SlideShare a Scribd company logo
1 of 11
Download to read offline
http://www.iaeme.com/IJMET/index.asp 847 editor@iaeme.com
International Journal of Mechanical Engineering and Technology (IJMET)
Volume 10, Issue 01, January 2019, pp. 847–857, Article ID: IJMET_10_01_088
Available online at http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=10&IType=01
ISSN Print: 0976-6340 and ISSN Online: 0976-6359
© IAEME Publication Scopus Indexed
PERFORMANCE AND EMISSION
CHARACTERISTICS OF DUAL FUEL DI DIESEL
ENGINE USING CASHEW NUT SHELL BIO
DIESEL AND HYDROGEN AS FUEL
V. Thanigaivelan*
Assistant Professor, Department of Mechanical Engineering, SRM IST, Chennai.
M. Loganathan
Associate Professor, Department of Mechanical Engineering, Annamalai University,
Chidambaram.
*corresponding author
ABSTRACT
With augmented vehicle quantities during latest period have effected into immense
claim through vestige energy. These have lead with expansion of vehicle via substitute
energy that comprises gaseous energy, bio energy and vegetables oils as stimulate. Power
through hydrogen becomes the prime prospects which wrap the upcoming stipulate of
remnant energy scarcity. Hydrogen as a key substitute energy becomes a substitution
through usual energy. With notable possessions, alike elevated flare rapidity, elevated
calorific value stimulates usage of hydrogen energy like twin fuel manner in diesel engine.
Present study investigates the overall performance and emissions of diesel engine fuelled
through CNSL and hydrogen as dual fuel. The fuels have been tested under stationary,
one cylinder, water chilled diesel engine. Here the hydrogen is added with B20 (20%
CNSL and 80% diesel) fuel for different flow rate namely 4lpm, 8lpm and 12lpm. Engine
test results showed that exhaust emissions are reduced and performance are improved by
adding hydrogen fuel. The results showed that the addition of 8lpm H2 with B20 decreased
the HC and CO emission compared to B20 and neat diesel fuel. The BTE and NOx
increased for the above dual fuel mode. The NOx and exhaust gas temperature are
increased for 8lpm H2 addition with B20 fuel.
Keywords: Cashew nut Shell liquid, Hydrogen, Engine performance, Emissions
Cite this Article: V. Thanigaivelan and M. Loganathan, Performance and Emission
Characteristics Of Dual Fuel Di Diesel Engine Using Cashew Nut Shell Bio Diesel And
Hydrogen As Fuel, International Journal of Mechanical Engineering and Technology,
10(01), 2019, pp.847–857
http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&Type=01
V. Thanigaivelan and M. Loganathan
http://www.iaeme.com/IJMET/index.asp 848 editor@iaeme.com
1. INTRODUCTION
In the present and high-speed humankind, petroleum supported energy turn out to be significant
with every progress. Yields resultant as of crude lubricate sustained as chief and serious basis of
force that useful in energizing means of transportation throughout. Still, petroleum assets are
inadequate as well as non-renewable. Throughout years, utilization of substitute energy in diesel
engines established awareness. The vagueness of petroleum supported energy accessibility has
shaped necessitate on substitute energy [1]. Through several years investigation exertions
obligate to be dedicated mostly happening with enhanced engine strategy since the standpoint of
dropping impurities discharge deprived of forfeiting recital and fuel budget. Presently, a
prominence on dropping impurity discharges as of petroleum supported engines ensures striving
progress plus analysis about numerous substitute fuels. The key impurities as of diesel devices
be NOX, particulate matter and smoke [2]. Numerous fuels ought to be deliberated as
replacements in place of hydrocarbon-based energy. Substitute energy facilitates interchange
petroleum supported energies comprise additives, LPG, CNG, H2, vegetable oils, bio gas,
producer gas and LNG. Among all, H2 becomes durable sustainable and fewer contaminating
energy. Moreover, H2 be innocuous, unscented plus consequences while thorough burning [3].
H2 possibly will castoff like an energy for IC engines both untainted otherwise intermingled
through additional hydrocarbon fuels. Owing to these features, investigators stand converging
their responsiveness on hydrogen to be a substitute energy in internal combustion engines (ICEs)
plus with expansion of energy chamber power-driven automobiles. Hydrogen can be cast-off for
instance an exclusive fuel in spark ignition (SI) engine, both through carburation and straight
inoculation [4]. Hydrogen driven ICE automobiles fabricated by existing expertise remain
expensive through unreal fuel or methanol automobiles with coal ingestion or fuel charge [5].
The notion of consuming hydrogen like substitute fuel intended with diesel devices is topical.
The personal detonation temperature of H2 is 858 K, thus hydrogen might not cast-off
unswervingly with CI device deprived of trigger socket else spark socket [6]. Hydrogen enhanced
devices yield roughly the identical brake control and greater thermal competence compared with
diesel engines above the complete scope of process [7, 8]. Through a reduced experimental
measure of diesel, hydrogen enhanced devices contribute advanced brake thermal competence
through flatter burning at par with diesel engine [9]. H2 incineration unveils advanced chilling
damages incineration space wall compared with hydrocarbon burning par with greater blazing
rapidity with squatter slaking distance [10]. Numerous investigators ought to been focused in the
direction of the advance of substitute fuels to attain this objective. Amidst the numerous possible
substitute fuels, H2 initiates as utmost auspicious for complete burning and enhanced incineration
possessions. Though the great nature ignition temperature of hydrogen bounds usage with CI
engines subsequently the cylinder temperature upsurge with compression alone actually
inadequate for incineration; therefore a blastoff cause is essential. Additionally also resolved as
ideal H2 enhancement through diesel remained 35% [11-14]. H2 is castoff by twin fuel method
through diesel then presented utmost brake thermal competence of 35% with compression
proportion of 24.5:1 [15, 16]. Recital of twin inoculation hydrogen powered engine through
solenoid in-cylinder inoculation with exterior fuel inoculation procedure too premeditated. An
upsurge in thermal competence via nearby 22% remained renowned on behalf of twin shot at
squat heaps and 5% by abundant heaps associated to thru inoculation [17]. Although
electrochemically retorting hydrogen in energy cells is deliberated as freshest and utmost
effective resources of consuming hydrogen, that assumed by numerous like expertise of the
upcoming prospect [18]. Primary hurdles that overwhelmed the effective consumption of
hydrogen as an energy in an ICE being pre eruption [19]. The ignition extent stood abridged
owing to greater blaze rapidity of hydrogen. Furthermore, a developed premixed combustion
level be there detected through hydrogen introduction [20].The hydrogen engine is a conceivable
resolution to refining the device recital at indolent and slender circumstances. Subsequently the
Performance And Emission Characteristics Of Dual Fuel Di Diesel Engine Using Cashew Nut Shell Bio
Diesel And Hydrogen As Fuel
http://www.iaeme.com/IJMET/index.asp 849 editor@iaeme.com
blaze rapidity of H2 is about 5 spells compared with gasoline, hydrogen devices might acquire
enormously endless capacity burning that not simply profits the engine thermal competence
however too decreases the engine recurring discrepancy. Moreover, well-ordered diesel also too
combusted to match with the H2/diesel assortment. Outcomes from trials obligate to be related
thru statistics from prior statistical investigation through diverse code [21]. In addition, the squat
detonation drive of hydrogen too licenses hydrogen-air blend to be effortlessly burned beneath
slender circumstances and assistances engines increase a flat initial procedure. In this effort H2
has been instated amid air with inlet manifold by several degree stream charge specifically 4lpm,
6lpm and 8lpm.
2. MATERIALS AND METHODS
2.1. Production of hydrogen
Hydrogen (H2) is solitary primary conceivable substitute fuels ought to be resultant as of normal
resources [2]. H2 can be profitably manufactured as of electrolysis of water as well as through
coal gasification. Numerous additional approaches like thermo chemical disintegration of water
and solar photo electrolysis are existing, however at this time castoff at workroom level
reasonably than for marketable procedure. Though, by the progress of applied and extremely
effectual final converters of H2 like fuel cells, nearby as an intense rate decrease plus
enhancement about efficacy of H2 making, harmless and suitable on sustenance storing.
2.2. Incineration and Properties of Hydrogen
Hydrogen while scorching yields merely water. H2 being harmless, fragrance less plus too
consequences with thorough incineration. H2 with great nature detonation temperature (858ºK);
becomes hard while exploding hydrogen by merely compression. With this, hydrogen might not
castoff through diesel engine arrangement deprived of an explosion cause. In order to flinch
incineration roughly blastoff cause is mandatory through the compression knock. Earlier to TDC
minor blame of diesel energy being introduced over predictable inoculation arrangement actually
deeds like detonation basis. Incineration of hydrogen will vitally diverse as of the incineration of
hydrocarbon energy. Hydrogen obligates broader flammability bounds with 5–76% with capacity
in air associated by diesel energy which is 0.8–5% by capacity. The boundary of H2 flammability
diverges with a correspondence proportion amid 0.1 to 7.1. Hydrogen during Normal temperature
and pressure become slight Gas having thickness as merely 1/14th
and 1/9th
compared with air as
well natural gas respectively. Through tremendous chilling through 253 degrees atmospheric
pressure, then abridged to liquefy about 0.07 in specific gravity. Combination of hydrogen and
air or flammable above an remarkably extensive choice of configurations the flammability
bounds at regular temperatures encompass as of 5 to 75% via hydrogen capacity thru air. The
table.1 provides several possessions about hydrogen at 25ºC and 1 atm.
V. Thanigaivelan and M. Loganathan
http://www.iaeme.com/IJMET/index.asp 850 editor@iaeme.com
Table-1: Properties of Hydrogen
3. EXPERIMENTAL SETUP AND PROCEDURE
The representation along with pictorial view of the investigational arrangement is exposed in Fig.
1 and fig.2 correspondingly.
Figure.1. Representation of investigational arrangement
Performance And Emission Characteristics Of Dual Fuel Di Diesel Engine Using Cashew Nut Shell Bio
Diesel And Hydrogen As Fuel
http://www.iaeme.com/IJMET/index.asp 851 editor@iaeme.com
Figure 2. Pictorial outlook of investigational arrangement
Trials remained accompanied along with sole cylinder, 4 stroke, water-cooled, diesel engine
(Make: Kirloskar AV-1). The engine remained united with eddy current dynamometer. The
engine stood functioned with continual rapidity about 1500 rpm. The engine stipulation be
specified in Table 2.
Table -2 Specification of the engine
A crank viewpoint encoder stood tailored to crank shaft to record crank angle. The chamber
pressure stayed restrained by a piezoelectric pressure transducer (Make: Kistler, Type 6056A)
riding on the cylinder head. The pressure gesture was directed to statistics attainment arrangement
and incineration data like cylinder pressure and heat release rate (HRR) were attained. The oxides
of nitrogen (NOx), carbon monoxide (CO) and hydrocarbon (HC) releases were restrained
through non-dispersive infrared analyzers (NDIR) (Make: HORIBA-Japan). The gas analyzers
stayed attuned by typical gases formerly to assessment. Primarily, the engine was functioned thru
well-ordered diesel energy. Additionally, the engine remained verified by twin fuel, accumulation
of hydrogen through inlet air in count to pilot B20 energy inoculation. The hydrogen gas as
instated in the inlet manifold in diverse course rate viz. 4lpm, 8lpm and 12 lpm correspondingly.
The hydrogen stream line entails of hydrogen cylinder, pressure controller, flame arrester, flow
meter and flow regulator valve which are exposed in figure.3.
V. Thanigaivelan and M. Loganathan
http://www.iaeme.com/IJMET/index.asp 852 editor@iaeme.com
Figure. 3. Hydrogen flow line
The hydrogen is kept in a high-pressure storing tank at 250 bar and this pressure was abridged
to a pressure 2 bar via a pressure controller. Hydrogen further conceded over a flame arrestor and
flame set-up which capture any backfire as of the engine. It as well performances equally a non-
returnable controller. The hydrogen stream amount is restrained by the digital gas flow meter.
The recital and discharge features were assessed for diverse hydrogen stream proportion and
associated through well-ordered diesel fuel process.
4. RESULTS AND DISCUSSION
4.1 Performance analysis
4.1.1. Brake Thermal Efficiency
Fig. 4 shows the brake thermal efficiency discrepancy through diverse stream charges of
hydrogen. The 8 lpm hydrogen accumulation occasioned the maximum brake thermal
competence of 37.5% associated to diesel and B20 at full capacity. The upsurge in brake thermal
efficiency is owing to hydrogen’s advanced calorific rate and enhanced intercourse thru air in
accumulation to its quicker flame rapidity features [22]. It stood experiential that the hydrogen
accumulation thru inlet air exhibited the upgraded recital by related to usual neat diesel procedure.
Figure.4. comparison of BTE
Performance And Emission Characteristics Of Dual Fuel Di Diesel Engine Using Cashew Nut Shell Bio
Diesel And Hydrogen As Fuel
http://www.iaeme.com/IJMET/index.asp 853 editor@iaeme.com
4.1.2. Brake Specific Fuel Consumption
Fig. 5 shows the disparity of brake specific fuel consumption (BSFC) by brake influence for
diverse stream charges of hydrogen. The BSFC diminutions through an upsurge in hydrogen
accumulation degree. The lowermost BSFC is attained for 8lpm hydrogen accumulation at full
capacity related to diesel. This is owing to the premixing of hydrogen fuel through air owed to
its great diffusivity and unvarying intercourse thru air subsequent in enhanced incineration. The
proportion of decrease of BSFC remained experimental 12% at full capacity among diesel and
8lpm hydrogen stream frequency.
Figure.5. comparison of BSFC
4.2. Emission analysis
4.2.1. Nitrogen Oxides (NOx)
Fig. 6 shows the disparity of nitrogen oxides through brake power. NOX procedures at topmost
incineration temperature and higher oxygen absorptions [23, 24]. NOX establishment is advanced
per 8 lpm associated to straight diesel, B20 and further stream degree of hydrogen. As the
hydrogen proportion upsurges, the flame speed and henceforth incineration competence
augmented [25]. The proportion of upsurge of NOX is 34% at complete capacity once associated
straight diesel.
V. Thanigaivelan and M. Loganathan
http://www.iaeme.com/IJMET/index.asp 854 editor@iaeme.com
Figure.6. Comparison of NOx
4.2.2. Hydrocarbon (HC)
Figure.7. Comparison of HC
The disparity of HC discharges for diverse standards of hydrogen enhancement is exposed in
fig 7. The Unburned hydrocarbon diminutions expressively since hydrogen fuel does not
comprise carbon. It is perceived that the HC release values of 4lpm, 8lpm and 12lpm hydrogen
stream frequency through diesel fuel process are 210 ppm, 199 ppm and 203 ppm
correspondingly at full capacity. The lowermost HC release remained attained 199 ppm thru 8
lpm hydrogen stream percentage related to 215 ppm for diesel. The decrease in HC is owing to
the advanced scorching rapidity of hydrogen, which augments the diesel burning. The lack of
carbon in hydrogen fuel moreover decreases the HC releases to a better scope [25, 26].
Performance And Emission Characteristics Of Dual Fuel Di Diesel Engine Using Cashew Nut Shell Bio
Diesel And Hydrogen As Fuel
http://www.iaeme.com/IJMET/index.asp 855 editor@iaeme.com
4.2.3 Carbon monoxide
The disparity of CO discharge with engine brake power and diverse percentage of hydrogen
enhancement is shown fig 8.The lowest CO discharge was attained as 0.05% with 8 lpm while
associated to 0.11% for diesel. Thru 8 lpm the CO discharge is inferior to extra hydrogen stream
charges and straight diesel process. The decrease CO in 8 lpm hydrogen-operated dual fuel engine
is owing to the lack of carbon in hydrogen fuel. At no load as the engine is functioned at slender
correspondence proportion, a decrease in CO is perceived for hydrogen twin fuel process.
However the oxygen deliberation decreases suggestively and in accumulation owing to slighter
response interval it outcomes in a noteworthy upsurge in CO foundation degree, which sorts the
whole CO deliberation to upsurge at full capacity associated to diesel.
Figure.8. Comparison of CO
4.2.4 Exhaust gas temperature
Figure.9. comparison of EGT
V. Thanigaivelan and M. Loganathan
http://www.iaeme.com/IJMET/index.asp 856 editor@iaeme.com
The exhaust gas temperature disparity for diverse magnitudes of hydrogen enhancement is
exposed in Fig 9. It is experiential that the exhaust gas temperate charge of 4 lpm, 8lpm and
12lpm hydrogen and diesel energy procedure augmented typically associated to diesel at, full
capacity correspondingly. The uppermost drain temperature was attained 378 °C thru 8 lpm
hydrogen accumulation related to 346 °C for diesel. This is owing to improved intercourse of
hydrogen through air ensuing in thorough incineration of fuel by upsurge in temperature nearby
the combustion compartment. [28].
5. CONCLUSIONS
Based on the experimentations accompanied on a hydrogen augmented bio diesel (dual fuel)
engine scheme, the subsequent inferences are drawn:
The Brake thermal efficiency of the hydrogen and biodiesel fuel procedure stood rather
greater compared to the diesel fuel procedure. In 8 lpm hydrogen stream proportion, the brake
thermal competence is augmented.
Brake Specific fuel consumption diminutions through upsurge in hydrogen proportion above
the complete sort of maneuver.
NOx release augmented over 8lpm of hydrogen stream point, associated to B20 and diesel
procedure.
The carbon monoxide discharge augmented in full capacity state. The deepest CO release
stayed attained through 8lpm hydrogen accumulation, related to diesel and B20 fuels.
The HC discharge for 8lpm flow rate of hydrogen decreased associated near diesel at full
capacity. The exhaust gas temperature augmented in lieu of 8lpm adding hydrogen stream charges
commonly associated to diesel at complete capacity.
For the most part the aforementioned stood resolved that hydrogen enhanced biodiesel
engines accomplish thriving and release fewer effluence associated to well-ordered diesel fuel.
Henceforth, hydrogen enhancement in a CI engine can be observed equally an eco-friendly
substitute fuel to diesel.
REFERENCES
[1] Verhelst S, Sierens R. Aspects concerning the Optimization of a Hydrogen Fueled Engine.
Int J Hydrogen Energy 2001; 26:981–5.
[2] Das LM. Hydrogen engine: Research and development (R & D). Int J Hydrogen Energy 2002;
27:953–65.
[3] Fulton J, Lynch F, Marmora R. Hydrogen for reducing emissions from alternative fuel
vehicles SAE paper 931813; 1993. p. 471–9.
[4] Das LM. Near-term Introduction of Hydrogen engines for automotive and agriculture
application. Int J Hydrogen Energy 2002; 27:479–87.
[5] Ravi M, Rao AN, Ramaswamy MC, Jagadeesan TR. Experimental investigation on dual fuel
operation of hydrogen in a C.I. Engine Proceedings of the National Conference on I.C.
Engines and Combustion, Indian Institute of Petroleum, Dehradun, September 15–18, 1992,
p. 86–91.
[6] Barreto L, Makihira A, Riahi K. The hydrogen economy in the 21st century a sustainable
development scenario. Int J Hydrogen Energy 2003; 28:267–84.
[7] Buckel JW, Chandra S. Hot wire ignition of hydrogen—oxygen mixture. Int J Hydrogen
Energy 1996;21(1):39–44.
[8] HaragopalaRao B, Shrivastava KN, Bhakta HN. Hydrogen for dual fuel engine operation. Int
J Hydrogen Energy 1983;8(5):381–4.
Performance And Emission Characteristics Of Dual Fuel Di Diesel Engine Using Cashew Nut Shell Bio
Diesel And Hydrogen As Fuel
http://www.iaeme.com/IJMET/index.asp 857 editor@iaeme.com
[9] Yi HS, Min K, Kim ES. Optimized mixture formation for hydrogen fuelled engines. Int J
Hydrogen Energy 2000; 25:685–90.
[10] Shudo T, Suzuki Hi R. Applicability of heat transfer equations to Hydrogen combustion.
JSAE Review 2002;23:303–8.
[11] Polasek Milos, Macek Jan and Takats Michal (Hydrogen Fueled EngineProperties of Working
Cycle and Emission Potentials), SAE Paper No.020373, 2002.
[12] MihaylovMilen and BarzevKiril,( Investigation of The Effects ofHydrogen Addition on
Performance and Exhaust Emissions of DieselEngine ) ,FISITA World Automotive
Congress,23-27 May ,2004 ,Barcelona ,Spain .
[13] N. Saravanan, and G.Nagarajan (Performance and Emission Study in Manifold Hydrogen
Injection With Diesel as an Ignition Source For Different Starts of Injection), Renewable
Energy, Vol.34,No.1, pp. 328- 334 , 2009.
[14] Senthil Kumar M, Ramesh A, Nagalingam B. Use of hydrogen to enhance the performance
of a vegetable oil fuelledcompression ignition engine. Int J Hydrogen Energy
2003;28:1143e54.
[15] Masood M, Ishrat MM, Reddy AS. Computational combustion and emissionanalysis of
hydrogen-diesel blends with experimental verification. Int J Hydrogen Energy 2007;
32:2539–47.
[16] Lee JT, Kim YY, Lee CW, Caton JA. An investigation of a cause of backfire and itscontrol
due to crevice volumes in a hydrogen fueled engine, vol. 123. ASME; 2001.
[17] Lee Jong T, Kim YY, Caton Jerald A. The development of a dual injectionhydrogen fueled
engine with high power and high efficiency. In: 2002 Fall technical conference of ASME-
ICED, 8–11 September, 2002. p. 2-12.
[18] N. Saravanan, G. Nagarajan, Performance and emission studies on port injection of hydrogen
with varied flow rates with diesel as an ignition source, Applied Energy 87 (2010) 2218–
2229.
[19] K.A. Küleri, In the lean burn spark ignition engines the effect of the hydrogenaddition on the
cyclic variability and exhaust emission (In Turkish), Master Thesis, Atatürk University
Institute of Science, Erzurum 2011, pp 45–55.
[20] Tsujimura T, Mikami S, Achiha N, Takunaga Y, SendaJ,Fujimoto H. A study of direct
injection diesel engine fueled with hydrogen. SAE 2003-01-0761; 2003.
[21] Boretti A. Advance in hydrogen compression ignitioninternal combustion engines. Int J
Hydrogen Energy 2011;36:12601e6.
[22] Li J, Lu Y, Du T. Back fire in hydrogen fueled engine and its control’ Proceedings of the
international symposium on hydrogen systems, Beijing, China 7–11 May 1985. China
Academic Publishers, Beijing, Pergamon Press Oxford; 1985. p. 115–25.
[23] Lee SJ, Yi Hs, Kim Es. Combustion characteristics of Intake Port injection type Hydrogen
fueled engine; Int J Hydrogen Energy 1995; 0360-3199(94) 00052—2 20(4): p. 317–22.
[24] Otto U. A method to estimate hydrogen in engine exhaust and factors that affect NOX and
particulate in diesel engine exhaust SAE paper 910732; 1991. p. 1330–51.
[25] Hoekstra RL, van Blarigan P, Mulligan N. NOx Emissions and efficiency of hydrogen, natural
gas and hydrogen/natural gas blended fuels’ SAE paper 961103; 1996. p. 761–73.
[26] Houseman J, Hoehn FW. A two charge engine concept: hydrogen enrichment, SAE 741169;
1974.
[27] Breashes R, Cotrill H, Rupe J. Partial hydrogen injection into internal combustion engines—
effect on emissions and fuel economy. First symposium on low pollution power systems
development, Ann Arbor, MI, 1973.
[28] Bell SR, Gupta M. Extension of the lean operation limit for natural gas fueling of a spark
ignited engine using hydrogen blending. Combust Sci Technol 1997; 123:23–48.

More Related Content

What's hot

An Experimental Investigation of Performance and Emissions of LPG as Dual Fue...
An Experimental Investigation of Performance and Emissions of LPG as Dual Fue...An Experimental Investigation of Performance and Emissions of LPG as Dual Fue...
An Experimental Investigation of Performance and Emissions of LPG as Dual Fue...IJERA Editor
 
“Optimal performance and Analysis on 4-S Si and CI Engine Fueled with HHO Gas...
“Optimal performance and Analysis on 4-S Si and CI Engine Fueled with HHO Gas...“Optimal performance and Analysis on 4-S Si and CI Engine Fueled with HHO Gas...
“Optimal performance and Analysis on 4-S Si and CI Engine Fueled with HHO Gas...iosrjce
 
Hydrogen fuel cell vehicles
Hydrogen fuel cell vehiclesHydrogen fuel cell vehicles
Hydrogen fuel cell vehiclesManoja m h
 
Hydrogen Fuelled Ic Engine – An Overview
Hydrogen Fuelled Ic Engine – An OverviewHydrogen Fuelled Ic Engine – An Overview
Hydrogen Fuelled Ic Engine – An Overviewiosrjce
 
Oxy- Hydrogen Generator (www.watercar.in)
Oxy- Hydrogen Generator (www.watercar.in)Oxy- Hydrogen Generator (www.watercar.in)
Oxy- Hydrogen Generator (www.watercar.in)Abilashh
 
Bonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinalBonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinalAtiek Rostika
 
Dual fuel bike (LPG cum Petrol)
Dual fuel bike (LPG cum Petrol)Dual fuel bike (LPG cum Petrol)
Dual fuel bike (LPG cum Petrol)paperpublications3
 
Application of dry cell hho gas generator with pulse width modulation on sinj...
Application of dry cell hho gas generator with pulse width modulation on sinj...Application of dry cell hho gas generator with pulse width modulation on sinj...
Application of dry cell hho gas generator with pulse width modulation on sinj...eSAT Journals
 
Alternative fuel hho gas ieee
Alternative fuel hho gas ieeeAlternative fuel hho gas ieee
Alternative fuel hho gas ieeeReliance Power
 
Hydrogen engine
Hydrogen engineHydrogen engine
Hydrogen engine9600763376
 
Hydrogen Fuel Cell Vehicles In S
Hydrogen  Fuel  Cell  Vehicles In  SHydrogen  Fuel  Cell  Vehicles In  S
Hydrogen Fuel Cell Vehicles In Staylora
 
HYdrogen Fuel Cell Vehicle
HYdrogen Fuel Cell VehicleHYdrogen Fuel Cell Vehicle
HYdrogen Fuel Cell VehicleShubham Dubey
 
IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...
IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...
IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...IRJET Journal
 

What's hot (16)

An Experimental Investigation of Performance and Emissions of LPG as Dual Fue...
An Experimental Investigation of Performance and Emissions of LPG as Dual Fue...An Experimental Investigation of Performance and Emissions of LPG as Dual Fue...
An Experimental Investigation of Performance and Emissions of LPG as Dual Fue...
 
“Optimal performance and Analysis on 4-S Si and CI Engine Fueled with HHO Gas...
“Optimal performance and Analysis on 4-S Si and CI Engine Fueled with HHO Gas...“Optimal performance and Analysis on 4-S Si and CI Engine Fueled with HHO Gas...
“Optimal performance and Analysis on 4-S Si and CI Engine Fueled with HHO Gas...
 
Hydrogen fuel cell vehicles
Hydrogen fuel cell vehiclesHydrogen fuel cell vehicles
Hydrogen fuel cell vehicles
 
Hydrogen Fuelled Ic Engine – An Overview
Hydrogen Fuelled Ic Engine – An OverviewHydrogen Fuelled Ic Engine – An Overview
Hydrogen Fuelled Ic Engine – An Overview
 
Oxy- Hydrogen Generator (www.watercar.in)
Oxy- Hydrogen Generator (www.watercar.in)Oxy- Hydrogen Generator (www.watercar.in)
Oxy- Hydrogen Generator (www.watercar.in)
 
Ppt final 1
Ppt final 1Ppt final 1
Ppt final 1
 
Bonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinalBonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinal
 
Dual fuel bike (LPG cum Petrol)
Dual fuel bike (LPG cum Petrol)Dual fuel bike (LPG cum Petrol)
Dual fuel bike (LPG cum Petrol)
 
Application of dry cell hho gas generator with pulse width modulation on sinj...
Application of dry cell hho gas generator with pulse width modulation on sinj...Application of dry cell hho gas generator with pulse width modulation on sinj...
Application of dry cell hho gas generator with pulse width modulation on sinj...
 
Alternative fuel hho gas ieee
Alternative fuel hho gas ieeeAlternative fuel hho gas ieee
Alternative fuel hho gas ieee
 
Hydrogen engine
Hydrogen engineHydrogen engine
Hydrogen engine
 
Hydrogen Fuel Cell Vehicles In S
Hydrogen  Fuel  Cell  Vehicles In  SHydrogen  Fuel  Cell  Vehicles In  S
Hydrogen Fuel Cell Vehicles In S
 
HYdrogen Fuel Cell Vehicle
HYdrogen Fuel Cell VehicleHYdrogen Fuel Cell Vehicle
HYdrogen Fuel Cell Vehicle
 
IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...
IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...
IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...
 
Our presentation
Our presentationOur presentation
Our presentation
 
Hydrogen Fuel Cell Vehicles
Hydrogen Fuel Cell VehiclesHydrogen Fuel Cell Vehicles
Hydrogen Fuel Cell Vehicles
 

Similar to Ijmet 10 01_088

Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...
Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...
Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...IJSRD
 
green hydrogen fuel cell ppt by chiranth
green hydrogen fuel cell ppt by chiranthgreen hydrogen fuel cell ppt by chiranth
green hydrogen fuel cell ppt by chiranthManojManu249373
 
Simulation of Suction & Compression Process with Delayed Entry Technique Usin...
Simulation of Suction & Compression Process with Delayed Entry Technique Usin...Simulation of Suction & Compression Process with Delayed Entry Technique Usin...
Simulation of Suction & Compression Process with Delayed Entry Technique Usin...AM Publications
 
A Review Paper on "Performance of Different Fuels inInternal Combustion Engine"
A Review Paper on "Performance of Different Fuels inInternal Combustion Engine"A Review Paper on "Performance of Different Fuels inInternal Combustion Engine"
A Review Paper on "Performance of Different Fuels inInternal Combustion Engine"IRJET Journal
 
A Comprehensive Review of Hydrogen Automobiles Future Prospects
A Comprehensive Review of Hydrogen Automobiles Future ProspectsA Comprehensive Review of Hydrogen Automobiles Future Prospects
A Comprehensive Review of Hydrogen Automobiles Future ProspectsIRJET Journal
 
Potential Use of LPG in A Medium Capacity Stationary HCCI Engine
Potential Use of LPG in A Medium Capacity Stationary HCCI EnginePotential Use of LPG in A Medium Capacity Stationary HCCI Engine
Potential Use of LPG in A Medium Capacity Stationary HCCI EngineIJMER
 
I0502 01 4856
I0502 01 4856I0502 01 4856
I0502 01 4856IJMER
 
Effect of Hydroxy Gas Addition on Performance and Emissions of Diesel Engine
Effect of Hydroxy Gas Addition on Performance and Emissions of Diesel EngineEffect of Hydroxy Gas Addition on Performance and Emissions of Diesel Engine
Effect of Hydroxy Gas Addition on Performance and Emissions of Diesel EngineIRJET Journal
 
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINEPERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINEijsrd.com
 
Simulation of Combustion Process with Delayed Entry Technique Using Discrete ...
Simulation of Combustion Process with Delayed Entry Technique Using Discrete ...Simulation of Combustion Process with Delayed Entry Technique Using Discrete ...
Simulation of Combustion Process with Delayed Entry Technique Using Discrete ...AM Publications
 
10.1016@j.ijhydene.2015.09.064
10.1016@j.ijhydene.2015.09.06410.1016@j.ijhydene.2015.09.064
10.1016@j.ijhydene.2015.09.064Narendra Khatri
 
IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...
IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...
IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...IRJET Journal
 
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...IJMERJOURNAL
 

Similar to Ijmet 10 01_088 (20)

Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...
Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...
Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...
 
green hydrogen fuel cell ppt by chiranth
green hydrogen fuel cell ppt by chiranthgreen hydrogen fuel cell ppt by chiranth
green hydrogen fuel cell ppt by chiranth
 
Simulation of Suction & Compression Process with Delayed Entry Technique Usin...
Simulation of Suction & Compression Process with Delayed Entry Technique Usin...Simulation of Suction & Compression Process with Delayed Entry Technique Usin...
Simulation of Suction & Compression Process with Delayed Entry Technique Usin...
 
Dimitriou2019
Dimitriou2019Dimitriou2019
Dimitriou2019
 
A Review Paper on "Performance of Different Fuels inInternal Combustion Engine"
A Review Paper on "Performance of Different Fuels inInternal Combustion Engine"A Review Paper on "Performance of Different Fuels inInternal Combustion Engine"
A Review Paper on "Performance of Different Fuels inInternal Combustion Engine"
 
F012644451
F012644451F012644451
F012644451
 
F012644451
F012644451F012644451
F012644451
 
A Comprehensive Review of Hydrogen Automobiles Future Prospects
A Comprehensive Review of Hydrogen Automobiles Future ProspectsA Comprehensive Review of Hydrogen Automobiles Future Prospects
A Comprehensive Review of Hydrogen Automobiles Future Prospects
 
Potential Use of LPG in A Medium Capacity Stationary HCCI Engine
Potential Use of LPG in A Medium Capacity Stationary HCCI EnginePotential Use of LPG in A Medium Capacity Stationary HCCI Engine
Potential Use of LPG in A Medium Capacity Stationary HCCI Engine
 
I0502 01 4856
I0502 01 4856I0502 01 4856
I0502 01 4856
 
B012660611
B012660611B012660611
B012660611
 
Effect of Hydroxy Gas Addition on Performance and Emissions of Diesel Engine
Effect of Hydroxy Gas Addition on Performance and Emissions of Diesel EngineEffect of Hydroxy Gas Addition on Performance and Emissions of Diesel Engine
Effect of Hydroxy Gas Addition on Performance and Emissions of Diesel Engine
 
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINEPERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
 
Simulation of Combustion Process with Delayed Entry Technique Using Discrete ...
Simulation of Combustion Process with Delayed Entry Technique Using Discrete ...Simulation of Combustion Process with Delayed Entry Technique Using Discrete ...
Simulation of Combustion Process with Delayed Entry Technique Using Discrete ...
 
10.1016@j.ijhydene.2015.09.064
10.1016@j.ijhydene.2015.09.06410.1016@j.ijhydene.2015.09.064
10.1016@j.ijhydene.2015.09.064
 
F012234450
F012234450F012234450
F012234450
 
IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...
IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...
IRJET- Modification of I.C. Engine to Run with Water as Supplement Fuel to In...
 
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
 
Shaik hussain abbas technical seminar ppt
Shaik hussain abbas technical seminar pptShaik hussain abbas technical seminar ppt
Shaik hussain abbas technical seminar ppt
 
Lata2012
Lata2012Lata2012
Lata2012
 

More from IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

More from IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Recently uploaded

MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 

Recently uploaded (20)

MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 

Ijmet 10 01_088

  • 1. http://www.iaeme.com/IJMET/index.asp 847 editor@iaeme.com International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 01, January 2019, pp. 847–857, Article ID: IJMET_10_01_088 Available online at http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=10&IType=01 ISSN Print: 0976-6340 and ISSN Online: 0976-6359 © IAEME Publication Scopus Indexed PERFORMANCE AND EMISSION CHARACTERISTICS OF DUAL FUEL DI DIESEL ENGINE USING CASHEW NUT SHELL BIO DIESEL AND HYDROGEN AS FUEL V. Thanigaivelan* Assistant Professor, Department of Mechanical Engineering, SRM IST, Chennai. M. Loganathan Associate Professor, Department of Mechanical Engineering, Annamalai University, Chidambaram. *corresponding author ABSTRACT With augmented vehicle quantities during latest period have effected into immense claim through vestige energy. These have lead with expansion of vehicle via substitute energy that comprises gaseous energy, bio energy and vegetables oils as stimulate. Power through hydrogen becomes the prime prospects which wrap the upcoming stipulate of remnant energy scarcity. Hydrogen as a key substitute energy becomes a substitution through usual energy. With notable possessions, alike elevated flare rapidity, elevated calorific value stimulates usage of hydrogen energy like twin fuel manner in diesel engine. Present study investigates the overall performance and emissions of diesel engine fuelled through CNSL and hydrogen as dual fuel. The fuels have been tested under stationary, one cylinder, water chilled diesel engine. Here the hydrogen is added with B20 (20% CNSL and 80% diesel) fuel for different flow rate namely 4lpm, 8lpm and 12lpm. Engine test results showed that exhaust emissions are reduced and performance are improved by adding hydrogen fuel. The results showed that the addition of 8lpm H2 with B20 decreased the HC and CO emission compared to B20 and neat diesel fuel. The BTE and NOx increased for the above dual fuel mode. The NOx and exhaust gas temperature are increased for 8lpm H2 addition with B20 fuel. Keywords: Cashew nut Shell liquid, Hydrogen, Engine performance, Emissions Cite this Article: V. Thanigaivelan and M. Loganathan, Performance and Emission Characteristics Of Dual Fuel Di Diesel Engine Using Cashew Nut Shell Bio Diesel And Hydrogen As Fuel, International Journal of Mechanical Engineering and Technology, 10(01), 2019, pp.847–857 http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&Type=01
  • 2. V. Thanigaivelan and M. Loganathan http://www.iaeme.com/IJMET/index.asp 848 editor@iaeme.com 1. INTRODUCTION In the present and high-speed humankind, petroleum supported energy turn out to be significant with every progress. Yields resultant as of crude lubricate sustained as chief and serious basis of force that useful in energizing means of transportation throughout. Still, petroleum assets are inadequate as well as non-renewable. Throughout years, utilization of substitute energy in diesel engines established awareness. The vagueness of petroleum supported energy accessibility has shaped necessitate on substitute energy [1]. Through several years investigation exertions obligate to be dedicated mostly happening with enhanced engine strategy since the standpoint of dropping impurities discharge deprived of forfeiting recital and fuel budget. Presently, a prominence on dropping impurity discharges as of petroleum supported engines ensures striving progress plus analysis about numerous substitute fuels. The key impurities as of diesel devices be NOX, particulate matter and smoke [2]. Numerous fuels ought to be deliberated as replacements in place of hydrocarbon-based energy. Substitute energy facilitates interchange petroleum supported energies comprise additives, LPG, CNG, H2, vegetable oils, bio gas, producer gas and LNG. Among all, H2 becomes durable sustainable and fewer contaminating energy. Moreover, H2 be innocuous, unscented plus consequences while thorough burning [3]. H2 possibly will castoff like an energy for IC engines both untainted otherwise intermingled through additional hydrocarbon fuels. Owing to these features, investigators stand converging their responsiveness on hydrogen to be a substitute energy in internal combustion engines (ICEs) plus with expansion of energy chamber power-driven automobiles. Hydrogen can be cast-off for instance an exclusive fuel in spark ignition (SI) engine, both through carburation and straight inoculation [4]. Hydrogen driven ICE automobiles fabricated by existing expertise remain expensive through unreal fuel or methanol automobiles with coal ingestion or fuel charge [5]. The notion of consuming hydrogen like substitute fuel intended with diesel devices is topical. The personal detonation temperature of H2 is 858 K, thus hydrogen might not cast-off unswervingly with CI device deprived of trigger socket else spark socket [6]. Hydrogen enhanced devices yield roughly the identical brake control and greater thermal competence compared with diesel engines above the complete scope of process [7, 8]. Through a reduced experimental measure of diesel, hydrogen enhanced devices contribute advanced brake thermal competence through flatter burning at par with diesel engine [9]. H2 incineration unveils advanced chilling damages incineration space wall compared with hydrocarbon burning par with greater blazing rapidity with squatter slaking distance [10]. Numerous investigators ought to been focused in the direction of the advance of substitute fuels to attain this objective. Amidst the numerous possible substitute fuels, H2 initiates as utmost auspicious for complete burning and enhanced incineration possessions. Though the great nature ignition temperature of hydrogen bounds usage with CI engines subsequently the cylinder temperature upsurge with compression alone actually inadequate for incineration; therefore a blastoff cause is essential. Additionally also resolved as ideal H2 enhancement through diesel remained 35% [11-14]. H2 is castoff by twin fuel method through diesel then presented utmost brake thermal competence of 35% with compression proportion of 24.5:1 [15, 16]. Recital of twin inoculation hydrogen powered engine through solenoid in-cylinder inoculation with exterior fuel inoculation procedure too premeditated. An upsurge in thermal competence via nearby 22% remained renowned on behalf of twin shot at squat heaps and 5% by abundant heaps associated to thru inoculation [17]. Although electrochemically retorting hydrogen in energy cells is deliberated as freshest and utmost effective resources of consuming hydrogen, that assumed by numerous like expertise of the upcoming prospect [18]. Primary hurdles that overwhelmed the effective consumption of hydrogen as an energy in an ICE being pre eruption [19]. The ignition extent stood abridged owing to greater blaze rapidity of hydrogen. Furthermore, a developed premixed combustion level be there detected through hydrogen introduction [20].The hydrogen engine is a conceivable resolution to refining the device recital at indolent and slender circumstances. Subsequently the
  • 3. Performance And Emission Characteristics Of Dual Fuel Di Diesel Engine Using Cashew Nut Shell Bio Diesel And Hydrogen As Fuel http://www.iaeme.com/IJMET/index.asp 849 editor@iaeme.com blaze rapidity of H2 is about 5 spells compared with gasoline, hydrogen devices might acquire enormously endless capacity burning that not simply profits the engine thermal competence however too decreases the engine recurring discrepancy. Moreover, well-ordered diesel also too combusted to match with the H2/diesel assortment. Outcomes from trials obligate to be related thru statistics from prior statistical investigation through diverse code [21]. In addition, the squat detonation drive of hydrogen too licenses hydrogen-air blend to be effortlessly burned beneath slender circumstances and assistances engines increase a flat initial procedure. In this effort H2 has been instated amid air with inlet manifold by several degree stream charge specifically 4lpm, 6lpm and 8lpm. 2. MATERIALS AND METHODS 2.1. Production of hydrogen Hydrogen (H2) is solitary primary conceivable substitute fuels ought to be resultant as of normal resources [2]. H2 can be profitably manufactured as of electrolysis of water as well as through coal gasification. Numerous additional approaches like thermo chemical disintegration of water and solar photo electrolysis are existing, however at this time castoff at workroom level reasonably than for marketable procedure. Though, by the progress of applied and extremely effectual final converters of H2 like fuel cells, nearby as an intense rate decrease plus enhancement about efficacy of H2 making, harmless and suitable on sustenance storing. 2.2. Incineration and Properties of Hydrogen Hydrogen while scorching yields merely water. H2 being harmless, fragrance less plus too consequences with thorough incineration. H2 with great nature detonation temperature (858ºK); becomes hard while exploding hydrogen by merely compression. With this, hydrogen might not castoff through diesel engine arrangement deprived of an explosion cause. In order to flinch incineration roughly blastoff cause is mandatory through the compression knock. Earlier to TDC minor blame of diesel energy being introduced over predictable inoculation arrangement actually deeds like detonation basis. Incineration of hydrogen will vitally diverse as of the incineration of hydrocarbon energy. Hydrogen obligates broader flammability bounds with 5–76% with capacity in air associated by diesel energy which is 0.8–5% by capacity. The boundary of H2 flammability diverges with a correspondence proportion amid 0.1 to 7.1. Hydrogen during Normal temperature and pressure become slight Gas having thickness as merely 1/14th and 1/9th compared with air as well natural gas respectively. Through tremendous chilling through 253 degrees atmospheric pressure, then abridged to liquefy about 0.07 in specific gravity. Combination of hydrogen and air or flammable above an remarkably extensive choice of configurations the flammability bounds at regular temperatures encompass as of 5 to 75% via hydrogen capacity thru air. The table.1 provides several possessions about hydrogen at 25ºC and 1 atm.
  • 4. V. Thanigaivelan and M. Loganathan http://www.iaeme.com/IJMET/index.asp 850 editor@iaeme.com Table-1: Properties of Hydrogen 3. EXPERIMENTAL SETUP AND PROCEDURE The representation along with pictorial view of the investigational arrangement is exposed in Fig. 1 and fig.2 correspondingly. Figure.1. Representation of investigational arrangement
  • 5. Performance And Emission Characteristics Of Dual Fuel Di Diesel Engine Using Cashew Nut Shell Bio Diesel And Hydrogen As Fuel http://www.iaeme.com/IJMET/index.asp 851 editor@iaeme.com Figure 2. Pictorial outlook of investigational arrangement Trials remained accompanied along with sole cylinder, 4 stroke, water-cooled, diesel engine (Make: Kirloskar AV-1). The engine remained united with eddy current dynamometer. The engine stood functioned with continual rapidity about 1500 rpm. The engine stipulation be specified in Table 2. Table -2 Specification of the engine A crank viewpoint encoder stood tailored to crank shaft to record crank angle. The chamber pressure stayed restrained by a piezoelectric pressure transducer (Make: Kistler, Type 6056A) riding on the cylinder head. The pressure gesture was directed to statistics attainment arrangement and incineration data like cylinder pressure and heat release rate (HRR) were attained. The oxides of nitrogen (NOx), carbon monoxide (CO) and hydrocarbon (HC) releases were restrained through non-dispersive infrared analyzers (NDIR) (Make: HORIBA-Japan). The gas analyzers stayed attuned by typical gases formerly to assessment. Primarily, the engine was functioned thru well-ordered diesel energy. Additionally, the engine remained verified by twin fuel, accumulation of hydrogen through inlet air in count to pilot B20 energy inoculation. The hydrogen gas as instated in the inlet manifold in diverse course rate viz. 4lpm, 8lpm and 12 lpm correspondingly. The hydrogen stream line entails of hydrogen cylinder, pressure controller, flame arrester, flow meter and flow regulator valve which are exposed in figure.3.
  • 6. V. Thanigaivelan and M. Loganathan http://www.iaeme.com/IJMET/index.asp 852 editor@iaeme.com Figure. 3. Hydrogen flow line The hydrogen is kept in a high-pressure storing tank at 250 bar and this pressure was abridged to a pressure 2 bar via a pressure controller. Hydrogen further conceded over a flame arrestor and flame set-up which capture any backfire as of the engine. It as well performances equally a non- returnable controller. The hydrogen stream amount is restrained by the digital gas flow meter. The recital and discharge features were assessed for diverse hydrogen stream proportion and associated through well-ordered diesel fuel process. 4. RESULTS AND DISCUSSION 4.1 Performance analysis 4.1.1. Brake Thermal Efficiency Fig. 4 shows the brake thermal efficiency discrepancy through diverse stream charges of hydrogen. The 8 lpm hydrogen accumulation occasioned the maximum brake thermal competence of 37.5% associated to diesel and B20 at full capacity. The upsurge in brake thermal efficiency is owing to hydrogen’s advanced calorific rate and enhanced intercourse thru air in accumulation to its quicker flame rapidity features [22]. It stood experiential that the hydrogen accumulation thru inlet air exhibited the upgraded recital by related to usual neat diesel procedure. Figure.4. comparison of BTE
  • 7. Performance And Emission Characteristics Of Dual Fuel Di Diesel Engine Using Cashew Nut Shell Bio Diesel And Hydrogen As Fuel http://www.iaeme.com/IJMET/index.asp 853 editor@iaeme.com 4.1.2. Brake Specific Fuel Consumption Fig. 5 shows the disparity of brake specific fuel consumption (BSFC) by brake influence for diverse stream charges of hydrogen. The BSFC diminutions through an upsurge in hydrogen accumulation degree. The lowermost BSFC is attained for 8lpm hydrogen accumulation at full capacity related to diesel. This is owing to the premixing of hydrogen fuel through air owed to its great diffusivity and unvarying intercourse thru air subsequent in enhanced incineration. The proportion of decrease of BSFC remained experimental 12% at full capacity among diesel and 8lpm hydrogen stream frequency. Figure.5. comparison of BSFC 4.2. Emission analysis 4.2.1. Nitrogen Oxides (NOx) Fig. 6 shows the disparity of nitrogen oxides through brake power. NOX procedures at topmost incineration temperature and higher oxygen absorptions [23, 24]. NOX establishment is advanced per 8 lpm associated to straight diesel, B20 and further stream degree of hydrogen. As the hydrogen proportion upsurges, the flame speed and henceforth incineration competence augmented [25]. The proportion of upsurge of NOX is 34% at complete capacity once associated straight diesel.
  • 8. V. Thanigaivelan and M. Loganathan http://www.iaeme.com/IJMET/index.asp 854 editor@iaeme.com Figure.6. Comparison of NOx 4.2.2. Hydrocarbon (HC) Figure.7. Comparison of HC The disparity of HC discharges for diverse standards of hydrogen enhancement is exposed in fig 7. The Unburned hydrocarbon diminutions expressively since hydrogen fuel does not comprise carbon. It is perceived that the HC release values of 4lpm, 8lpm and 12lpm hydrogen stream frequency through diesel fuel process are 210 ppm, 199 ppm and 203 ppm correspondingly at full capacity. The lowermost HC release remained attained 199 ppm thru 8 lpm hydrogen stream percentage related to 215 ppm for diesel. The decrease in HC is owing to the advanced scorching rapidity of hydrogen, which augments the diesel burning. The lack of carbon in hydrogen fuel moreover decreases the HC releases to a better scope [25, 26].
  • 9. Performance And Emission Characteristics Of Dual Fuel Di Diesel Engine Using Cashew Nut Shell Bio Diesel And Hydrogen As Fuel http://www.iaeme.com/IJMET/index.asp 855 editor@iaeme.com 4.2.3 Carbon monoxide The disparity of CO discharge with engine brake power and diverse percentage of hydrogen enhancement is shown fig 8.The lowest CO discharge was attained as 0.05% with 8 lpm while associated to 0.11% for diesel. Thru 8 lpm the CO discharge is inferior to extra hydrogen stream charges and straight diesel process. The decrease CO in 8 lpm hydrogen-operated dual fuel engine is owing to the lack of carbon in hydrogen fuel. At no load as the engine is functioned at slender correspondence proportion, a decrease in CO is perceived for hydrogen twin fuel process. However the oxygen deliberation decreases suggestively and in accumulation owing to slighter response interval it outcomes in a noteworthy upsurge in CO foundation degree, which sorts the whole CO deliberation to upsurge at full capacity associated to diesel. Figure.8. Comparison of CO 4.2.4 Exhaust gas temperature Figure.9. comparison of EGT
  • 10. V. Thanigaivelan and M. Loganathan http://www.iaeme.com/IJMET/index.asp 856 editor@iaeme.com The exhaust gas temperature disparity for diverse magnitudes of hydrogen enhancement is exposed in Fig 9. It is experiential that the exhaust gas temperate charge of 4 lpm, 8lpm and 12lpm hydrogen and diesel energy procedure augmented typically associated to diesel at, full capacity correspondingly. The uppermost drain temperature was attained 378 °C thru 8 lpm hydrogen accumulation related to 346 °C for diesel. This is owing to improved intercourse of hydrogen through air ensuing in thorough incineration of fuel by upsurge in temperature nearby the combustion compartment. [28]. 5. CONCLUSIONS Based on the experimentations accompanied on a hydrogen augmented bio diesel (dual fuel) engine scheme, the subsequent inferences are drawn: The Brake thermal efficiency of the hydrogen and biodiesel fuel procedure stood rather greater compared to the diesel fuel procedure. In 8 lpm hydrogen stream proportion, the brake thermal competence is augmented. Brake Specific fuel consumption diminutions through upsurge in hydrogen proportion above the complete sort of maneuver. NOx release augmented over 8lpm of hydrogen stream point, associated to B20 and diesel procedure. The carbon monoxide discharge augmented in full capacity state. The deepest CO release stayed attained through 8lpm hydrogen accumulation, related to diesel and B20 fuels. The HC discharge for 8lpm flow rate of hydrogen decreased associated near diesel at full capacity. The exhaust gas temperature augmented in lieu of 8lpm adding hydrogen stream charges commonly associated to diesel at complete capacity. For the most part the aforementioned stood resolved that hydrogen enhanced biodiesel engines accomplish thriving and release fewer effluence associated to well-ordered diesel fuel. Henceforth, hydrogen enhancement in a CI engine can be observed equally an eco-friendly substitute fuel to diesel. REFERENCES [1] Verhelst S, Sierens R. Aspects concerning the Optimization of a Hydrogen Fueled Engine. Int J Hydrogen Energy 2001; 26:981–5. [2] Das LM. Hydrogen engine: Research and development (R & D). Int J Hydrogen Energy 2002; 27:953–65. [3] Fulton J, Lynch F, Marmora R. Hydrogen for reducing emissions from alternative fuel vehicles SAE paper 931813; 1993. p. 471–9. [4] Das LM. Near-term Introduction of Hydrogen engines for automotive and agriculture application. Int J Hydrogen Energy 2002; 27:479–87. [5] Ravi M, Rao AN, Ramaswamy MC, Jagadeesan TR. Experimental investigation on dual fuel operation of hydrogen in a C.I. Engine Proceedings of the National Conference on I.C. Engines and Combustion, Indian Institute of Petroleum, Dehradun, September 15–18, 1992, p. 86–91. [6] Barreto L, Makihira A, Riahi K. The hydrogen economy in the 21st century a sustainable development scenario. Int J Hydrogen Energy 2003; 28:267–84. [7] Buckel JW, Chandra S. Hot wire ignition of hydrogen—oxygen mixture. Int J Hydrogen Energy 1996;21(1):39–44. [8] HaragopalaRao B, Shrivastava KN, Bhakta HN. Hydrogen for dual fuel engine operation. Int J Hydrogen Energy 1983;8(5):381–4.
  • 11. Performance And Emission Characteristics Of Dual Fuel Di Diesel Engine Using Cashew Nut Shell Bio Diesel And Hydrogen As Fuel http://www.iaeme.com/IJMET/index.asp 857 editor@iaeme.com [9] Yi HS, Min K, Kim ES. Optimized mixture formation for hydrogen fuelled engines. Int J Hydrogen Energy 2000; 25:685–90. [10] Shudo T, Suzuki Hi R. Applicability of heat transfer equations to Hydrogen combustion. JSAE Review 2002;23:303–8. [11] Polasek Milos, Macek Jan and Takats Michal (Hydrogen Fueled EngineProperties of Working Cycle and Emission Potentials), SAE Paper No.020373, 2002. [12] MihaylovMilen and BarzevKiril,( Investigation of The Effects ofHydrogen Addition on Performance and Exhaust Emissions of DieselEngine ) ,FISITA World Automotive Congress,23-27 May ,2004 ,Barcelona ,Spain . [13] N. Saravanan, and G.Nagarajan (Performance and Emission Study in Manifold Hydrogen Injection With Diesel as an Ignition Source For Different Starts of Injection), Renewable Energy, Vol.34,No.1, pp. 328- 334 , 2009. [14] Senthil Kumar M, Ramesh A, Nagalingam B. Use of hydrogen to enhance the performance of a vegetable oil fuelledcompression ignition engine. Int J Hydrogen Energy 2003;28:1143e54. [15] Masood M, Ishrat MM, Reddy AS. Computational combustion and emissionanalysis of hydrogen-diesel blends with experimental verification. Int J Hydrogen Energy 2007; 32:2539–47. [16] Lee JT, Kim YY, Lee CW, Caton JA. An investigation of a cause of backfire and itscontrol due to crevice volumes in a hydrogen fueled engine, vol. 123. ASME; 2001. [17] Lee Jong T, Kim YY, Caton Jerald A. The development of a dual injectionhydrogen fueled engine with high power and high efficiency. In: 2002 Fall technical conference of ASME- ICED, 8–11 September, 2002. p. 2-12. [18] N. Saravanan, G. Nagarajan, Performance and emission studies on port injection of hydrogen with varied flow rates with diesel as an ignition source, Applied Energy 87 (2010) 2218– 2229. [19] K.A. Küleri, In the lean burn spark ignition engines the effect of the hydrogenaddition on the cyclic variability and exhaust emission (In Turkish), Master Thesis, Atatürk University Institute of Science, Erzurum 2011, pp 45–55. [20] Tsujimura T, Mikami S, Achiha N, Takunaga Y, SendaJ,Fujimoto H. A study of direct injection diesel engine fueled with hydrogen. SAE 2003-01-0761; 2003. [21] Boretti A. Advance in hydrogen compression ignitioninternal combustion engines. Int J Hydrogen Energy 2011;36:12601e6. [22] Li J, Lu Y, Du T. Back fire in hydrogen fueled engine and its control’ Proceedings of the international symposium on hydrogen systems, Beijing, China 7–11 May 1985. China Academic Publishers, Beijing, Pergamon Press Oxford; 1985. p. 115–25. [23] Lee SJ, Yi Hs, Kim Es. Combustion characteristics of Intake Port injection type Hydrogen fueled engine; Int J Hydrogen Energy 1995; 0360-3199(94) 00052—2 20(4): p. 317–22. [24] Otto U. A method to estimate hydrogen in engine exhaust and factors that affect NOX and particulate in diesel engine exhaust SAE paper 910732; 1991. p. 1330–51. [25] Hoekstra RL, van Blarigan P, Mulligan N. NOx Emissions and efficiency of hydrogen, natural gas and hydrogen/natural gas blended fuels’ SAE paper 961103; 1996. p. 761–73. [26] Houseman J, Hoehn FW. A two charge engine concept: hydrogen enrichment, SAE 741169; 1974. [27] Breashes R, Cotrill H, Rupe J. Partial hydrogen injection into internal combustion engines— effect on emissions and fuel economy. First symposium on low pollution power systems development, Ann Arbor, MI, 1973. [28] Bell SR, Gupta M. Extension of the lean operation limit for natural gas fueling of a spark ignited engine using hydrogen blending. Combust Sci Technol 1997; 123:23–48.