3,1),(5,0.6)}
 Ã × Ĩ = {[(3;3),0.5], [(5;3),1.0], [(7;3),0.6],Ã × Ĩ = {[(3;3),0.5], [(5;3),1.0], [(7;3),0.6],
[(3;5),0.5], [(5;5),0.6], [(7;5),0.6]}[(3;5),0.5], [(5;5),0.6], [(7;5),0.6]}
 Ã × Ã = {(3,0.25),(5,1),(7,0.36)}Ã × Ã = {(3,0.25),(5,1),(7,0.36)}
 Ã + Ĩ = {(3,1),(5,1),(7,0.6)}Ã + Ĩ = {(3,1),(5,1),(7,0.6)}
 Ã + Ĩ = {(3,1),(5,1),(7,0.6)}Ã + Ĩ = {(3,1),(5,1),(7,0.6)}
 ÃÃ ΘΘ Ĩ = {(3,0.5),(5,0.6)}Ĩ = {(3,0.5),(5,0.6)}
 Ã . Ĩ = {(3,0.5),(5,0.6)}Ã . Ĩ = {(3,0.5),(5,0.6)}
Operators of Theory Sets:Operators of Theory Sets:
Characteristics of S & T:Characteristics of S & T:
 t(0,0)=0 ; t(1,t(0,0)=0 ; t(1, μμÃ)=Ã)= μμà ,xà ,x ЄЄ XX
 MonotonocityMonotonocity
IfIf μμà ≤à ≤ μμĨĨ andand μμỄ ≤Ễ ≤ μμÑÑ thenthen
t(t(μμà ,à , μμỄỄ )) ≤≤ t(t(μμĨ ,Ĩ , μμÑÑ ))
 CommutativityCommutativity
t(t(μμà ,à , μμỄỄ )) == t(t(μμỄ ,Ễ , μμÃà ))
 AssociativityAssociativity
t(t(μμà ,à , t(t(μμĨ ,Ĩ , μμÑÑ ))= t(t())= t(t(μμĨ ,Ĩ , μμÃà ),), μμÑÑ ))
Characteristics of S & T:Characteristics of S & T:
 S(1,1)=1 ; S(0,S(1,1)=1 ; S(0, μμÃ)=Ã)= μμà ,xà ,x ЄЄ XX
 MonotonocityMonotonocity
IfIf μμà ≤à ≤ μμĨĨ andand μμỄ ≤Ễ ≤ μμÑÑ thenthen
S(S(μμà ,à , μμỄỄ )) ≤≤ S(S(μμĨ ,Ĩ , μμÑÑ ))
 CommutativityCommutativity
S(S(μμà ,à , μμỄỄ )) == S(S(μμỄ ,Ễ , μμÃà ))
 AssociativityAssociativity
S(S(μμà ,à , S(S(μμĨ ,Ĩ , μμÑÑ ))= S(S())= S(S(μμĨ ,Ĩ , μμÃà ),), μμÑÑ ))
Some definitions for T & S:Some definitions for T & S:


 =µµµµ
=µµ


 =µµµµ
=µµ
µµ=µµµµ=µµ
µ−=µµ−µ−−=µµ
Otherwise1
0)}x(),x({Minif)}x(),x({Max
))x(),x((S
:SummationStrong
Otherwise0
1)}x(),x({Maxif)}x(),x({Min
))x(),x((t
:tionMultiplicaStrong
)))x((n)),x((n(t(n))x(),x((S)))x((n)),x((n(S(n))x(),x((t
:kerDec&Bonissone
)x(1))x((n))x(1),x(1(S1))x(),x((t
:asinAl
~~~~
~~
~~~~
~~
~~~~~~~~
~~~~~~
BABA
BA
w
BABA
BA
w
BABABABA
AABABA
Some definitions for T & S:Some definitions for T & S:
)x().x())x(),x((SSummationebraiclgA
)x()x())x(),x((ttionMultiplicaebraiclgA
)x()x(1
)x()x(
))x(),x((S
)]x().x()x()x([2
)x().x(
))x(),x((t
:TandSEinstein
)}x()x(,1{Min))x(),x((S
:SummationFinite
}1)x()x(,0{Max))x(),x((t
DifferenceFinite
~~~~
~~~~
~~
~~
~~
~~~~
~~
~~
~~~~
~~~~
BABA
2
BABA
2
BA
BA
BA
5.1
BABA
BA
BA
5.1
BABA
1
BABA
1
µµ=µµ
µ+µ=µµ
µ+µ+
µ+µ
=µµ
µµ−µ+µ−
µµ
=µµ
µ+µ=µµ
−µ+µ=µµ
Some definitions for T & S:Some definitions for T & S:
))x(),x((Max))x(),x((S))x(),x((S
))x(),x((Min))x(),x((t))x(),x((t
)}x()x(,1{Max))x(),x((S:Maximum
}1)x()x(,0{Min))x(),x((t:Minimum
)x().x())x(),x((SSummationebraiclgA
)x()x())x(),x((ttionMultiplicaebraiclgA
)x().x(1
)x().x(2)x()x(
))x(),x((S
)x().x()x()x(
)x().x(
))x(),x((t
:TandSHamacher
~~~~~~
~~~~~~
~~~~
~~~~
~~~~
~~~~
~~
~~~~
~~
~~~~
~~
~~
BABA
3~1
BA
w
BABA
3~1
BA
w
BABA
1
BABA
1
BABA
2
BABA
2
BA
BABA
BA
5.2
BABA
BA
BA
5.2
µµ≥µµ≥µµ
µµ≤µµ≤µµ
µ+µ=µµ
−µ+µ=µµ
µµ=µµ
µ+µ=µµ
µµ−
µµ−µ+µ
=µµ
µµ−µ+µ
µµ
=µµ
Unity and Community Defs.:Unity and Community Defs.:
1p},)(,1{Min)x()}Xx|)x(,x{(BA
1p},))1()1((,1{Min1)x()}Xx|)x(,x{(BA
:Yager
1,
)x().x(1
)x()x()x().x().1(
)x()}Xx|)x(,x{(BA
0,
))x().x()x()x()(1(
)x().x(
)x()}Xx|)x(,x{(BA
:Hamacher
p/1p
B
p
ABABA
~~
p/1p
B
p
ABABA
~~
BA
BABA
BABA
~~
BABA
BA
BABA
~~
~~~~~~
~~~~~~
~~
~~~~
~~~~
~~~~
~~
~~~~
≥µ+µ=µ∈µ=∪
≥µ−+µ−−=µ∈µ=∩
−≥℘
µµ℘+
µ+µ+µµ−℘
=µ∈µ=∪
≥∂
µµ−µ+µ∂−+∂
µµ
=µ∈µ=∩
∪∪
∩∩
∪∪
∩∩
Unity and Community Defs.:Unity and Community Defs.:
]1,0[,
}),1(),1{(Max
)}1(,,{Min)x().x()x()x(
)x(
)}Xx|)x(,x{(BA
]1,[)x().x(},{Min
],0[)x().x(
)x().x(
)x(
:DefinitionClearMore
]1,0[,
}),x(),x({Max
)x().x(
)x()}Xx|)x(,x{(BA
:adePrandDubois
~~
~~~~~~
~~
~~
~~~~
~~
~~
~~
~~
~~
~~~~
BA
BABABA
BA
BA
~~
BABA
BA
BA
BA
BA
BA
BABA
~~
∈α
αµ−µ−
α−µµ−µµ−µ+µ
=µ
∈µ=∪





α∈µµµµ
α∈µµ
α
µµ
=µ
∈α
αµµ
µµ
=µ∈µ=∩
∪
∪
∩
∩∩
Mean Operators:Mean Operators:
Fuzzy AND & OR:Fuzzy AND & OR:
]1,0[,,
2
)1(},{.
:
]1,0[,,
2
)1(},{.
:
~~
~~
~~
~~
~~
~~
))(),((
))(),((
∈∂∈
+
∂−+∂=
∈∂∈
+
∂−+∂=
XxMax
ORWerner
XxMin
ANDWerner
BA
BA
xxor
BA
BA
xxand
BA
BA
µµ
µµµ
µµ
µµµ
µµ
µµ
Fuzzy AND & OR:Fuzzy AND & OR:
ityCommutativ
tyMonotonici
Demorgan
Xxxx
ANDZysnoZimmerman
m
i
i
m
i
ix
CompAi
−
−
−
∈∂∈





−−





=
∂
=
∂−
=
∏∏ ]1,0[,,))(1(1)(
:&
1
)1(
1
))((
,
~
µµµ µ
Combinations of Fuzzy AND & OR:Combinations of Fuzzy AND & OR:
]1,0[,],.)[1(.
&:2#
]1,0[,},,{).1(},{.
&:1#
~~~~~~
~~
~~~~
~~
))(),((
))(),((
∈∂∈−+∂−+∂=
∈∂∈∂−+∂=
Xx
nCombinatioAdditionaltionMultiplicaExample
XxMaxMin
nCombinatioMaxMinExample
BABABA
xx
BABA
xx
BA
BA
µµµµµµµ
µµµµµ
µµ
µµ
Chapter 2:Chapter 2:
Fuzzy Measurement &Fuzzy Measurement &
Measurement of FuzzyMeasurement of Fuzzy
SetsSets
Fuzzy MeasurementFuzzy Measurement
 Sugeno Definition:Sugeno Definition:
If B is considered as a Sub Set of aIf B is considered as a Sub Set of a
Reference Set, a function can beReference Set, a function can be
defined asdefined as Fuzzy MeasurementFuzzy Measurement in thein the
interval of B if:interval of B if:
)lim()(lim...,:3
)()(,,:2
1)(,0)(:1
321 AgAgThenAAABA
BgAgThenBABA
Xgg
nn
n
∞→∞→
=⊆⊆⊆∈
≤⊆∈
==
β
φ
Fuzzy MeasurementFuzzy Measurement
 Dr. Asgari Zadeh Possibility(Dr. Asgari Zadeh Possibility())
Definition:Definition:
XxxxfXAxfSupA
XffunctionaasDefinedbecanDefinitionAbove
IndexSetasDefinedisIASupA
BAThenBAXBA
X
Ax
i
IiIi
i
⊂∀=⊂=
→
=
≤⊆∈
==
∏∏
∏∏
∏∏
∏∏
∈
∈∈
,})({)(),()(
:]1,0[:
,)()(:3
)()(,,:2
1)(,0)(:1

φ
Ex. Of Possibility(Ex. Of Possibility() Definition:) Definition:
Possibility(Possibility() of nearing x to 8:=) of nearing x to 8:=
Possibility(Possibility() of A has a member near to 8:=) of A has a member near to 8:=
∏ })({x
x 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0.1 0.5 0.8 1 0.8 0.5∏ })({x
∏ })({x
8.0
}8.0,1.0,0{
}})9({,})5({,})2({{
})({)(
}9,5,2{
=
=
=
=
=
∏∏∏
∏∏ ∈
Sup
Sup
xSupA
A
Ax
1: Measurement of Fuzzy Sets1: Measurement of Fuzzy Sets
 Is Defined to Show the Degree and value of FuzzyIs Defined to Show the Degree and value of Fuzzy
Set ambiguity (Set ambiguity (à is finiteà is finite).).
 De Luca & Termini Definition:De Luca & Termini Definition:
)'()(:4
)'()(),2/1
,,2/1(':3
max)(:2
0)(::1
~~~~
~~
'
'
~~
~
~~
~~~
~~~
AdnAdthenAofrycomlementabeAnif
AdAdthenifand
AthanDefinitemorebeAif
valueimizedanduniqueahasAd
AdthenSetDefiniteabeAif
AAA
AAA
=
≤≤≥
≥≤
=
µµµ
µµµ
1: Measurement of Fuzzy Sets1: Measurement of Fuzzy Sets
 Entropy of Fuzzy Sets (De Luca &Entropy of Fuzzy Sets (De Luca &
Termini):Termini):
∑
∑
=
=
=
−−+−=
−=
∈+=
n
i
i
A
i
A
n
i
i
A
xSkAd
xxxxxSfunctionShenon
NumberConsDefinedk
xxkAH
XxAnHAHAd
1
~
1
~
~~~
))(()(
))1ln().1()ln(.()(:
.:
))((ln).()(
),()()(
~
~~
µ
µµ
Ex. Of Measurement of Fuzzy SetsEx. Of Measurement of Fuzzy Sets
 Ã is defined as set of numbers near to 10:Ã is defined as set of numbers near to 10:
Ã={(7,0.1),(8,0.5) ,(9,0.8) ,(10,1) ,(11,0.8) ,(12,0.5) ,(13,0.1)}Ã={(7,0.1),(8,0.5) ,(9,0.8) ,(10,1) ,(11,0.8) ,(12,0.5) ,(13,0.1)}
Ĩ= {(6,0.1),(7,0.3),(8,0.4) ,(9,0.7) ,(10,1) ,(11,0.7) ,(12,0.4) ,Ĩ= {(6,0.1),(7,0.3),(8,0.4) ,(9,0.7) ,(10,1) ,(11,0.7) ,(12,0.4) ,
(13,0.3),(14,0.1)}(13,0.3),(14,0.1)}
If k=1 then:If k=1 then:
d (Ã)= 0.325+0.693+0.501+0+0.501+0.693+0.325=3.038d (Ã)= 0.325+0.693+0.501+0+0.501+0.693+0.325=3.038
d ( Ĩ )= 0.325+0.611+0.673+0.501+0+0.501+0.673+0.611+0.325= 4.22d ( Ĩ )= 0.325+0.611+0.673+0.501+0+0.501+0.673+0.611+0.325= 4.22
Ĩ is more fuzzier than à and has moreĨ is more fuzzier than à and has more
Entropy.Entropy.
Graph of S FunctionGraph of S Function
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
M(x)
S(x)
2: Measurement of Fuzzy Sets2: Measurement of Fuzzy Sets
 This Definition will care more aboutThis Definition will care more about
the differences that exist between athe differences that exist between a
set and its complementary.set and its complementary.
 If à be fuzzy set and nà be itsIf à be fuzzy set and nà be its
complementary then below definitecomplementary then below definite
definitions has no necessity to be true:definitions has no necessity to be true:
(it means fuzzy sets may have contradiction with(it means fuzzy sets may have contradiction with
definite sets)definite sets)
φ=∩
=∪
~~
~~
AnA
XAnA
2: Measurement of Fuzzy Sets2: Measurement of Fuzzy Sets
 Yager Definition for Ã:Yager Definition for Ã:
∑∑
∑∑
∑
==
==
=






−=





−=
−==
−=−=
−==
−=
=





−=
==
n
i
i
A
n
i
i
An
i
A
i
A
i
An
n
i
i
A
n
i
i
An
i
A
i
A
i
An
p
p
p
pn
i
p
i
An
i
A
p
p
p
xAnADxxAnAD
xxthenpif
xAnADxxAnAD
xxthenpif
ASupp
AnAD
Af
pxxAnAD
ASuppSSnSSDAssume
1
2/12~~
2
1
2/12~~
2
1
~~
1
1
~~
1
/1~
~~
~
/1
1
~~
~
/1
1)(2),()()(),(
)(1)(:2
1)(2),()()(),(
)(1)(:1
)(
),(
1)(
,...3,2,1,)()(),(
:)(),(
~~~
~~
~~~
~~
~~
µµµ
µµ
µµµ
µµ
µµ
Ex. Measurement of Fuzzy SetsEx. Measurement of Fuzzy Sets
 Ã is defined as set of numbers near to 10:Ã is defined as set of numbers near to 10:
Ã={(7,0.1),(8,0.5) ,(9,0.8) ,(10,1) ,(11,0.8) ,(12,0.5) ,(13,0.1)}Ã={(7,0.1),(8,0.5) ,(9,0.8) ,(10,1) ,(11,0.8) ,(12,0.5) ,(13,0.1)}
Ĩ= {(6,0.1),(7,0.3),(8,0.4) ,(9,0.7) ,(10,1) ,(11,0.7) ,(12,0.4) ,(13,0.3),(14,0.1)}Ĩ= {(6,0.1),(7,0.3),(8,0.4) ,(9,0.7) ,(10,1) ,(11,0.7) ,(12,0.4) ,(13,0.3),(14,0.1)}
489.0
9
6.4
1)(9)(
6.4),(
457.0
7
8.3
1)(7)(
8.3),(:1
~
1
~
~~
1
~
1
~
~~
1
=−==
=
=−==
==
BfBSupp
BnBD
AfASupp
AnADthenpif
407.0
3
78.1
1)(3)(
78.1),(
347.0
65.2
73.1
1)(65.2)(
73.1),(:2
~
2
2/1~
~~
2
~
2
2/1~
~~
2
=−==
=
=−==
==
BfBSupp
BnBD
AfASupp
AnADthenpif
Chapter 3:Chapter 3:
Propagation(Propagation() principle &) principle &
its Applicationsits Applications
Propagation(Propagation() principle & Apps.) principle & Apps.
 If X=X1*X2*…*Xr and Ã1, Ã2, Ãr be fuzzyIf X=X1*X2*…*Xr and Ã1, Ã2, Ãr be fuzzy
sets of X1, X2, …, Xr and y= f(x1,…,xr)sets of X1, X2, …, Xr and y= f(x1,…,xr)
then:then:


 ≠
=
∈==
=



 ≠
=
∈……==
−
−
otherwise
yfxSup
y
thenrif
otherwise
yfxxMinSup
y
A
I
I
AA
I
I
r
0
)()}({
)(
X}xf(x),y|(y)){(y,I
:1
0
)()}(),...,({
)(
X}xr),(x1,xr),,f(x1,y|(y)){(y,I
1
~
1
~
~
~
~
~~
1~
~
φµ
µ
µ
φµµ
µ
µ
Ex. Propagation(Ex. Propagation() principle) principle
 Ã={(-1,0.5) ,(0,0.8) ,(1,1) ,(2,0.4)}, fÃ={(-1,0.5) ,(0,0.8) ,(1,1) ,(2,0.4)}, f
(x)=x*x(x)=x*x
Ĩ=f (Ã)={(0,0.8) ,(1,1) ,(4,0.4)}Ĩ=f (Ã)={(0,0.8) ,(1,1) ,(4,0.4)}
Propagation(Propagation() principle and Second) principle and Second
Types of Fuzzy SetsTypes of Fuzzy Sets
 μμÃÃ={(ui,={(ui, μμuiui (x))| x(x))| xЄЄX, ui,X, ui, μμuiui (x)(x) ЄЄ[0,1]}[0,1]}
 μμĨĨ={(vi,={(vi, μμuiui (x))| x(x))| xЄЄX, vi,X, vi, μμvivi (x)(x) ЄЄ[0,1]}[0,1]}
)]}(),1{[(
)}(),(min{sup)(
]}1,0[,),,min(|))(,{()()(
)}(),(min{sup)(
]}1,0[,),,max(|))(,{()()(
~~
~~
~~~~~~
~~
~~~~~~
),min(
),max(
i
A
i
A
vu
vuwBA
iiii
BABABA
vu
vuwBA
iiii
BABABA
uu
xxw
vuvuwwwxx
xxw
vuvuwwwxx
ii
ii
ii
ii
µµ
µµµ
µµµµ
µµµ
µµµµ
−=
=
∈==∩=
=
∈==∪=
⊄
=∩
∩∩
=∪
∪∪
Ex. Propagation(Ex. Propagation() principle and Second) principle and Second
Types of Fuzzy SetsTypes of Fuzzy Sets
 X=1 ,2 ,3 ,… ,10X=1 ,2 ,3 ,… ,10
 Ã=small Natural NumbersÃ=small Natural Numbers
 Ĩ= Natural Numbers near to 4Ĩ= Natural Numbers near to 4
Ui Vi W=max(Ui, Vi) µui(3) µvi(3) Min{µui(3), µvi(3)}
0.8 1 0.8 1 1 1
0.8 0.8 0.8 1 0.5 0.5
0.8 0.7 0.7 1 0.3 0.3
0.7 1 0.7 0.5 1 0.5
0.7 0.8 0.7 0.5 0.5 0.5
0.7 0.7 0.7 0.5 0.3 0.3
0.6 1 0.6 0.4 1 0.4
0.6 0.8 0.6 0.4 0.5 0.4
0.6 0.7 0.6 0.4 0.3 0.3
)}3.0,7.0(),5.0,8.0(),1,1{(}3,...,1|))3(,{()3(
)}4.0,6.0(),5.0,7.0(),1,8.0{(}3,...,1|))3(,{()3(
~
~
===
===
jv
iu
j
i
vj
I
ui
A
µµ
µµ
sup={1,0.5}=1sup={1,0.5}=1
0.8= min {ui, vi}0.8= min {ui, vi}
Sup{0.5,0.5,0.5,0.3}Sup{0.5,0.5,0.5,0.3}
=0.5=0.5
0.7= min {ui, vi}0.7= min {ui, vi}
Sup{0.4,0.4,0.3}=Sup{0.4,0.4,0.3}=
0.40.4
0.6= min {ui, vi}0.6= min {ui, vi}
)}4.0,6.0(),5.0,7.0(),1,8.0{()3(~~ =
∩BA
µ
Fuzzy Numbers & AlgebraicFuzzy Numbers & Algebraic
Opr.Opr.
 Only one x ЄR can be exists that has μM=1Only one x ЄR can be exists that has μM=1
 μM in a specific interval is continuous.μM in a specific interval is continuous.
 Almost 5#{(3,0.8),Almost 5#{(3,0.8), (4,1),(5,1)(4,1),(5,1) ,(6,0.7)},(6,0.7)}
 Almost 5={(3,0.2),(4,0.6),(5,1),(6,0.7),(7,0.1)}Almost 5={(3,0.2),(4,0.6),(5,1),(6,0.7),(7,0.1)}
 Almost 10={(8,0.3),(9,0.7),(10,1),(11,0.7),Almost 10={(8,0.3),(9,0.7),(10,1),(11,0.7),
-0.1
0.1
0.3
0.5
0.7
0.9
1.1
0 2 4 6 8 10
Trapezoidal Number
-0.1
0.1
0.3
0.5
0.7
0.9
1.1
0 2 4 6 8 10
Triangular Number
Fuzzy Numbers & AlgebraicFuzzy Numbers & Algebraic
Opr.Opr.
 * operators will became true if:* operators will became true if:
For x1>y1 and x2>y2 it will resultFor x1>y1 and x2>y2 it will result
x1*x2>y1*y2x1*x2>y1*y2
Example: f (x, y)= x + yExample: f (x, y)= x + y
Algebraic Operations in Fuzzy Number usageAlgebraic Operations in Fuzzy Number usage
are:are:
ϕ,,,,,, ⊗Θ⊕→÷×−+
Fuzzy Numbers & AlgebraicFuzzy Numbers & Algebraic
Opr.Opr.
).()(}|))(,{(..)(
)/1()(}|))(,{(/1)(
)()(}|))(,{()(
:
)()(
)}(),(min{
~~~
~
~1~1~
~
~~~
~
~
1
~
~~~~
..
~
1~
~
)()(
xxXxxxMxxf
xxXxxxMxxf
xxXxxxMxxf
Example
xSupz
xxSup
MMM
M
MMM
M
MMM
M
MzfxMf
NMNM
λµµµλλ
µµµ
µµµ
µµ
µµµ
λλ
=→∈=→=
=→∈=→=
−=→∈=−→−=
=
=
−−
−
−
−−
∈
⊗
Fuzzy Numbers & AlgebraicFuzzy Numbers & Algebraic
Opr.Opr.
0)(
0
)()(
)()()(
:
~~
~~
~~~~
~~~~
=Θ⊕
=⊕
⊕
⊕=⊕
Θ⊕Θ=⊕Θ
MM
MM
memberpassivehas
ityAssociativ
MNNM
NMNM
Summation
)()()(
11
)()(
)()(
)()(
:
~~~~~~~
1~~~~
~~~~
~~~~
~~~~
NMPMNPM
MMMM
memberpassivehas
ityAssociativ
MNNM
NMNM
NMNM
tionMultiplica
⊗+⊗=⊕⊗
=⊗=⊗
⊗
⊗=⊗
⊗Θ=⊗Θ
⊗ΘΘ=⊗
−
Fuzzy Numbers & AlgebraicFuzzy Numbers & Algebraic
Opr.Opr.
.
)}(),(min{
)}(),(min{
)}(),(min{)(
)()(
:nSubtractio
~~
~~~~
~~
~~
~~~~
NumberfuzzyisNMSo
yxSup
yxSup
yxSupz
NMNM
NMyxz
NMyxz
NMyxzNM
Θ
=
−=
=
Θ⊕=Θ
−+=
+=
−=Θ
µµ
µµ
µµµ
.
)}(),(min{
)}/1(),(min{
)}(),(min{)(
)()(
:Division
~~
.
.
1~~~~
1~~
~~
~~~~
NumberfuzzyisNMSo
yxSup
yxSup
yxSupz
NMNM
NMyxz
NMyxz
NMyxzNM
φ
µµ
µµ
µµµ
φ
φφ
−
=
=
=
−
=
=
=
⊗=
Ex. Fuzzy Numbers & AlgebraicEx. Fuzzy Numbers & Algebraic
Opr.Opr.
)}2.0,12(),4.0,9(
),2.0,8(]),4.0,1max[,6(
]),7.0,3.0max[,4(
),3.0,3(),3.0,2{(
)}2.0,4(),1,3(),7.0,2{(
)}4.0,3(),1,2(),3.0,1{(
~~
~
~
=⊗
=
=
NM
N
M
The result is not fuzzy number because it has not ConvexThe result is not fuzzy number because it has not Convex
Trend.Trend.
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 3 6 9 12 15
2 * 3 = Almost 6
M(x)
Fuzzy Numbers Intervals:Fuzzy Numbers Intervals:
 TriangularTriangular
 TrapezoidalTrapezoidal
 L-R IntervalL-R Interval
FunctionFunction
(Asymmetric)(Asymmetric)
-0.1
0.1
0.3
0.5
0.7
0.9
1.1
0 2 4 6 8 10
Trapezoidal Number
-0.1
0.1
0.3
0.5
0.7
0.9
1.1
0 2 4 6 8 10
Triangular Number
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 5 10 15
L-R Interval Function
M(x)
L-R Interval Function (Asymmetric)L-R Interval Function (Asymmetric)
0)1(
01)(
10)(
1)0(
=
>∀<
<∀>
=
L
xforxL
xforxL
L
2
~
)(}1,0max{
)(})1(,0max{)(
:,),,(
,
)(
~
xp
xp
LR
M
exLx
exLxxL
Examplem
Mofvaluemeanism
numberspositiveare
mxfor
mx
R
mxfor
xm
L
x
−
−
=−
=−=






≥




 −
≤




 −
=
βα
βα
β
α
µ
Ex. L-R Interval FunctionEx. L-R Interval Function
5,3,2
21
1
)(
1
1
)( 2
===
+
=
+
= m
x
xR
x
xL βα









≥
−
+
=




 −
≤





 −
+
=




 −
=
5
3
)5(
21
1
3
5
5
2
5
1
1
2
5
)(
2
~
xfor
x
x
R
xfor
x
x
L
x
M
µ
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 2 4 6 8 10 12
L-R Interval Function
M(x)
L-R Interval FunctionL-R Interval Function
If m is not an definite number can be introduce by anIf m is not an definite number can be introduce by an
interval of [m- ,m+] and can be shown by:interval of [m- ,m+] and can be shown by:
IntervalDefiniteba
NumberDefinitemm
Examplemm
Mofervalmeanismm
numberspositiveare
mxfor
mx
R
mxmfor
mxfor
xm
L
x
LR
LR
LRM
)0,0,,(
)0,0,,(
:,),,,(
int],[
,
1)(
~
~
βα
βα
β
α
µ −
−
−
−
−
−
−
−
−
−











≥








−
≤≤
≤







 −
=
L-R Interval FunctionL-R Interval Function
OperationsOperations
LRLRLR
LRLRLR
LRLRLR
LRLR
LRLRLR
LR
LR
mnmnnmnm
mnmnnmnm
nmnm
mm
nmnm
nN
mM
),,/(),,(),,(
),,.(),,(),,(
),,(),,(),,(
),,(),,(
),,(),,(),,(
),,(
),,(
~
~
γβδαδγφβα
δβγαδγβα
δβγαδγβα
βαβα
δβγαδγβα
δγ
βα
−−≈
++≈⊗
++−=Θ
−=−
+++=⊕
=
=
Ex. L-R Interval FunctionEx. L-R Interval Function
OperationsOperations
LR
LRLRLR
LR
LR
NM
OONM
NM
x
xRxL
)4.1,7.0,1(
)6.0,2.0,2()2.0,6.0,2()1,1.1,3(
)2.0,6.0,2()8.0,5.0,1(
1
1
)()(
~~
~~~~
~~
2
−=Θ
−=Θ==⊕
==
+
==
Ex. L-R Interval FunctionEx. L-R Interval Function
OperationsOperations
LRLRLR
LRLRLR
N
M
M
LRLR
mnmnnmnm
else
x
x
x
R
x
x
L
x
else
x
x
xelse
x
x
xelse
x
x
x
x
R
x
x
L
x
else
z
zRzLNM
)9.0,8.0,6()3.0,1.0,3()1.0,2.0,2(
),,.(),,(),,(
0
3.39.21
3
3.0
3
3
1.0
3
)(
0
1.28.11
)(
20
21
1.0
2
11
20
21
2.0
2
11
2
1.0
2
2
2.0
2
)(
0
111
)()()3.0,1.0,3()1.0,2.0,2(
~
~
~
~~
≈⊗
++≈⊗


 ≤≤






⇒
≥




 −
≤




 −
=


 ≤≤
=









⇒









≥
≥≤




 −
≤−
≤
≤≤




 −
≤−
⇒
≥




 −
≤




 −
=


 ≤≤−
====
δβγαδγβα
µ
µ
µ
Chapter 4:Chapter 4:
Functions & FuzzyFunctions & Fuzzy
AnalyzingAnalyzing
Functions & Fuzzy AnalyzingFunctions & Fuzzy Analyzing
Fuzzy functions are defined as generalFuzzy functions are defined as general
form of definite functions.form of definite functions.
3 types of fuzzy functions are defined:3 types of fuzzy functions are defined:
fuzzyfuzzy
fuzzydefinite
definitefuzzy
YXf
YXf
YXf
→−
→−
→−
:3
:2
:1
1: Functions & Fuzzy Analyzing1: Functions & Fuzzy Analyzing
valuefuzzyhaveyx
RYXxy
Example
xy
xxfXx
BRangeADomain
YXf
AyfxB
AB
&
,205
:
)(sup)(
)())((,
:
~
1
~
~~
)(
~~
==⊕⊗=
=
≥∈∀
==
→
−
∈
µµ
µµ
2: Functions & Fuzzy Analyzing2: Functions & Fuzzy Analyzing
valuefuzzyhaveyx
xy
Example
YXyxyxy
YofsetfuzzyisYp
SetferenceYX
Rxf
&
)}3.0,27(),7.0,23(),1,20(),8.0,18(),1.0,17{(
)}3.0,6(),7.0,5(),1,4(),8.0,3(),1.0,2{(
:
),(),,()(
)(
Re:&
~~
)(
~
⊕
⊗=
×∈∀= µµ
Fuzzy functions ExtremesFuzzy functions Extremes
If f be a function with real numbers on Domain XIf f be a function with real numbers on Domain X
and inf (f) is defined as considered lowest part ofand inf (f) is defined as considered lowest part of
(f) and Sup (f) is defined as considered highest(f) and Sup (f) is defined as considered highest
part of (f) Maximum of (f) can be defined as:part of (f) Maximum of (f) can be defined as:
And is called:And is called: Maximum SetMaximum Set
)inf()sup(
)inf()(
)(~
ff
fxf
x
M −
−
=µ
Ex. Fuzzy functions ExtremesEx. Fuzzy functions Extremes
),...}
4
22
,
4
7
(),0,
2
3
(),
2
1
,(
),1,
2
(),
4
22
,
4
(),
2
1
,0{(
2
1
sin
2
1
)1(1
)1()(
)(
sin)(
~
~
~
−
+
=
+=
−−
−−
=
=
=
ππ
π
ππ
µ
M
x
xSin
x
SetMaximumM
xxf
M
-1.5
-1
-0.5
0
0.5
1
1.5
0 1 2 3 4 5 6 7
X
Y
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
0 1 2 3 4 5 6 7
X of Maximum Set
M(x)
Fuzzy functions ExtremesFuzzy functions Extremes
In second form of fuzzy function definition (f) is defined baseIn second form of fuzzy function definition (f) is defined base
on the definite domain and f (x) is defined base on theon the definite domain and f (x) is defined base on the
fuzzy Range.So its maximum value is not located in itsfuzzy Range.So its maximum value is not located in its
range as a point but also it will berange as a point but also it will be
““maximum set of fuzzy f (x)”maximum set of fuzzy f (x)”..
In order to reach this approach fuzzy maximum andIn order to reach this approach fuzzy maximum and
fuzzy minimum must be defined:fuzzy minimum must be defined:
DxfxfxnD
DxxxfxfMaxM
MMMaxRXMMMin
i
xfnjM
MDx
nfuzzyDefiniten
i
∈=→=
∈==
→
=
∈
)()),((min)(
}|))(),({(sup)(
),...,(),...,(
~
)(,...,1
~~~~
~~
1
~~~
1
~
~~
~
µµ
µ
Ex. Fuzzy functions ExtremesEx. Fuzzy functions Extremes
)},(),1,(),,{()()(
)()()()(
))(())((1))((
432
~
311
24
)()(
1
)(
~~~
+−
−−++
+−
==
==
==
αα
µµµ
αααα
αα
xxxMxfxfMax
xfxfMaxxfxfMax
xfxfxf
xfxfxf
Integral of Fuzzy FunctionsIntegral of Fuzzy Functions
1.1. Integral of Type 1Integral of Type 1
fuzzy function withfuzzy function with
definite intervaldefinite interval
2.2. Integral of definiteIntegral of definite
function with fuzzyfunction with fuzzy
intervalinterval
3.3. Integral of Type 2Integral of Type 2
fuzzy function withfuzzy function with
definite intervaldefinite interval
4.4. Integral of Type 2Integral of Type 2
fuzzy function withfuzzy function with
fuzzy intervalfuzzy interval
3. Integral of Type 2 fuzzy function3. Integral of Type 2 fuzzy function
with definite intervalwith definite interval
Fuzzy function f (x) is in stage ofFuzzy function f (x) is in stage of αα so:so:
















+=
≥∈→⊆
≥≥≥≥→≥
=≠≠
∈=
∫ ∫
−+
−+
−−++
−+−+
b
a
b
a
xf
dxxfdxxfbaI
xfxfbaxRRba
xfxfxfxfxf
xfxfelsexfxfthenif
y
α
αµ
αα
α
ααµ
αα
αα
αααα
αααα
),)()((
2
1),(
))(&)((],,[,],[
)()()()()('
)()()()(1
]1,0[,)(
~
~~
~
'
~~~
'
~~~~
)(
~
Integral of fuzzy function withIntegral of fuzzy function with
definite intervaldefinite interval
 Dubois & Prade show that Fuzzy function f (x) is in stage ofDubois & Prade show that Fuzzy function f (x) is in stage of
αα so:so: ( )
( )
( )LR
LR
LR
b
a
b
a
b
a
LR
Idxxdxxt
dxxdxxsdxxdxxf
x
xR
x
xLxxxxf
Example
dxxtdxxsdxxfbaI
xtxsxfxf
75.3,875.1,21)4,1(750.3
2
)(
875.1
4
)(21)(
21
1
)(
1
1
)(
2
,
4
,)(
:
)(,)(,)(),(
)(),(),()(
~4
1
4
1
4
1
4
1
4
1
2
4
1
2
2
~
~
~
===
====
+
=
+
==








=
=
∫∫
∫∫∫∫
∫ ∫∫
Properties of fuzzy IntegralProperties of fuzzy Integral
 If AIf Aαα is defined asis defined as αα stage ofstage of ÃÃ then the Supportthen the Support
Set will become:Set will become:
( ){ }
∫∫
∫
∫∫∫
=







∈∀








=







==



∉
∈
=∈===
∈∈
∈∈
II
I
III
AA
ff
ifonlyandifmeaningfulisf
fffA
functionIntegralfuzzyaasassumedbeAif
Ax
Ax
xAxxxAAAAS
~~
~
~
]1,0[
~
]1,0[
~~
~
]1,0[
~
]1,0[
~
]1,0[
:
:
0
)(|)(,)(
α
αααα
α
α
α
α
ααα
α
α
α
αα
α
µµα αα


Properties of fuzzy IntegralProperties of fuzzy Integral
Dubois & Prade show that:Dubois & Prade show that:
)(
:
),()())((
)()(
~~~~
~~
~~~~
~~~
~~~
~
~
∫∫ ∫
∫ ∫∫
∫∫∫
⊕⊆⊕
∈⊕=⊕
⊕=
=−∀−==
∫
∫
II I
b
a
c
b
c
a
f
f
a
b
b
aI
gfgf
thenSetSupportLimitedhadgandfif
Xuugufugf
fff
uuuiffff a
b
a
b
µµ
Integral of Definite functions withIntegral of Definite functions with
fuzzy intervalfuzzy interval
Dubois & Prade suggest that:Dubois & Prade suggest that:
)()(
)(sup)(
,)()(
))(),(min(sup)(
:principlenPropagatio
],[
~~
)(:)(
principlenPropagatio
,
00
~
~~
~~
aFbFf
xz
JcdyyfxF
yxz
withthen
baJindefinedisfif
D
axFzxaF
x
c
ba
fz
Jyx
f
F
y
x
F
Θ=
= →
∈=
∫
=
=
∫
∫
∫
=
=
∈
∫
µµ
µµµ
Ex. Integral of Definite functionsEx. Integral of Definite functions
with fuzzy intervalwith fuzzy interval
{ }
{ }
)}2.0,8(),8.0,6(,
)1,4(),7.0,2(),4.0,0{()(
22)(
]8,4[],[2)(
)2.0,8(),1,7(),7.0,6(
)4.0,6(),1,5(),8.0,4(
:
~
~
~
~
~~
~
~
∫
∫∫
=
==
=∈=
=
=
D
b
a
b
aD
oo
dxxf
xdxdxxf
baxxf
b
a
Example
(a0 ,b0)(a0 ,b0)
IntegralIntegral
(2dx,a0,b0)(2dx,a0,b0)
MinMin
(Mx(a),Mx(b))(Mx(a),Mx(b))
(4,6) 4 0.7
(4,7) 6 0.8
(4,8) 8 0.2
(5,6) 2 0.7
(5,7) 4 1
(5,8) 6 0.2
(6,6) 0 0.4
(6,7) 2 0.4
(6,8) 4 0.2
Integral of Definite functions withIntegral of Definite functions with
fuzzy intervalfuzzy interval
{ }
{ }
{ } ∫∫∫∫
∫ ∫
∫
∫
∫∫∫
∫∫∫
⊕⊆+→=+





 −−−
=+
−−−=
=
=++−=−=
==
+−=−=
⊕⊆+→
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
)3.0,8(),8.0,6(),1,4(),7.0,2(),4.0,0())()((
)3.0,14(),3.0,12(),3.0,10(),7.0,8(),8.0,6(),1,4(
),7.0,2(),7.0,0(),4.0,2(),3.0,4(),3.0,6(
)()(
)7.0,2(),8.0,0(),1.0,2(),3.0,4(),3.0,6()(
)3.0,12(),3.0,10(),1,6(),4.0,4(),7.0,2(),4.0,0()(
2))()((5)(3)(
)}3.0,5(),1,4(),7.0,3{()}4.0,3(),1,2(),8.0,1{(
52)(32)(
:
:,
22
~~
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
gfgfdxxgxf
dxxgdxxf
dxxg
dxxf
xdxxgxfxxdxxgxxdxxf
ba
xxgxxf
Example
gfgfRIgf
Integral of Definite functions withIntegral of Definite functions with
fuzzy intervalfuzzy interval
∫∫∫
∫∫∫
⊕⊆⇒===
⊕=+⇒→→ ++
~~~
~
~
~
~
~
~
"'
~~~~~~~~~
),("),,('),,(
:,:,
DDD
b
a
b
a
b
a
gffbcDcaDbaD
gfgfRIgforRIgf
Differentiation of Definite functionsDifferentiation of Definite functions
With Fuzzy Domains & RangesWith Fuzzy Domains & Ranges
In this section Differentiation of Definite function must beIn this section Differentiation of Definite function must be
calculated in a convex fuzzy point and with Support Set ofcalculated in a convex fuzzy point and with Support Set of
[a, b] this will cause the obtained answer from f’ (x)[a, b] this will cause the obtained answer from f’ (x)
become a fuzzy answer.become a fuzzy answer.
)}6.0,3(),1,0{()(')}6.0,1(),1,0(),4.0,1{(
3)(')(:.
)(')()()('))(''()()'.(
:thenDescendingn','
)(')()()('))(''()()'.(
)(')('))(''()(')('))(''(
)(sup)()(sup)(
0
~
0
~
23
0
~
0
~
0
~
0
~
0
~
0
~
0
~
0
~
0
~
0
~
0
~
0
~
0
~
0
~
0
~
:thenDescendingorAscending','
0
~
0
~
0
~
)(')('.)('')(')(' 0
~
0
~
0
~
10
~
=→−=
==




⊗⊕



⊗=+=




⊗⊕



⊗⊆+=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⊕=+ →⊕⊆+
==
+=+∈ −
XfX
xxfxxfEx
XgXfXgXfXfggfXgf
otandpositivebegfif
XgXfXgXfXfggfXgf
XgXfXgfXgXfXgf
xyxy
notaregfif
XxgxfyxXgfXyfxXf
µµµµ
Chapter 5:Chapter 5:
Relations & Fuzzy GraphsRelations & Fuzzy Graphs
Fuzzy RelationsFuzzy Relations
Example: If X is most bigger than Y then:Example: If X is most bigger than Y then:
0
0.25
0.5
0.75
1
0 2 4 6 8 10 12 14x/y
M(x,y)
}),(|),(),,{(
,
~
~
YXyxyxyxR
thenRYXif
R
×∈=
⊆
µ






>
−
+
≤
=






≥
<<
−
≤
= yx
xy
yx
yxor
yx
yxy
y
yx
yx
yx
RR
11
)
)(
1
1(
1
0
),(
111
11
10
)(
0
),(
2
~~ µµ
0
0.25
0.5
0.75
1
0 2 4 6 8 10 12 14x/y
M(x,y)
Fuzzy RelationsFuzzy Relations
Ex.: X be mostEx.: X be most
bigger than Y:bigger than Y:
Ex.: X be mostEx.: X be most
near to Y:near to Y:
y1 y2 y3 y4
x1 0.8 1 0.1 0.7
x2 0 0.8 0 0
x3 0.9 1 0.7 0.8
y1 y2 y3 y4
x1 0.4 0 0.9 0.6
x2 0.9 0.4 0.5 0.7
x3 0.3 0 0.8 0.5
Fuzzy Graphs in Fuzzy SetsFuzzy Graphs in Fuzzy Sets
 If X,Y C R then:If X,Y C R then:
)}(),(min{),(
}|))(,{(
}|))(,{(
~~~
~
~
~
~
yxyx
YyyyB
XxxxA
BAR
B
A
µµµ
µ
µ
≤
∈=
∈=
YXyxyxyxoryx
YXyxyxyxoryx
ZRZR
ZRZR
,),()},(),,(max{),(
,),()},(),,(min{),(
~~~~
~~~~
∈=≥
∈=≤
∪
∩
µµµ
µµµ
Ex. Fuzzy Graphs in Fuzzy SetsEx. Fuzzy Graphs in Fuzzy Sets
Ex.: X be mostEx.: X be most
bigger than Y:bigger than Y:
),(~~ yx
ZR∪
µ
Ex.: X be mostEx.: X be most
near to Y:near to Y:
y1 y2 y3 y4
x1 0.8 1 0.1 0.7
x2 0 0.8 0 0
x3 0.9 1 0.7 0.8
y1 y2 y3 y4
x1 0.4 0 0.9 0.6
x2 0.9 0.4 0.5 0.7
x3 0.3 0 0.8 0.5
),(~~ yx
ZR∩
µ
y1 y2 y3 y4
x1 0.8 1 0.9 0.7
x2 0.9 0.8 0.5 0.7
x3 0.9 1 0.8 0.8
y1 y2 y3 y4
x1 0.4 0 0.1 0.6
x2 0 0.4 0 0
x3 0.3 0 0.7 0.5
Fuzzy Images in 2-D GraphsFuzzy Images in 2-D Graphs
Ex.:Ex.:
R T = 1R T = 1
}),(|)),({maxmax
}),(|)),(max,{(
}),(|)),(max,{(
}),(|)],(),,{[(
~
~
~
~
)~
])[2(~
])[1(~
~
YXyxyxR
YXyxyxyR
YXyxyxxR
YXyxyxyxR
Ryx
T
Rx
y
Ry
x
R
×∈=
×∈=
×∈=
×∈=
µ
µ
µ
µ
y1 y2 y3 y4 y5 y6
x1 0.1 0.2 0.4 0.8 1.0 0.8
x2 0.2 0.4 0.8 1.0 0.8 0.6
x3 0.4 0.8 1.0 0.8 0.4 0.2
R 1R 1 Max (M (x, y))
x1 1
x2 1
x3 1
y1 y2 y3 y4 y5 y6
R 2R 2 0.4 0.8 1.0 1.0 1.0 0.8
Fuzzy Images in n-D GraphsFuzzy Images in n-D Graphs
 If n-D space be considered then Rq can be anIf n-D space be considered then Rq can be an
image in (n-q)-D Space of n-D general space. Soimage in (n-q)-D Space of n-D general space. So
It is obviously that Rq can be a fuzzy set itself.It is obviously that Rq can be a fuzzy set itself.
Rqs can be defined in the direction of independentRqs can be defined in the direction of independent
major axis of n-D spaces Like X-axis or Y-axis inmajor axis of n-D spaces Like X-axis or Y-axis in
Cartesian coordinate or r-axis andCartesian coordinate or r-axis and θθ-axis in-axis in
Cylindrical coordinate.Cylindrical coordinate.
 Ex.: Cylindrical R 2:Ex.: Cylindrical R 2:
y1 y2 y3 y4 y5 y6
x1 0.1 0.2 0.4 0.8 1.0 0.8
x2 0.2 0.4 0.8 1.0 0.8 0.6
x3 0.4 0.8 1.0 0.8 0.4 0.2
R 2 CR 2 C y1 y2 y3 Y4 y5 y6
x1 0.4 0.8 1.0 1.0 1.0 0.8
x2 0.4 0.8 1.0 1.0 1.0 0.8
x3 0.4 0.8 1.0 1.0 1.0 0.8
Operations in Fuzzy GraphsOperations in Fuzzy Graphs
(Max-Min. Ops. is Chosen)(Max-Min. Ops. is Chosen)





∈∈∈×=
∈∈∈+×=
⇒




•=
∈∈∈=
∈∈∈=
×∈=×∈=
•
},,|)}],(),({max),,{[(
},,|)}],(),({max
2
1),,{[(
...
*
},,|)}],(*),({max),,{[(
},,|)}}],(),,({min{max),,{[(
}),(|)],(),,{[(}),(|)],(),,{[(
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
~~
1
~
2
~
1
~
2
~
1
~
*
2
~
1
~
2
~
2
~
1
~
ZzYyXxzyyxzxRoR
ZzYyXxzyyxzxRoR
AVE
ZzYyXxzyyxzxRoR
ZzYyXxzyyxzxRoR
ZYzyzyzyRYXyxyxyxR
RRy
RRyAVE
RRy
RRy
RR
µµ
µµ
µµ
µµ
µµ
Ex. Operations in Fuzzy Graphs:Ex. Operations in Fuzzy Graphs:
R1 O R2 y1 y2 y3 y4
x1 0.4 0.7 0.3 0.7
x2 0.3 1 0.5 0.8
x3 0.8 0.3 0.7 1
R 2 z1 z2 z3 z4
y1 0.9 0 0.3 0.4
y2 0.2 1 0.8 0
y3 0.8 0 0.7 1
y4 0.4 0.2 0.3 0
y5 0 1 0 0.8
R1 y1 y2 y3 y4 y5
x1 0.1 0.2 0 1 0.7
x2 0.3 0.5 0 0.2 1
x3 0.8 0 1 0.4 0.3
4.0)},(),,{(),(
}0.0,4.0,0.0,2.0,1.0max{),(
0.0}0.0,7.0min{)},(),,(min{
4.0}4.0,0.1min{)},(),,(min{
0.0}8.0,0.0min{)},(),,(min{
2.0}2.0,2.0min{)},(),,(min{
1.0}9.0,1.0min{)},(),,(min{
),(
1111112
~
1
~
11
1551
1441
1331
1221
1111
112
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
==
=
==
==
==
==
==
zxzxzxRoR
zx
zyyx
zyyx
zyyx
zyyx
zyyx
zxRoR
RoR
RoR
RR
RR
RR
RR
RR
µ
µ
µµ
µµ
µµ
µµ
µµ
Ex. Operations in Fuzzy Graphs:Ex. Operations in Fuzzy Graphs:
R1 O R2 y1 y2 y3 y4
x1 0.4 0.7 0.3 0.56
x2 0.27 1 0.4 0.8
x3 0.8 0.3 0.7 1
R 2 z1 z2 z3 z4
y1 0.9 0 0.3 0.4
y2 0.2 1 0.8 0
y3 0.8 0 0.7 1
y4 0.4 0.2 0.3 0
y5 0 1 0 0.8
R1 y1 y2 y3 y4 y5
x1 0.1 0.2 0 1 0.7
x2 0.3 0.5 0 0.2 1
x3 0.8 0 1 0.4 0.3
4.0)},(),,{(),(
}0.0,4.0,0.0,04.0,09.0max{),(
0.00.07.0),(),(
4.04.00.1),(),(
0.08.00.0),(),(
04.02.02.0),(),(
09.09.01.0),(),(
),(
1111112
~
1
~
11
1551
1441
1331
1221
1111
112
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
==
=
=×=×
=×=×
=×=×
=×=×
=×=×
•
•
•
•
zxzxzxRoR
zx
zyyx
zyyx
zyyx
zyyx
zyyx
zxRoR
RoR
RoR
RR
RR
RR
RR
RR
µ
µ
µµ
µµ
µµ
µµ
µµ
Ex. Operations in Fuzzy Graphs:Ex. Operations in Fuzzy Graphs:
R1 O R2 y1 y2 y3 y4
x1 0.7 0.85 0.65 0.75
x2 0.6 1 0.65 0.9
x3 0.9 0.65 0.85 1
R 2 z1 z2 z3 z4
y1 0.9 0 0.3 0.4
y2 0.2 1 0.8 0
y3 0.8 0 0.7 1
y4 0.4 0.2 0.3 0
y5 0 1 0 0.8
R1 y1 y2 y3 y4 y5
x1 0.1 0.2 0 1 0.7
x2 0.3 0.5 0 0.2 1
x3 0.8 0 1 0.4 0.3
[ ]
[ ]
[ ]
[ ]
[ ]
7.0)},(),,{(),(
}35.0,7.0,4.0,2.0,5.0max{),(
35.00.07.0
2
1),(),(
2
1
7.04.00.1
2
1),(),(
2
1
4.08.00.0
2
1),(),(
2
1
2.02.02.0
2
1),(),(
2
1
5.09.01.0
2
1),(),(
2
1
),(
1111112
~
1
~
11
1551
1441
1331
1221
1111
112
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
==
=
=+=



 +
=+=



 +
=+=



 +
=+=



 +
=+=



 +
zxzxzxRoR
zx
zyyx
zyyx
zyyx
zyyx
zyyx
zxRoR
RoRAVE
RoR
RR
RR
RR
RR
RR
AVE
AVE
AVE
µ
µ
µµ
µµ
µµ
µµ
µµ
Answer Comparison:Answer Comparison:
Properties ofProperties of Max-MinMax-Min CombinationCombination
 Max-Min function is Commutative:Max-Min function is Commutative:
3
1
~
1
~
1
~
1
~
1
~
2
~
3
~
1
~
2
~
3
~
)()()( RRoRoRRoRoRRoRoR ==
:Pr:
,
),(),(
),(),(
:Pr
),(:Pr
1),(:Pr
~
~
~
~
~~
~~
~
~
opertyMirrorhasRExample
Xyx
xyxx
yxxx
IfopertyMirrorweakhasR
XxxxIfopertyMirrorhasR
XxxxIfopertyMirrorhasR
RR
RR
R
R
∈∀




≥
≥
−
∈∀≥−
∈∀=
µµ
µµ
εµε
µ
R y1 y2 y3 y4
x1 1 0.85 0.65 0.75
x2 0.6 1 0.65 0.9
x3 0.9 0.65 1 1
x4 0.9 0.5 0.6 1
Properties ofProperties of Max-MinMax-Min CombinationCombination
XyxyxyxRRoRifopertiesTaadihasR
xyyxifopertiesSymmetricnonhasR
Xyxxyyx
ifopertiesSymmetricAntiCompletelyhasR
XyxxyyxifopertiesSymmetricAntihasR
XyxxyyxifopertiesSymmetrichasR
RRoR
RR
RR
RR
RR
∈∀≤⊆
≠−
∈∀=>
−
∈∀≠−
∈∀=
,),(),(:Pr
),(),(:Pr
,0),(0),(
:Pr
,),(),(:Pr
,),(),(:Pr
~~~
~~
~~
~~
~~
~~~~
~
~
~
~
µµ
µµ
µµ
µµ
µµ
Ex. Properties ofEx. Properties of Max-MinMax-Min
CombinationCombination
Symmetric SymmetricAnti −
SymmetricNon − Taadi
R y1 y2 y3 y4
x1 1 0.9 0.7 0.8
x2 0.9 1 0.7 0.9
x3 0.7 0.7 1 1
x4 0.8 0.9 1 1
R y1 y2 y3 y4
x1 1 0.9 0.7 0.8
x2 0.6 1 0.7 0.9
x3 0.9 0.7 1 1
x4 0.9 0.5 0.6 1
R y1 y2 y3 y4
x1 1 0 0.7 0
x2 0.6 1 0 0.9
x3 0 0.7 1 1
x4 0.9 0 0 1
R y1 y2 y3 y4
x1 1 0.9 0.7 0.8
x2 0.6 1 0.7 0.9
x3 0.9 0.7 1 1
x4 0.9 0.9 1 1
R y1 y2 y3 y4
x1 0.2 1 0.4 0.4
x2 0 0.6 0.3 0
x3 0 1 0.3 0
x4 0.1 1 1 0.1
RoR y1 y2 y3 y4
x1 0.2 0.6 0.4 0.2
x2 0 0.6 0.3 0
x3 0 0.6 0.3 0
x4 0.1 1 0.3 0.1
SymmetricAntiCompletly −
Properties ofProperties of Max-MinMax-Min CombinationCombination
.&.5
.
:&.4
.&.3
:.2
:.1
~~~~
1
~
2
~
2
~
1
~
2
~
1
~
2
~
1
~
2
~
1
~
~~~~
2
~
1
~
2
~
1
~
2
~
1
~
1
~
SymmetricbecomewillRRoRthenSymmetricbeRif
SymmetricbecomewillRoRRoR
thenSymmetricbeRRif
mirroricbecomewillRoRthenmirroricbeRRif
RoRRthenmirroricbeRif
RoRRRoRRthenmirroricbeRif
n
=
⊆
⊆⊆
Properties ofProperties of Max-MinMax-Min CombinationCombination
.&&
:&.8
:&.7
),(),(,
:&.6
~
2
~
1
~
1
~
2
~
2
~
1
~
2
~
1
~~~
~
~
~~
TaadicbecomewillRoRRRRoR
thenTaadicbeRRif
RRoR
thenTaadicMirroricbeRif
xxyxXyx
thenTaadicSymmetricbeRif
RR
=
=
≤∈∀ µµ
Properties Validity:Properties Validity:
Max-Min Max-Mul Max-Mean Op. with Associativity
1 TRUE - TRUE Arbitrary
2 TRUE TRUE - Arbitrary
3 TRUE - TRUE Arbitrary
4 TRUE TRUE - Arbitrary
5 TRUE TRUE - TRUE
6 TRUE - - Arbitrary
7 TRUE TRUE TRUE Arbitrary
8 TRUE TRUE TRUE Arbitrary
Fuzzy GraphsFuzzy Graphs










=






×∈



=
]0.1),,[(],7.0),,[(],7.0),,[(
]3.0),,[(],5.0),,[(],0.0),,[(
]3.0),,[(],3.0),,[(],0.0),,[(
),(
:
),(),(),,(),(
~
~
~
ccbcac
cbbbab
cabaaa
ji
jiji
G
jiji
xxxxxx
xxxxxx
xxxxxx
xxG
Example
EExxxxxxxxG µ
Fuzzy GraphsFuzzy Graphs










=










=
×∈∀≤
]0.5),,[(],7.0),,[(],2.0),,[(
]3.0),,[(],3.0),,[(],0.0),,[(
]3.0),,[(],1.0),,[(],0.0),,[(
),(
]0.1),,[(],7.0),,[(],7.0),,[(
]3.0),,[(],5.0),,[(],0.0),,[(
]3.0),,[(],3.0),,[(],0.0),,[(
),(
:
),(),(),(
:.),(),(
~
~
~~
~~
ccbcac
cbbbab
cabaaa
ji
ccbcac
cbbbab
cabaaa
ji
jiji
G
ji
H
jiji
xxxxxx
xxxxxx
xxxxxx
xxH
xxxxxx
xxxxxx
xxxxxx
xxG
Example
EExxxxxx
DimSamewithifxxGofSpanbecomewillxxH
µµ
Fuzzy GraphsFuzzy Graphs
 The Length & distance between 2The Length & distance between 2
nodes are defined as follows:nodes are defined as follows:
)}({min)(
),(
1
)(
1 1
PLPD
xx
PL
i
i
n
i ii
=
= ∑= +µ
Fuzzy Forests:Fuzzy Forests:
Forest are that graphs that have no loopForest are that graphs that have no loop

More Related Content

What's hot

20 the chain rule
20 the chain rule20 the chain rule
20 the chain rulemath267
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESTahia ZERIZER
 
19 min max-saddle-points
19 min max-saddle-points19 min max-saddle-points
19 min max-saddle-pointsmath267
 
19 trig substitutions-x
19 trig substitutions-x19 trig substitutions-x
19 trig substitutions-xmath266
 
Perspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problemsPerspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problemsRAJKRISHNA MONDAL
 
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESTUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESurender Singh
 
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VECUnit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VECsundarKanagaraj1
 
Probability based learning (in book: Machine learning for predictve data anal...
Probability based learning (in book: Machine learning for predictve data anal...Probability based learning (in book: Machine learning for predictve data anal...
Probability based learning (in book: Machine learning for predictve data anal...Duyen Do
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceArthur Charpentier
 
22 double integrals
22 double integrals22 double integrals
22 double integralsmath267
 
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSSOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSTahia ZERIZER
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differencesDr. Nirav Vyas
 

What's hot (19)

Mech MA6351 tpde_notes
Mech MA6351 tpde_notes Mech MA6351 tpde_notes
Mech MA6351 tpde_notes
 
20 the chain rule
20 the chain rule20 the chain rule
20 the chain rule
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
 
19 min max-saddle-points
19 min max-saddle-points19 min max-saddle-points
19 min max-saddle-points
 
19 trig substitutions-x
19 trig substitutions-x19 trig substitutions-x
19 trig substitutions-x
 
Perspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problemsPerspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problems
 
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESTUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
 
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VECUnit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
 
Probability based learning (in book: Machine learning for predictve data anal...
Probability based learning (in book: Machine learning for predictve data anal...Probability based learning (in book: Machine learning for predictve data anal...
Probability based learning (in book: Machine learning for predictve data anal...
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
9 pd es
9 pd es9 pd es
9 pd es
 
slides tails copulas
slides tails copulasslides tails copulas
slides tails copulas
 
Ijmet 10 01_046
Ijmet 10 01_046Ijmet 10 01_046
Ijmet 10 01_046
 
22 double integrals
22 double integrals22 double integrals
22 double integrals
 
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSSOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
So a webinar-2013-2
So a webinar-2013-2So a webinar-2013-2
So a webinar-2013-2
 
Midterm II Review
Midterm II ReviewMidterm II Review
Midterm II Review
 
Slides ads ia
Slides ads iaSlides ads ia
Slides ads ia
 

Similar to Fuzzy calculation

research paper publication
research paper publicationresearch paper publication
research paper publicationsamuu45sam
 
Fixed point result in probabilistic metric space
Fixed point result in probabilistic metric spaceFixed point result in probabilistic metric space
Fixed point result in probabilistic metric spaceAlexander Decker
 
A new Perron-Frobenius theorem for nonnegative tensors
A new Perron-Frobenius theorem for nonnegative tensorsA new Perron-Frobenius theorem for nonnegative tensors
A new Perron-Frobenius theorem for nonnegative tensorsFrancesco Tudisco
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
 
Common fixed theorems for weakly compatible mappings via an
Common fixed theorems for weakly compatible mappings via anCommon fixed theorems for weakly compatible mappings via an
Common fixed theorems for weakly compatible mappings via anAlexander Decker
 
On fixed point theorems in fuzzy metric spaces in integral type
On fixed point theorems in fuzzy metric spaces in integral typeOn fixed point theorems in fuzzy metric spaces in integral type
On fixed point theorems in fuzzy metric spaces in integral typeAlexander Decker
 
publisher in research
publisher in researchpublisher in research
publisher in researchrikaseorika
 
Existance Theory for First Order Nonlinear Random Dfferential Equartion
Existance Theory for First Order Nonlinear Random Dfferential EquartionExistance Theory for First Order Nonlinear Random Dfferential Equartion
Existance Theory for First Order Nonlinear Random Dfferential Equartioninventionjournals
 
Nonlinear perturbed difference equations
Nonlinear perturbed difference equationsNonlinear perturbed difference equations
Nonlinear perturbed difference equationsTahia ZERIZER
 
ゲーム理論BASIC 第42回 -仁に関する定理の証明2-
ゲーム理論BASIC 第42回 -仁に関する定理の証明2-ゲーム理論BASIC 第42回 -仁に関する定理の証明2-
ゲーム理論BASIC 第42回 -仁に関する定理の証明2-ssusere0a682
 
Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonst...
Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonst...Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonst...
Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonst...AIST
 
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible MappingsCommon Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappingsiosrjce
 
Common fixed point theorems with continuously subcompatible mappings in fuzz...
 Common fixed point theorems with continuously subcompatible mappings in fuzz... Common fixed point theorems with continuously subcompatible mappings in fuzz...
Common fixed point theorems with continuously subcompatible mappings in fuzz...Alexander Decker
 
lagrange and newton divided differences.ppt
lagrange and newton divided differences.pptlagrange and newton divided differences.ppt
lagrange and newton divided differences.pptThirumoorthy64
 
ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-ssusere0a682
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Markettomoyukiichiba
 

Similar to Fuzzy calculation (20)

research paper publication
research paper publicationresearch paper publication
research paper publication
 
Fixed point result in probabilistic metric space
Fixed point result in probabilistic metric spaceFixed point result in probabilistic metric space
Fixed point result in probabilistic metric space
 
A new Perron-Frobenius theorem for nonnegative tensors
A new Perron-Frobenius theorem for nonnegative tensorsA new Perron-Frobenius theorem for nonnegative tensors
A new Perron-Frobenius theorem for nonnegative tensors
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
Periodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral EquationsPeriodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral Equations
 
Common fixed theorems for weakly compatible mappings via an
Common fixed theorems for weakly compatible mappings via anCommon fixed theorems for weakly compatible mappings via an
Common fixed theorems for weakly compatible mappings via an
 
On fixed point theorems in fuzzy metric spaces in integral type
On fixed point theorems in fuzzy metric spaces in integral typeOn fixed point theorems in fuzzy metric spaces in integral type
On fixed point theorems in fuzzy metric spaces in integral type
 
publisher in research
publisher in researchpublisher in research
publisher in research
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Existance Theory for First Order Nonlinear Random Dfferential Equartion
Existance Theory for First Order Nonlinear Random Dfferential EquartionExistance Theory for First Order Nonlinear Random Dfferential Equartion
Existance Theory for First Order Nonlinear Random Dfferential Equartion
 
Nonlinear perturbed difference equations
Nonlinear perturbed difference equationsNonlinear perturbed difference equations
Nonlinear perturbed difference equations
 
ゲーム理論BASIC 第42回 -仁に関する定理の証明2-
ゲーム理論BASIC 第42回 -仁に関する定理の証明2-ゲーム理論BASIC 第42回 -仁に関する定理の証明2-
ゲーム理論BASIC 第42回 -仁に関する定理の証明2-
 
D02402033039
D02402033039D02402033039
D02402033039
 
Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonst...
Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonst...Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonst...
Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonst...
 
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible MappingsCommon Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
 
stochastic processes assignment help
stochastic processes assignment helpstochastic processes assignment help
stochastic processes assignment help
 
Common fixed point theorems with continuously subcompatible mappings in fuzz...
 Common fixed point theorems with continuously subcompatible mappings in fuzz... Common fixed point theorems with continuously subcompatible mappings in fuzz...
Common fixed point theorems with continuously subcompatible mappings in fuzz...
 
lagrange and newton divided differences.ppt
lagrange and newton divided differences.pptlagrange and newton divided differences.ppt
lagrange and newton divided differences.ppt
 
ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Market
 

More from Amir Rafati

Introduction to Cryptocurrency trading
Introduction to Cryptocurrency tradingIntroduction to Cryptocurrency trading
Introduction to Cryptocurrency tradingAmir Rafati
 
Blockchain Ecosystem and Cryptocurrency Regulations
Blockchain Ecosystem and Cryptocurrency RegulationsBlockchain Ecosystem and Cryptocurrency Regulations
Blockchain Ecosystem and Cryptocurrency RegulationsAmir Rafati
 
Blockchain and bitcoin fundamentals (usages and applications)
Blockchain and bitcoin fundamentals (usages and applications)Blockchain and bitcoin fundamentals (usages and applications)
Blockchain and bitcoin fundamentals (usages and applications)Amir Rafati
 
Drilling Hydraulic of Compressible and In-compressible Drilling Fluid
Drilling Hydraulic of Compressible and In-compressible Drilling FluidDrilling Hydraulic of Compressible and In-compressible Drilling Fluid
Drilling Hydraulic of Compressible and In-compressible Drilling FluidAmir Rafati
 
Wellhead equipment Introduction Based on API 6a & NACE
Wellhead equipment Introduction Based on API 6a & NACEWellhead equipment Introduction Based on API 6a & NACE
Wellhead equipment Introduction Based on API 6a & NACEAmir Rafati
 
Drilling Bit Introduction and bit Selection (Part 3)
Drilling Bit Introduction and bit Selection (Part 3)Drilling Bit Introduction and bit Selection (Part 3)
Drilling Bit Introduction and bit Selection (Part 3)Amir Rafati
 
Drilling Bit Introduction and bit Selection (Part 2)
Drilling Bit Introduction and bit Selection (Part 2)Drilling Bit Introduction and bit Selection (Part 2)
Drilling Bit Introduction and bit Selection (Part 2)Amir Rafati
 
Drilling Bit Introduction and bit Selection (Part 1)
Drilling Bit Introduction and bit Selection (Part 1)Drilling Bit Introduction and bit Selection (Part 1)
Drilling Bit Introduction and bit Selection (Part 1)Amir Rafati
 

More from Amir Rafati (8)

Introduction to Cryptocurrency trading
Introduction to Cryptocurrency tradingIntroduction to Cryptocurrency trading
Introduction to Cryptocurrency trading
 
Blockchain Ecosystem and Cryptocurrency Regulations
Blockchain Ecosystem and Cryptocurrency RegulationsBlockchain Ecosystem and Cryptocurrency Regulations
Blockchain Ecosystem and Cryptocurrency Regulations
 
Blockchain and bitcoin fundamentals (usages and applications)
Blockchain and bitcoin fundamentals (usages and applications)Blockchain and bitcoin fundamentals (usages and applications)
Blockchain and bitcoin fundamentals (usages and applications)
 
Drilling Hydraulic of Compressible and In-compressible Drilling Fluid
Drilling Hydraulic of Compressible and In-compressible Drilling FluidDrilling Hydraulic of Compressible and In-compressible Drilling Fluid
Drilling Hydraulic of Compressible and In-compressible Drilling Fluid
 
Wellhead equipment Introduction Based on API 6a & NACE
Wellhead equipment Introduction Based on API 6a & NACEWellhead equipment Introduction Based on API 6a & NACE
Wellhead equipment Introduction Based on API 6a & NACE
 
Drilling Bit Introduction and bit Selection (Part 3)
Drilling Bit Introduction and bit Selection (Part 3)Drilling Bit Introduction and bit Selection (Part 3)
Drilling Bit Introduction and bit Selection (Part 3)
 
Drilling Bit Introduction and bit Selection (Part 2)
Drilling Bit Introduction and bit Selection (Part 2)Drilling Bit Introduction and bit Selection (Part 2)
Drilling Bit Introduction and bit Selection (Part 2)
 
Drilling Bit Introduction and bit Selection (Part 1)
Drilling Bit Introduction and bit Selection (Part 1)Drilling Bit Introduction and bit Selection (Part 1)
Drilling Bit Introduction and bit Selection (Part 1)
 

Recently uploaded

VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 

Recently uploaded (20)

VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 

Fuzzy calculation

  • 1. In The Name of GodIn The Name of God Advance MathematicsAdvance Mathematics
  • 2. Theory of Fuzzy SetsTheory of Fuzzy Sets Amir RafatiAmir Rafati 8612100486121004
  • 6. PreliminariesPreliminaries Forms of fuzzy sets:Forms of fuzzy sets: Type I:Type I: Normal Sets:Normal Sets: A={2,3,4}A={2,3,4} Fuzzy Sets:Fuzzy Sets: Ã={(1,0),(2,1),(3,1),(4,1),(7,0)}Ã={(1,0),(2,1),(3,1),(4,1),(7,0)} Or Ĩ ={(2,0.7),(9,1),(8,0),(4,0.3)}Or Ĩ ={(2,0.7),(9,1),(8,0),(4,0.3)} Type II:Type II: Normal Sets:Normal Sets: A={X| 1<X<3}A={X| 1<X<3} Fuzzy Sets:Fuzzy Sets: Ã={(x,Ã={(x, μμÃà (x))| x(x))| xЄЄX}X} ((μμÃà : Member function): Member function)
  • 7. Some Useful Definitions:Some Useful Definitions:  Fuzzy Support Set: S(Ã)Fuzzy Support Set: S(Ã) Ĩ ={(2,0.7),(9,1),(8,0),(4,0.3),(7,0),(1,0.2)} => S(Ĩ)={1,2,9,4}Ĩ ={(2,0.7),(9,1),(8,0),(4,0.3),(7,0),(1,0.2)} => S(Ĩ)={1,2,9,4} Fuzzy Set in stage ofFuzzy Set in stage of αα: A: Aαα AAαα ={x={xЄЄX|X| μμà (x)≥à (x)≥ αα} =>} => AA0.70.7 = {2,9}= {2,9} (Strong(Strong A0.7:A0.7: A’0.7={9}A’0.7={9}))  Main number of finite à is shown by: |Ã|Main number of finite à is shown by: |Ã| |Ã|=∑|Ã|=∑ μμà (x)à (x)  Relative Main number is shown by: ||Ã||Relative Main number is shown by: ||Ã|| ||Ã||= |Ã|/|X|||Ã||= |Ã|/|X| Example:Example: |Ã|=0.7+1+0.3+0.2=2.2|Ã|=0.7+1+0.3+0.2=2.2 ||Ã||=2.2/5=0.44||Ã||=2.2/5=0.44
  • 8. Some Useful Definitions:Some Useful Definitions:  Two fuzzy Sets are Equal if & only if:Two fuzzy Sets are Equal if & only if:  if and only if:if and only if: Example:Example: Ã={(1,0.2),(2,0.8),(4,0)} & Ĩ ={(1,0.2),(2,1),(3,0.3)}Ã={(1,0.2),(2,0.8),(4,0)} & Ĩ ={(1,0.2),(2,1),(3,0.3)}  SUP Ã means upper limit of :SUP Ã means upper limit of : Hgt (Ã)= SupHgt (Ã)= Sup Example: Ã={(1,0.2),(2,0.8),(4,0)} => hgt (Ã)= 0.8Example: Ã={(1,0.2),(2,0.8),(4,0)} => hgt (Ã)= 0.8
  • 9. Types of fuzzy sets:Types of fuzzy sets:  S function:S function:  Z functionZ function
  • 10. Types of fuzzy sets:Types of fuzzy sets:  ππ functionfunction  V functionV function
  • 11. Degree of Fuzzy SetsDegree of Fuzzy Sets  Fuzzy Sets with Degree of ONE:Fuzzy Sets with Degree of ONE: Ĩ ={(2,0.7),(9,1),(8,0),(4,0.3)}Ĩ ={(2,0.7),(9,1),(8,0),(4,0.3)}  Fuzzy Sets with Degree of TWO:Fuzzy Sets with Degree of TWO: Ĩ ={(2,Ĩ ={(2,μμĨ (2)),(9,Ĩ (2)),(9, μμĨ (9)),(4,Ĩ (9)),(4, μμĨ (4))}Ĩ (4))} μμĨ (2)={uĨ (2)={uii ,, μμ(u(uii )| i=1,..,3})| i=1,..,3} μμĨ (2)={(0.6,0.9),(0.7,1),(0.9,0.4)}Ĩ (2)={(0.6,0.9),(0.7,1),(0.9,0.4)}  Fuzzy Sets with Higher Degrees:Fuzzy Sets with Higher Degrees: Ĩ ={(2,Ĩ ={(2,μμĨ (2)),(9,Ĩ (2)),(9, μμĨ (9)),(4,Ĩ (9)),(4, μμĨ (4))}Ĩ (4))} μμĨ (2)={uĨ (2)={uii ,, μμ(u(uii )| i=1,..,3})| i=1,..,3} μμĨ (2)={(0.6,Ĩ (2)={(0.6, μμĨ (0.6)),(0.7,Ĩ (0.6)),(0.7, μμĨ (0.7)),(0.9,Ĩ (0.7)),(0.9, μμĨ (0.9))}Ĩ (0.9))} μμĨ (0.6)={(0.4,0.1),(0.9,1),(1,0.9)}Ĩ (0.6)={(0.4,0.1),(0.9,1),(1,0.9)}
  • 12. Operators of Fuzzy Sets:Operators of Fuzzy Sets: There is no-unique definition forThere is no-unique definition for operators of fuzzy sets andoperators of fuzzy sets and their definitions are related totheir definitions are related to their application but one simpletheir application but one simple definition will be introduced indefinition will be introduced in this sectionthis section
  • 13. Operators of Fuzzy Sets:Operators of Fuzzy Sets: Ễ={(1,0.1),(2,0.3),(3,0.4)}Ễ={(1,0.1),(2,0.3),(3,0.4)} Ễ={(1,0.5),(2,0.8),(3,0.4),Ễ={(1,0.5),(2,0.8),(3,0.4), (4,0.9)}(4,0.9)} Ã={(1,0.5),(2,0.8),(3,0.4)}Ã={(1,0.5),(2,0.8),(3,0.4)} ĨĨ ={(1,0.1),(2,0.3),(3,0.5),(4,0.9)}={(1,0.1),(2,0.3),(3,0.5),(4,0.9)} ~Ã={(1,0.5),(2,0.2),(3,0.6)}~Ã={(1,0.5),(2,0.2),(3,0.6)}
  • 15. Conditions & LimitationsConditions & Limitations μμ(S and T)=f((S and T)=f(μμs,s, μμT)T) μμ(S or T)=g((S or T)=g(μμs,s, μμT)T)  μμS ^S ^ μμT=T= μμT ^T ^ μμSS  μμS vS v μμT=T= μμT vT v μμSS  ((μμS ^S ^ μμT) ^T) ^ μμQ =Q = μμS ^ (S ^ (μμT ^T ^ μμQ)Q)  ((μμS vS v μμT) vT) v μμQ =Q = μμS v (S v (μμT vT v μμQ)Q)  ((μμS ^S ^ μμT) vT) v μμQ = (Q = (μμS vS v μμQ) ^ (Q) ^ (μμT vT v μμQ)Q)  ((μμS vS v μμT) ^T) ^ μμQ = (Q = (μμS ^S ^ μμQ) v (Q) v (μμT ^T ^ μμQ)Q)  ((μμS ^S ^ μμT) ≤ Min(T) ≤ Min(μμS,S,μμT)T)  ((μμS vS v μμT) ≥ Max(T) ≥ Max(μμS,S,μμT)T)  1 ^ 1=11 ^ 1=1  0 v 0=00 v 0=0
  • 16. Multiplication:Multiplication: ×:×: D(Ã1, Ã2,…, Ãn)={X1,X2,…,Xn}D(Ã1, Ã2,…, Ãn)={X1,X2,…,Xn} μμ(Ã1×Ã2×…×Ãn)=Min(i) {(Ã1×Ã2×…×Ãn)=Min(i) {μμÃi(xi)| x=(x1,x2,…,xn), xiÃi(xi)| x=(x1,x2,…,xn), xiЄЄ Xi}Xi} μμ (Power (à (x), m)= Power ((Power (à (x), m)= Power (μμ (à (x)), m)(à (x)), m)
  • 17. Summation:Summation:  Ễ=Ã+Ĩ:Ễ=Ã+Ĩ: Ễ={(x,Ễ={(x, μμÃ+ĨÃ+Ĩ (x))| x(x))| xЄЄX}X} μμÃ+ĨÃ+Ĩ (x)=(x)= μμÃà ++ μμĨĨ –– μμà *à * μμĨĨ  Ễ=à + Ĩ (finite Sum)Ễ=à + Ĩ (finite Sum) Ễ={(x,Ễ={(x, μμà + Ĩà + Ĩ (x))| x(x))| xЄЄX}X} μμà + Ĩà + Ĩ (x)= Min((x)= Min(μμÃà ++ μμĨĨ,1),1)
  • 18. Finite Difference & Dot Product:Finite Difference & Dot Product:  Ễ=ÃỄ=à ΘΘ Ĩ:Ĩ: Ễ={(x,Ễ={(x, μμÃà ΘΘ Ĩ (x))| xĨ (x))| xЄЄX}X} μμÃà ΘΘ Ĩ (x)=Max (Ĩ (x)=Max (μμà +à + μμĨ – 1,0)Ĩ – 1,0)  Ễ=à . Ĩ:Ễ=à . Ĩ: Ễ={(x,Ễ={(x, μμà . Ĩ (x))| xà . Ĩ (x))| xЄЄX}X} μμà . Ĩ (x)=à . Ĩ (x)=μμà .à . μμĨĨ
  • 19. An Example:An Example: Ã (x)={(3,0.5),(5,1),(7,0.6)}Ã (x)={(3,0.5),(5,1),(7,0.6)} Ĩ (x)={(3,1),(5,0.6)}Ĩ (x)={(3,1),(5,0.6)}  Ã × Ĩ = {[(3;3),0.5], [(5;3),1.0], [(7;3),0.6],Ã × Ĩ = {[(3;3),0.5], [(5;3),1.0], [(7;3),0.6], [(3;5),0.5], [(5;5),0.6], [(7;5),0.6]}[(3;5),0.5], [(5;5),0.6], [(7;5),0.6]}  Ã × Ã = {(3,0.25),(5,1),(7,0.36)}Ã × Ã = {(3,0.25),(5,1),(7,0.36)}  Ã + Ĩ = {(3,1),(5,1),(7,0.6)}Ã + Ĩ = {(3,1),(5,1),(7,0.6)}  Ã + Ĩ = {(3,1),(5,1),(7,0.6)}Ã + Ĩ = {(3,1),(5,1),(7,0.6)}  ÃÃ ΘΘ Ĩ = {(3,0.5),(5,0.6)}Ĩ = {(3,0.5),(5,0.6)}  Ã . Ĩ = {(3,0.5),(5,0.6)}Ã . Ĩ = {(3,0.5),(5,0.6)}
  • 20. Operators of Theory Sets:Operators of Theory Sets:
  • 21. Characteristics of S & T:Characteristics of S & T:  t(0,0)=0 ; t(1,t(0,0)=0 ; t(1, μμÃ)=Ã)= μμà ,xà ,x ЄЄ XX  MonotonocityMonotonocity IfIf μμà ≤à ≤ μμĨĨ andand μμỄ ≤Ễ ≤ μμÑÑ thenthen t(t(μμà ,à , μμỄỄ )) ≤≤ t(t(μμĨ ,Ĩ , μμÑÑ ))  CommutativityCommutativity t(t(μμà ,à , μμỄỄ )) == t(t(μμỄ ,Ễ , μμÃà ))  AssociativityAssociativity t(t(μμà ,à , t(t(μμĨ ,Ĩ , μμÑÑ ))= t(t())= t(t(μμĨ ,Ĩ , μμÃà ),), μμÑÑ ))
  • 22. Characteristics of S & T:Characteristics of S & T:  S(1,1)=1 ; S(0,S(1,1)=1 ; S(0, μμÃ)=Ã)= μμà ,xà ,x ЄЄ XX  MonotonocityMonotonocity IfIf μμà ≤à ≤ μμĨĨ andand μμỄ ≤Ễ ≤ μμÑÑ thenthen S(S(μμà ,à , μμỄỄ )) ≤≤ S(S(μμĨ ,Ĩ , μμÑÑ ))  CommutativityCommutativity S(S(μμà ,à , μμỄỄ )) == S(S(μμỄ ,Ễ , μμÃà ))  AssociativityAssociativity S(S(μμà ,à , S(S(μμĨ ,Ĩ , μμÑÑ ))= S(S())= S(S(μμĨ ,Ĩ , μμÃà ),), μμÑÑ ))
  • 23. Some definitions for T & S:Some definitions for T & S:    =µµµµ =µµ    =µµµµ =µµ µµ=µµµµ=µµ µ−=µµ−µ−−=µµ Otherwise1 0)}x(),x({Minif)}x(),x({Max ))x(),x((S :SummationStrong Otherwise0 1)}x(),x({Maxif)}x(),x({Min ))x(),x((t :tionMultiplicaStrong )))x((n)),x((n(t(n))x(),x((S)))x((n)),x((n(S(n))x(),x((t :kerDec&Bonissone )x(1))x((n))x(1),x(1(S1))x(),x((t :asinAl ~~~~ ~~ ~~~~ ~~ ~~~~~~~~ ~~~~~~ BABA BA w BABA BA w BABABABA AABABA
  • 24. Some definitions for T & S:Some definitions for T & S: )x().x())x(),x((SSummationebraiclgA )x()x())x(),x((ttionMultiplicaebraiclgA )x()x(1 )x()x( ))x(),x((S )]x().x()x()x([2 )x().x( ))x(),x((t :TandSEinstein )}x()x(,1{Min))x(),x((S :SummationFinite }1)x()x(,0{Max))x(),x((t DifferenceFinite ~~~~ ~~~~ ~~ ~~ ~~ ~~~~ ~~ ~~ ~~~~ ~~~~ BABA 2 BABA 2 BA BA BA 5.1 BABA BA BA 5.1 BABA 1 BABA 1 µµ=µµ µ+µ=µµ µ+µ+ µ+µ =µµ µµ−µ+µ− µµ =µµ µ+µ=µµ −µ+µ=µµ
  • 25. Some definitions for T & S:Some definitions for T & S: ))x(),x((Max))x(),x((S))x(),x((S ))x(),x((Min))x(),x((t))x(),x((t )}x()x(,1{Max))x(),x((S:Maximum }1)x()x(,0{Min))x(),x((t:Minimum )x().x())x(),x((SSummationebraiclgA )x()x())x(),x((ttionMultiplicaebraiclgA )x().x(1 )x().x(2)x()x( ))x(),x((S )x().x()x()x( )x().x( ))x(),x((t :TandSHamacher ~~~~~~ ~~~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~ ~~~~ ~~ ~~~~ ~~ ~~ BABA 3~1 BA w BABA 3~1 BA w BABA 1 BABA 1 BABA 2 BABA 2 BA BABA BA 5.2 BABA BA BA 5.2 µµ≥µµ≥µµ µµ≤µµ≤µµ µ+µ=µµ −µ+µ=µµ µµ=µµ µ+µ=µµ µµ− µµ−µ+µ =µµ µµ−µ+µ µµ =µµ
  • 26. Unity and Community Defs.:Unity and Community Defs.: 1p},)(,1{Min)x()}Xx|)x(,x{(BA 1p},))1()1((,1{Min1)x()}Xx|)x(,x{(BA :Yager 1, )x().x(1 )x()x()x().x().1( )x()}Xx|)x(,x{(BA 0, ))x().x()x()x()(1( )x().x( )x()}Xx|)x(,x{(BA :Hamacher p/1p B p ABABA ~~ p/1p B p ABABA ~~ BA BABA BABA ~~ BABA BA BABA ~~ ~~~~~~ ~~~~~~ ~~ ~~~~ ~~~~ ~~~~ ~~ ~~~~ ≥µ+µ=µ∈µ=∪ ≥µ−+µ−−=µ∈µ=∩ −≥℘ µµ℘+ µ+µ+µµ−℘ =µ∈µ=∪ ≥∂ µµ−µ+µ∂−+∂ µµ =µ∈µ=∩ ∪∪ ∩∩ ∪∪ ∩∩
  • 27. Unity and Community Defs.:Unity and Community Defs.: ]1,0[, }),1(),1{(Max )}1(,,{Min)x().x()x()x( )x( )}Xx|)x(,x{(BA ]1,[)x().x(},{Min ],0[)x().x( )x().x( )x( :DefinitionClearMore ]1,0[, }),x(),x({Max )x().x( )x()}Xx|)x(,x{(BA :adePrandDubois ~~ ~~~~~~ ~~ ~~ ~~~~ ~~ ~~ ~~ ~~ ~~ ~~~~ BA BABABA BA BA ~~ BABA BA BA BA BA BA BABA ~~ ∈α αµ−µ− α−µµ−µµ−µ+µ =µ ∈µ=∪      α∈µµµµ α∈µµ α µµ =µ ∈α αµµ µµ =µ∈µ=∩ ∪ ∪ ∩ ∩∩
  • 29. Fuzzy AND & OR:Fuzzy AND & OR: ]1,0[,, 2 )1(},{. : ]1,0[,, 2 )1(},{. : ~~ ~~ ~~ ~~ ~~ ~~ ))(),(( ))(),(( ∈∂∈ + ∂−+∂= ∈∂∈ + ∂−+∂= XxMax ORWerner XxMin ANDWerner BA BA xxor BA BA xxand BA BA µµ µµµ µµ µµµ µµ µµ
  • 30. Fuzzy AND & OR:Fuzzy AND & OR: ityCommutativ tyMonotonici Demorgan Xxxx ANDZysnoZimmerman m i i m i ix CompAi − − − ∈∂∈      −−      = ∂ = ∂− = ∏∏ ]1,0[,,))(1(1)( :& 1 )1( 1 ))(( , ~ µµµ µ
  • 31. Combinations of Fuzzy AND & OR:Combinations of Fuzzy AND & OR: ]1,0[,],.)[1(. &:2# ]1,0[,},,{).1(},{. &:1# ~~~~~~ ~~ ~~~~ ~~ ))(),(( ))(),(( ∈∂∈−+∂−+∂= ∈∂∈∂−+∂= Xx nCombinatioAdditionaltionMultiplicaExample XxMaxMin nCombinatioMaxMinExample BABABA xx BABA xx BA BA µµµµµµµ µµµµµ µµ µµ
  • 32. Chapter 2:Chapter 2: Fuzzy Measurement &Fuzzy Measurement & Measurement of FuzzyMeasurement of Fuzzy SetsSets
  • 33. Fuzzy MeasurementFuzzy Measurement  Sugeno Definition:Sugeno Definition: If B is considered as a Sub Set of aIf B is considered as a Sub Set of a Reference Set, a function can beReference Set, a function can be defined asdefined as Fuzzy MeasurementFuzzy Measurement in thein the interval of B if:interval of B if: )lim()(lim...,:3 )()(,,:2 1)(,0)(:1 321 AgAgThenAAABA BgAgThenBABA Xgg nn n ∞→∞→ =⊆⊆⊆∈ ≤⊆∈ == β φ
  • 34. Fuzzy MeasurementFuzzy Measurement  Dr. Asgari Zadeh Possibility(Dr. Asgari Zadeh Possibility()) Definition:Definition: XxxxfXAxfSupA XffunctionaasDefinedbecanDefinitionAbove IndexSetasDefinedisIASupA BAThenBAXBA X Ax i IiIi i ⊂∀=⊂= → = ≤⊆∈ == ∏∏ ∏∏ ∏∏ ∏∏ ∈ ∈∈ ,})({)(),()( :]1,0[: ,)()(:3 )()(,,:2 1)(,0)(:1  φ
  • 35. Ex. Of Possibility(Ex. Of Possibility() Definition:) Definition: Possibility(Possibility() of nearing x to 8:=) of nearing x to 8:= Possibility(Possibility() of A has a member near to 8:=) of A has a member near to 8:= ∏ })({x x 0 1 2 3 4 5 6 7 8 9 10 0 0 0 0 0 0.1 0.5 0.8 1 0.8 0.5∏ })({x ∏ })({x 8.0 }8.0,1.0,0{ }})9({,})5({,})2({{ })({)( }9,5,2{ = = = = = ∏∏∏ ∏∏ ∈ Sup Sup xSupA A Ax
  • 36. 1: Measurement of Fuzzy Sets1: Measurement of Fuzzy Sets  Is Defined to Show the Degree and value of FuzzyIs Defined to Show the Degree and value of Fuzzy Set ambiguity (Set ambiguity (à is finiteà is finite).).  De Luca & Termini Definition:De Luca & Termini Definition: )'()(:4 )'()(),2/1 ,,2/1(':3 max)(:2 0)(::1 ~~~~ ~~ ' ' ~~ ~ ~~ ~~~ ~~~ AdnAdthenAofrycomlementabeAnif AdAdthenifand AthanDefinitemorebeAif valueimizedanduniqueahasAd AdthenSetDefiniteabeAif AAA AAA = ≤≤≥ ≥≤ = µµµ µµµ
  • 37. 1: Measurement of Fuzzy Sets1: Measurement of Fuzzy Sets  Entropy of Fuzzy Sets (De Luca &Entropy of Fuzzy Sets (De Luca & Termini):Termini): ∑ ∑ = = = −−+−= −= ∈+= n i i A i A n i i A xSkAd xxxxxSfunctionShenon NumberConsDefinedk xxkAH XxAnHAHAd 1 ~ 1 ~ ~~~ ))(()( ))1ln().1()ln(.()(: .: ))((ln).()( ),()()( ~ ~~ µ µµ
  • 38. Ex. Of Measurement of Fuzzy SetsEx. Of Measurement of Fuzzy Sets  à is defined as set of numbers near to 10:à is defined as set of numbers near to 10: Ã={(7,0.1),(8,0.5) ,(9,0.8) ,(10,1) ,(11,0.8) ,(12,0.5) ,(13,0.1)}Ã={(7,0.1),(8,0.5) ,(9,0.8) ,(10,1) ,(11,0.8) ,(12,0.5) ,(13,0.1)} Ĩ= {(6,0.1),(7,0.3),(8,0.4) ,(9,0.7) ,(10,1) ,(11,0.7) ,(12,0.4) ,Ĩ= {(6,0.1),(7,0.3),(8,0.4) ,(9,0.7) ,(10,1) ,(11,0.7) ,(12,0.4) , (13,0.3),(14,0.1)}(13,0.3),(14,0.1)} If k=1 then:If k=1 then: d (Ã)= 0.325+0.693+0.501+0+0.501+0.693+0.325=3.038d (Ã)= 0.325+0.693+0.501+0+0.501+0.693+0.325=3.038 d ( Ĩ )= 0.325+0.611+0.673+0.501+0+0.501+0.673+0.611+0.325= 4.22d ( Ĩ )= 0.325+0.611+0.673+0.501+0+0.501+0.673+0.611+0.325= 4.22 Ĩ is more fuzzier than à and has moreĨ is more fuzzier than à and has more Entropy.Entropy.
  • 39. Graph of S FunctionGraph of S Function 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 M(x) S(x)
  • 40. 2: Measurement of Fuzzy Sets2: Measurement of Fuzzy Sets  This Definition will care more aboutThis Definition will care more about the differences that exist between athe differences that exist between a set and its complementary.set and its complementary.  If à be fuzzy set and nà be itsIf à be fuzzy set and nà be its complementary then below definitecomplementary then below definite definitions has no necessity to be true:definitions has no necessity to be true: (it means fuzzy sets may have contradiction with(it means fuzzy sets may have contradiction with definite sets)definite sets) φ=∩ =∪ ~~ ~~ AnA XAnA
  • 41. 2: Measurement of Fuzzy Sets2: Measurement of Fuzzy Sets  Yager Definition for Ã:Yager Definition for Ã: ∑∑ ∑∑ ∑ == == =       −=      −= −== −=−= −== −= =      −= == n i i A n i i An i A i A i An n i i A n i i An i A i A i An p p p pn i p i An i A p p p xAnADxxAnAD xxthenpif xAnADxxAnAD xxthenpif ASupp AnAD Af pxxAnAD ASuppSSnSSDAssume 1 2/12~~ 2 1 2/12~~ 2 1 ~~ 1 1 ~~ 1 /1~ ~~ ~ /1 1 ~~ ~ /1 1)(2),()()(),( )(1)(:2 1)(2),()()(),( )(1)(:1 )( ),( 1)( ,...3,2,1,)()(),( :)(),( ~~~ ~~ ~~~ ~~ ~~ µµµ µµ µµµ µµ µµ
  • 42. Ex. Measurement of Fuzzy SetsEx. Measurement of Fuzzy Sets  Ã is defined as set of numbers near to 10:Ã is defined as set of numbers near to 10: Ã={(7,0.1),(8,0.5) ,(9,0.8) ,(10,1) ,(11,0.8) ,(12,0.5) ,(13,0.1)}Ã={(7,0.1),(8,0.5) ,(9,0.8) ,(10,1) ,(11,0.8) ,(12,0.5) ,(13,0.1)} Ĩ= {(6,0.1),(7,0.3),(8,0.4) ,(9,0.7) ,(10,1) ,(11,0.7) ,(12,0.4) ,(13,0.3),(14,0.1)}Ĩ= {(6,0.1),(7,0.3),(8,0.4) ,(9,0.7) ,(10,1) ,(11,0.7) ,(12,0.4) ,(13,0.3),(14,0.1)} 489.0 9 6.4 1)(9)( 6.4),( 457.0 7 8.3 1)(7)( 8.3),(:1 ~ 1 ~ ~~ 1 ~ 1 ~ ~~ 1 =−== = =−== == BfBSupp BnBD AfASupp AnADthenpif 407.0 3 78.1 1)(3)( 78.1),( 347.0 65.2 73.1 1)(65.2)( 73.1),(:2 ~ 2 2/1~ ~~ 2 ~ 2 2/1~ ~~ 2 =−== = =−== == BfBSupp BnBD AfASupp AnADthenpif
  • 43. Chapter 3:Chapter 3: Propagation(Propagation() principle &) principle & its Applicationsits Applications
  • 44. Propagation(Propagation() principle & Apps.) principle & Apps.  If X=X1*X2*…*Xr and Ã1, Ã2, Ãr be fuzzyIf X=X1*X2*…*Xr and Ã1, Ã2, Ãr be fuzzy sets of X1, X2, …, Xr and y= f(x1,…,xr)sets of X1, X2, …, Xr and y= f(x1,…,xr) then:then:    ≠ = ∈== =     ≠ = ∈……== − − otherwise yfxSup y thenrif otherwise yfxxMinSup y A I I AA I I r 0 )()}({ )( X}xf(x),y|(y)){(y,I :1 0 )()}(),...,({ )( X}xr),(x1,xr),,f(x1,y|(y)){(y,I 1 ~ 1 ~ ~ ~ ~ ~~ 1~ ~ φµ µ µ φµµ µ µ
  • 45. Ex. Propagation(Ex. Propagation() principle) principle  Ã={(-1,0.5) ,(0,0.8) ,(1,1) ,(2,0.4)}, fÃ={(-1,0.5) ,(0,0.8) ,(1,1) ,(2,0.4)}, f (x)=x*x(x)=x*x Ĩ=f (Ã)={(0,0.8) ,(1,1) ,(4,0.4)}Ĩ=f (Ã)={(0,0.8) ,(1,1) ,(4,0.4)}
  • 46. Propagation(Propagation() principle and Second) principle and Second Types of Fuzzy SetsTypes of Fuzzy Sets  μμÃÃ={(ui,={(ui, μμuiui (x))| x(x))| xЄЄX, ui,X, ui, μμuiui (x)(x) ЄЄ[0,1]}[0,1]}  μμĨĨ={(vi,={(vi, μμuiui (x))| x(x))| xЄЄX, vi,X, vi, μμvivi (x)(x) ЄЄ[0,1]}[0,1]} )]}(),1{[( )}(),(min{sup)( ]}1,0[,),,min(|))(,{()()( )}(),(min{sup)( ]}1,0[,),,max(|))(,{()()( ~~ ~~ ~~~~~~ ~~ ~~~~~~ ),min( ),max( i A i A vu vuwBA iiii BABABA vu vuwBA iiii BABABA uu xxw vuvuwwwxx xxw vuvuwwwxx ii ii ii ii µµ µµµ µµµµ µµµ µµµµ −= = ∈==∩= = ∈==∪= ⊄ =∩ ∩∩ =∪ ∪∪
  • 47. Ex. Propagation(Ex. Propagation() principle and Second) principle and Second Types of Fuzzy SetsTypes of Fuzzy Sets  X=1 ,2 ,3 ,… ,10X=1 ,2 ,3 ,… ,10  Ã=small Natural NumbersÃ=small Natural Numbers  Ĩ= Natural Numbers near to 4Ĩ= Natural Numbers near to 4 Ui Vi W=max(Ui, Vi) µui(3) µvi(3) Min{µui(3), µvi(3)} 0.8 1 0.8 1 1 1 0.8 0.8 0.8 1 0.5 0.5 0.8 0.7 0.7 1 0.3 0.3 0.7 1 0.7 0.5 1 0.5 0.7 0.8 0.7 0.5 0.5 0.5 0.7 0.7 0.7 0.5 0.3 0.3 0.6 1 0.6 0.4 1 0.4 0.6 0.8 0.6 0.4 0.5 0.4 0.6 0.7 0.6 0.4 0.3 0.3 )}3.0,7.0(),5.0,8.0(),1,1{(}3,...,1|))3(,{()3( )}4.0,6.0(),5.0,7.0(),1,8.0{(}3,...,1|))3(,{()3( ~ ~ === === jv iu j i vj I ui A µµ µµ sup={1,0.5}=1sup={1,0.5}=1 0.8= min {ui, vi}0.8= min {ui, vi} Sup{0.5,0.5,0.5,0.3}Sup{0.5,0.5,0.5,0.3} =0.5=0.5 0.7= min {ui, vi}0.7= min {ui, vi} Sup{0.4,0.4,0.3}=Sup{0.4,0.4,0.3}= 0.40.4 0.6= min {ui, vi}0.6= min {ui, vi} )}4.0,6.0(),5.0,7.0(),1,8.0{()3(~~ = ∩BA µ
  • 48. Fuzzy Numbers & AlgebraicFuzzy Numbers & Algebraic Opr.Opr.  Only one x ЄR can be exists that has μM=1Only one x ЄR can be exists that has μM=1  μM in a specific interval is continuous.μM in a specific interval is continuous.  Almost 5#{(3,0.8),Almost 5#{(3,0.8), (4,1),(5,1)(4,1),(5,1) ,(6,0.7)},(6,0.7)}  Almost 5={(3,0.2),(4,0.6),(5,1),(6,0.7),(7,0.1)}Almost 5={(3,0.2),(4,0.6),(5,1),(6,0.7),(7,0.1)}  Almost 10={(8,0.3),(9,0.7),(10,1),(11,0.7),Almost 10={(8,0.3),(9,0.7),(10,1),(11,0.7), -0.1 0.1 0.3 0.5 0.7 0.9 1.1 0 2 4 6 8 10 Trapezoidal Number -0.1 0.1 0.3 0.5 0.7 0.9 1.1 0 2 4 6 8 10 Triangular Number
  • 49. Fuzzy Numbers & AlgebraicFuzzy Numbers & Algebraic Opr.Opr.  * operators will became true if:* operators will became true if: For x1>y1 and x2>y2 it will resultFor x1>y1 and x2>y2 it will result x1*x2>y1*y2x1*x2>y1*y2 Example: f (x, y)= x + yExample: f (x, y)= x + y Algebraic Operations in Fuzzy Number usageAlgebraic Operations in Fuzzy Number usage are:are: ϕ,,,,,, ⊗Θ⊕→÷×−+
  • 50. Fuzzy Numbers & AlgebraicFuzzy Numbers & Algebraic Opr.Opr. ).()(}|))(,{(..)( )/1()(}|))(,{(/1)( )()(}|))(,{()( : )()( )}(),(min{ ~~~ ~ ~1~1~ ~ ~~~ ~ ~ 1 ~ ~~~~ .. ~ 1~ ~ )()( xxXxxxMxxf xxXxxxMxxf xxXxxxMxxf Example xSupz xxSup MMM M MMM M MMM M MzfxMf NMNM λµµµλλ µµµ µµµ µµ µµµ λλ =→∈=→= =→∈=→= −=→∈=−→−= = = −− − − −− ∈ ⊗
  • 51. Fuzzy Numbers & AlgebraicFuzzy Numbers & Algebraic Opr.Opr. 0)( 0 )()( )()()( : ~~ ~~ ~~~~ ~~~~ =Θ⊕ =⊕ ⊕ ⊕=⊕ Θ⊕Θ=⊕Θ MM MM memberpassivehas ityAssociativ MNNM NMNM Summation )()()( 11 )()( )()( )()( : ~~~~~~~ 1~~~~ ~~~~ ~~~~ ~~~~ NMPMNPM MMMM memberpassivehas ityAssociativ MNNM NMNM NMNM tionMultiplica ⊗+⊗=⊕⊗ =⊗=⊗ ⊗ ⊗=⊗ ⊗Θ=⊗Θ ⊗ΘΘ=⊗ −
  • 52. Fuzzy Numbers & AlgebraicFuzzy Numbers & Algebraic Opr.Opr. . )}(),(min{ )}(),(min{ )}(),(min{)( )()( :nSubtractio ~~ ~~~~ ~~ ~~ ~~~~ NumberfuzzyisNMSo yxSup yxSup yxSupz NMNM NMyxz NMyxz NMyxzNM Θ = −= = Θ⊕=Θ −+= += −=Θ µµ µµ µµµ . )}(),(min{ )}/1(),(min{ )}(),(min{)( )()( :Division ~~ . . 1~~~~ 1~~ ~~ ~~~~ NumberfuzzyisNMSo yxSup yxSup yxSupz NMNM NMyxz NMyxz NMyxzNM φ µµ µµ µµµ φ φφ − = = = − = = = ⊗=
  • 53. Ex. Fuzzy Numbers & AlgebraicEx. Fuzzy Numbers & Algebraic Opr.Opr. )}2.0,12(),4.0,9( ),2.0,8(]),4.0,1max[,6( ]),7.0,3.0max[,4( ),3.0,3(),3.0,2{( )}2.0,4(),1,3(),7.0,2{( )}4.0,3(),1,2(),3.0,1{( ~~ ~ ~ =⊗ = = NM N M The result is not fuzzy number because it has not ConvexThe result is not fuzzy number because it has not Convex Trend.Trend. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 3 6 9 12 15 2 * 3 = Almost 6 M(x)
  • 54. Fuzzy Numbers Intervals:Fuzzy Numbers Intervals:  TriangularTriangular  TrapezoidalTrapezoidal  L-R IntervalL-R Interval FunctionFunction (Asymmetric)(Asymmetric) -0.1 0.1 0.3 0.5 0.7 0.9 1.1 0 2 4 6 8 10 Trapezoidal Number -0.1 0.1 0.3 0.5 0.7 0.9 1.1 0 2 4 6 8 10 Triangular Number 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 5 10 15 L-R Interval Function M(x)
  • 55. L-R Interval Function (Asymmetric)L-R Interval Function (Asymmetric) 0)1( 01)( 10)( 1)0( = >∀< <∀> = L xforxL xforxL L 2 ~ )(}1,0max{ )(})1(,0max{)( :,),,( , )( ~ xp xp LR M exLx exLxxL Examplem Mofvaluemeanism numberspositiveare mxfor mx R mxfor xm L x − − =− =−=       ≥      − ≤      − = βα βα β α µ
  • 56. Ex. L-R Interval FunctionEx. L-R Interval Function 5,3,2 21 1 )( 1 1 )( 2 === + = + = m x xR x xL βα          ≥ − + =      − ≤       − + =      − = 5 3 )5( 21 1 3 5 5 2 5 1 1 2 5 )( 2 ~ xfor x x R xfor x x L x M µ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 2 4 6 8 10 12 L-R Interval Function M(x)
  • 57. L-R Interval FunctionL-R Interval Function If m is not an definite number can be introduce by anIf m is not an definite number can be introduce by an interval of [m- ,m+] and can be shown by:interval of [m- ,m+] and can be shown by: IntervalDefiniteba NumberDefinitemm Examplemm Mofervalmeanismm numberspositiveare mxfor mx R mxmfor mxfor xm L x LR LR LRM )0,0,,( )0,0,,( :,),,,( int],[ , 1)( ~ ~ βα βα β α µ − − − − − − − − − −            ≥         − ≤≤ ≤         − =
  • 58. L-R Interval FunctionL-R Interval Function OperationsOperations LRLRLR LRLRLR LRLRLR LRLR LRLRLR LR LR mnmnnmnm mnmnnmnm nmnm mm nmnm nN mM ),,/(),,(),,( ),,.(),,(),,( ),,(),,(),,( ),,(),,( ),,(),,(),,( ),,( ),,( ~ ~ γβδαδγφβα δβγαδγβα δβγαδγβα βαβα δβγαδγβα δγ βα −−≈ ++≈⊗ ++−=Θ −=− +++=⊕ = =
  • 59. Ex. L-R Interval FunctionEx. L-R Interval Function OperationsOperations LR LRLRLR LR LR NM OONM NM x xRxL )4.1,7.0,1( )6.0,2.0,2()2.0,6.0,2()1,1.1,3( )2.0,6.0,2()8.0,5.0,1( 1 1 )()( ~~ ~~~~ ~~ 2 −=Θ −=Θ==⊕ == + ==
  • 60. Ex. L-R Interval FunctionEx. L-R Interval Function OperationsOperations LRLRLR LRLRLR N M M LRLR mnmnnmnm else x x x R x x L x else x x xelse x x xelse x x x x R x x L x else z zRzLNM )9.0,8.0,6()3.0,1.0,3()1.0,2.0,2( ),,.(),,(),,( 0 3.39.21 3 3.0 3 3 1.0 3 )( 0 1.28.11 )( 20 21 1.0 2 11 20 21 2.0 2 11 2 1.0 2 2 2.0 2 )( 0 111 )()()3.0,1.0,3()1.0,2.0,2( ~ ~ ~ ~~ ≈⊗ ++≈⊗    ≤≤       ⇒ ≥      − ≤      − =    ≤≤ =          ⇒          ≥ ≥≤      − ≤− ≤ ≤≤      − ≤− ⇒ ≥      − ≤      − =    ≤≤− ==== δβγαδγβα µ µ µ
  • 61. Chapter 4:Chapter 4: Functions & FuzzyFunctions & Fuzzy AnalyzingAnalyzing
  • 62. Functions & Fuzzy AnalyzingFunctions & Fuzzy Analyzing Fuzzy functions are defined as generalFuzzy functions are defined as general form of definite functions.form of definite functions. 3 types of fuzzy functions are defined:3 types of fuzzy functions are defined: fuzzyfuzzy fuzzydefinite definitefuzzy YXf YXf YXf →− →− →− :3 :2 :1
  • 63. 1: Functions & Fuzzy Analyzing1: Functions & Fuzzy Analyzing valuefuzzyhaveyx RYXxy Example xy xxfXx BRangeADomain YXf AyfxB AB & ,205 : )(sup)( )())((, : ~ 1 ~ ~~ )( ~~ ==⊕⊗= = ≥∈∀ == → − ∈ µµ µµ
  • 64. 2: Functions & Fuzzy Analyzing2: Functions & Fuzzy Analyzing valuefuzzyhaveyx xy Example YXyxyxy YofsetfuzzyisYp SetferenceYX Rxf & )}3.0,27(),7.0,23(),1,20(),8.0,18(),1.0,17{( )}3.0,6(),7.0,5(),1,4(),8.0,3(),1.0,2{( : ),(),,()( )( Re:& ~~ )( ~ ⊕ ⊗= ×∈∀= µµ
  • 65. Fuzzy functions ExtremesFuzzy functions Extremes If f be a function with real numbers on Domain XIf f be a function with real numbers on Domain X and inf (f) is defined as considered lowest part ofand inf (f) is defined as considered lowest part of (f) and Sup (f) is defined as considered highest(f) and Sup (f) is defined as considered highest part of (f) Maximum of (f) can be defined as:part of (f) Maximum of (f) can be defined as: And is called:And is called: Maximum SetMaximum Set )inf()sup( )inf()( )(~ ff fxf x M − − =µ
  • 66. Ex. Fuzzy functions ExtremesEx. Fuzzy functions Extremes ),...} 4 22 , 4 7 (),0, 2 3 (), 2 1 ,( ),1, 2 (), 4 22 , 4 (), 2 1 ,0{( 2 1 sin 2 1 )1(1 )1()( )( sin)( ~ ~ ~ − + = += −− −− = = = ππ π ππ µ M x xSin x SetMaximumM xxf M -1.5 -1 -0.5 0 0.5 1 1.5 0 1 2 3 4 5 6 7 X Y -0.2 0 0.2 0.4 0.6 0.8 1 1.2 0 1 2 3 4 5 6 7 X of Maximum Set M(x)
  • 67. Fuzzy functions ExtremesFuzzy functions Extremes In second form of fuzzy function definition (f) is defined baseIn second form of fuzzy function definition (f) is defined base on the definite domain and f (x) is defined base on theon the definite domain and f (x) is defined base on the fuzzy Range.So its maximum value is not located in itsfuzzy Range.So its maximum value is not located in its range as a point but also it will berange as a point but also it will be ““maximum set of fuzzy f (x)”maximum set of fuzzy f (x)”.. In order to reach this approach fuzzy maximum andIn order to reach this approach fuzzy maximum and fuzzy minimum must be defined:fuzzy minimum must be defined: DxfxfxnD DxxxfxfMaxM MMMaxRXMMMin i xfnjM MDx nfuzzyDefiniten i ∈=→= ∈== → = ∈ )()),((min)( }|))(),({(sup)( ),...,(),...,( ~ )(,...,1 ~~~~ ~~ 1 ~~~ 1 ~ ~~ ~ µµ µ
  • 68. Ex. Fuzzy functions ExtremesEx. Fuzzy functions Extremes )},(),1,(),,{()()( )()()()( ))(())((1))(( 432 ~ 311 24 )()( 1 )( ~~~ +− −−++ +− == == == αα µµµ αααα αα xxxMxfxfMax xfxfMaxxfxfMax xfxfxf xfxfxf
  • 69. Integral of Fuzzy FunctionsIntegral of Fuzzy Functions 1.1. Integral of Type 1Integral of Type 1 fuzzy function withfuzzy function with definite intervaldefinite interval 2.2. Integral of definiteIntegral of definite function with fuzzyfunction with fuzzy intervalinterval 3.3. Integral of Type 2Integral of Type 2 fuzzy function withfuzzy function with definite intervaldefinite interval 4.4. Integral of Type 2Integral of Type 2 fuzzy function withfuzzy function with fuzzy intervalfuzzy interval
  • 70. 3. Integral of Type 2 fuzzy function3. Integral of Type 2 fuzzy function with definite intervalwith definite interval Fuzzy function f (x) is in stage ofFuzzy function f (x) is in stage of αα so:so:                 += ≥∈→⊆ ≥≥≥≥→≥ =≠≠ ∈= ∫ ∫ −+ −+ −−++ −+−+ b a b a xf dxxfdxxfbaI xfxfbaxRRba xfxfxfxfxf xfxfelsexfxfthenif y α αµ αα α ααµ αα αα αααα αααα ),)()(( 2 1),( ))(&)((],,[,],[ )()()()()(' )()()()(1 ]1,0[,)( ~ ~~ ~ ' ~~~ ' ~~~~ )( ~
  • 71. Integral of fuzzy function withIntegral of fuzzy function with definite intervaldefinite interval  Dubois & Prade show that Fuzzy function f (x) is in stage ofDubois & Prade show that Fuzzy function f (x) is in stage of αα so:so: ( ) ( ) ( )LR LR LR b a b a b a LR Idxxdxxt dxxdxxsdxxdxxf x xR x xLxxxxf Example dxxtdxxsdxxfbaI xtxsxfxf 75.3,875.1,21)4,1(750.3 2 )( 875.1 4 )(21)( 21 1 )( 1 1 )( 2 , 4 ,)( : )(,)(,)(),( )(),(),()( ~4 1 4 1 4 1 4 1 4 1 2 4 1 2 2 ~ ~ ~ === ==== + = + ==         = = ∫∫ ∫∫∫∫ ∫ ∫∫
  • 72. Properties of fuzzy IntegralProperties of fuzzy Integral  If AIf Aαα is defined asis defined as αα stage ofstage of ÃÃ then the Supportthen the Support Set will become:Set will become: ( ){ } ∫∫ ∫ ∫∫∫ =        ∈∀         =        ==    ∉ ∈ =∈=== ∈∈ ∈∈ II I III AA ff ifonlyandifmeaningfulisf fffA functionIntegralfuzzyaasassumedbeAif Ax Ax xAxxxAAAAS ~~ ~ ~ ]1,0[ ~ ]1,0[ ~~ ~ ]1,0[ ~ ]1,0[ ~ ]1,0[ : : 0 )(|)(,)( α αααα α α α α ααα α α α αα α µµα αα  
  • 73. Properties of fuzzy IntegralProperties of fuzzy Integral Dubois & Prade show that:Dubois & Prade show that: )( : ),()())(( )()( ~~~~ ~~ ~~~~ ~~~ ~~~ ~ ~ ∫∫ ∫ ∫ ∫∫ ∫∫∫ ⊕⊆⊕ ∈⊕=⊕ ⊕= =−∀−== ∫ ∫ II I b a c b c a f f a b b aI gfgf thenSetSupportLimitedhadgandfif Xuugufugf fff uuuiffff a b a b µµ
  • 74. Integral of Definite functions withIntegral of Definite functions with fuzzy intervalfuzzy interval Dubois & Prade suggest that:Dubois & Prade suggest that: )()( )(sup)( ,)()( ))(),(min(sup)( :principlenPropagatio ],[ ~~ )(:)( principlenPropagatio , 00 ~ ~~ ~~ aFbFf xz JcdyyfxF yxz withthen baJindefinedisfif D axFzxaF x c ba fz Jyx f F y x F Θ= = → ∈= ∫ = = ∫ ∫ ∫ = = ∈ ∫ µµ µµµ
  • 75. Ex. Integral of Definite functionsEx. Integral of Definite functions with fuzzy intervalwith fuzzy interval { } { } )}2.0,8(),8.0,6(, )1,4(),7.0,2(),4.0,0{()( 22)( ]8,4[],[2)( )2.0,8(),1,7(),7.0,6( )4.0,6(),1,5(),8.0,4( : ~ ~ ~ ~ ~~ ~ ~ ∫ ∫∫ = == =∈= = = D b a b aD oo dxxf xdxdxxf baxxf b a Example (a0 ,b0)(a0 ,b0) IntegralIntegral (2dx,a0,b0)(2dx,a0,b0) MinMin (Mx(a),Mx(b))(Mx(a),Mx(b)) (4,6) 4 0.7 (4,7) 6 0.8 (4,8) 8 0.2 (5,6) 2 0.7 (5,7) 4 1 (5,8) 6 0.2 (6,6) 0 0.4 (6,7) 2 0.4 (6,8) 4 0.2
  • 76. Integral of Definite functions withIntegral of Definite functions with fuzzy intervalfuzzy interval { } { } { } ∫∫∫∫ ∫ ∫ ∫ ∫ ∫∫∫ ∫∫∫ ⊕⊆+→=+       −−− =+ −−−= = =++−=−= == +−=−= ⊕⊆+→ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ )3.0,8(),8.0,6(),1,4(),7.0,2(),4.0,0())()(( )3.0,14(),3.0,12(),3.0,10(),7.0,8(),8.0,6(),1,4( ),7.0,2(),7.0,0(),4.0,2(),3.0,4(),3.0,6( )()( )7.0,2(),8.0,0(),1.0,2(),3.0,4(),3.0,6()( )3.0,12(),3.0,10(),1,6(),4.0,4(),7.0,2(),4.0,0()( 2))()((5)(3)( )}3.0,5(),1,4(),7.0,3{()}4.0,3(),1,2(),8.0,1{( 52)(32)( : :, 22 ~~ b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a gfgfdxxgxf dxxgdxxf dxxg dxxf xdxxgxfxxdxxgxxdxxf ba xxgxxf Example gfgfRIgf
  • 77. Integral of Definite functions withIntegral of Definite functions with fuzzy intervalfuzzy interval ∫∫∫ ∫∫∫ ⊕⊆⇒=== ⊕=+⇒→→ ++ ~~~ ~ ~ ~ ~ ~ ~ "' ~~~~~~~~~ ),("),,('),,( :,:, DDD b a b a b a gffbcDcaDbaD gfgfRIgforRIgf
  • 78. Differentiation of Definite functionsDifferentiation of Definite functions With Fuzzy Domains & RangesWith Fuzzy Domains & Ranges In this section Differentiation of Definite function must beIn this section Differentiation of Definite function must be calculated in a convex fuzzy point and with Support Set ofcalculated in a convex fuzzy point and with Support Set of [a, b] this will cause the obtained answer from f’ (x)[a, b] this will cause the obtained answer from f’ (x) become a fuzzy answer.become a fuzzy answer. )}6.0,3(),1,0{()(')}6.0,1(),1,0(),4.0,1{( 3)(')(:. )(')()()('))(''()()'.( :thenDescendingn',' )(')()()('))(''()()'.( )(')('))(''()(')('))(''( )(sup)()(sup)( 0 ~ 0 ~ 23 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ :thenDescendingorAscending',' 0 ~ 0 ~ 0 ~ )(')('.)('')(')(' 0 ~ 0 ~ 0 ~ 10 ~ =→−= ==     ⊗⊕    ⊗=+=     ⊗⊕    ⊗⊆+= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊕=+ →⊕⊆+ == +=+∈ − XfX xxfxxfEx XgXfXgXfXfggfXgf otandpositivebegfif XgXfXgXfXfggfXgf XgXfXgfXgXfXgf xyxy notaregfif XxgxfyxXgfXyfxXf µµµµ
  • 79. Chapter 5:Chapter 5: Relations & Fuzzy GraphsRelations & Fuzzy Graphs
  • 80. Fuzzy RelationsFuzzy Relations Example: If X is most bigger than Y then:Example: If X is most bigger than Y then: 0 0.25 0.5 0.75 1 0 2 4 6 8 10 12 14x/y M(x,y) }),(|),(),,{( , ~ ~ YXyxyxyxR thenRYXif R ×∈= ⊆ µ       > − + ≤ =       ≥ << − ≤ = yx xy yx yxor yx yxy y yx yx yx RR 11 ) )( 1 1( 1 0 ),( 111 11 10 )( 0 ),( 2 ~~ µµ 0 0.25 0.5 0.75 1 0 2 4 6 8 10 12 14x/y M(x,y)
  • 81. Fuzzy RelationsFuzzy Relations Ex.: X be mostEx.: X be most bigger than Y:bigger than Y: Ex.: X be mostEx.: X be most near to Y:near to Y: y1 y2 y3 y4 x1 0.8 1 0.1 0.7 x2 0 0.8 0 0 x3 0.9 1 0.7 0.8 y1 y2 y3 y4 x1 0.4 0 0.9 0.6 x2 0.9 0.4 0.5 0.7 x3 0.3 0 0.8 0.5
  • 82. Fuzzy Graphs in Fuzzy SetsFuzzy Graphs in Fuzzy Sets  If X,Y C R then:If X,Y C R then: )}(),(min{),( }|))(,{( }|))(,{( ~~~ ~ ~ ~ ~ yxyx YyyyB XxxxA BAR B A µµµ µ µ ≤ ∈= ∈= YXyxyxyxoryx YXyxyxyxoryx ZRZR ZRZR ,),()},(),,(max{),( ,),()},(),,(min{),( ~~~~ ~~~~ ∈=≥ ∈=≤ ∪ ∩ µµµ µµµ
  • 83. Ex. Fuzzy Graphs in Fuzzy SetsEx. Fuzzy Graphs in Fuzzy Sets Ex.: X be mostEx.: X be most bigger than Y:bigger than Y: ),(~~ yx ZR∪ µ Ex.: X be mostEx.: X be most near to Y:near to Y: y1 y2 y3 y4 x1 0.8 1 0.1 0.7 x2 0 0.8 0 0 x3 0.9 1 0.7 0.8 y1 y2 y3 y4 x1 0.4 0 0.9 0.6 x2 0.9 0.4 0.5 0.7 x3 0.3 0 0.8 0.5 ),(~~ yx ZR∩ µ y1 y2 y3 y4 x1 0.8 1 0.9 0.7 x2 0.9 0.8 0.5 0.7 x3 0.9 1 0.8 0.8 y1 y2 y3 y4 x1 0.4 0 0.1 0.6 x2 0 0.4 0 0 x3 0.3 0 0.7 0.5
  • 84. Fuzzy Images in 2-D GraphsFuzzy Images in 2-D Graphs Ex.:Ex.: R T = 1R T = 1 }),(|)),({maxmax }),(|)),(max,{( }),(|)),(max,{( }),(|)],(),,{[( ~ ~ ~ ~ )~ ])[2(~ ])[1(~ ~ YXyxyxR YXyxyxyR YXyxyxxR YXyxyxyxR Ryx T Rx y Ry x R ×∈= ×∈= ×∈= ×∈= µ µ µ µ y1 y2 y3 y4 y5 y6 x1 0.1 0.2 0.4 0.8 1.0 0.8 x2 0.2 0.4 0.8 1.0 0.8 0.6 x3 0.4 0.8 1.0 0.8 0.4 0.2 R 1R 1 Max (M (x, y)) x1 1 x2 1 x3 1 y1 y2 y3 y4 y5 y6 R 2R 2 0.4 0.8 1.0 1.0 1.0 0.8
  • 85. Fuzzy Images in n-D GraphsFuzzy Images in n-D Graphs  If n-D space be considered then Rq can be anIf n-D space be considered then Rq can be an image in (n-q)-D Space of n-D general space. Soimage in (n-q)-D Space of n-D general space. So It is obviously that Rq can be a fuzzy set itself.It is obviously that Rq can be a fuzzy set itself. Rqs can be defined in the direction of independentRqs can be defined in the direction of independent major axis of n-D spaces Like X-axis or Y-axis inmajor axis of n-D spaces Like X-axis or Y-axis in Cartesian coordinate or r-axis andCartesian coordinate or r-axis and θθ-axis in-axis in Cylindrical coordinate.Cylindrical coordinate.  Ex.: Cylindrical R 2:Ex.: Cylindrical R 2: y1 y2 y3 y4 y5 y6 x1 0.1 0.2 0.4 0.8 1.0 0.8 x2 0.2 0.4 0.8 1.0 0.8 0.6 x3 0.4 0.8 1.0 0.8 0.4 0.2 R 2 CR 2 C y1 y2 y3 Y4 y5 y6 x1 0.4 0.8 1.0 1.0 1.0 0.8 x2 0.4 0.8 1.0 1.0 1.0 0.8 x3 0.4 0.8 1.0 1.0 1.0 0.8
  • 86. Operations in Fuzzy GraphsOperations in Fuzzy Graphs (Max-Min. Ops. is Chosen)(Max-Min. Ops. is Chosen)      ∈∈∈×= ∈∈∈+×= ⇒     •= ∈∈∈= ∈∈∈= ×∈=×∈= • },,|)}],(),({max),,{[( },,|)}],(),({max 2 1),,{[( ... * },,|)}],(*),({max),,{[( },,|)}}],(),,({min{max),,{[( }),(|)],(),,{[(}),(|)],(),,{[( 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ ~~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ * 2 ~ 1 ~ 2 ~ 2 ~ 1 ~ ZzYyXxzyyxzxRoR ZzYyXxzyyxzxRoR AVE ZzYyXxzyyxzxRoR ZzYyXxzyyxzxRoR ZYzyzyzyRYXyxyxyxR RRy RRyAVE RRy RRy RR µµ µµ µµ µµ µµ
  • 87. Ex. Operations in Fuzzy Graphs:Ex. Operations in Fuzzy Graphs: R1 O R2 y1 y2 y3 y4 x1 0.4 0.7 0.3 0.7 x2 0.3 1 0.5 0.8 x3 0.8 0.3 0.7 1 R 2 z1 z2 z3 z4 y1 0.9 0 0.3 0.4 y2 0.2 1 0.8 0 y3 0.8 0 0.7 1 y4 0.4 0.2 0.3 0 y5 0 1 0 0.8 R1 y1 y2 y3 y4 y5 x1 0.1 0.2 0 1 0.7 x2 0.3 0.5 0 0.2 1 x3 0.8 0 1 0.4 0.3 4.0)},(),,{(),( }0.0,4.0,0.0,2.0,1.0max{),( 0.0}0.0,7.0min{)},(),,(min{ 4.0}4.0,0.1min{)},(),,(min{ 0.0}8.0,0.0min{)},(),,(min{ 2.0}2.0,2.0min{)},(),,(min{ 1.0}9.0,1.0min{)},(),,(min{ ),( 1111112 ~ 1 ~ 11 1551 1441 1331 1221 1111 112 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ == = == == == == == zxzxzxRoR zx zyyx zyyx zyyx zyyx zyyx zxRoR RoR RoR RR RR RR RR RR µ µ µµ µµ µµ µµ µµ
  • 88. Ex. Operations in Fuzzy Graphs:Ex. Operations in Fuzzy Graphs: R1 O R2 y1 y2 y3 y4 x1 0.4 0.7 0.3 0.56 x2 0.27 1 0.4 0.8 x3 0.8 0.3 0.7 1 R 2 z1 z2 z3 z4 y1 0.9 0 0.3 0.4 y2 0.2 1 0.8 0 y3 0.8 0 0.7 1 y4 0.4 0.2 0.3 0 y5 0 1 0 0.8 R1 y1 y2 y3 y4 y5 x1 0.1 0.2 0 1 0.7 x2 0.3 0.5 0 0.2 1 x3 0.8 0 1 0.4 0.3 4.0)},(),,{(),( }0.0,4.0,0.0,04.0,09.0max{),( 0.00.07.0),(),( 4.04.00.1),(),( 0.08.00.0),(),( 04.02.02.0),(),( 09.09.01.0),(),( ),( 1111112 ~ 1 ~ 11 1551 1441 1331 1221 1111 112 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ == = =×=× =×=× =×=× =×=× =×=× • • • • zxzxzxRoR zx zyyx zyyx zyyx zyyx zyyx zxRoR RoR RoR RR RR RR RR RR µ µ µµ µµ µµ µµ µµ
  • 89. Ex. Operations in Fuzzy Graphs:Ex. Operations in Fuzzy Graphs: R1 O R2 y1 y2 y3 y4 x1 0.7 0.85 0.65 0.75 x2 0.6 1 0.65 0.9 x3 0.9 0.65 0.85 1 R 2 z1 z2 z3 z4 y1 0.9 0 0.3 0.4 y2 0.2 1 0.8 0 y3 0.8 0 0.7 1 y4 0.4 0.2 0.3 0 y5 0 1 0 0.8 R1 y1 y2 y3 y4 y5 x1 0.1 0.2 0 1 0.7 x2 0.3 0.5 0 0.2 1 x3 0.8 0 1 0.4 0.3 [ ] [ ] [ ] [ ] [ ] 7.0)},(),,{(),( }35.0,7.0,4.0,2.0,5.0max{),( 35.00.07.0 2 1),(),( 2 1 7.04.00.1 2 1),(),( 2 1 4.08.00.0 2 1),(),( 2 1 2.02.02.0 2 1),(),( 2 1 5.09.01.0 2 1),(),( 2 1 ),( 1111112 ~ 1 ~ 11 1551 1441 1331 1221 1111 112 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ == = =+=     + =+=     + =+=     + =+=     + =+=     + zxzxzxRoR zx zyyx zyyx zyyx zyyx zyyx zxRoR RoRAVE RoR RR RR RR RR RR AVE AVE AVE µ µ µµ µµ µµ µµ µµ
  • 91. Properties ofProperties of Max-MinMax-Min CombinationCombination  Max-Min function is Commutative:Max-Min function is Commutative: 3 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 2 ~ 3 ~ 1 ~ 2 ~ 3 ~ )()()( RRoRoRRoRoRRoRoR == :Pr: , ),(),( ),(),( :Pr ),(:Pr 1),(:Pr ~ ~ ~ ~ ~~ ~~ ~ ~ opertyMirrorhasRExample Xyx xyxx yxxx IfopertyMirrorweakhasR XxxxIfopertyMirrorhasR XxxxIfopertyMirrorhasR RR RR R R ∈∀     ≥ ≥ − ∈∀≥− ∈∀= µµ µµ εµε µ R y1 y2 y3 y4 x1 1 0.85 0.65 0.75 x2 0.6 1 0.65 0.9 x3 0.9 0.65 1 1 x4 0.9 0.5 0.6 1
  • 92. Properties ofProperties of Max-MinMax-Min CombinationCombination XyxyxyxRRoRifopertiesTaadihasR xyyxifopertiesSymmetricnonhasR Xyxxyyx ifopertiesSymmetricAntiCompletelyhasR XyxxyyxifopertiesSymmetricAntihasR XyxxyyxifopertiesSymmetrichasR RRoR RR RR RR RR ∈∀≤⊆ ≠− ∈∀=> − ∈∀≠− ∈∀= ,),(),(:Pr ),(),(:Pr ,0),(0),( :Pr ,),(),(:Pr ,),(),(:Pr ~~~ ~~ ~~ ~~ ~~ ~~~~ ~ ~ ~ ~ µµ µµ µµ µµ µµ
  • 93. Ex. Properties ofEx. Properties of Max-MinMax-Min CombinationCombination Symmetric SymmetricAnti − SymmetricNon − Taadi R y1 y2 y3 y4 x1 1 0.9 0.7 0.8 x2 0.9 1 0.7 0.9 x3 0.7 0.7 1 1 x4 0.8 0.9 1 1 R y1 y2 y3 y4 x1 1 0.9 0.7 0.8 x2 0.6 1 0.7 0.9 x3 0.9 0.7 1 1 x4 0.9 0.5 0.6 1 R y1 y2 y3 y4 x1 1 0 0.7 0 x2 0.6 1 0 0.9 x3 0 0.7 1 1 x4 0.9 0 0 1 R y1 y2 y3 y4 x1 1 0.9 0.7 0.8 x2 0.6 1 0.7 0.9 x3 0.9 0.7 1 1 x4 0.9 0.9 1 1 R y1 y2 y3 y4 x1 0.2 1 0.4 0.4 x2 0 0.6 0.3 0 x3 0 1 0.3 0 x4 0.1 1 1 0.1 RoR y1 y2 y3 y4 x1 0.2 0.6 0.4 0.2 x2 0 0.6 0.3 0 x3 0 0.6 0.3 0 x4 0.1 1 0.3 0.1 SymmetricAntiCompletly −
  • 94. Properties ofProperties of Max-MinMax-Min CombinationCombination .&.5 . :&.4 .&.3 :.2 :.1 ~~~~ 1 ~ 2 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ ~~~~ 2 ~ 1 ~ 2 ~ 1 ~ 2 ~ 1 ~ 1 ~ SymmetricbecomewillRRoRthenSymmetricbeRif SymmetricbecomewillRoRRoR thenSymmetricbeRRif mirroricbecomewillRoRthenmirroricbeRRif RoRRthenmirroricbeRif RoRRRoRRthenmirroricbeRif n = ⊆ ⊆⊆
  • 95. Properties ofProperties of Max-MinMax-Min CombinationCombination .&& :&.8 :&.7 ),(),(, :&.6 ~ 2 ~ 1 ~ 1 ~ 2 ~ 2 ~ 1 ~ 2 ~ 1 ~~~ ~ ~ ~~ TaadicbecomewillRoRRRRoR thenTaadicbeRRif RRoR thenTaadicMirroricbeRif xxyxXyx thenTaadicSymmetricbeRif RR = = ≤∈∀ µµ
  • 96. Properties Validity:Properties Validity: Max-Min Max-Mul Max-Mean Op. with Associativity 1 TRUE - TRUE Arbitrary 2 TRUE TRUE - Arbitrary 3 TRUE - TRUE Arbitrary 4 TRUE TRUE - Arbitrary 5 TRUE TRUE - TRUE 6 TRUE - - Arbitrary 7 TRUE TRUE TRUE Arbitrary 8 TRUE TRUE TRUE Arbitrary
  • 99. Fuzzy GraphsFuzzy Graphs  The Length & distance between 2The Length & distance between 2 nodes are defined as follows:nodes are defined as follows: )}({min)( ),( 1 )( 1 1 PLPD xx PL i i n i ii = = ∑= +µ
  • 100. Fuzzy Forests:Fuzzy Forests: Forest are that graphs that have no loopForest are that graphs that have no loop