SlideShare a Scribd company logo
1 of 29
Download to read offline
43
P E R F O R M A N C E I M P R O V E M E N T Q U A R T E R LY, 2 6 ( 2 ) P P. 4 3 – 7 1
© 2013 International Society for Performance Improvement
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/piq.21143
Behaviorism, Cognitivism,
Constructivism: Comparing
Critical Features From an
Instructional Design Perspective
Peggy A. Ertmer and Timothy J. Newby
T
he need for a bridge between basic learn-
ing research and educational practice has
long been discussed. To ensure a strong
connection between these two areas, Dewey (cited
in Reigeluth, 1983) called for the creation and
development of a “linking science”; Tyler (1978)
a “middleman position”; and Lynch (1945) for
employing an “engineering analogy” as an aid
for translating theory into practice. In each case,
the respective author highlighted the informa-
tion and potential contributions of available learn-
ing theories, the pressing problems faced by those
dealing with practical learning issues, and a general
lack of using the former to facilitate solutions for
the latter. The value of such a bridging function
would be its ability to translate relevant aspects
of the learning theories into optimal instructional
actions. As described by Reigeluth (1983), the field
of Instructional Design performs this role.
Instructional designers have been charged with
“translating principles of learning and instruction
into specifications for instructional materials and
activities” (Smith & Ragan, 1993, p. 12). To achieve
this goal, two sets of skills and knowledge are
needed. First, the designer must understand the position of the practitio-
ner. In this regard, the following questions would be relevant: What are
The way we define learning and
what we believe about the way learning
occurs has important implications for
situations in which we want to facilitate
changes in what people know and/or
do. Learning theories provide instruct-
ional designers with verified instruc-
tional strategies and techniques for
facilitating learning as well as a founda-
tion for intelligent strategy selection.
Yet many designers are operating under
the constraints of a limited theoretical
background. This paper is an attempt
to familiarize designers with three rel-
evant positions on learning (behavioral,
cognitive, and constructivist) which
provide structured foundations for
planning and conducting instructional
design activities. Each learning perspec-
tive is discussed in terms of its specific
interpretation of the learning process
and the resulting implications for
instructional designers and educational
practitioners. The information presented
here provides the reader with a compari-
son of these three different viewpoints
and illustrates how these differences
might be translated into practical appli-
cations in instructional situations.
“Behaviorism, Cognitivism, Constructivism: Comparing Critical Features From an
Instructional Design Perspective” by P.A. Ertmer and T.J. Newby is reprinted from
Performance Improvement Quarterly, 6(4), 1993, pp. 50–72. doi: 10.1111/j.1937-
8327.1993.tb00605.x
44 DOI: 10.1002/piq Performance Improvement Quarterly
the situational and contextual constraints of the application? What is the
degree of individual differences among the learners? What form of solu-
tions will or will not be accepted by the learners as well as by those actu-
ally teaching the materials? The designer must have the ability to diagnose
and analyze practical learning problems. Just as a doctor cannot pre-
scribe an effective remedy without a proper diagnosis, the instructional
designer cannot properly recommend an effective prescriptive solution
without an accurate analysis of the instructional problem.
In addition to understanding and analyzing the problem, a second core
of knowledge and skills is needed to “bridge” or “link” application with
research—that of understanding the potential sources of solutions (i.e.,
the theories of human learning). Through this understanding, a proper
prescriptive solution can be matched with a given diagnosed problem.
The critical link, therefore, is not between the design of instruction and
an autonomous body of knowledge about instructional phenomena, but
between instructional design issues and the theories of human learning.
Why this emphasis on learning theory and research? First, learn-
ing theories are a source of verified instructional strategies, tactics, and
techniques. Knowledge of a variety of such strategies is critical when
attempting to select an effective prescription for overcoming a given
instructional problem. Second, learning theories provide the foundation
for intelligent and reasoned strategy selection. Designers must have an
adequate repertoire of strategies available, and possess the knowledge of
when and why to employ each. This knowledge depends on the designer’s
ability to match the demands of the task with an instructional strategy
that helps the learner. Third, integration of the selected strategy within
the instructional context is of critical importance. Learning theories and
research often provide information about relationships among instruc-
tional components and the design of instruction, indicating how spe-
cific techniques/strategies might best fit within a given context and with
specific learners (Keller, 1979). Finally, the ultimate role of a theory is to
allow for reliable prediction (Richey, 1986). Effective solutions to practi-
cal instructional problems are often constrained by limited time and
resources. It is paramount that those strategies selected and implemented
have the highest chance for success. As suggested by Warries (1990), a
selection based on strong research is much more reliable than one based
on “instructional phenomena.”
The task of translating learning theory into practical applications
would be greatly simplified if the learning process were relatively simple
and straightforward. Unfortunately, this is not the case. Learning is a
complex process that has generated numerous interpretations and theo-
ries of how it is effectively accomplished. Of these many theories, which
should receive the attention of the instructional designer? Is it better to
choose one theory when designing instruction or to draw ideas from dif-
ferent theories? This article presents three distinct perspectives of the
learning process (behavioral, cognitive, and constructivist) and although
each has many unique features, it is our belief that each still describes the
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 45
same phenomena (learning). In selecting the theory whose associated
instructional strategies offers the optimal means for achieving desired
outcomes, the degree of cognitive processing required of the learner by
the specific task appears to be a critical factor. Therefore, as emphasized
by Snelbecker (1983), individuals addressing practical learning problems
cannot afford the “luxury of restricting themselves to only one theoretical
position . . . [They] are urged to examine each of the basic science theories
which have been developed by psychologists in the study of learning and
to select those principles and conceptions which seem to be of value for
one’s particular educational situation” (p. 8).
If knowledge of the various learning theories is so
important for instructional designers, to what degree
are they emphasized and promoted? As reported by
Johnson (1992), less than two percent of the courses
offered in university curricula in the general area of edu-
cational technology emphasize “theory” as one of their
key concepts. It appears that the real benefits of theo-
retical knowledge are, at present, not being realized.
This article is an attempt to “fill in some of the gaps” that may exist in
our knowledge of modern learning theories. The main intent is to provide
designers with some familiarity with three relevant positions on learning
(behavioral, cognitive, and constructivist) which should provide a more
structured foundation for planning and conducting instructional design
activities. The idea is that if we understand some of the deep principles of
the theories of learning, we can extrapolate to the particulars as needed.
As Bruner (1971) states, “You don’t need to encounter everything in nature
in order to know nature” (p. 18). A basic understanding of the learning
theories can provide you with a “canny strategy whereby you could know
a great deal about a lot of things while keeping very little in mind” (p. 18).
It is expected that after reading this article, instructional designers
and educational practitioners should be better informed “consumers” of
the strategies suggested by each viewpoint. The concise information pre-
sented here can serve as an initial base of knowledge for making impor-
tant decisions regarding instructional objectives and strategies.
Learning Defined
Learning has been defined in numerous ways by many different
theorists, researchers and educational practitioners. Although univer-
sal agreement on any single definition is nonexistent, many definitions
employ common elements. The following definition by Shuell (as inter-
preted by Schunk, 1991) incorporates these main ideas: “Learning is an
enduring change in behavior, or in the capacity to behave in a given
fashion, which results from practice or other forms of experience” (p. 2).
Undoubtedly, some learning theorists will disagree on the defini-
tion of learning presented here. However, it is not the definition itself
that separates a given theory from the rest. The major differences among
Less than two percent
of the courses offered
in university curricula
in the general area of
educational technology
emphasize“theory”as one
of their key concepts.
46 DOI: 10.1002/piq Performance Improvement Quarterly
theories lie more in interpretation than they do in definition. These differ-
ences revolve around a number of key issues that ultimately delineate the
instructional prescriptions that flow from each theoretical perspective.
Schunk (1991) lists five definitive questions that serve to distinguish each
learning theory from the others:
(l) How does learning occur?
(2) Which factors influence learning?
(3) What is the role of memory?
(4) How does transfer occur? and
(5) What types of learning are best explained by the theory?
Expanding on this original list, we have included two additional ques-
tions important to the instructional designer:
(6) What basic assumptions/principles of this theory are relevant to
instructional design? and
(7) How should instruction be structured to facilitate learning?
In this article, each of these questions is answered from three distinct
viewpoints: behaviorism, cognitivism, and constructivism. Although
learning theories typically are divided into two categories—behavioral
and cognitive—a third category, constructive, is added here because of
its recent emphasis in the instructional design literature (e.g., Bednar,
Cunningham, Duffy, & Perry, 1991; Duffy & Jonassen, 1991; Jonassen,
1991b; Winn, 1991). In many ways these viewpoints overlap; yet they are
distinctive enough to be treated as separate approaches to understanding
and describing learning. These three particular positions were chosen
because of their importance, both historically and currently, to the field
of instructional design. It is hoped that the answers to the first five ques-
tions will provide the reader with a basic understanding of how these
viewpoints differ. The answers to the last two questions will translate
these differences into practical suggestions and recommendations for the
application of these principles in the design of instruction.
These seven questions provide the basis for the article’s structure. For
each of the three theoretical positions, the questions are addressed and
an example is given to illustrate the application of that perspective. It is
expected that this approach will enable the reader to compare and con-
trast the different viewpoints on each of the seven issues.
As is common in any attempt to compare and contrast similar prod-
ucts, processes, or ideas, differences are emphasized in order to make dis-
tinctions clear. This is not to suggest that there are no similarities among
these viewpoints or that there are no overlapping features. In fact, differ-
ent learning theories will often prescribe the same instructional methods
for the same situations (only with different terminology and possibly with
different intentions). This article outlines the major differences between
the three positions in an attempt to facilitate comparison. It is our hope
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 47
that the reader will gain greater insight into what each viewpoint offers in
terms of the design and presentation of materials, as well as the types of
learning activities that might be prescribed.
Historical Foundations
Current learning theories have roots that extend far into the past. The
problems with which today’s theorists and researchers grapple and strug-
gle are not new but simply variations on a timeless theme: Where does
knowledge come from and how do people come to know? Two opposing
positions on the origins of knowledge—empiricism and rationalism—
have existed for centuries and are still evident, to varying degrees, in the
learning theories of today. A brief description of these views is included
here as a background for comparing the “modern” learning viewpoints of
behaviorism, cognitivism, and constructivism.
Empiricism is the view that experience is the primary source of
knowledge (Schunk, 1991). That is, organisms are born with basically
no knowledge and anything learned is gained through interactions and
associations with the environment. Beginning with Aristotle (384–322
B.C.), empiricists have espoused the view that knowledge is derived from
sensory impressions. Those impressions, when asso-
ciated contiguously in time and/or space, can be
hooked together to form complex ideas. For example,
the complex idea of a tree, as illustrated by Hulse,
Egeth, and Deese (1980), can be built from the less
complex ideas of branches and leaves, which in turn
are built from the ideas of wood and fiber, which are
built from basic sensations such as greenness, woody
odor, and so forth. From this perspective, critical instructional design
issues focus on how to manipulate the environment in order to improve
and ensure the occurrence of proper associations.
Rationalism is the view that knowledge derives from reason without
the aid of the senses (Schunk, 1991). This fundamental belief in the dis-
tinction between mind and matter originated with Plato (c. 427–347 B.C.),
and is reflected in the viewpoint that humans learn by recalling or “dis-
covering” what already exists in the mind. For example, the direct experi-
ence with a tree during one’s lifetime simply serves to reveal that which
is already in the mind. The “real” nature of the tree (greenness, woodi-
ness, and other characteristics) becomes known, not through the experi-
ence, but through a reflection on one’s idea about the given instance of a
tree. Although later rationalists differed on some of Plato’s other ideas,
the central belief remained the same: that knowledge arises through the
mind. From this perspective, instructional design issues focus on how
best to structure new information in order to facilitate (1) the learners’
encoding of this new information, as well as (2) the recalling of that which
is already known.
The goal of instruction
for the behaviorist is to
elicit the desired response
from the learner who is
presented with a target
stimulus.
48 DOI: 10.1002/piq Performance Improvement Quarterly
The empiricist, or associationist, mindset provided the framework
for many learning theories during the first half of this century, and it was
against this background that behaviorism became the leading psychologi-
cal viewpoint (Schunk, 1991). Because behaviorism was dominant when
instructional theory was initiated (around 1950), the instructional design
(ID) technology that arose alongside it was naturally influenced by many of
its basic assumptions and characteristics. Since ID has its roots in behav-
ioral theory, it seems appropriate that we turn our attention to behavior-
ism first.
Behaviorism
How does learning occur?
Behaviorism equates learning with changes in either the form or
frequency of observable performance. Learning is accomplished when
a proper response is demonstrated following the presentation of a spe-
cific environmental stimulus. For example, when presented with a math
flashcard showing the equation “2 + 4 = ?” the learner replies with the
answer of “6.” The equation is the stimulus and the proper answer is
the associated response. The key elements are the stimulus, the response,
and the association between the two. Of primary concern is how the asso-
ciation between the stimulus and response is made, strengthened, and
maintained.
Behaviorism focuses on the importance of the consequences of those
performances and contends that responses that are followed by rein-
forcement are more likely to recur in the future. No attempt is made to
determine the structure of a student’s knowledge nor to assess which
mental processes it is necessary for them to use (Winn, 1990). The learner
is characterized as being reactive to conditions in the environment as
opposed to taking an active role in discovering the environment.
Which factors influence learning?
Although both learner and environmental factors are considered
important by behaviorists, environmental conditions receive the great-
est emphasis. Behaviorists assess the learners to determine at what point
to begin instruction as well as to determine which reinforcers are most
effective for a particular student. The most critical factor, however, is the
arrangement of stimuli and consequences within the environment.
What is the role of memory?
Memory, as commonly defined by the layman, is not typically
addressed by behaviorists. Although the acquisition of “habits” is dis-
cussed, little attention is given as to how these habits are stored or recalled
for future use. Forgetting is attributed to the “nonuse” of a response over
time. The use of periodic practice or review serves to maintain a learner’s
readiness to respond (Schunk, 1991).
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 49
How does transfer occur?
Transfer refers to the application of learned knowledge in new ways or
situations, as well as to how prior learning affects new learning. In behav-
ioral learning theories, transfer is a result of generalization. Situations
involving identical or similar features allow behaviors to transfer across
common elements. For example, the student who has learned to recog-
nize and classify elm trees demonstrates transfer when (s)he classifies
maple trees using the same process. The similarities between the elm and
maple trees allow the learner to apply the previous elm tree classification
learning experience to the maple tree classification task.
What types of learning are best explained by this position?
Behaviorists attempt to prescribe strategies that are most useful
for building and strengthening stimulus-response associations (Winn,
1990), including the use of instructional cues, practice, and reinforce-
ment. These prescriptions have generally been proven reliable and effec-
tive in facilitating learning that involves discriminations (recalling facts),
generalizations (defining and illustrating concepts), associations (apply-
ing explanations), and chaining (automatically performing a specified
procedure). However, it is generally agreed that behavioral principles
cannot adequately explain the acquisition of higher level skills or those
that require a greater depth of processing (e.g., language development,
problem solving, inference generating, critical thinking) (Schunk, 1991).
What basic assumptions/principles of this theory are relevant to
instructional design?
Many of the basic assumptions and characteristics of behaviorism
are embedded in current instructional design practices. Behaviorism was
used as the basis for designing many of the early audio-visual materi-
als and gave rise to many related teaching strategies, such as Skinner’s
teaching machines and programmed texts. More recent examples include
principles utilized within computer-assisted instruction (CAI) and mas-
tery learning.
Specific assumptions or principles that have direct relevance to
instructional design include the following (possible current ID applica-
tions are listed in brackets [ ] following the listed principle):
♦ An emphasis on producing observable and measurable outcomes in
students [behavioral objectives, task analysis, criterion-referenced
assessment]
♦ Pre-assessment of students to determine where instruction should
begin [learner analysis]
♦ Emphasis on mastering early steps before progressing to more
complex levels of performance [sequencing of instructional presen-
tation, mastery learning]
♦ Use of reinforcement to impact performance [tangible rewards,
informative feedback]
50 DOI: 10.1002/piq Performance Improvement Quarterly
♦ Use of cues, shaping and practice to ensure a strong stimulus-
response association [simple to complex sequencing of practice,
use of prompts]
How should instruction be structured?
The goal of instruction for the behaviorist is to elicit the desired
response from the learner who is presented with a target stimulus.
To accomplish this, the learner must know how to execute the proper
response, as well as the conditions under which that response should be
made. Therefore, instruction is structured around the presentation of the
target stimulus and the provision of opportunities for the learner to practice
making the proper response. To facilitate the linking of stimulus-response
pairs, instruction frequently uses cues (to initially prompt the delivery of
the response) and reinforcement (to strengthen correct responding in the
presence of the target stimulus).
Behavioral theories imply that the job of the teacher/designer is to (1)
determine which cues can elicit the desired responses; (2) arrange prac-
tice situations in which prompts are paired with the target stimuli that
initially have no eliciting power but which will be expected to elicit the
responses in the “natural” (performance) setting; and (3) arrange envi-
ronmental conditions so that students can make the correct responses in
the presence of those target stimuli and receive reinforcement for those
responses (Gropper, 1987).
For example, a newly-hired manager of human resources may be
expected to organize a meeting agenda according to the company’s
specific format. The target stimulus (the verbal command “to format a
meeting agenda”) does not initially elicit the correct response nor does
the new manager have the capability to make the correct response.
However, with the repeated presentation of cues (e.g., completed tem-
plates of past agendas, blank templates arranged in standard format)
paired with the verbal command stimulus, the manager begins to
make the appropriate responses. Although the initial responses may
not be in the final proper form, repeated practice and reinforcement
shape the response until it is correctly executed. Finally, learning is
demonstrated when, upon the command to format a meeting agenda,
the manager reliably organizes the agenda according to company stan-
dards and does so without the use of previous examples or models.
Cognitivism
In the late 1950s, learning theory began to make a shift away from the
use of behavioral models to an approach that relied on learning theories
and models from the cognitive sciences. Psychologists and educators
began to de-emphasize a concern with overt, observable behavior and
stressed instead more complex cognitive processes such as thinking, prob-
lem solving, language, concept formation and information processing
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 51
(Snelbecker, 1983). Within the past decade, a number
of authors in the field of instructional design have
openly and consciously rejected many of ID’s tradi-
tional behavioristic assumptions in favor of a new set
of psychological assumptions about learning drawn
from the cognitive sciences. Whether viewed as an
open revolution or simply a gradual evolutionary
process, there seems to be the general acknowledg-
ment that cognitive theory has moved to the fore-
front of current learning theories (Bednar et al.,
1991). This shift from a behavioral orientation (where
the emphasis is on promoting a student’s overt per-
formance by the manipulation of stimulus material)
to a cognitive orientation (where the emphasis is on promoting mental
processing) has created a similar shift from procedures for manipulating
the materials to be presented by an instructional system to procedures for
directing student processing and interaction with the instructional design
system (Merrill, Kowalis, & Wilson, 1981).
How does learning occur?
Cognitive theories stress the acquisition of knowledge and internal
mental structures and, as such, are closer to the rationalist end of the
epistemology continuum (Bower & Hilgard, 1981). Learning is equated
with discrete changes between states of knowledge rather than with
changes in the probability of response. Cognitive theories focus on the
conceptualization of students’ learning processes and address the issues
of how information is received, organized, stored, and retrieved by the
mind. Learning is concerned not so much with what learners do but
with what they know and how they come to acquire it (Jonassen, 1991b).
Knowledge acquisition is described as a mental activity that entails inter-
nal coding and structuring by the learner. The learner is viewed as a very
active participant in the learning process.
Which factors influence learning?
Cognitivism, like behaviorism, emphasizes the role that environmen-
tal conditions play in facilitating learning. Instructional explanations,
demonstrations, illustrative examples and matched non-examples are
all considered to be instrumental in guiding student learning. Similarly,
emphasis is placed on the role of practice with corrective feedback.
Up to this point, little difference can be detected between these two
theories. However, the “active” nature of the learner is perceived quite
differently. The cognitive approach focuses on the mental activities of
the learner that lead up to a response and acknowledges the processes
of mental planning, goal-setting, and organizational strategies (Shuell,
1986). Cognitive theories contend that environmental “cues” and instruc-
tional components alone cannot account for all the learning that results
Cognitive theories
stress the acquisition of
knowledgeandinternal
mental structures . . .
[they] focus on the
conceptualization of
students’
learning
processes and address the
issues of how information
is received, organized,
stored, and retrieved by
the mind.
52 DOI: 10.1002/piq Performance Improvement Quarterly
from an instructional situation. Additional key elements include the
way that learners attend to, code, transform, rehearse, store and retrieve
information. Learners’ thoughts, beliefs, attitudes, and values are also
considered to be influential in the learning process (Winne, 1985). The
real focus of the cognitive approach is on changing the learner by encour-
aging him/her to use appropriate learning strategies.
What is the role of memory?
As indicated above, memory is given a prominent role in the learning
process. Learning results when information is stored in memory in an
organized, meaningful manner. Teachers/designers are responsible for
assisting learners in organizing that information in some optimal way.
Designers use techniques such as advance organizers, analogies, hierar-
chical relationships, and matrices to help learners relate new information
to prior knowledge. Forgetting is the inability to retrieve information
from memory because of interference, memory loss, or missing or inad-
equate cues needed to access information.
How does transfer occur?
According to cognitive theories, transfer is a function of how infor-
mation is stored in memory (Schunk, 1991). When a learner understands
how to apply knowledge in different contexts, then transfer has occurred.
Understanding is seen as being composed of a knowledge base in the
form of rules, concepts, and discriminations (Duffy & Jonassen, 1991).
Prior knowledge is used to establish boundary constraints for identify-
ing the similarities and differences of novel information. Not only must
the knowledge itself be stored in memory but the uses of that knowledge
as well. Specific instructional or real-world events will trigger particular
responses, but the learner must believe that the knowledge is useful in a
given situation before he or she will activate it.
What types of learning are best explained by this position?
Because of the emphasis on mental structures, cognitive theories are
usually considered more appropriate for explaining complex forms of learn-
ing (reasoning, problem-solving, information-processing) than are those of
a more behavioral perspective (Schunk, 1991). However, it is important
to indicate at this point that the actual goal of instruction for both of these
viewpoints is often the same: to communicate or transfer knowledge to
the students in the most efficient, effective manner possible (Bednar et al.,
1991). Two techniques used by both camps in achieving this effectiveness
and efficiency of knowledge transfer are simplification and standardization.
That is, knowledge can be analyzed, decomposed, and simplified into basic
building blocks. Knowledge transfer is expedited if irrelevant informa-
tion is eliminated. For example, trainees attending a workshop on effective
management skills would be presented with information that is “sized” and
“chunked” in such a way that they can assimilate and/or accommodate the
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 53
new information as quickly and as easily as possible. Behaviorists would
focus on the design of the environment to optimize that transfer, while
cognitivists would stress efficient processing strategies.
What basic assumptions/principles of this theory
are relevant to instructional design?
Many of the instructional strategies advocated and utilized by cogni-
tivists are also emphasized by behaviorists, yet usually for different rea-
sons. An obvious commonality is the use of feedback. A behaviorist uses
feedback (reinforcement) to modify behavior in the desired direction,
while cognitivists make use of feedback (knowledge of results) to guide
and support accurate mental connections (Thompson, Simonson, &
Hargrave, 1992).
Learner and task analyses are also critical to both cognitivists and
behaviorists, but once again, for different reasons. Cognitivists look at the
learner to determine his/her predisposition to learning, (i.e., How does
the learner activate, maintain, and direct his/her learning?) (Thompson
et al., 1992). Additionally, cognitivists examine the learner to determine
how to design instruction so that it can be readily assimilated (i.e., What are
the learner’s existing mental structures?). In contrast, the behaviorists look
at learners to determine where the lesson should begin (i.e., At what level
are they currently performing successfully?) and which reinforcers should
be most effective (i.e., What consequences are most desired by the learner?).
Specific assumptions or principles that have direct relevance to
instructional design include the following (possible current ID applica-
tions are listed in brackets [ ] following the listed principle):
♦ Emphasis on the active involvement of the learner in the learning
process [learner control, metacognitive training (e.g., self-planning,
monitoring, and revising techniques)]
♦ Use of hierarchical analyses to identify and illustrate prerequisite
relationships [cognitive task analysis procedures]
♦ Emphasis on structuring, organizing, and sequencing information
to facilitate optimal processing [use of cognitive strategies such as
outlining, summaries, synthesizers, advance organizers, etc.]
♦ Creation of learning environments that allow and encourage stu-
dents to make connections with previously learned material [recall
of prerequisite skills; use of relevant examples, analogies]
How should instruction be structured?
Behavioral theories imply that teachers ought to arrange environ-
mental conditions so that students respond properly to presented stimuli.
Cognitive theories emphasize making knowledge meaningful and help-
ing learners organize and relate new information to existing knowledge
in memory. Instruction must be based on a student’s existing mental
54 DOI: 10.1002/piq Performance Improvement Quarterly
structures, or schema, to be effective. It should organize information in
such a manner that learners are able to connect new information with
existing knowledge in some meaningful way. Analogies and metaphors
are examples of this type of cognitive strategy. For example, instructional
design textbooks frequently draw an analogy between the familiar archi-
tect’s profession and the unfamiliar instructional design profession to help
the novice learner conceptualize, organize and retain the major duties and
functions of an instructional designer (e.g., Reigeluth,
1983). Other cognitive strategies may include the use
of framing, outlining, mnemonics, concept mapping,
advance organizers, and so forth (West, Farmer, &
Wolff, 1991).
Such cognitive emphases imply that major tasks
of the teacher/designer include (1) understanding
that individuals bring various learning experiences
to the learning situation which can impact learning
outcomes; (2) determining the most effective manner
in which to organize and structure new information to tap the learners’
previously acquired knowledge, abilities, and experiences; and (3) arrang-
ing practice with feedback so that the new information is effectively and
efficiently assimilated and/or accommodated within the learners’ cogni-
tive structure (Stepich & Newby, 1988).
Consider the following example of a learning situation utilizing a
cognitive approach: A manager in the training department of a large cor-
poration had been asked to teach a new intern to complete a cost-benefit
analysis for an upcoming development project. In this case, it is assumed
that the intern has no previous experience with cost-benefit analysis in a
business setting. However, by relating this new task to highly similar pro-
cedures with which the intern has had more experience, the manager can
facilitate a smooth and efficient assimilation of this new procedure into
memory. These familiar procedures may include the process by which
the individual allocates his monthly pay check, how (s)he makes a buy/
no-buy decision regarding the purchase of a luxury item, or even how
one’s weekend spending activities might be determined and prioritized.
The procedures for such activities may not exactly match those of the
cost-benefit analysis, but the similarity between the activities allows for
the unfamiliar information to be put within a familiar context. Thus, pro-
cessing requirements are reduced and the potential effectiveness of recall
cues is increased.
Constructivism
The philosophical assumptions underlying both the behavioral and cog-
nitive theories are primarily objectivistic; that is: the world is real, external
to the learner. The goal of instruction is to map the structure of the world
onto the learner (Jonassen, 1991b). A number of contemporary cognitive
Cognitive theories
emphasize making
knowledge meaningful
and helping learners
organize and relate new
information to existing
knowledge in memory.
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 55
theorists have begun to question this basic objectivistic assumption and
are starting to adopt a more constructivist approach to learning and under-
standing: knowledge “is a function of how the individual creates meaning
from his or her own experiences” (p. 10). Constructivism is not a totally
new approach to learning. Like most other learning theories, constructiv-
ism has multiple roots in the philosophical and psychological viewpoints
of this century, specifically in the works of Piaget, Bruner, and Goodman
(Perkins, 1991). In recent years, however, constructivism has become a
“hot” issue as it has begun to receive increased attention in a number of dif-
ferent disciplines, including instructional design (Bednar et al., 1991).
How does learning occur?
Constructivism is a theory that equates learning with creating mean-
ing from experience (Bednar et al., 1991). Even though constructivism is
considered to be a branch of cognitivism (both conceive of learning as a
mental activity), it distinguishes itself from traditional cognitive theories
in a number of ways. Most cognitive psychologists think of the mind as a
reference tool to the real world; constructivists believe that the mind filters
input from the world to produce its own unique reality (Jonassen, 1991a).
As with the rationalists of Plato’s time, the mind is believed to be the source
of all meaning, yet like the empiricists, individual, direct experiences with
the environment are considered critical. Constructivism crosses both cat-
egories by emphasizing the interaction between these two variables.
Constructivists do not share with cognitivists and behaviorists the
belief that knowledge is mind-independent and can be “mapped” onto a
learner. Constructivists do not deny the existence of the real world but
contend that what we know of the world stems from our own interpreta-
tions of our experiences. Humans create meaning as opposed to acquiring
it. Since there are many possible meanings to glean from any experi-
ence, we cannot achieve a predetermined, “correct” meaning. Learners
do not transfer knowledge from the external world into their memories;
rather they build personal interpretations of the world based on indi-
vidual experiences and interactions. Thus, the internal representation of
knowledge is constantly open to change; there is not an objective reality
that learners strive to know. Knowledge emerges in contexts within which
it is relevant. Therefore, in order to understand the learning which has
taken place within an individual, the actual experience must be examined
(Bednar et al., 1991).
Which factors influence learning?
Both learner and environmental factors are critical to the constructiv-
ist, as it is the specific interaction between these two variables that creates
knowledge. Constructivists argue that behavior is situationally determined
(Jonassen, 1991a). Just as the learning of new vocabulary words is enhanced
by exposure and subsequent interaction with those words in context (as
opposed to learning their meanings from a dictionary), likewise it is essential
56 DOI: 10.1002/piq Performance Improvement Quarterly
that content knowledge be embedded in the situation in which it is used.
Brown, Collins, and Duguid (1989) suggest that situations actually co-produce
knowledge (along with cognition) through activity. Every action is viewed as
“an interpretation of the current situation based on an entire history of previ-
ous interactions” (Clancey, 1986). Just as shades of meanings of given words
are constantly changing a learner’s “current” understanding of a word, so
too will concepts continually evolve with each new use. For this reason, it is
critical that learning occur in realistic settings and that the selected learning
tasks be relevant to the students’ lived experiences.
What is the role of memory?
The goal of instruction is not to ensure that individuals know par-
ticular facts but rather that they elaborate on and interpret information.
“Understanding is developed through continued, situated use . . . and
does not crystallize into a categorical definition” that can be called up from
memory (Brown et al., 1989, p. 33). As mentioned earlier, a concept will
continue to evolve with each new use as new situations, negotiations, and
activities recast it in a different, more densely textured form. Therefore,
“memory” is always under construction as a cumulative history of interac-
tions. Representations of experiences are not formalized or structured into
a single piece of declarative knowledge and then stored in the head. The
emphasis is not on retrieving intact knowledge structures, but on providing
learners with the means to create novel and situation-specific understand-
ings by “assembling” prior knowledge from diverse sources appropriate to
the problem at hand. For example, the knowledge of “design” activities has
to be used by a practitioner in too many different ways for them all to be
anticipated in advance. Constructivists emphasize the flexible use of pre-
existing knowledge rather than the recall of prepackaged schemas (Spiro,
Feltovich, Jacobson, & Coulson, 1991). Mental representations developed
through task-engagement are likely to increase the efficiency with which
subsequent tasks are performed to the extent that parts of the environ-
ment remain the same: “Recurring features of the environment may thus
afford recurring sequences of actions” (Brown et al., p. 37). Memory is not
a context-independent process.
Clearly the focus of constructivism is on creating cognitive tools
which reflect the wisdom of the culture in which they are used as well
as the insights and experiences of individuals. There is no need for the
mere acquisition of fixed, abstract, self-contained concepts or details. To
be successful, meaningful, and lasting, learning must include all three of
these crucial factors: activity (practice), concept (knowledge), and culture
(context) (Brown et al., 1989).
How does transfer occur?
The constructivist position assumes that transfer can be facilitated by
involvement in authentic tasks anchored in meaningful contexts. Since
understanding is “indexed” by experience (just as word meanings are tied
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 57
to specific instances of use), the authenticity of the experience becomes
critical to the individual’s ability to use ideas (Brown et al., 1989). An
essential concept in the constructivist view is that learning always takes
place in a context and that the context forms an inexorable link with the
knowledge embedded in it (Bednar et al., 1991). Therefore, the goal of
instruction is to accurately portray tasks, not to define the structure
of learning required to achieve a task. If learning is decontextualized, there
is little hope for transfer to occur. One does not learn to use a set of tools
simply by following a list of rules. Appropriate and effective use comes
from engaging the learner in the actual use of the tools in real-world situa-
tions. Thus, the ultimate measure of learning is based on how effective the
learner’s knowledge structure is in facilitating thinking and
performing in the system in which those tools are used.
What types of learning are best explained by this
position?
The constructivist view does not accept the assump-
tion that types of learning can be identified independent
of the content and the context of learning (Bednar et al.,
1991). Constructivists believe that it is impossible to iso-
late units of information or divide up knowledge domains
according to a hierarchical analysis of relationships.
Although the emphasis on performance and instruction
has proven effective in teaching basic skills in relatively
structured knowledge domains, much of what needs
to be learned involves advanced knowledge in ill-structured domains.
Jonassen (1991a) has described three stages of knowledge acquisition
(introductory, advanced, and expert) and argues that constructive learn-
ing environments are most effective for the stage of advanced knowledge
acquisition, where initial misconceptions and biases acquired during the
introductory stage can be discovered, negotiated, and if necessary, modi-
fied and/or removed. Jonassen agrees that introductory knowledge acqui-
sition is better supported by more objectivistic approaches (behavioral
and/or cognitive) but suggests a transition to constructivistic approaches
as learners acquire more knowledge which provides them with the con-
ceptual power needed to deal with complex and ill-structured problems.
What basic assumptions/principles of this theory are relevant to
instructional design?
The constructivist designer specifies instructional methods and strate-
gies that will assist learners in actively exploring complex topics/environments
and that will move them into thinking in a given content area as an expert
user of that domain might think. Knowledge is not abstract but is linked to
the context under study and to the experiences that the participants bring
to the context. As such, learners are encouraged to construct their own
understandings and then to validate, through social negotiation, these
Although the emphasis
on performance and
instruction has proven
effective in teaching
basic skills in relatively
structured knowledge
domains, much of what
needs to be learned
involves advanced
knowledge in ill-
structured domains.
58 DOI: 10.1002/piq Performance Improvement Quarterly
new perspectives. Content is not pre-specified; infor-
mation from many sources is essential. For example,
a typical constructivist’s goal would not be to teach
novice ID students straight facts about instructional
design, but to prepare students to use ID facts as an
instructional designer might use them. As such, per-
formance objectives are not related so much to the
content as they are to the processes of construction.
Some of the specific strategies utilized by con-
structivists include situating tasks in real world con-
texts, use of cognitive apprenticeships (modeling and
coaching a student toward expert performance), pre-
sentation of multiple perspectives (collaborative learning to develop and
share alternative views), social negotiation (debate, discussion, evidence-
giving), use of examples as real “slices of life,” reflective awareness, and
providing considerable guidance on the use of constructive processes.
The following are several specific assumptions or principles from the
constructivist position that have direct relevance for the instructional
designer (possible ID applications are listed in brackets [ ] following the
listed principle):
♦ An emphasis on the identification of the context in which the skills
will be learned and subsequently applied [anchoring learning in
meaningful contexts].
♦ An emphasis on learner control and the capability of the learner to
manipulate information [actively using what is learned].
♦ The need for information to be presented in a variety of different
ways [revisiting content at different times, in rearranged contexts,
for different purposes, and from different conceptual perspectives].
♦ Supporting the use of problem solving skills that allow learners to
go “beyond the information given” [developing pattern-recognition
skills, presenting alternative ways of representing problems].
♦ Assessment focused on transfer of knowledge and skills [presenting
new problems and situations that differ from the conditions of the
initial instruction].
How should instruction be structured?
As one moves along the behaviorist—cognitivist—constructivist con-
tinuum, the focus of instruction shifts from teaching to learning, from the
passive transfer of facts and routines to the active application of ideas to
problems. Both cognitivists and constructivists view the learner as being
actively involved in the learning process, yet the constructivists look at
the learner as more than just an active processor of information; the
learner elaborates upon and interprets the given information (Duffy &
Jonassen, 1991). Meaning is created by the learner: learning objectives are
not pre-specified nor is instruction predesigned. “The role of instruction in
As one moves along the
behaviorist—cognitivist—
constructivist continuum,
the focus of instruction
shifts from teaching to
learning, from the passive
transfer of facts and
routines to the active
application of ideas to
problems.
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 59
the constructivist view is to show students how to construct knowledge,
to promote collaboration with others to show the multiple perspectives
that can be brought to bear on a particular problem, and to arrive at self-
chosen positions to which they can commit themselves, while realizing
the basis of other views with which they may disagree” (Cunningham,
1991, p. 14).
Even though the emphasis is on learner construction, the instruc-
tional designer/teacher’s role is still critical (Reigeluth, 1989). Here the-
tasks of the designer are two-fold: (1) to instruct the student on how to
construct meaning, as well as how to effectively monitor, evaluate, and
update those constructions; and (2) to align and design experiences for
the learner so that authentic, relevant contexts can be experienced.
Although constructivist approaches are used quite frequently in the
preparation of lawyers, doctors, architects, and businessmen through
the use of apprenticeships and on-the-job training, they are typically not
applied in the educational arena (Resnick, 1987). If they were, however, a
student placed in the hands of a constructivist would likely be immersed
in an “apprenticeship” experience. For example, a novice instructional
design student who desires to learn about needs assessment would be
placed in a situation that requires such an assessment to be completed.
Through the modeling and coaching of experts involved in authentic
cases, the novice designer would experience the process embedded in
the true context of an actual problem situation. Over time, several addi-
tional situations would be experienced by the student, all requiring simi-
lar needs assessment abilities. Each experience would serve to build on
and adapt that which has been previously experienced and constructed.
As the student gained more confidence and experience, (s)he would
move into a collaborative phase of learning where discussion becomes
crucial. By talking with others (peers, advanced students, professors, and
designers), students become better able to articulate their own under-
standings of the needs assessment process. As they uncover their naive
theories, they begin to see such activities in a new light, which guides
them towards conceptual reframing (learning). Students gain familiar-
ity with analysis and action in complex situations and consequently
begin to expand their horizons. They encounter relevant books, attend
conferences and seminars, discuss issues with other students, and use
their knowledge to interpret numerous situations around them (not only
related to specific design issues). Not only have the learners been involved
in different types of learning as they moved from being novices to “bud-
ding experts,” but the nature of the learning process has changed as well.
General Discussion
Itisapparentthatstudentsexposedtothethreeinstructionalapproaches
described in the examples above would gain different competencies.
60 DOI: 10.1002/piq Performance Improvement Quarterly
This leads instructors/designers to ask two significant questions: Is there
a single “best” approach and is one approach more efficient than the oth-
ers? Given that learning is a complex, drawn out process that seems to be
strongly influenced by one’s prior knowledge, perhaps the best answer to
these questions is “it depends.” Because learning is influenced by many fac-
tors from many sources, the learning process itself is constantly changing,
both in nature and diversity, as it progresses (Shuell, 1990). What might be
most effective for novice learners encountering a complex body of knowl-
edge for the first time, would not be effective, efficient
or stimulating for a learner who is more familiar with
the content. Typically, one does not teach facts the
same way that concepts or problem-solving are taught;
likewise, one teaches differently depending on the pro-
ficiency level of the learners involved. Both the instruc-
tional strategies employed and the content addressed
(in both depth and breadth) would vary based on the
level of the learners.
So how does a designer facilitate a proper match
between learner, content, and strategies? Consider,
first of all, how learners’ knowledge changes as they
become more familiar with a given content. As peo-
ple acquire more experience with a given content, they progress along a
low-to-high knowledge continuum from 1) being able to recognize and
apply the standard rules, facts, and operations of a profession (knowing
what), to 2) thinking like a professional to extrapolate from these general
rules to particular, problematic cases (knowing how), to 3) developing and
testing new forms of understanding and actions when familiar categories
and ways of thinking fail (reflection-in-action) (Schon, 1987). In a sense,
the points along this continuum mirror the points of the learning theory
continuum described earlier. Depending on where the learners “sit” on
the continuum in terms of the development of their professional knowl-
edge (knowing what vs. knowing how vs. reflection-in-action), the most
appropriate instructional approach for advancing the learners’ knowledge
at that particular level would be the one advocated by the theory that cor-
responds to that point on the continuum. That is, a behavioral approach
can effectively facilitate mastery of the content of a profession (know-
ing what); cognitive strategies are useful in teaching problem-solving
tactics where defined facts and rules are applied in unfamiliar situations
(knowing how); and constructivist strategies are especially suited to deal-
ing with ill-defined problems through reflection-in-action.
A second consideration depends upon the requirements of the task to
be learned. Based on the level of cognitive processing required, strategies
from different theoretical perspectives may be needed. For example, tasks
requiring a low degree of processing (e.g., basic paired associations, dis-
criminations, rote memorization) seem to be facilitated by strategies most
frequently associated with a behavioral outlook (e.g., stimulus-response,
contiguity of feedback/reinforcement). Tasks requiring an increased level
What might be most
effective for novice learners
encountering a complex
body of knowledge for
the first time, would not
be effective, efficient or
stimulating for a learner
who is more familiar with
the content.
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 61
of processing (e.g., classifications, rule or procedural executions) are pri-
marily associated with strategies having a stronger cognitive emphasis
(e.g., schematic organization, analogical reasoning, algorithmic problem
solving). Tasks demanding high levels of processing (e.g., heuristic prob-
lem solving, personal selection and monitoring of cognitive strategies)
are frequently best learned with strategies advanced by the constructiv-
ist perspective (e.g., situated learning, cognitive apprenticeships, social
negotiation).
We believe that the critical question instructional designers must ask
is not “Which is the best theory?” but “Which theory is the most effec-
tive in fostering mastery of specific tasks by specific learners?” Prior to
strategy(ies) selection, consideration must be made of both the learners
and the task. An attempt is made in Figure 1 to depict these two continua
(learners’ level of knowledge and cognitive processing demands) and to
illustrate the degree to which strategies offered by each of the theoretical
perspectives appear applicable. The figure is useful in demonstrating: (a)
that the strategies promoted by the different perspec-
tives overlap in certain instances (i.e., one strategy
may be relevant for each of the different perspec-
tives, given the proper amount of prior knowledge
and the corresponding amount of cognitive process-
ing), and (b) that strategies are concentrated along
different points of the continua due to the unique
focus of each of the learning theories. This means
that when integrating any strategies into the instruc-
tional design process, the nature of the learning task
(i.e., the level of cognitive processing required) and the proficiency level
of the learners involved must both be considered before selecting one
approach over another. Depending on the demands of the task and where
the learners are in terms of the content to be delivered/discovered, differ-
ent strategies based on different theories appear to be necessary. Powerful
frameworks for instruction have been developed by designers inspired by
each of these perspectives. In fact, successful instructional practices have
features that are supported by virtually all three perspectives (e.g., active
participation and interaction, practice and feedback).
For this reason, we have consciously chosen not to advocate one
theory over the others, but to stress instead the usefulness of being well-
versed in each. This is not to suggest that one should work without a the-
ory, but rather that one must be able to intelligently choose, on the basis
of information gathered about the learners’ present level of competence
and the type of learning task, the appropriate methods for achieving opti-
mal instructional outcomes in that situation.
As stated by Smith and Ragan (1993, p. viii): “Reasoned and validated
theoretical eclecticism has been a key strength of our field because no
single theoretical base provides complete prescriptive principles for the
entire design process.” Some of the most crucial design tasks involve
being able to decide which strategy to use, for what content, for which
The critical question
instructional designers
must ask is not“Which
is the best theory?”but
“Which theory is the most
effective in fostering
mastery of specific tasks
by specific learners?”
62 DOI: 10.1002/piq Performance Improvement Quarterly
students, and at what point during the instruction. Knowledge of this
sort is an example of conditional knowledge, where “thinking like” a
designer becomes a necessary competency. It should be noted however,
that to be an eclectic, one must know a lot, not a little, about the theories
being combined. A thorough understanding of the learning theories pre-
sented above seems to be essential for professional designers who must
constantly make decisions for which no design model provides precise
rules. Being knowledgeable about each of these theories provides design-
ers with the flexibility needed to be spontaneous and creative when a
first attempt doesn’t work or when they find themselves limited by time,
budget, and/or personnel constraints. The practitioner cannot afford to
ignore any theories that might provide practical implications. Given the
myriad of potential design situations, the designer’s “best” approach may
not ever be identical to any previous approach, but will truly “depend
upon the context.” This type of instructional “cherry-picking” has been
termed “systematic eclecticism” and has had a great deal of support in the
instructional design literature (Snelbecker, 1989).
In closing, we would like to expand on a quote by P. B. Drucker,
(cited in Snelbecker, 1983): “These old controversies have been phonies
all along. We need the behaviorist’s triad of practice/reinforcement/feed-
back to enlarge learning and memory. We need purpose, decision, values,
understanding—the cognitive categories—lest learning be mere behav-
ioral activities rather than action” (p. 203).
FIGURE 1. COMPARISON OF THE ASSOCIATED INSTRUCTIONAL STRATEGIES OF
THE BEHAVIORAL, COGNITIVE, AND CONSTRUCTIVIST VIEWPOINTS BASED ON THE
LEARNER'S LEVEL OF TASK KNOWLEDGE AND THE LEVEL OF COGNITIVE PROCESSING
REQUIRED BY THE TASK
Level of Cognitive Processing
Required by the Task
Low High
Low
High
Level
of
Learner’s
Task
Knowledge
Constructivist Strategies
Cognitive Strategies
Behavioral Strategies
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 63
And to this we would add that we also need adaptive learners who
are able to function well when optimal conditions do not exist, when situ-
ations are unpredictable and task demands change, when the problems
are messy and ill-formed and the solutions depend on inventiveness,
improvisation, discussion, and social negotiation.
References
Bednar, A.K., Cunningham, D., Duffy, T.M., & Perry, J.D. (1991). Theory into practice: How
do we link? In G.J. Anglin (Ed.), Instructional technology: Past, present, and future.
Englewood, CO: Libraries Unlimited.
Bower, G.H., & Hilgard, E.R. (1981). Theories of learning (5th ed.). Englewood Cliffs, NJ:
Prentice-Hall.
Brown, J.S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning.
Educational Researcher, 18(1), 32–42.
Bruner, J.S. (1971). The process of education revisited. Phi Delta Kappan, 53, 18–21.
Clancey, W.J. (1986). Review of Winograd and Flores’ understanding computers and cogni-
tion: A favorable interpretation. (STAN-CS-87-1173) Palo Alto, CA: Department of
Computer Science, Stanford University.
Cunningham, D.J. (1991). Assessing constructions and constructing assessments:
A dialogue. Educational Technology, 31(5), 13–17.
Duffy, T.M., & Jonassen, D. (1991). Constructivism: New implications for instructional
technology? Educational Technology, 31(5), 3–12.
Gropper, G.L. (1987). A lesson based on a behavioral approach to instructional design.
In C.M. Reigeluth (Ed.), Instructional theories in action (pp. 45–112). Hillsdale, NJ:
Lawrence Erlbaum Associates.
Hulse, S.H., Egeth, H., & Deese, J. (1980). The psychology of learning (5th ed.). New York:
McGraw-Hill.
Johnson, J.K. (1992). Advancing by degrees: Trends in master's and doctoral programs in
educational communications and technology. Tech Trends, 37(2), 13–16.
Jonassen, D.H. (1991a). Evaluating constructivistic learning. Educational Technology,
31(9), 28–33.
Jonassen, D.H. (1991b). Objectivism vs constructivism: Do we need a new philosophical
paradigm. Educational Technology Research and Development, 39(3), 5–14.
Keller, J.M. (1979). Motivation and instructional design: A theoretical perspective.
Journal of Instructional Development, 2(4), 26–34.
Lynch, J.M. (1945). The applicability of psychological research to education. Journal of
Educational Psychology, 43, 289–296.
Merrill, M.D., Kowalis, T., & Wilson, B.G. (1981). Instructional design in transition. In
F.H. Farley, & N.J. Gordon (Eds.), Psychology and education: The state of the union
(pp. 298–348). Berkeley: McCutchan.
Perkins, D.N. (1991). Technology meets constructivism: Do they make a marriage? Edu-
cational Technology, 31(5), 18–23.
Reigeluth, C.M. (1983). Instructional Design: What is it and why is it? In C.M. Reigeluth
(Ed.), Instructional theories in action (pp. 3–36). Hillsdale, NJ: Lawrence Erlbaum
Associates.
Reigeluth, C.M. (1989). Educational technology at the crossroads: New mindsets
and new directions. Educational Technology Research and Development, 37(1),
67–80.
Resnick, L.B. (1987). Learning in school and out. Educational Researcher, 16(9), 13–20.
Richey, R.D. (1986). The theoretical and conceptual bases of instructional design. New York:
Nichols.
Schunk, D.H. (1991). Learning theories: An educational perspective. New York: Macmillan.
64 DOI: 10.1002/piq Performance Improvement Quarterly
Shuell, T.J. (1986). Cognitive conceptions of learning. Review of Educational Research,
56, 411–436.
Shuell, T.J. (1990). Phases of meaningful learning. Review of Educational Research, 60,
531–547.
Smith, P.L., & Ragan, T.J. (1993). Instructional design. New York: Macmillan.
Schon, D.A. (1987). Educating the reflective practitioner. San Francisco: Jossey-Bass.
Snelbecker, G.E. (1983). Learning theory, instructional theory, and psychoeducational
design. New York: McGraw-Hill.
Snelbecker, G.E. (1989). Contrasting and complementary approaches to instructional
design. In C.M. Reigeluth (Ed.), Instructional theories in action (pp. 321–337).
Hillsdale, NJ: Lawrence Erlbaum Associates.
Spiro, R.J., Feltovich, P.J., Jacobson, M.J., & Coulson, R.L. (1991). Cognitive flexibility,
constructivism, and hypertext: Random access instruction for advanced knowledge
acquisition in ill-structured domains. Educational Technology, 31(5), 24–33.
Stepich, D.A., & Newby, T.J. (1988). Analogical instruction within the information process-
ingparadigm:effectivemeanstofacilitatelearning.InstructionalScience,17, 129–144.
Thompson, A.D., Simonson, M.R., Hargrave, C.P. (1992). Educational technology: A review
of the research. Washington DC: Association for Educational Communications and
Technology.
Tyler, R.W. (1978). How schools utilize educational research and development. In
R. Glaser (Ed.), Research and development and school change. Hillsdale, NJ: Lawrence
Erlbaum.
Warries, E. (1990). Theory and the systematic design of instruction. In S. Dijkstra, B. van
Hout Wolters, & P.C. van der Sijde, (Eds.), Research on instruction: Design and effects
(pp. 1–19). Englewood Cliffs, NJ: Educational Technology.
West, C.K, Farmer, J.A., & Wolff, P.M. (1991). Instructional design: Implications from cogni-
tive science. Englewood Cliffs, NJ: Prentice Hall.
Winn, W. (1991). The assumptions of constructivism and instructional design. Educa-
tional Technology, 31(9), 38–40.
Winn, W. (1990). Some implications of cognitive theory for instructional design. Instruc-
tional Science, 19, 53–69.
Winne,P.H.(1985).Cognitiveprocessingintheclassroom.InT.Husen&T.N.Postlethwaite
(Eds.), The International Encyclopedia of Education (Vol. 2, pp. 795–808). Oxford:
Pergamon.
PEGGY A. ERTMER
Peggy A. Ertmer has a Masters Degree in Special Education-Learning
Disabilities and is currently a doctoral student in Instructional Development.
Mailing address: Educational Computing and Instructional Research
and Development, 1442 LAEB, Room 3134, Purdue University, West
Lafayette, IN 47907-1442.
TIMOTHY J. NEWBY
Timothy J. Newby is an Associate Professor in Educational
Computing and Instructional Development at Purdue University. He
currently conducts research in the areas of human motivation and
instructional strategies. Mailing address: Educational Computing
and Instructional Development, 1442 LAEB, Room 3146, Purdue
University, West Lafayette, IN 47907-1442.
Article Update: Behaviorism,
Cognitivism, and Constructivism:
Connecting“Yesterday’s”
Theories to Today’s Contexts
Peggy A. Ertmer, PhD, and Timothy J. Newby, PhD
I
t has been 20 years since “Behaviorism, Cognitivism, Constructivism:
Comparing Critical Features From an Instructional Design Perspective”
was first published in Performance Improvement Quarterly (Vol. 6,
Issue 4). Although the bases of the theoretical perspectives presented in
“the theory article” have not changed (that is, the answers to the seven
organizing questions remain largely the same), much of the world out-
side of these theories, including where and with whom we learn, as
well as how that knowledge is stored and accessed, has changed. In this
brief update, we explore three major forces affecting the learning pro-
cess today, all of which were much less prevalent in 1993. These include
(1) the proliferation of the Internet, including the use of Web 2.0 tools;
(2) the emergence of a new “kind” of student (for example, the digi-
tal native) who thinks and learns differently than previous generations;
and (3) the adoption of a variety of new teaching methods, which build,
almost exclusively, on the tenets of constructivism. We discuss each of
these in more detail.
Changes in Technology
Since the theory article was written, access to technology tools has
literally exploded. In 1993, the Internet, particularly as a resource for
the masses, was still in its infancy, and the distinction between Web 1.0
and Web 2.0 had not yet been made (O’Reilly, 2005). Distance educa-
tion was achieved primarily through correspondence courses, with video
and audio conferencing being used to augment the delivery of instruc-
tion (Simonson, Smaldino, Albright, & Zvacek, 2006). Relatively few peo-
ple owned a cell phone, and smart phones had not yet been invented.
According to Sharples, Taylor, and Vavoula (2005), learning was primarily
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 65
66 DOI: 10.1002/piq Performance Improvement Quarterly
conceptualized as the construction of knowledge through information
processing, modeling, and interaction.
However, as the Internet has become more accessible and the cre-
ation of content more distributed, the “participatory web” has enabled
a knowledge-building and knowledge-sharing system whose value now
stems from many small contributions. As described by O’Reilly (2005),
“Every user whitewashes a little bit of the fence” (online). Compared
to Web 1.0, users now have many and varied
opportunities to affect both the nature and
scope of the content being published and, in
some cases, exert real-time control over it. As
a consequence, informal learning has become
a significant component of our daily learning
experiences (Siemens, 2004). Furthermore, we
no longer expect or require knowledge to reside
within the individual. Rather, as Siemens (2004) described, we “store our
knowledge in our friends” (Section 4).
This prompts us to consider whether this easy access to, and constant
interaction with, others has actually transformed the learning process.
According to at least one set of authors, this is indeed the case, noting
that learning is now being reconceptualized as a “continual conversation
with the external world and its artefacts [sic], with oneself, and also with
other learners and teachers” (Sharples et al., 2005, p. 7). Siemens (2004)
agreed, stating, “The ability to access people and information has changed
the way people learn. . . . Know-how and know-what is being supple-
mented with know-where (the understanding of where to find knowledge
needed)” (Section 4). According to Brown (2002), the web has functioned
as a transformative technology, comprising not only an informational and
social resource, but a learning medium as well, where learning with
and from each other is both supported and facilitated.
Changes in Learners
Related to these changes in technology access and tools are changes
attributed to the learners themselves. According to Prensky (2010),
“More and more young people are now deeply and permanently tech-
nologically enhanced, connected to their peers and the world in ways no
generation has ever been before” (p. 2). Not only do today’s students want
and prefer to learn differently, they seem exceptionally capable of doing
so. Siemens (2004) suggested that technology has actually rewired learn-
ers’ brains. Although we do not yet have physical proof that the brains of
digital natives are structurally different than those of digital immigrants,
evidence is accumulating that signifies very real differences in their think-
ing patterns (Barone, 2003; Brown, 2002). According to Winn (cited in
Prensky, 2001), “Children raised with the computer think differently from
Not only do today’s
students want and prefer
to learn differently, they
seem exceptionally
capable of doing so.
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 67
the rest of us. They develop hypertext minds. They leap around. It’s as
though their cognitive structures were parallel, not sequential” (p. 3).
Siemens (2004) argues that these changes have occurred because of
the tools students use. This idea is supported by research from social psy-
chologists (cf. Nisbett, Peng, Choi, & Norenzayan, 2001), which suggests
that thinking patterns change depending on our experiences, includ-
ing the culture in which we grew up. Given that digital natives have
grown up “accustomed to the twitch-speed, multitasking, random-access,
graphics-first, active, connected, fun, fantasy, quick-payoff world of their
video games, MTV, and the Internet” (Prensky, 2001, p. 5), the suggestion
that these experiences have changed learners’ thinking patterns does not
require a huge leap.
According to Barone (2003), today’s students possess an “information-
age mindset” (p. 42) that comprises a unique ability to learn both visually
and socially. As such, digital students prefer to learn by doing—if given a
new tool to use, they are much more likely to get in and “muck around”
than refer to an owner’s manual (Prensky, 2010). In fact, for these learn-
ers, doing is more important than knowing, as this enables the develop-
ment of a deeper and more authentic understanding of the task at hand.
Then, when it is important to test and process their new knowledge,
digital natives turn to their own learning communities, which oftentimes
remain relatively disconnected from their formal educational communi-
ties. Given these new approaches to learning, Sharples and colleagues
(2005) propose that conversation (including words, images, videos, multi-
media, and more) has become the current driver of learning.
Changes in Teaching Methods
In 1993, constructivism was the new kid on the block; as such, there
were very few, if any, teaching methods that aligned with this perspective.
Currently, however, constructivism is considered the dominant educa-
tional theory; it has been embraced by nearly every educational reform
initiative within the last two decades (Karagiorgi & Symeou, 2005). As a
result, various constructivist theories, such as social constructivism, situ-
ated learning, and connectivism (Sharples et al., 2005), have become the
foundation for the majority of teaching methods that have taken hold in
recent years (for example, problem-based learning, authentic instruction,
computer-supported collaborative learning).
In addition to the general acceptance of constructivism as the basis
for our teaching methods, the conceptualization of learning as both a
personal and social process (Sharples et al., 2005) has been enhanced by
the convergence of three critical changes: (1) the development of tech-
nologies that allow for immediate and effective access to information;
(2) the motivation of learners who desire and need learning experiences
that promote high levels of interaction and activity; and (3) the demands
68 DOI: 10.1002/piq Performance Improvement Quarterly
of employers who now expect learners to acquire relevant 21st-century
skills (for example, critical thinking, problem solving, creativity) before
entering the workforce (Kay, 2010). In response to these changes, interest
has increased in the theoretical perspectives (for example, connectivism,
mobile learning, social constructivism) that align with those teaching
methods that can develop these required skills in ways that meet the
needs of today’s learners.
Problem solving, for example, is a key 21st-century skill (Barell, 2010).
Traditionally, problem-solving teaching methods focused on delineat-
ing the steps of the problem-solving process and subsequently allow-
ing students to apply those steps to problems of
varying difficulty (Polya, 1945). In contrast, more
constructivist teaching methods, such as case- or
problem-based learning, are designed to actually
engage students in relevant, real-world problems
(Barrows, 1986). In these methods, students are
presented with authentic problem situations and
then challenged to propose relevant solutions
(Mayer, 2009). Furthermore, given the advance-
ments in technology tools, students now enjoy
increased access to (1) relevant case/problem
background information; (2) additional cases or
case repositories that may uncover partial or full
solutions; and (3) individuals, including case/problem experts who can
provide scaffolding, feedback, and other support for formulating solu-
tions. As such, teaching methods such as case-based instruction, coupled
with advanced technology tools, now can facilitate novices’ access to the
knowledge, skill, and mentoring of experts, which has the potential to
advance students’ levels of problem-solving expertise in more effective
and efficient ways than was previously possible (Chase & Simon, 1973;
Schoenfeld & Herrmann, 1982).
A second, related 21st-century skill is the ability to work collabora-
tively (Kay, 2010). While traditional school learning environments have
typically promoted independent learning strategies, today’s complex
problems necessitate that people work in teams in environments that
enable the free exchange of ideas, distribution of workload, and com-
parisons among different solution paths. Today, with the use of available
technologies, individuals from geographically diverse locations can form
communities of learners to develop multidisciplinary solutions to impor-
tant problems. Teaching methods that incorporate the use of communi-
ties of practice have been very effective (Brown, 1992) and are closely
tied to learning theories such as situated cognition (Bereiter, 1997) and
constructivism. However, the concept of these communities has evolved
considerably as technology has overcome the restrictions of both place
and time. Through these types of cross-cultural collaborations, we all
now have the opportunity to learn how to effectively communicate and
interact with others from increasingly diverse backgrounds.
Today, with the use of
available technologies,
individuals from
geographically diverse
locations can form
communities of learners to
develop multidisciplinary
solutions to important
problems.
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 69
As demonstrated by Schwartz, Lin, Brophy, and Bransford (1999),
the ability to “go public” has helped students learn from each other, learn
how to view the different ways that ideas can be expressed, and learn and
experience the motivational value such publication produces. With tools
such as YouTube, blogs, wikis, and social networks, the ability to com-
municate with others and to express one’s creativity has many outlets.
Richardson (2010) reported that more than 80% of high school students
have engaged in online publishing. Although Facebook is not a teaching
method, aspects of this technology can be utilized to facilitate collabora-
tion among peers and interested others as original artifacts (ideas, prod-
ucts, stories, and the like) are created, posted, and reviewed by others.
Implications and Conclusions
As noted above, there have been tremendous changes over the last
20 years that have affected the learning process—tools have changed,
learners have changed, and, as a consequence, teaching methods have
also changed. Yet, despite these tremendous changes, the underlying
principles of our “old” theories still remain relevant. People still learn
through stimulus–response associations (for example, game-based learn-
ing) and through practice and feedback opportunities (for example, com-
puter simulations), as well as through the processes of collaboration and
social negotiation (for example, collaborative wiki writing). And although
learning contexts have changed (from fixed, formal settings to mobile,
informal ones), as have the tools used to facilitate knowledge construc-
tion (from individual, analog tools to social, digital ones), understanding
is very likely still being constructed in ways similar to the past, only with
increasing opportunities to construct that knowledge 24/7.
Similarly, the role of designers remains that of understanding the
strengths and weaknesses of each learning theory in order to optimally
select and implement strategies that support student learning in a vari-
ety of contexts. Whether learners are learning in-transit or storing their
knowledge in their friends, learning needs still emerge (as they have
always) “when a person strives to overcome a problem . . . in everyday
activity” (Vavoula, cited in Sharples et al., 2005, p. 5).
What has changed, however, is the type of learning experiences educa-
tors and instructional designers need to create in order to ensure that our
learning designs take advantage of the affordances of current tools to engage
learners in ways that best meet their needs. Quite simply, learning designs
for today’s students must be highly contextualized, personal, and collab-
orative (Herrington & Herrington, 2007). Designers must acknowledge and
embrace these changes so that they remain not only relevant, but respected
partners (Barone, 2003) in the ID work required to meet the expectations
and needs of today’s learners. As noted by Herrington and Herrington, “. . . it
is the confluence of the advances in theory and the affordances of technology
that create excellent opportunities for teachers [and designers]” (2007, p. 1).
70 DOI: 10.1002/piq Performance Improvement Quarterly
We would be remiss if we did not take advantage of these opportunities.
Indeed, our students will expect—no, they will demand it.
References
Barell, J. (2010). Problem-based learning: The foundation for 21st century skills. In
J. Bellanca & R. Brandt (Eds.), 21st century skills (pp. 174–199). Bloomington, IN:
Solution Tree Press.
Barone, C.A. (2003). The changing landscape and the new academy. Educause Review,
38(5), 41–47. Retrieved from http://net.educause.edu/ir/library/pdf/ERM0353.pdf
Barrows, H.S. (1986). A taxonomy of problem-based learning methods. Medical Educa-
tion, 20(6), 481–486. DOI: 10.1111/j.1365-2923.1986.tb01386.x
Bereiter, C. (1997). Situated cognition and how to overcome it. In D. Kirshner & J. A.
Whitson (Eds.), Situated cognition: Social, semiotic, and psychological perspectives
(pp. 281–300). Mahwah, NJ: Erlbaum.
Brown, A.L. (1992). Design experiments: Theoretical and methodological challenges in
creating complex interventions in classroom settings. The Journal of the Learning
Sciences, 2, 141–178.
Brown, J.S. (2002). Growing up digital: How the web changes work, education, and the
way people learn. USDLA Journal, 16(2). Retrieved from www.johnseelybrown.com
/Growing_up_digital.pdf
Chase, W.G., & Simon, H.A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81.
Ertmer, P.A., & Newby, T.J. (1993). Behaviorism, cognitivism, constructivism: Comparing
critical features from an instructional design perspective. PerformanceImprovement
Quarterly, 6(4), 50–72.
Herrington, A., & Herrington, J. (2007, November). Authentic mobile learning in higher
education. Paper presented at the International Education Research Conference.
Retrieved from http://researchrepository.murdoch.edu.au/5413
Karagiorgi, Y., & Symeou, L. (2005). Translating constructivism into instructional design:
Potential and limitations. Journal of Educational Technology & Society, 8(1), 17–27.
Kay, K. (2010). 21st century skills: Why they matter, what they are, and how we get there.
In J. Bellanca & R. Brandt (Eds.), 21st century skills (pp. xii–xxxi). Bloomington, IN:
Solution Tree Press.
Mayer, R.E. (2009). Multimedia learning (2nd ed.). Cambridge, England: Cambridge
University Press.
Nisbett, R.E., Peng, K., Choi, I., & Norenzayan, A. (2001). Culture and systems of thought:
Holistic vs. analytic cognition. Psychological Review, 108, 291–310.
O’Reilly, T. (2005). What is Web 2.0: Design patterns and business models for the next gen-
eration of software. Retrieved from http://oreilly.com/pub/a/web2/archive/what-
is-web-20.html?page=1
Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.
Prensky, M. (2001). Digital natives, digital immigrants, Part I: A new way to look at ourselves
and our kids. Retrieved from http://www.marcprensky.com/writing
Prensky, M. (2010). Teaching digital natives: Partnering for real learning. Thousand Oaks,
CA: Corwin.
Richardson, W. (2010). Navigating social networks as learning tools. In J. Bellanca &
R. Brandt (Eds.), 21stcenturyskills(pp. 284–303). Bloomington, IN: Solution Tree Press.
Schoenfeld, A.H., & Herrmann, D.J. (1982). Problem perception and knowledge structure
in expert and novice mathematical problem solvers. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 8(5), 484–494.
Schwartz, D.L., Lin, X., Brophy, S., & Bransford, J.D. (1999). Toward the development of
flexibly adaptive instructional design. In C.M. Reigeluth (Ed.), Instructional design
theories and models: A new paradigm of instructional theory (Vol. II, pp. 183–213).
Mahwah, NJ: Erlbaum.
Volume 26, Number 2 / 2013 DOI: 10.1002/piq 71
Sharples, M., Taylor, J., & Vavoula, G. (2005). Towardsatheoryofmobilelearning. Retrieved
from http://www.mlearn.org/mlearn2005/CD/papers/Sharples-%20Theory%20
of%20Mobile.pdf
Siemens, G. (2004). Connectivism: A learning theory for the digital age. Retrieved from
http://www.elearnspace.org/Articles/connectivism.htm
Simonson, M., Smaldino, S., Albright, M., & Zvacek, S. (2006). Teaching and learning at
a distance: Foundations of distance education (3rd ed.). Upper Saddle River, NJ:
Pearson.
PEGGY A. ERTMER
Peggy A. Ertmer, PhD, is a professor of learning design and tech-
nology in the Department of Curriculum and Instruction at Purdue
University. She completed her PhD at Purdue, specializing in educational
technology and instructional design. Prior to becoming a faculty member
at Purdue, she was an elementary and special education teacher in K–12
schools. Her research interests relate to technology integration, teach-
ers’ beliefs, and instructional design expertise. She actively mentors both
students and peers, including pre- and in-service teachers, in the use
of case-based and problem-based learning pedagogy, technology tools,
and self-regulated learning skills. She is particularly interested in study-
ing the impact of case-based instruction on higher-order thinking skills;
the effectiveness of student-centered, problem-based learning approaches
to technology integration; and strategies for facilitating higher-order
thinking and self-regulated learning in online learning environments.
She has published scholarly works in premier national and international
journals, has coedited four editions of the ID CaseBook: Case Studies in
Instructional Design, and is the founding editor of the Interdisciplinary
Journal of Problem-Based Learning, published by Purdue University Press.
E-mail: pertmer@purdue.edu
TIMOTHY J. NEWBY
Timothy J. Newby, PhD, is a professor in the learning design and tech-
nology program area of the Department of Curriculum and Instruction at
Purdue University. He received a PhD in instructional psychology from
Brigham Young University. At Purdue, he conducts research on issues
pertaining to motivation, human learning, and the impact of instruc-
tional strategies on the learning process. In addition to research, he
teaches undergraduate and graduate courses that include Introduction to
Educational Technology; Instructional Strategies; and Learning Theory,
Motivation, and Foundations of Instructional Design Theory. He has
recently coauthored two textbooks (Educational Technology for Teaching
and Learning and Teaching and Learning with Microsoft Office 2010 and
Office 2011 for Mac).
E-mail: newby@purdue.edu

More Related Content

What's hot

Curriculm Theory by Sajjad Ahmad Awan PhD Scholar
Curriculm Theory by Sajjad Ahmad Awan PhD  ScholarCurriculm Theory by Sajjad Ahmad Awan PhD  Scholar
Curriculm Theory by Sajjad Ahmad Awan PhD ScholarMalik Sajjad Ahmad Awan
 
Thesis Proposal: Reflective Abstraction in the Modern Day School Curriculum
Thesis Proposal: Reflective Abstraction in the Modern Day School CurriculumThesis Proposal: Reflective Abstraction in the Modern Day School Curriculum
Thesis Proposal: Reflective Abstraction in the Modern Day School CurriculumJacob Stotler
 
The relationship between the university students’ level of metacognitive thin...
The relationship between the university students’ level of metacognitive thin...The relationship between the university students’ level of metacognitive thin...
The relationship between the university students’ level of metacognitive thin...Alexander Decker
 
Development of mathematical learning based contextual model in south minahasa...
Development of mathematical learning based contextual model in south minahasa...Development of mathematical learning based contextual model in south minahasa...
Development of mathematical learning based contextual model in south minahasa...Alexander Decker
 
Planning for learning in maritime education
Planning for learning in maritime educationPlanning for learning in maritime education
Planning for learning in maritime educationStein Laugerud
 
Understand Designed Based Research
Understand Designed Based ResearchUnderstand Designed Based Research
Understand Designed Based ResearchNan Yang
 
From Thinking Skills To Thinking Classrooms
From Thinking Skills To Thinking ClassroomsFrom Thinking Skills To Thinking Classrooms
From Thinking Skills To Thinking ClassroomsIsabelle Jones
 
Pedagogy assignment
Pedagogy assignmentPedagogy assignment
Pedagogy assignmentarya1010
 
CCGPS Math Standards K-5
CCGPS Math Standards K-5CCGPS Math Standards K-5
CCGPS Math Standards K-5jwalts
 
Learning Theory by Ausubel
Learning Theory by AusubelLearning Theory by Ausubel
Learning Theory by AusubelNiena Majid
 
The Possibilities of Transforming Learning
The Possibilities of Transforming LearningThe Possibilities of Transforming Learning
The Possibilities of Transforming LearningBarry Dyck
 
CEN launch, Andrew Tolmie
CEN launch, Andrew TolmieCEN launch, Andrew Tolmie
CEN launch, Andrew TolmieYishay Mor
 

What's hot (18)

Ed teach (my report)
Ed teach (my report)Ed teach (my report)
Ed teach (my report)
 
Curriculm Theory by Sajjad Ahmad Awan PhD Scholar
Curriculm Theory by Sajjad Ahmad Awan PhD  ScholarCurriculm Theory by Sajjad Ahmad Awan PhD  Scholar
Curriculm Theory by Sajjad Ahmad Awan PhD Scholar
 
Thesis Proposal: Reflective Abstraction in the Modern Day School Curriculum
Thesis Proposal: Reflective Abstraction in the Modern Day School CurriculumThesis Proposal: Reflective Abstraction in the Modern Day School Curriculum
Thesis Proposal: Reflective Abstraction in the Modern Day School Curriculum
 
Foundations and framework
Foundations and frameworkFoundations and framework
Foundations and framework
 
Anchoring
Anchoring Anchoring
Anchoring
 
The relationship between the university students’ level of metacognitive thin...
The relationship between the university students’ level of metacognitive thin...The relationship between the university students’ level of metacognitive thin...
The relationship between the university students’ level of metacognitive thin...
 
Development of mathematical learning based contextual model in south minahasa...
Development of mathematical learning based contextual model in south minahasa...Development of mathematical learning based contextual model in south minahasa...
Development of mathematical learning based contextual model in south minahasa...
 
Planning for learning in maritime education
Planning for learning in maritime educationPlanning for learning in maritime education
Planning for learning in maritime education
 
Understand Designed Based Research
Understand Designed Based ResearchUnderstand Designed Based Research
Understand Designed Based Research
 
From Thinking Skills To Thinking Classrooms
From Thinking Skills To Thinking ClassroomsFrom Thinking Skills To Thinking Classrooms
From Thinking Skills To Thinking Classrooms
 
Tpck unit i[1]
Tpck unit i[1]Tpck unit i[1]
Tpck unit i[1]
 
Pedagogy assignment
Pedagogy assignmentPedagogy assignment
Pedagogy assignment
 
CCGPS Math Standards K-5
CCGPS Math Standards K-5CCGPS Math Standards K-5
CCGPS Math Standards K-5
 
Pedagogy pdf
Pedagogy pdfPedagogy pdf
Pedagogy pdf
 
Learning Theory by Ausubel
Learning Theory by AusubelLearning Theory by Ausubel
Learning Theory by Ausubel
 
The Possibilities of Transforming Learning
The Possibilities of Transforming LearningThe Possibilities of Transforming Learning
The Possibilities of Transforming Learning
 
CEN launch, Andrew Tolmie
CEN launch, Andrew TolmieCEN launch, Andrew Tolmie
CEN launch, Andrew Tolmie
 
Mygg
MyggMygg
Mygg
 

Similar to 21143 ftp.pdf behaviorism constructivism and

Tpack e learning
Tpack   e learningTpack   e learning
Tpack e learningrobynjoy
 
A Framework To Foster Problem-Solving In STEM And Computing Education
A Framework To Foster Problem-Solving In STEM And Computing EducationA Framework To Foster Problem-Solving In STEM And Computing Education
A Framework To Foster Problem-Solving In STEM And Computing EducationDereck Downing
 
Ucdtlp00631
Ucdtlp00631Ucdtlp00631
Ucdtlp00631Andri_A
 
Components of Instruction
Components of InstructionComponents of Instruction
Components of Instructionmohdazrulazlan
 
Chapter 3 related research fields
Chapter 3 related research fieldsChapter 3 related research fields
Chapter 3 related research fieldsgrainne
 
Academic forum 2 curriculum design research
Academic forum 2 curriculum design researchAcademic forum 2 curriculum design research
Academic forum 2 curriculum design researchDaysi Lopez
 
Philosophy of Higher Education
Philosophy of Higher EducationPhilosophy of Higher Education
Philosophy of Higher EducationGeorge Roberts
 
Chapter 15 pedagogical planners
Chapter 15 pedagogical plannersChapter 15 pedagogical planners
Chapter 15 pedagogical plannersgrainne
 
[1 8]designing instructional design emerging issues
[1 8]designing instructional design emerging issues[1 8]designing instructional design emerging issues
[1 8]designing instructional design emerging issuesAlexander Decker
 
What is instructional design
What is instructional designWhat is instructional design
What is instructional designleesha roberts
 
Model&theory comparison
Model&theory comparisonModel&theory comparison
Model&theory comparisonSirui Wang
 
Week 2 Discussion Learning Contract· Analyze two learning gaps .docx
Week 2 Discussion Learning Contract· Analyze two learning gaps .docxWeek 2 Discussion Learning Contract· Analyze two learning gaps .docx
Week 2 Discussion Learning Contract· Analyze two learning gaps .docxjessiehampson
 
IntroductionLearning ObjectivesAfter reading this chapter,.docx
IntroductionLearning ObjectivesAfter reading this chapter,.docxIntroductionLearning ObjectivesAfter reading this chapter,.docx
IntroductionLearning ObjectivesAfter reading this chapter,.docxnormanibarber20063
 
8- Cognitive Perspectives- 10 cornerstones -Schneider Stern 2010.pdf
8- Cognitive Perspectives- 10 cornerstones -Schneider Stern 2010.pdf8- Cognitive Perspectives- 10 cornerstones -Schneider Stern 2010.pdf
8- Cognitive Perspectives- 10 cornerstones -Schneider Stern 2010.pdfRupakKc4
 
A Brief Guide to Critiquing Research..pdf
A Brief Guide to Critiquing Research..pdfA Brief Guide to Critiquing Research..pdf
A Brief Guide to Critiquing Research..pdfJennifer Holmes
 
Asld2011 ljubojevic laurillard
Asld2011 ljubojevic laurillardAsld2011 ljubojevic laurillard
Asld2011 ljubojevic laurillardYishay Mor
 
Book review curriculum-theory and practice-kelly
Book review curriculum-theory and practice-kellyBook review curriculum-theory and practice-kelly
Book review curriculum-theory and practice-kellyFernando Santos
 

Similar to 21143 ftp.pdf behaviorism constructivism and (20)

26formres
26formres26formres
26formres
 
Il modello TPCK
Il modello TPCKIl modello TPCK
Il modello TPCK
 
Tpack e learning
Tpack   e learningTpack   e learning
Tpack e learning
 
A Framework To Foster Problem-Solving In STEM And Computing Education
A Framework To Foster Problem-Solving In STEM And Computing EducationA Framework To Foster Problem-Solving In STEM And Computing Education
A Framework To Foster Problem-Solving In STEM And Computing Education
 
Ucdtlp00631
Ucdtlp00631Ucdtlp00631
Ucdtlp00631
 
Components of Instruction
Components of InstructionComponents of Instruction
Components of Instruction
 
Chapter 3 related research fields
Chapter 3 related research fieldsChapter 3 related research fields
Chapter 3 related research fields
 
Academic forum 2 curriculum design research
Academic forum 2 curriculum design researchAcademic forum 2 curriculum design research
Academic forum 2 curriculum design research
 
Philosophy of Higher Education
Philosophy of Higher EducationPhilosophy of Higher Education
Philosophy of Higher Education
 
Chapter 15 pedagogical planners
Chapter 15 pedagogical plannersChapter 15 pedagogical planners
Chapter 15 pedagogical planners
 
[1 8]designing instructional design emerging issues
[1 8]designing instructional design emerging issues[1 8]designing instructional design emerging issues
[1 8]designing instructional design emerging issues
 
754 c2d01
754 c2d01754 c2d01
754 c2d01
 
What is instructional design
What is instructional designWhat is instructional design
What is instructional design
 
Model&theory comparison
Model&theory comparisonModel&theory comparison
Model&theory comparison
 
Week 2 Discussion Learning Contract· Analyze two learning gaps .docx
Week 2 Discussion Learning Contract· Analyze two learning gaps .docxWeek 2 Discussion Learning Contract· Analyze two learning gaps .docx
Week 2 Discussion Learning Contract· Analyze two learning gaps .docx
 
IntroductionLearning ObjectivesAfter reading this chapter,.docx
IntroductionLearning ObjectivesAfter reading this chapter,.docxIntroductionLearning ObjectivesAfter reading this chapter,.docx
IntroductionLearning ObjectivesAfter reading this chapter,.docx
 
8- Cognitive Perspectives- 10 cornerstones -Schneider Stern 2010.pdf
8- Cognitive Perspectives- 10 cornerstones -Schneider Stern 2010.pdf8- Cognitive Perspectives- 10 cornerstones -Schneider Stern 2010.pdf
8- Cognitive Perspectives- 10 cornerstones -Schneider Stern 2010.pdf
 
A Brief Guide to Critiquing Research..pdf
A Brief Guide to Critiquing Research..pdfA Brief Guide to Critiquing Research..pdf
A Brief Guide to Critiquing Research..pdf
 
Asld2011 ljubojevic laurillard
Asld2011 ljubojevic laurillardAsld2011 ljubojevic laurillard
Asld2011 ljubojevic laurillard
 
Book review curriculum-theory and practice-kelly
Book review curriculum-theory and practice-kellyBook review curriculum-theory and practice-kelly
Book review curriculum-theory and practice-kelly
 

Recently uploaded

CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 

Recently uploaded (20)

CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 

21143 ftp.pdf behaviorism constructivism and

  • 1. 43 P E R F O R M A N C E I M P R O V E M E N T Q U A R T E R LY, 2 6 ( 2 ) P P. 4 3 – 7 1 © 2013 International Society for Performance Improvement Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/piq.21143 Behaviorism, Cognitivism, Constructivism: Comparing Critical Features From an Instructional Design Perspective Peggy A. Ertmer and Timothy J. Newby T he need for a bridge between basic learn- ing research and educational practice has long been discussed. To ensure a strong connection between these two areas, Dewey (cited in Reigeluth, 1983) called for the creation and development of a “linking science”; Tyler (1978) a “middleman position”; and Lynch (1945) for employing an “engineering analogy” as an aid for translating theory into practice. In each case, the respective author highlighted the informa- tion and potential contributions of available learn- ing theories, the pressing problems faced by those dealing with practical learning issues, and a general lack of using the former to facilitate solutions for the latter. The value of such a bridging function would be its ability to translate relevant aspects of the learning theories into optimal instructional actions. As described by Reigeluth (1983), the field of Instructional Design performs this role. Instructional designers have been charged with “translating principles of learning and instruction into specifications for instructional materials and activities” (Smith & Ragan, 1993, p. 12). To achieve this goal, two sets of skills and knowledge are needed. First, the designer must understand the position of the practitio- ner. In this regard, the following questions would be relevant: What are The way we define learning and what we believe about the way learning occurs has important implications for situations in which we want to facilitate changes in what people know and/or do. Learning theories provide instruct- ional designers with verified instruc- tional strategies and techniques for facilitating learning as well as a founda- tion for intelligent strategy selection. Yet many designers are operating under the constraints of a limited theoretical background. This paper is an attempt to familiarize designers with three rel- evant positions on learning (behavioral, cognitive, and constructivist) which provide structured foundations for planning and conducting instructional design activities. Each learning perspec- tive is discussed in terms of its specific interpretation of the learning process and the resulting implications for instructional designers and educational practitioners. The information presented here provides the reader with a compari- son of these three different viewpoints and illustrates how these differences might be translated into practical appli- cations in instructional situations. “Behaviorism, Cognitivism, Constructivism: Comparing Critical Features From an Instructional Design Perspective” by P.A. Ertmer and T.J. Newby is reprinted from Performance Improvement Quarterly, 6(4), 1993, pp. 50–72. doi: 10.1111/j.1937- 8327.1993.tb00605.x
  • 2. 44 DOI: 10.1002/piq Performance Improvement Quarterly the situational and contextual constraints of the application? What is the degree of individual differences among the learners? What form of solu- tions will or will not be accepted by the learners as well as by those actu- ally teaching the materials? The designer must have the ability to diagnose and analyze practical learning problems. Just as a doctor cannot pre- scribe an effective remedy without a proper diagnosis, the instructional designer cannot properly recommend an effective prescriptive solution without an accurate analysis of the instructional problem. In addition to understanding and analyzing the problem, a second core of knowledge and skills is needed to “bridge” or “link” application with research—that of understanding the potential sources of solutions (i.e., the theories of human learning). Through this understanding, a proper prescriptive solution can be matched with a given diagnosed problem. The critical link, therefore, is not between the design of instruction and an autonomous body of knowledge about instructional phenomena, but between instructional design issues and the theories of human learning. Why this emphasis on learning theory and research? First, learn- ing theories are a source of verified instructional strategies, tactics, and techniques. Knowledge of a variety of such strategies is critical when attempting to select an effective prescription for overcoming a given instructional problem. Second, learning theories provide the foundation for intelligent and reasoned strategy selection. Designers must have an adequate repertoire of strategies available, and possess the knowledge of when and why to employ each. This knowledge depends on the designer’s ability to match the demands of the task with an instructional strategy that helps the learner. Third, integration of the selected strategy within the instructional context is of critical importance. Learning theories and research often provide information about relationships among instruc- tional components and the design of instruction, indicating how spe- cific techniques/strategies might best fit within a given context and with specific learners (Keller, 1979). Finally, the ultimate role of a theory is to allow for reliable prediction (Richey, 1986). Effective solutions to practi- cal instructional problems are often constrained by limited time and resources. It is paramount that those strategies selected and implemented have the highest chance for success. As suggested by Warries (1990), a selection based on strong research is much more reliable than one based on “instructional phenomena.” The task of translating learning theory into practical applications would be greatly simplified if the learning process were relatively simple and straightforward. Unfortunately, this is not the case. Learning is a complex process that has generated numerous interpretations and theo- ries of how it is effectively accomplished. Of these many theories, which should receive the attention of the instructional designer? Is it better to choose one theory when designing instruction or to draw ideas from dif- ferent theories? This article presents three distinct perspectives of the learning process (behavioral, cognitive, and constructivist) and although each has many unique features, it is our belief that each still describes the
  • 3. Volume 26, Number 2 / 2013 DOI: 10.1002/piq 45 same phenomena (learning). In selecting the theory whose associated instructional strategies offers the optimal means for achieving desired outcomes, the degree of cognitive processing required of the learner by the specific task appears to be a critical factor. Therefore, as emphasized by Snelbecker (1983), individuals addressing practical learning problems cannot afford the “luxury of restricting themselves to only one theoretical position . . . [They] are urged to examine each of the basic science theories which have been developed by psychologists in the study of learning and to select those principles and conceptions which seem to be of value for one’s particular educational situation” (p. 8). If knowledge of the various learning theories is so important for instructional designers, to what degree are they emphasized and promoted? As reported by Johnson (1992), less than two percent of the courses offered in university curricula in the general area of edu- cational technology emphasize “theory” as one of their key concepts. It appears that the real benefits of theo- retical knowledge are, at present, not being realized. This article is an attempt to “fill in some of the gaps” that may exist in our knowledge of modern learning theories. The main intent is to provide designers with some familiarity with three relevant positions on learning (behavioral, cognitive, and constructivist) which should provide a more structured foundation for planning and conducting instructional design activities. The idea is that if we understand some of the deep principles of the theories of learning, we can extrapolate to the particulars as needed. As Bruner (1971) states, “You don’t need to encounter everything in nature in order to know nature” (p. 18). A basic understanding of the learning theories can provide you with a “canny strategy whereby you could know a great deal about a lot of things while keeping very little in mind” (p. 18). It is expected that after reading this article, instructional designers and educational practitioners should be better informed “consumers” of the strategies suggested by each viewpoint. The concise information pre- sented here can serve as an initial base of knowledge for making impor- tant decisions regarding instructional objectives and strategies. Learning Defined Learning has been defined in numerous ways by many different theorists, researchers and educational practitioners. Although univer- sal agreement on any single definition is nonexistent, many definitions employ common elements. The following definition by Shuell (as inter- preted by Schunk, 1991) incorporates these main ideas: “Learning is an enduring change in behavior, or in the capacity to behave in a given fashion, which results from practice or other forms of experience” (p. 2). Undoubtedly, some learning theorists will disagree on the defini- tion of learning presented here. However, it is not the definition itself that separates a given theory from the rest. The major differences among Less than two percent of the courses offered in university curricula in the general area of educational technology emphasize“theory”as one of their key concepts.
  • 4. 46 DOI: 10.1002/piq Performance Improvement Quarterly theories lie more in interpretation than they do in definition. These differ- ences revolve around a number of key issues that ultimately delineate the instructional prescriptions that flow from each theoretical perspective. Schunk (1991) lists five definitive questions that serve to distinguish each learning theory from the others: (l) How does learning occur? (2) Which factors influence learning? (3) What is the role of memory? (4) How does transfer occur? and (5) What types of learning are best explained by the theory? Expanding on this original list, we have included two additional ques- tions important to the instructional designer: (6) What basic assumptions/principles of this theory are relevant to instructional design? and (7) How should instruction be structured to facilitate learning? In this article, each of these questions is answered from three distinct viewpoints: behaviorism, cognitivism, and constructivism. Although learning theories typically are divided into two categories—behavioral and cognitive—a third category, constructive, is added here because of its recent emphasis in the instructional design literature (e.g., Bednar, Cunningham, Duffy, & Perry, 1991; Duffy & Jonassen, 1991; Jonassen, 1991b; Winn, 1991). In many ways these viewpoints overlap; yet they are distinctive enough to be treated as separate approaches to understanding and describing learning. These three particular positions were chosen because of their importance, both historically and currently, to the field of instructional design. It is hoped that the answers to the first five ques- tions will provide the reader with a basic understanding of how these viewpoints differ. The answers to the last two questions will translate these differences into practical suggestions and recommendations for the application of these principles in the design of instruction. These seven questions provide the basis for the article’s structure. For each of the three theoretical positions, the questions are addressed and an example is given to illustrate the application of that perspective. It is expected that this approach will enable the reader to compare and con- trast the different viewpoints on each of the seven issues. As is common in any attempt to compare and contrast similar prod- ucts, processes, or ideas, differences are emphasized in order to make dis- tinctions clear. This is not to suggest that there are no similarities among these viewpoints or that there are no overlapping features. In fact, differ- ent learning theories will often prescribe the same instructional methods for the same situations (only with different terminology and possibly with different intentions). This article outlines the major differences between the three positions in an attempt to facilitate comparison. It is our hope
  • 5. Volume 26, Number 2 / 2013 DOI: 10.1002/piq 47 that the reader will gain greater insight into what each viewpoint offers in terms of the design and presentation of materials, as well as the types of learning activities that might be prescribed. Historical Foundations Current learning theories have roots that extend far into the past. The problems with which today’s theorists and researchers grapple and strug- gle are not new but simply variations on a timeless theme: Where does knowledge come from and how do people come to know? Two opposing positions on the origins of knowledge—empiricism and rationalism— have existed for centuries and are still evident, to varying degrees, in the learning theories of today. A brief description of these views is included here as a background for comparing the “modern” learning viewpoints of behaviorism, cognitivism, and constructivism. Empiricism is the view that experience is the primary source of knowledge (Schunk, 1991). That is, organisms are born with basically no knowledge and anything learned is gained through interactions and associations with the environment. Beginning with Aristotle (384–322 B.C.), empiricists have espoused the view that knowledge is derived from sensory impressions. Those impressions, when asso- ciated contiguously in time and/or space, can be hooked together to form complex ideas. For example, the complex idea of a tree, as illustrated by Hulse, Egeth, and Deese (1980), can be built from the less complex ideas of branches and leaves, which in turn are built from the ideas of wood and fiber, which are built from basic sensations such as greenness, woody odor, and so forth. From this perspective, critical instructional design issues focus on how to manipulate the environment in order to improve and ensure the occurrence of proper associations. Rationalism is the view that knowledge derives from reason without the aid of the senses (Schunk, 1991). This fundamental belief in the dis- tinction between mind and matter originated with Plato (c. 427–347 B.C.), and is reflected in the viewpoint that humans learn by recalling or “dis- covering” what already exists in the mind. For example, the direct experi- ence with a tree during one’s lifetime simply serves to reveal that which is already in the mind. The “real” nature of the tree (greenness, woodi- ness, and other characteristics) becomes known, not through the experi- ence, but through a reflection on one’s idea about the given instance of a tree. Although later rationalists differed on some of Plato’s other ideas, the central belief remained the same: that knowledge arises through the mind. From this perspective, instructional design issues focus on how best to structure new information in order to facilitate (1) the learners’ encoding of this new information, as well as (2) the recalling of that which is already known. The goal of instruction for the behaviorist is to elicit the desired response from the learner who is presented with a target stimulus.
  • 6. 48 DOI: 10.1002/piq Performance Improvement Quarterly The empiricist, or associationist, mindset provided the framework for many learning theories during the first half of this century, and it was against this background that behaviorism became the leading psychologi- cal viewpoint (Schunk, 1991). Because behaviorism was dominant when instructional theory was initiated (around 1950), the instructional design (ID) technology that arose alongside it was naturally influenced by many of its basic assumptions and characteristics. Since ID has its roots in behav- ioral theory, it seems appropriate that we turn our attention to behavior- ism first. Behaviorism How does learning occur? Behaviorism equates learning with changes in either the form or frequency of observable performance. Learning is accomplished when a proper response is demonstrated following the presentation of a spe- cific environmental stimulus. For example, when presented with a math flashcard showing the equation “2 + 4 = ?” the learner replies with the answer of “6.” The equation is the stimulus and the proper answer is the associated response. The key elements are the stimulus, the response, and the association between the two. Of primary concern is how the asso- ciation between the stimulus and response is made, strengthened, and maintained. Behaviorism focuses on the importance of the consequences of those performances and contends that responses that are followed by rein- forcement are more likely to recur in the future. No attempt is made to determine the structure of a student’s knowledge nor to assess which mental processes it is necessary for them to use (Winn, 1990). The learner is characterized as being reactive to conditions in the environment as opposed to taking an active role in discovering the environment. Which factors influence learning? Although both learner and environmental factors are considered important by behaviorists, environmental conditions receive the great- est emphasis. Behaviorists assess the learners to determine at what point to begin instruction as well as to determine which reinforcers are most effective for a particular student. The most critical factor, however, is the arrangement of stimuli and consequences within the environment. What is the role of memory? Memory, as commonly defined by the layman, is not typically addressed by behaviorists. Although the acquisition of “habits” is dis- cussed, little attention is given as to how these habits are stored or recalled for future use. Forgetting is attributed to the “nonuse” of a response over time. The use of periodic practice or review serves to maintain a learner’s readiness to respond (Schunk, 1991).
  • 7. Volume 26, Number 2 / 2013 DOI: 10.1002/piq 49 How does transfer occur? Transfer refers to the application of learned knowledge in new ways or situations, as well as to how prior learning affects new learning. In behav- ioral learning theories, transfer is a result of generalization. Situations involving identical or similar features allow behaviors to transfer across common elements. For example, the student who has learned to recog- nize and classify elm trees demonstrates transfer when (s)he classifies maple trees using the same process. The similarities between the elm and maple trees allow the learner to apply the previous elm tree classification learning experience to the maple tree classification task. What types of learning are best explained by this position? Behaviorists attempt to prescribe strategies that are most useful for building and strengthening stimulus-response associations (Winn, 1990), including the use of instructional cues, practice, and reinforce- ment. These prescriptions have generally been proven reliable and effec- tive in facilitating learning that involves discriminations (recalling facts), generalizations (defining and illustrating concepts), associations (apply- ing explanations), and chaining (automatically performing a specified procedure). However, it is generally agreed that behavioral principles cannot adequately explain the acquisition of higher level skills or those that require a greater depth of processing (e.g., language development, problem solving, inference generating, critical thinking) (Schunk, 1991). What basic assumptions/principles of this theory are relevant to instructional design? Many of the basic assumptions and characteristics of behaviorism are embedded in current instructional design practices. Behaviorism was used as the basis for designing many of the early audio-visual materi- als and gave rise to many related teaching strategies, such as Skinner’s teaching machines and programmed texts. More recent examples include principles utilized within computer-assisted instruction (CAI) and mas- tery learning. Specific assumptions or principles that have direct relevance to instructional design include the following (possible current ID applica- tions are listed in brackets [ ] following the listed principle): ♦ An emphasis on producing observable and measurable outcomes in students [behavioral objectives, task analysis, criterion-referenced assessment] ♦ Pre-assessment of students to determine where instruction should begin [learner analysis] ♦ Emphasis on mastering early steps before progressing to more complex levels of performance [sequencing of instructional presen- tation, mastery learning] ♦ Use of reinforcement to impact performance [tangible rewards, informative feedback]
  • 8. 50 DOI: 10.1002/piq Performance Improvement Quarterly ♦ Use of cues, shaping and practice to ensure a strong stimulus- response association [simple to complex sequencing of practice, use of prompts] How should instruction be structured? The goal of instruction for the behaviorist is to elicit the desired response from the learner who is presented with a target stimulus. To accomplish this, the learner must know how to execute the proper response, as well as the conditions under which that response should be made. Therefore, instruction is structured around the presentation of the target stimulus and the provision of opportunities for the learner to practice making the proper response. To facilitate the linking of stimulus-response pairs, instruction frequently uses cues (to initially prompt the delivery of the response) and reinforcement (to strengthen correct responding in the presence of the target stimulus). Behavioral theories imply that the job of the teacher/designer is to (1) determine which cues can elicit the desired responses; (2) arrange prac- tice situations in which prompts are paired with the target stimuli that initially have no eliciting power but which will be expected to elicit the responses in the “natural” (performance) setting; and (3) arrange envi- ronmental conditions so that students can make the correct responses in the presence of those target stimuli and receive reinforcement for those responses (Gropper, 1987). For example, a newly-hired manager of human resources may be expected to organize a meeting agenda according to the company’s specific format. The target stimulus (the verbal command “to format a meeting agenda”) does not initially elicit the correct response nor does the new manager have the capability to make the correct response. However, with the repeated presentation of cues (e.g., completed tem- plates of past agendas, blank templates arranged in standard format) paired with the verbal command stimulus, the manager begins to make the appropriate responses. Although the initial responses may not be in the final proper form, repeated practice and reinforcement shape the response until it is correctly executed. Finally, learning is demonstrated when, upon the command to format a meeting agenda, the manager reliably organizes the agenda according to company stan- dards and does so without the use of previous examples or models. Cognitivism In the late 1950s, learning theory began to make a shift away from the use of behavioral models to an approach that relied on learning theories and models from the cognitive sciences. Psychologists and educators began to de-emphasize a concern with overt, observable behavior and stressed instead more complex cognitive processes such as thinking, prob- lem solving, language, concept formation and information processing
  • 9. Volume 26, Number 2 / 2013 DOI: 10.1002/piq 51 (Snelbecker, 1983). Within the past decade, a number of authors in the field of instructional design have openly and consciously rejected many of ID’s tradi- tional behavioristic assumptions in favor of a new set of psychological assumptions about learning drawn from the cognitive sciences. Whether viewed as an open revolution or simply a gradual evolutionary process, there seems to be the general acknowledg- ment that cognitive theory has moved to the fore- front of current learning theories (Bednar et al., 1991). This shift from a behavioral orientation (where the emphasis is on promoting a student’s overt per- formance by the manipulation of stimulus material) to a cognitive orientation (where the emphasis is on promoting mental processing) has created a similar shift from procedures for manipulating the materials to be presented by an instructional system to procedures for directing student processing and interaction with the instructional design system (Merrill, Kowalis, & Wilson, 1981). How does learning occur? Cognitive theories stress the acquisition of knowledge and internal mental structures and, as such, are closer to the rationalist end of the epistemology continuum (Bower & Hilgard, 1981). Learning is equated with discrete changes between states of knowledge rather than with changes in the probability of response. Cognitive theories focus on the conceptualization of students’ learning processes and address the issues of how information is received, organized, stored, and retrieved by the mind. Learning is concerned not so much with what learners do but with what they know and how they come to acquire it (Jonassen, 1991b). Knowledge acquisition is described as a mental activity that entails inter- nal coding and structuring by the learner. The learner is viewed as a very active participant in the learning process. Which factors influence learning? Cognitivism, like behaviorism, emphasizes the role that environmen- tal conditions play in facilitating learning. Instructional explanations, demonstrations, illustrative examples and matched non-examples are all considered to be instrumental in guiding student learning. Similarly, emphasis is placed on the role of practice with corrective feedback. Up to this point, little difference can be detected between these two theories. However, the “active” nature of the learner is perceived quite differently. The cognitive approach focuses on the mental activities of the learner that lead up to a response and acknowledges the processes of mental planning, goal-setting, and organizational strategies (Shuell, 1986). Cognitive theories contend that environmental “cues” and instruc- tional components alone cannot account for all the learning that results Cognitive theories stress the acquisition of knowledgeandinternal mental structures . . . [they] focus on the conceptualization of students’ learning processes and address the issues of how information is received, organized, stored, and retrieved by the mind.
  • 10. 52 DOI: 10.1002/piq Performance Improvement Quarterly from an instructional situation. Additional key elements include the way that learners attend to, code, transform, rehearse, store and retrieve information. Learners’ thoughts, beliefs, attitudes, and values are also considered to be influential in the learning process (Winne, 1985). The real focus of the cognitive approach is on changing the learner by encour- aging him/her to use appropriate learning strategies. What is the role of memory? As indicated above, memory is given a prominent role in the learning process. Learning results when information is stored in memory in an organized, meaningful manner. Teachers/designers are responsible for assisting learners in organizing that information in some optimal way. Designers use techniques such as advance organizers, analogies, hierar- chical relationships, and matrices to help learners relate new information to prior knowledge. Forgetting is the inability to retrieve information from memory because of interference, memory loss, or missing or inad- equate cues needed to access information. How does transfer occur? According to cognitive theories, transfer is a function of how infor- mation is stored in memory (Schunk, 1991). When a learner understands how to apply knowledge in different contexts, then transfer has occurred. Understanding is seen as being composed of a knowledge base in the form of rules, concepts, and discriminations (Duffy & Jonassen, 1991). Prior knowledge is used to establish boundary constraints for identify- ing the similarities and differences of novel information. Not only must the knowledge itself be stored in memory but the uses of that knowledge as well. Specific instructional or real-world events will trigger particular responses, but the learner must believe that the knowledge is useful in a given situation before he or she will activate it. What types of learning are best explained by this position? Because of the emphasis on mental structures, cognitive theories are usually considered more appropriate for explaining complex forms of learn- ing (reasoning, problem-solving, information-processing) than are those of a more behavioral perspective (Schunk, 1991). However, it is important to indicate at this point that the actual goal of instruction for both of these viewpoints is often the same: to communicate or transfer knowledge to the students in the most efficient, effective manner possible (Bednar et al., 1991). Two techniques used by both camps in achieving this effectiveness and efficiency of knowledge transfer are simplification and standardization. That is, knowledge can be analyzed, decomposed, and simplified into basic building blocks. Knowledge transfer is expedited if irrelevant informa- tion is eliminated. For example, trainees attending a workshop on effective management skills would be presented with information that is “sized” and “chunked” in such a way that they can assimilate and/or accommodate the
  • 11. Volume 26, Number 2 / 2013 DOI: 10.1002/piq 53 new information as quickly and as easily as possible. Behaviorists would focus on the design of the environment to optimize that transfer, while cognitivists would stress efficient processing strategies. What basic assumptions/principles of this theory are relevant to instructional design? Many of the instructional strategies advocated and utilized by cogni- tivists are also emphasized by behaviorists, yet usually for different rea- sons. An obvious commonality is the use of feedback. A behaviorist uses feedback (reinforcement) to modify behavior in the desired direction, while cognitivists make use of feedback (knowledge of results) to guide and support accurate mental connections (Thompson, Simonson, & Hargrave, 1992). Learner and task analyses are also critical to both cognitivists and behaviorists, but once again, for different reasons. Cognitivists look at the learner to determine his/her predisposition to learning, (i.e., How does the learner activate, maintain, and direct his/her learning?) (Thompson et al., 1992). Additionally, cognitivists examine the learner to determine how to design instruction so that it can be readily assimilated (i.e., What are the learner’s existing mental structures?). In contrast, the behaviorists look at learners to determine where the lesson should begin (i.e., At what level are they currently performing successfully?) and which reinforcers should be most effective (i.e., What consequences are most desired by the learner?). Specific assumptions or principles that have direct relevance to instructional design include the following (possible current ID applica- tions are listed in brackets [ ] following the listed principle): ♦ Emphasis on the active involvement of the learner in the learning process [learner control, metacognitive training (e.g., self-planning, monitoring, and revising techniques)] ♦ Use of hierarchical analyses to identify and illustrate prerequisite relationships [cognitive task analysis procedures] ♦ Emphasis on structuring, organizing, and sequencing information to facilitate optimal processing [use of cognitive strategies such as outlining, summaries, synthesizers, advance organizers, etc.] ♦ Creation of learning environments that allow and encourage stu- dents to make connections with previously learned material [recall of prerequisite skills; use of relevant examples, analogies] How should instruction be structured? Behavioral theories imply that teachers ought to arrange environ- mental conditions so that students respond properly to presented stimuli. Cognitive theories emphasize making knowledge meaningful and help- ing learners organize and relate new information to existing knowledge in memory. Instruction must be based on a student’s existing mental
  • 12. 54 DOI: 10.1002/piq Performance Improvement Quarterly structures, or schema, to be effective. It should organize information in such a manner that learners are able to connect new information with existing knowledge in some meaningful way. Analogies and metaphors are examples of this type of cognitive strategy. For example, instructional design textbooks frequently draw an analogy between the familiar archi- tect’s profession and the unfamiliar instructional design profession to help the novice learner conceptualize, organize and retain the major duties and functions of an instructional designer (e.g., Reigeluth, 1983). Other cognitive strategies may include the use of framing, outlining, mnemonics, concept mapping, advance organizers, and so forth (West, Farmer, & Wolff, 1991). Such cognitive emphases imply that major tasks of the teacher/designer include (1) understanding that individuals bring various learning experiences to the learning situation which can impact learning outcomes; (2) determining the most effective manner in which to organize and structure new information to tap the learners’ previously acquired knowledge, abilities, and experiences; and (3) arrang- ing practice with feedback so that the new information is effectively and efficiently assimilated and/or accommodated within the learners’ cogni- tive structure (Stepich & Newby, 1988). Consider the following example of a learning situation utilizing a cognitive approach: A manager in the training department of a large cor- poration had been asked to teach a new intern to complete a cost-benefit analysis for an upcoming development project. In this case, it is assumed that the intern has no previous experience with cost-benefit analysis in a business setting. However, by relating this new task to highly similar pro- cedures with which the intern has had more experience, the manager can facilitate a smooth and efficient assimilation of this new procedure into memory. These familiar procedures may include the process by which the individual allocates his monthly pay check, how (s)he makes a buy/ no-buy decision regarding the purchase of a luxury item, or even how one’s weekend spending activities might be determined and prioritized. The procedures for such activities may not exactly match those of the cost-benefit analysis, but the similarity between the activities allows for the unfamiliar information to be put within a familiar context. Thus, pro- cessing requirements are reduced and the potential effectiveness of recall cues is increased. Constructivism The philosophical assumptions underlying both the behavioral and cog- nitive theories are primarily objectivistic; that is: the world is real, external to the learner. The goal of instruction is to map the structure of the world onto the learner (Jonassen, 1991b). A number of contemporary cognitive Cognitive theories emphasize making knowledge meaningful and helping learners organize and relate new information to existing knowledge in memory.
  • 13. Volume 26, Number 2 / 2013 DOI: 10.1002/piq 55 theorists have begun to question this basic objectivistic assumption and are starting to adopt a more constructivist approach to learning and under- standing: knowledge “is a function of how the individual creates meaning from his or her own experiences” (p. 10). Constructivism is not a totally new approach to learning. Like most other learning theories, constructiv- ism has multiple roots in the philosophical and psychological viewpoints of this century, specifically in the works of Piaget, Bruner, and Goodman (Perkins, 1991). In recent years, however, constructivism has become a “hot” issue as it has begun to receive increased attention in a number of dif- ferent disciplines, including instructional design (Bednar et al., 1991). How does learning occur? Constructivism is a theory that equates learning with creating mean- ing from experience (Bednar et al., 1991). Even though constructivism is considered to be a branch of cognitivism (both conceive of learning as a mental activity), it distinguishes itself from traditional cognitive theories in a number of ways. Most cognitive psychologists think of the mind as a reference tool to the real world; constructivists believe that the mind filters input from the world to produce its own unique reality (Jonassen, 1991a). As with the rationalists of Plato’s time, the mind is believed to be the source of all meaning, yet like the empiricists, individual, direct experiences with the environment are considered critical. Constructivism crosses both cat- egories by emphasizing the interaction between these two variables. Constructivists do not share with cognitivists and behaviorists the belief that knowledge is mind-independent and can be “mapped” onto a learner. Constructivists do not deny the existence of the real world but contend that what we know of the world stems from our own interpreta- tions of our experiences. Humans create meaning as opposed to acquiring it. Since there are many possible meanings to glean from any experi- ence, we cannot achieve a predetermined, “correct” meaning. Learners do not transfer knowledge from the external world into their memories; rather they build personal interpretations of the world based on indi- vidual experiences and interactions. Thus, the internal representation of knowledge is constantly open to change; there is not an objective reality that learners strive to know. Knowledge emerges in contexts within which it is relevant. Therefore, in order to understand the learning which has taken place within an individual, the actual experience must be examined (Bednar et al., 1991). Which factors influence learning? Both learner and environmental factors are critical to the constructiv- ist, as it is the specific interaction between these two variables that creates knowledge. Constructivists argue that behavior is situationally determined (Jonassen, 1991a). Just as the learning of new vocabulary words is enhanced by exposure and subsequent interaction with those words in context (as opposed to learning their meanings from a dictionary), likewise it is essential
  • 14. 56 DOI: 10.1002/piq Performance Improvement Quarterly that content knowledge be embedded in the situation in which it is used. Brown, Collins, and Duguid (1989) suggest that situations actually co-produce knowledge (along with cognition) through activity. Every action is viewed as “an interpretation of the current situation based on an entire history of previ- ous interactions” (Clancey, 1986). Just as shades of meanings of given words are constantly changing a learner’s “current” understanding of a word, so too will concepts continually evolve with each new use. For this reason, it is critical that learning occur in realistic settings and that the selected learning tasks be relevant to the students’ lived experiences. What is the role of memory? The goal of instruction is not to ensure that individuals know par- ticular facts but rather that they elaborate on and interpret information. “Understanding is developed through continued, situated use . . . and does not crystallize into a categorical definition” that can be called up from memory (Brown et al., 1989, p. 33). As mentioned earlier, a concept will continue to evolve with each new use as new situations, negotiations, and activities recast it in a different, more densely textured form. Therefore, “memory” is always under construction as a cumulative history of interac- tions. Representations of experiences are not formalized or structured into a single piece of declarative knowledge and then stored in the head. The emphasis is not on retrieving intact knowledge structures, but on providing learners with the means to create novel and situation-specific understand- ings by “assembling” prior knowledge from diverse sources appropriate to the problem at hand. For example, the knowledge of “design” activities has to be used by a practitioner in too many different ways for them all to be anticipated in advance. Constructivists emphasize the flexible use of pre- existing knowledge rather than the recall of prepackaged schemas (Spiro, Feltovich, Jacobson, & Coulson, 1991). Mental representations developed through task-engagement are likely to increase the efficiency with which subsequent tasks are performed to the extent that parts of the environ- ment remain the same: “Recurring features of the environment may thus afford recurring sequences of actions” (Brown et al., p. 37). Memory is not a context-independent process. Clearly the focus of constructivism is on creating cognitive tools which reflect the wisdom of the culture in which they are used as well as the insights and experiences of individuals. There is no need for the mere acquisition of fixed, abstract, self-contained concepts or details. To be successful, meaningful, and lasting, learning must include all three of these crucial factors: activity (practice), concept (knowledge), and culture (context) (Brown et al., 1989). How does transfer occur? The constructivist position assumes that transfer can be facilitated by involvement in authentic tasks anchored in meaningful contexts. Since understanding is “indexed” by experience (just as word meanings are tied
  • 15. Volume 26, Number 2 / 2013 DOI: 10.1002/piq 57 to specific instances of use), the authenticity of the experience becomes critical to the individual’s ability to use ideas (Brown et al., 1989). An essential concept in the constructivist view is that learning always takes place in a context and that the context forms an inexorable link with the knowledge embedded in it (Bednar et al., 1991). Therefore, the goal of instruction is to accurately portray tasks, not to define the structure of learning required to achieve a task. If learning is decontextualized, there is little hope for transfer to occur. One does not learn to use a set of tools simply by following a list of rules. Appropriate and effective use comes from engaging the learner in the actual use of the tools in real-world situa- tions. Thus, the ultimate measure of learning is based on how effective the learner’s knowledge structure is in facilitating thinking and performing in the system in which those tools are used. What types of learning are best explained by this position? The constructivist view does not accept the assump- tion that types of learning can be identified independent of the content and the context of learning (Bednar et al., 1991). Constructivists believe that it is impossible to iso- late units of information or divide up knowledge domains according to a hierarchical analysis of relationships. Although the emphasis on performance and instruction has proven effective in teaching basic skills in relatively structured knowledge domains, much of what needs to be learned involves advanced knowledge in ill-structured domains. Jonassen (1991a) has described three stages of knowledge acquisition (introductory, advanced, and expert) and argues that constructive learn- ing environments are most effective for the stage of advanced knowledge acquisition, where initial misconceptions and biases acquired during the introductory stage can be discovered, negotiated, and if necessary, modi- fied and/or removed. Jonassen agrees that introductory knowledge acqui- sition is better supported by more objectivistic approaches (behavioral and/or cognitive) but suggests a transition to constructivistic approaches as learners acquire more knowledge which provides them with the con- ceptual power needed to deal with complex and ill-structured problems. What basic assumptions/principles of this theory are relevant to instructional design? The constructivist designer specifies instructional methods and strate- gies that will assist learners in actively exploring complex topics/environments and that will move them into thinking in a given content area as an expert user of that domain might think. Knowledge is not abstract but is linked to the context under study and to the experiences that the participants bring to the context. As such, learners are encouraged to construct their own understandings and then to validate, through social negotiation, these Although the emphasis on performance and instruction has proven effective in teaching basic skills in relatively structured knowledge domains, much of what needs to be learned involves advanced knowledge in ill- structured domains.
  • 16. 58 DOI: 10.1002/piq Performance Improvement Quarterly new perspectives. Content is not pre-specified; infor- mation from many sources is essential. For example, a typical constructivist’s goal would not be to teach novice ID students straight facts about instructional design, but to prepare students to use ID facts as an instructional designer might use them. As such, per- formance objectives are not related so much to the content as they are to the processes of construction. Some of the specific strategies utilized by con- structivists include situating tasks in real world con- texts, use of cognitive apprenticeships (modeling and coaching a student toward expert performance), pre- sentation of multiple perspectives (collaborative learning to develop and share alternative views), social negotiation (debate, discussion, evidence- giving), use of examples as real “slices of life,” reflective awareness, and providing considerable guidance on the use of constructive processes. The following are several specific assumptions or principles from the constructivist position that have direct relevance for the instructional designer (possible ID applications are listed in brackets [ ] following the listed principle): ♦ An emphasis on the identification of the context in which the skills will be learned and subsequently applied [anchoring learning in meaningful contexts]. ♦ An emphasis on learner control and the capability of the learner to manipulate information [actively using what is learned]. ♦ The need for information to be presented in a variety of different ways [revisiting content at different times, in rearranged contexts, for different purposes, and from different conceptual perspectives]. ♦ Supporting the use of problem solving skills that allow learners to go “beyond the information given” [developing pattern-recognition skills, presenting alternative ways of representing problems]. ♦ Assessment focused on transfer of knowledge and skills [presenting new problems and situations that differ from the conditions of the initial instruction]. How should instruction be structured? As one moves along the behaviorist—cognitivist—constructivist con- tinuum, the focus of instruction shifts from teaching to learning, from the passive transfer of facts and routines to the active application of ideas to problems. Both cognitivists and constructivists view the learner as being actively involved in the learning process, yet the constructivists look at the learner as more than just an active processor of information; the learner elaborates upon and interprets the given information (Duffy & Jonassen, 1991). Meaning is created by the learner: learning objectives are not pre-specified nor is instruction predesigned. “The role of instruction in As one moves along the behaviorist—cognitivist— constructivist continuum, the focus of instruction shifts from teaching to learning, from the passive transfer of facts and routines to the active application of ideas to problems.
  • 17. Volume 26, Number 2 / 2013 DOI: 10.1002/piq 59 the constructivist view is to show students how to construct knowledge, to promote collaboration with others to show the multiple perspectives that can be brought to bear on a particular problem, and to arrive at self- chosen positions to which they can commit themselves, while realizing the basis of other views with which they may disagree” (Cunningham, 1991, p. 14). Even though the emphasis is on learner construction, the instruc- tional designer/teacher’s role is still critical (Reigeluth, 1989). Here the- tasks of the designer are two-fold: (1) to instruct the student on how to construct meaning, as well as how to effectively monitor, evaluate, and update those constructions; and (2) to align and design experiences for the learner so that authentic, relevant contexts can be experienced. Although constructivist approaches are used quite frequently in the preparation of lawyers, doctors, architects, and businessmen through the use of apprenticeships and on-the-job training, they are typically not applied in the educational arena (Resnick, 1987). If they were, however, a student placed in the hands of a constructivist would likely be immersed in an “apprenticeship” experience. For example, a novice instructional design student who desires to learn about needs assessment would be placed in a situation that requires such an assessment to be completed. Through the modeling and coaching of experts involved in authentic cases, the novice designer would experience the process embedded in the true context of an actual problem situation. Over time, several addi- tional situations would be experienced by the student, all requiring simi- lar needs assessment abilities. Each experience would serve to build on and adapt that which has been previously experienced and constructed. As the student gained more confidence and experience, (s)he would move into a collaborative phase of learning where discussion becomes crucial. By talking with others (peers, advanced students, professors, and designers), students become better able to articulate their own under- standings of the needs assessment process. As they uncover their naive theories, they begin to see such activities in a new light, which guides them towards conceptual reframing (learning). Students gain familiar- ity with analysis and action in complex situations and consequently begin to expand their horizons. They encounter relevant books, attend conferences and seminars, discuss issues with other students, and use their knowledge to interpret numerous situations around them (not only related to specific design issues). Not only have the learners been involved in different types of learning as they moved from being novices to “bud- ding experts,” but the nature of the learning process has changed as well. General Discussion Itisapparentthatstudentsexposedtothethreeinstructionalapproaches described in the examples above would gain different competencies.
  • 18. 60 DOI: 10.1002/piq Performance Improvement Quarterly This leads instructors/designers to ask two significant questions: Is there a single “best” approach and is one approach more efficient than the oth- ers? Given that learning is a complex, drawn out process that seems to be strongly influenced by one’s prior knowledge, perhaps the best answer to these questions is “it depends.” Because learning is influenced by many fac- tors from many sources, the learning process itself is constantly changing, both in nature and diversity, as it progresses (Shuell, 1990). What might be most effective for novice learners encountering a complex body of knowl- edge for the first time, would not be effective, efficient or stimulating for a learner who is more familiar with the content. Typically, one does not teach facts the same way that concepts or problem-solving are taught; likewise, one teaches differently depending on the pro- ficiency level of the learners involved. Both the instruc- tional strategies employed and the content addressed (in both depth and breadth) would vary based on the level of the learners. So how does a designer facilitate a proper match between learner, content, and strategies? Consider, first of all, how learners’ knowledge changes as they become more familiar with a given content. As peo- ple acquire more experience with a given content, they progress along a low-to-high knowledge continuum from 1) being able to recognize and apply the standard rules, facts, and operations of a profession (knowing what), to 2) thinking like a professional to extrapolate from these general rules to particular, problematic cases (knowing how), to 3) developing and testing new forms of understanding and actions when familiar categories and ways of thinking fail (reflection-in-action) (Schon, 1987). In a sense, the points along this continuum mirror the points of the learning theory continuum described earlier. Depending on where the learners “sit” on the continuum in terms of the development of their professional knowl- edge (knowing what vs. knowing how vs. reflection-in-action), the most appropriate instructional approach for advancing the learners’ knowledge at that particular level would be the one advocated by the theory that cor- responds to that point on the continuum. That is, a behavioral approach can effectively facilitate mastery of the content of a profession (know- ing what); cognitive strategies are useful in teaching problem-solving tactics where defined facts and rules are applied in unfamiliar situations (knowing how); and constructivist strategies are especially suited to deal- ing with ill-defined problems through reflection-in-action. A second consideration depends upon the requirements of the task to be learned. Based on the level of cognitive processing required, strategies from different theoretical perspectives may be needed. For example, tasks requiring a low degree of processing (e.g., basic paired associations, dis- criminations, rote memorization) seem to be facilitated by strategies most frequently associated with a behavioral outlook (e.g., stimulus-response, contiguity of feedback/reinforcement). Tasks requiring an increased level What might be most effective for novice learners encountering a complex body of knowledge for the first time, would not be effective, efficient or stimulating for a learner who is more familiar with the content.
  • 19. Volume 26, Number 2 / 2013 DOI: 10.1002/piq 61 of processing (e.g., classifications, rule or procedural executions) are pri- marily associated with strategies having a stronger cognitive emphasis (e.g., schematic organization, analogical reasoning, algorithmic problem solving). Tasks demanding high levels of processing (e.g., heuristic prob- lem solving, personal selection and monitoring of cognitive strategies) are frequently best learned with strategies advanced by the constructiv- ist perspective (e.g., situated learning, cognitive apprenticeships, social negotiation). We believe that the critical question instructional designers must ask is not “Which is the best theory?” but “Which theory is the most effec- tive in fostering mastery of specific tasks by specific learners?” Prior to strategy(ies) selection, consideration must be made of both the learners and the task. An attempt is made in Figure 1 to depict these two continua (learners’ level of knowledge and cognitive processing demands) and to illustrate the degree to which strategies offered by each of the theoretical perspectives appear applicable. The figure is useful in demonstrating: (a) that the strategies promoted by the different perspec- tives overlap in certain instances (i.e., one strategy may be relevant for each of the different perspec- tives, given the proper amount of prior knowledge and the corresponding amount of cognitive process- ing), and (b) that strategies are concentrated along different points of the continua due to the unique focus of each of the learning theories. This means that when integrating any strategies into the instruc- tional design process, the nature of the learning task (i.e., the level of cognitive processing required) and the proficiency level of the learners involved must both be considered before selecting one approach over another. Depending on the demands of the task and where the learners are in terms of the content to be delivered/discovered, differ- ent strategies based on different theories appear to be necessary. Powerful frameworks for instruction have been developed by designers inspired by each of these perspectives. In fact, successful instructional practices have features that are supported by virtually all three perspectives (e.g., active participation and interaction, practice and feedback). For this reason, we have consciously chosen not to advocate one theory over the others, but to stress instead the usefulness of being well- versed in each. This is not to suggest that one should work without a the- ory, but rather that one must be able to intelligently choose, on the basis of information gathered about the learners’ present level of competence and the type of learning task, the appropriate methods for achieving opti- mal instructional outcomes in that situation. As stated by Smith and Ragan (1993, p. viii): “Reasoned and validated theoretical eclecticism has been a key strength of our field because no single theoretical base provides complete prescriptive principles for the entire design process.” Some of the most crucial design tasks involve being able to decide which strategy to use, for what content, for which The critical question instructional designers must ask is not“Which is the best theory?”but “Which theory is the most effective in fostering mastery of specific tasks by specific learners?”
  • 20. 62 DOI: 10.1002/piq Performance Improvement Quarterly students, and at what point during the instruction. Knowledge of this sort is an example of conditional knowledge, where “thinking like” a designer becomes a necessary competency. It should be noted however, that to be an eclectic, one must know a lot, not a little, about the theories being combined. A thorough understanding of the learning theories pre- sented above seems to be essential for professional designers who must constantly make decisions for which no design model provides precise rules. Being knowledgeable about each of these theories provides design- ers with the flexibility needed to be spontaneous and creative when a first attempt doesn’t work or when they find themselves limited by time, budget, and/or personnel constraints. The practitioner cannot afford to ignore any theories that might provide practical implications. Given the myriad of potential design situations, the designer’s “best” approach may not ever be identical to any previous approach, but will truly “depend upon the context.” This type of instructional “cherry-picking” has been termed “systematic eclecticism” and has had a great deal of support in the instructional design literature (Snelbecker, 1989). In closing, we would like to expand on a quote by P. B. Drucker, (cited in Snelbecker, 1983): “These old controversies have been phonies all along. We need the behaviorist’s triad of practice/reinforcement/feed- back to enlarge learning and memory. We need purpose, decision, values, understanding—the cognitive categories—lest learning be mere behav- ioral activities rather than action” (p. 203). FIGURE 1. COMPARISON OF THE ASSOCIATED INSTRUCTIONAL STRATEGIES OF THE BEHAVIORAL, COGNITIVE, AND CONSTRUCTIVIST VIEWPOINTS BASED ON THE LEARNER'S LEVEL OF TASK KNOWLEDGE AND THE LEVEL OF COGNITIVE PROCESSING REQUIRED BY THE TASK Level of Cognitive Processing Required by the Task Low High Low High Level of Learner’s Task Knowledge Constructivist Strategies Cognitive Strategies Behavioral Strategies
  • 21. Volume 26, Number 2 / 2013 DOI: 10.1002/piq 63 And to this we would add that we also need adaptive learners who are able to function well when optimal conditions do not exist, when situ- ations are unpredictable and task demands change, when the problems are messy and ill-formed and the solutions depend on inventiveness, improvisation, discussion, and social negotiation. References Bednar, A.K., Cunningham, D., Duffy, T.M., & Perry, J.D. (1991). Theory into practice: How do we link? In G.J. Anglin (Ed.), Instructional technology: Past, present, and future. Englewood, CO: Libraries Unlimited. Bower, G.H., & Hilgard, E.R. (1981). Theories of learning (5th ed.). Englewood Cliffs, NJ: Prentice-Hall. Brown, J.S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42. Bruner, J.S. (1971). The process of education revisited. Phi Delta Kappan, 53, 18–21. Clancey, W.J. (1986). Review of Winograd and Flores’ understanding computers and cogni- tion: A favorable interpretation. (STAN-CS-87-1173) Palo Alto, CA: Department of Computer Science, Stanford University. Cunningham, D.J. (1991). Assessing constructions and constructing assessments: A dialogue. Educational Technology, 31(5), 13–17. Duffy, T.M., & Jonassen, D. (1991). Constructivism: New implications for instructional technology? Educational Technology, 31(5), 3–12. Gropper, G.L. (1987). A lesson based on a behavioral approach to instructional design. In C.M. Reigeluth (Ed.), Instructional theories in action (pp. 45–112). Hillsdale, NJ: Lawrence Erlbaum Associates. Hulse, S.H., Egeth, H., & Deese, J. (1980). The psychology of learning (5th ed.). New York: McGraw-Hill. Johnson, J.K. (1992). Advancing by degrees: Trends in master's and doctoral programs in educational communications and technology. Tech Trends, 37(2), 13–16. Jonassen, D.H. (1991a). Evaluating constructivistic learning. Educational Technology, 31(9), 28–33. Jonassen, D.H. (1991b). Objectivism vs constructivism: Do we need a new philosophical paradigm. Educational Technology Research and Development, 39(3), 5–14. Keller, J.M. (1979). Motivation and instructional design: A theoretical perspective. Journal of Instructional Development, 2(4), 26–34. Lynch, J.M. (1945). The applicability of psychological research to education. Journal of Educational Psychology, 43, 289–296. Merrill, M.D., Kowalis, T., & Wilson, B.G. (1981). Instructional design in transition. In F.H. Farley, & N.J. Gordon (Eds.), Psychology and education: The state of the union (pp. 298–348). Berkeley: McCutchan. Perkins, D.N. (1991). Technology meets constructivism: Do they make a marriage? Edu- cational Technology, 31(5), 18–23. Reigeluth, C.M. (1983). Instructional Design: What is it and why is it? In C.M. Reigeluth (Ed.), Instructional theories in action (pp. 3–36). Hillsdale, NJ: Lawrence Erlbaum Associates. Reigeluth, C.M. (1989). Educational technology at the crossroads: New mindsets and new directions. Educational Technology Research and Development, 37(1), 67–80. Resnick, L.B. (1987). Learning in school and out. Educational Researcher, 16(9), 13–20. Richey, R.D. (1986). The theoretical and conceptual bases of instructional design. New York: Nichols. Schunk, D.H. (1991). Learning theories: An educational perspective. New York: Macmillan.
  • 22. 64 DOI: 10.1002/piq Performance Improvement Quarterly Shuell, T.J. (1986). Cognitive conceptions of learning. Review of Educational Research, 56, 411–436. Shuell, T.J. (1990). Phases of meaningful learning. Review of Educational Research, 60, 531–547. Smith, P.L., & Ragan, T.J. (1993). Instructional design. New York: Macmillan. Schon, D.A. (1987). Educating the reflective practitioner. San Francisco: Jossey-Bass. Snelbecker, G.E. (1983). Learning theory, instructional theory, and psychoeducational design. New York: McGraw-Hill. Snelbecker, G.E. (1989). Contrasting and complementary approaches to instructional design. In C.M. Reigeluth (Ed.), Instructional theories in action (pp. 321–337). Hillsdale, NJ: Lawrence Erlbaum Associates. Spiro, R.J., Feltovich, P.J., Jacobson, M.J., & Coulson, R.L. (1991). Cognitive flexibility, constructivism, and hypertext: Random access instruction for advanced knowledge acquisition in ill-structured domains. Educational Technology, 31(5), 24–33. Stepich, D.A., & Newby, T.J. (1988). Analogical instruction within the information process- ingparadigm:effectivemeanstofacilitatelearning.InstructionalScience,17, 129–144. Thompson, A.D., Simonson, M.R., Hargrave, C.P. (1992). Educational technology: A review of the research. Washington DC: Association for Educational Communications and Technology. Tyler, R.W. (1978). How schools utilize educational research and development. In R. Glaser (Ed.), Research and development and school change. Hillsdale, NJ: Lawrence Erlbaum. Warries, E. (1990). Theory and the systematic design of instruction. In S. Dijkstra, B. van Hout Wolters, & P.C. van der Sijde, (Eds.), Research on instruction: Design and effects (pp. 1–19). Englewood Cliffs, NJ: Educational Technology. West, C.K, Farmer, J.A., & Wolff, P.M. (1991). Instructional design: Implications from cogni- tive science. Englewood Cliffs, NJ: Prentice Hall. Winn, W. (1991). The assumptions of constructivism and instructional design. Educa- tional Technology, 31(9), 38–40. Winn, W. (1990). Some implications of cognitive theory for instructional design. Instruc- tional Science, 19, 53–69. Winne,P.H.(1985).Cognitiveprocessingintheclassroom.InT.Husen&T.N.Postlethwaite (Eds.), The International Encyclopedia of Education (Vol. 2, pp. 795–808). Oxford: Pergamon. PEGGY A. ERTMER Peggy A. Ertmer has a Masters Degree in Special Education-Learning Disabilities and is currently a doctoral student in Instructional Development. Mailing address: Educational Computing and Instructional Research and Development, 1442 LAEB, Room 3134, Purdue University, West Lafayette, IN 47907-1442. TIMOTHY J. NEWBY Timothy J. Newby is an Associate Professor in Educational Computing and Instructional Development at Purdue University. He currently conducts research in the areas of human motivation and instructional strategies. Mailing address: Educational Computing and Instructional Development, 1442 LAEB, Room 3146, Purdue University, West Lafayette, IN 47907-1442.
  • 23. Article Update: Behaviorism, Cognitivism, and Constructivism: Connecting“Yesterday’s” Theories to Today’s Contexts Peggy A. Ertmer, PhD, and Timothy J. Newby, PhD I t has been 20 years since “Behaviorism, Cognitivism, Constructivism: Comparing Critical Features From an Instructional Design Perspective” was first published in Performance Improvement Quarterly (Vol. 6, Issue 4). Although the bases of the theoretical perspectives presented in “the theory article” have not changed (that is, the answers to the seven organizing questions remain largely the same), much of the world out- side of these theories, including where and with whom we learn, as well as how that knowledge is stored and accessed, has changed. In this brief update, we explore three major forces affecting the learning pro- cess today, all of which were much less prevalent in 1993. These include (1) the proliferation of the Internet, including the use of Web 2.0 tools; (2) the emergence of a new “kind” of student (for example, the digi- tal native) who thinks and learns differently than previous generations; and (3) the adoption of a variety of new teaching methods, which build, almost exclusively, on the tenets of constructivism. We discuss each of these in more detail. Changes in Technology Since the theory article was written, access to technology tools has literally exploded. In 1993, the Internet, particularly as a resource for the masses, was still in its infancy, and the distinction between Web 1.0 and Web 2.0 had not yet been made (O’Reilly, 2005). Distance educa- tion was achieved primarily through correspondence courses, with video and audio conferencing being used to augment the delivery of instruc- tion (Simonson, Smaldino, Albright, & Zvacek, 2006). Relatively few peo- ple owned a cell phone, and smart phones had not yet been invented. According to Sharples, Taylor, and Vavoula (2005), learning was primarily Volume 26, Number 2 / 2013 DOI: 10.1002/piq 65
  • 24. 66 DOI: 10.1002/piq Performance Improvement Quarterly conceptualized as the construction of knowledge through information processing, modeling, and interaction. However, as the Internet has become more accessible and the cre- ation of content more distributed, the “participatory web” has enabled a knowledge-building and knowledge-sharing system whose value now stems from many small contributions. As described by O’Reilly (2005), “Every user whitewashes a little bit of the fence” (online). Compared to Web 1.0, users now have many and varied opportunities to affect both the nature and scope of the content being published and, in some cases, exert real-time control over it. As a consequence, informal learning has become a significant component of our daily learning experiences (Siemens, 2004). Furthermore, we no longer expect or require knowledge to reside within the individual. Rather, as Siemens (2004) described, we “store our knowledge in our friends” (Section 4). This prompts us to consider whether this easy access to, and constant interaction with, others has actually transformed the learning process. According to at least one set of authors, this is indeed the case, noting that learning is now being reconceptualized as a “continual conversation with the external world and its artefacts [sic], with oneself, and also with other learners and teachers” (Sharples et al., 2005, p. 7). Siemens (2004) agreed, stating, “The ability to access people and information has changed the way people learn. . . . Know-how and know-what is being supple- mented with know-where (the understanding of where to find knowledge needed)” (Section 4). According to Brown (2002), the web has functioned as a transformative technology, comprising not only an informational and social resource, but a learning medium as well, where learning with and from each other is both supported and facilitated. Changes in Learners Related to these changes in technology access and tools are changes attributed to the learners themselves. According to Prensky (2010), “More and more young people are now deeply and permanently tech- nologically enhanced, connected to their peers and the world in ways no generation has ever been before” (p. 2). Not only do today’s students want and prefer to learn differently, they seem exceptionally capable of doing so. Siemens (2004) suggested that technology has actually rewired learn- ers’ brains. Although we do not yet have physical proof that the brains of digital natives are structurally different than those of digital immigrants, evidence is accumulating that signifies very real differences in their think- ing patterns (Barone, 2003; Brown, 2002). According to Winn (cited in Prensky, 2001), “Children raised with the computer think differently from Not only do today’s students want and prefer to learn differently, they seem exceptionally capable of doing so.
  • 25. Volume 26, Number 2 / 2013 DOI: 10.1002/piq 67 the rest of us. They develop hypertext minds. They leap around. It’s as though their cognitive structures were parallel, not sequential” (p. 3). Siemens (2004) argues that these changes have occurred because of the tools students use. This idea is supported by research from social psy- chologists (cf. Nisbett, Peng, Choi, & Norenzayan, 2001), which suggests that thinking patterns change depending on our experiences, includ- ing the culture in which we grew up. Given that digital natives have grown up “accustomed to the twitch-speed, multitasking, random-access, graphics-first, active, connected, fun, fantasy, quick-payoff world of their video games, MTV, and the Internet” (Prensky, 2001, p. 5), the suggestion that these experiences have changed learners’ thinking patterns does not require a huge leap. According to Barone (2003), today’s students possess an “information- age mindset” (p. 42) that comprises a unique ability to learn both visually and socially. As such, digital students prefer to learn by doing—if given a new tool to use, they are much more likely to get in and “muck around” than refer to an owner’s manual (Prensky, 2010). In fact, for these learn- ers, doing is more important than knowing, as this enables the develop- ment of a deeper and more authentic understanding of the task at hand. Then, when it is important to test and process their new knowledge, digital natives turn to their own learning communities, which oftentimes remain relatively disconnected from their formal educational communi- ties. Given these new approaches to learning, Sharples and colleagues (2005) propose that conversation (including words, images, videos, multi- media, and more) has become the current driver of learning. Changes in Teaching Methods In 1993, constructivism was the new kid on the block; as such, there were very few, if any, teaching methods that aligned with this perspective. Currently, however, constructivism is considered the dominant educa- tional theory; it has been embraced by nearly every educational reform initiative within the last two decades (Karagiorgi & Symeou, 2005). As a result, various constructivist theories, such as social constructivism, situ- ated learning, and connectivism (Sharples et al., 2005), have become the foundation for the majority of teaching methods that have taken hold in recent years (for example, problem-based learning, authentic instruction, computer-supported collaborative learning). In addition to the general acceptance of constructivism as the basis for our teaching methods, the conceptualization of learning as both a personal and social process (Sharples et al., 2005) has been enhanced by the convergence of three critical changes: (1) the development of tech- nologies that allow for immediate and effective access to information; (2) the motivation of learners who desire and need learning experiences that promote high levels of interaction and activity; and (3) the demands
  • 26. 68 DOI: 10.1002/piq Performance Improvement Quarterly of employers who now expect learners to acquire relevant 21st-century skills (for example, critical thinking, problem solving, creativity) before entering the workforce (Kay, 2010). In response to these changes, interest has increased in the theoretical perspectives (for example, connectivism, mobile learning, social constructivism) that align with those teaching methods that can develop these required skills in ways that meet the needs of today’s learners. Problem solving, for example, is a key 21st-century skill (Barell, 2010). Traditionally, problem-solving teaching methods focused on delineat- ing the steps of the problem-solving process and subsequently allow- ing students to apply those steps to problems of varying difficulty (Polya, 1945). In contrast, more constructivist teaching methods, such as case- or problem-based learning, are designed to actually engage students in relevant, real-world problems (Barrows, 1986). In these methods, students are presented with authentic problem situations and then challenged to propose relevant solutions (Mayer, 2009). Furthermore, given the advance- ments in technology tools, students now enjoy increased access to (1) relevant case/problem background information; (2) additional cases or case repositories that may uncover partial or full solutions; and (3) individuals, including case/problem experts who can provide scaffolding, feedback, and other support for formulating solu- tions. As such, teaching methods such as case-based instruction, coupled with advanced technology tools, now can facilitate novices’ access to the knowledge, skill, and mentoring of experts, which has the potential to advance students’ levels of problem-solving expertise in more effective and efficient ways than was previously possible (Chase & Simon, 1973; Schoenfeld & Herrmann, 1982). A second, related 21st-century skill is the ability to work collabora- tively (Kay, 2010). While traditional school learning environments have typically promoted independent learning strategies, today’s complex problems necessitate that people work in teams in environments that enable the free exchange of ideas, distribution of workload, and com- parisons among different solution paths. Today, with the use of available technologies, individuals from geographically diverse locations can form communities of learners to develop multidisciplinary solutions to impor- tant problems. Teaching methods that incorporate the use of communi- ties of practice have been very effective (Brown, 1992) and are closely tied to learning theories such as situated cognition (Bereiter, 1997) and constructivism. However, the concept of these communities has evolved considerably as technology has overcome the restrictions of both place and time. Through these types of cross-cultural collaborations, we all now have the opportunity to learn how to effectively communicate and interact with others from increasingly diverse backgrounds. Today, with the use of available technologies, individuals from geographically diverse locations can form communities of learners to develop multidisciplinary solutions to important problems.
  • 27. Volume 26, Number 2 / 2013 DOI: 10.1002/piq 69 As demonstrated by Schwartz, Lin, Brophy, and Bransford (1999), the ability to “go public” has helped students learn from each other, learn how to view the different ways that ideas can be expressed, and learn and experience the motivational value such publication produces. With tools such as YouTube, blogs, wikis, and social networks, the ability to com- municate with others and to express one’s creativity has many outlets. Richardson (2010) reported that more than 80% of high school students have engaged in online publishing. Although Facebook is not a teaching method, aspects of this technology can be utilized to facilitate collabora- tion among peers and interested others as original artifacts (ideas, prod- ucts, stories, and the like) are created, posted, and reviewed by others. Implications and Conclusions As noted above, there have been tremendous changes over the last 20 years that have affected the learning process—tools have changed, learners have changed, and, as a consequence, teaching methods have also changed. Yet, despite these tremendous changes, the underlying principles of our “old” theories still remain relevant. People still learn through stimulus–response associations (for example, game-based learn- ing) and through practice and feedback opportunities (for example, com- puter simulations), as well as through the processes of collaboration and social negotiation (for example, collaborative wiki writing). And although learning contexts have changed (from fixed, formal settings to mobile, informal ones), as have the tools used to facilitate knowledge construc- tion (from individual, analog tools to social, digital ones), understanding is very likely still being constructed in ways similar to the past, only with increasing opportunities to construct that knowledge 24/7. Similarly, the role of designers remains that of understanding the strengths and weaknesses of each learning theory in order to optimally select and implement strategies that support student learning in a vari- ety of contexts. Whether learners are learning in-transit or storing their knowledge in their friends, learning needs still emerge (as they have always) “when a person strives to overcome a problem . . . in everyday activity” (Vavoula, cited in Sharples et al., 2005, p. 5). What has changed, however, is the type of learning experiences educa- tors and instructional designers need to create in order to ensure that our learning designs take advantage of the affordances of current tools to engage learners in ways that best meet their needs. Quite simply, learning designs for today’s students must be highly contextualized, personal, and collab- orative (Herrington & Herrington, 2007). Designers must acknowledge and embrace these changes so that they remain not only relevant, but respected partners (Barone, 2003) in the ID work required to meet the expectations and needs of today’s learners. As noted by Herrington and Herrington, “. . . it is the confluence of the advances in theory and the affordances of technology that create excellent opportunities for teachers [and designers]” (2007, p. 1).
  • 28. 70 DOI: 10.1002/piq Performance Improvement Quarterly We would be remiss if we did not take advantage of these opportunities. Indeed, our students will expect—no, they will demand it. References Barell, J. (2010). Problem-based learning: The foundation for 21st century skills. In J. Bellanca & R. Brandt (Eds.), 21st century skills (pp. 174–199). Bloomington, IN: Solution Tree Press. Barone, C.A. (2003). The changing landscape and the new academy. Educause Review, 38(5), 41–47. Retrieved from http://net.educause.edu/ir/library/pdf/ERM0353.pdf Barrows, H.S. (1986). A taxonomy of problem-based learning methods. Medical Educa- tion, 20(6), 481–486. DOI: 10.1111/j.1365-2923.1986.tb01386.x Bereiter, C. (1997). Situated cognition and how to overcome it. In D. Kirshner & J. A. Whitson (Eds.), Situated cognition: Social, semiotic, and psychological perspectives (pp. 281–300). Mahwah, NJ: Erlbaum. Brown, A.L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2, 141–178. Brown, J.S. (2002). Growing up digital: How the web changes work, education, and the way people learn. USDLA Journal, 16(2). Retrieved from www.johnseelybrown.com /Growing_up_digital.pdf Chase, W.G., & Simon, H.A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81. Ertmer, P.A., & Newby, T.J. (1993). Behaviorism, cognitivism, constructivism: Comparing critical features from an instructional design perspective. PerformanceImprovement Quarterly, 6(4), 50–72. Herrington, A., & Herrington, J. (2007, November). Authentic mobile learning in higher education. Paper presented at the International Education Research Conference. Retrieved from http://researchrepository.murdoch.edu.au/5413 Karagiorgi, Y., & Symeou, L. (2005). Translating constructivism into instructional design: Potential and limitations. Journal of Educational Technology & Society, 8(1), 17–27. Kay, K. (2010). 21st century skills: Why they matter, what they are, and how we get there. In J. Bellanca & R. Brandt (Eds.), 21st century skills (pp. xii–xxxi). Bloomington, IN: Solution Tree Press. Mayer, R.E. (2009). Multimedia learning (2nd ed.). Cambridge, England: Cambridge University Press. Nisbett, R.E., Peng, K., Choi, I., & Norenzayan, A. (2001). Culture and systems of thought: Holistic vs. analytic cognition. Psychological Review, 108, 291–310. O’Reilly, T. (2005). What is Web 2.0: Design patterns and business models for the next gen- eration of software. Retrieved from http://oreilly.com/pub/a/web2/archive/what- is-web-20.html?page=1 Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press. Prensky, M. (2001). Digital natives, digital immigrants, Part I: A new way to look at ourselves and our kids. Retrieved from http://www.marcprensky.com/writing Prensky, M. (2010). Teaching digital natives: Partnering for real learning. Thousand Oaks, CA: Corwin. Richardson, W. (2010). Navigating social networks as learning tools. In J. Bellanca & R. Brandt (Eds.), 21stcenturyskills(pp. 284–303). Bloomington, IN: Solution Tree Press. Schoenfeld, A.H., & Herrmann, D.J. (1982). Problem perception and knowledge structure in expert and novice mathematical problem solvers. Journal of Experimental Psy- chology: Learning, Memory, and Cognition, 8(5), 484–494. Schwartz, D.L., Lin, X., Brophy, S., & Bransford, J.D. (1999). Toward the development of flexibly adaptive instructional design. In C.M. Reigeluth (Ed.), Instructional design theories and models: A new paradigm of instructional theory (Vol. II, pp. 183–213). Mahwah, NJ: Erlbaum.
  • 29. Volume 26, Number 2 / 2013 DOI: 10.1002/piq 71 Sharples, M., Taylor, J., & Vavoula, G. (2005). Towardsatheoryofmobilelearning. Retrieved from http://www.mlearn.org/mlearn2005/CD/papers/Sharples-%20Theory%20 of%20Mobile.pdf Siemens, G. (2004). Connectivism: A learning theory for the digital age. Retrieved from http://www.elearnspace.org/Articles/connectivism.htm Simonson, M., Smaldino, S., Albright, M., & Zvacek, S. (2006). Teaching and learning at a distance: Foundations of distance education (3rd ed.). Upper Saddle River, NJ: Pearson. PEGGY A. ERTMER Peggy A. Ertmer, PhD, is a professor of learning design and tech- nology in the Department of Curriculum and Instruction at Purdue University. She completed her PhD at Purdue, specializing in educational technology and instructional design. Prior to becoming a faculty member at Purdue, she was an elementary and special education teacher in K–12 schools. Her research interests relate to technology integration, teach- ers’ beliefs, and instructional design expertise. She actively mentors both students and peers, including pre- and in-service teachers, in the use of case-based and problem-based learning pedagogy, technology tools, and self-regulated learning skills. She is particularly interested in study- ing the impact of case-based instruction on higher-order thinking skills; the effectiveness of student-centered, problem-based learning approaches to technology integration; and strategies for facilitating higher-order thinking and self-regulated learning in online learning environments. She has published scholarly works in premier national and international journals, has coedited four editions of the ID CaseBook: Case Studies in Instructional Design, and is the founding editor of the Interdisciplinary Journal of Problem-Based Learning, published by Purdue University Press. E-mail: pertmer@purdue.edu TIMOTHY J. NEWBY Timothy J. Newby, PhD, is a professor in the learning design and tech- nology program area of the Department of Curriculum and Instruction at Purdue University. He received a PhD in instructional psychology from Brigham Young University. At Purdue, he conducts research on issues pertaining to motivation, human learning, and the impact of instruc- tional strategies on the learning process. In addition to research, he teaches undergraduate and graduate courses that include Introduction to Educational Technology; Instructional Strategies; and Learning Theory, Motivation, and Foundations of Instructional Design Theory. He has recently coauthored two textbooks (Educational Technology for Teaching and Learning and Teaching and Learning with Microsoft Office 2010 and Office 2011 for Mac). E-mail: newby@purdue.edu