Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
AN OVERVIEW OF RECENT ADVANCES IN POLARIMETRIC SAR INFORMATION EXTRACTION: ALGORITHMS AND APPLICATIONS IGARSS 2010 - Hawai...
Introduction <ul><li>PolSAR information extraction technology has reached a certain degree of maturity. </li></ul><ul><li>...
ALOS – PALSAR .  (Launched  in  January  2006) Repeat cycle 46 days (Tomakomai, Japan) 20 m x 20 m resolution
TerraSAR – X .  Launched in  June 15, 2007 Dual - Pol (HH,VV), (HH,HV), (VH,VV) Quad-Pol (Experimental) Repeat cycle: 11 d...
RADARSAT-2 (RS2) <ul><li>C-Band Fine Quad-Pol Mode (8 m x 8 m resolution) </li></ul>.  <ul><li>Launched in  </li></ul><ul>...
Topics to be covered <ul><li>Review Advances in PolSAR information extraction for  the last five years  (TGRS, IGARSS). </...
<ul><li>Target Decompositions (Orientation Angles) </li></ul>
H Original (4-look)  5x5  9x9 H / A /     VERSUS MULTI-LOOKING   A
Multi-look Effect on H/A/  <ul><li>Cloude/ Pottier Decomposition </li></ul><ul><ul><li>Multi-look effect on </li></ul></u...
Cloude/ Pottier Decomposition <ul><ul><li>Alternative  H  and    without eigenvalue and eigenvector computation (Praks, 2...
Freeman/Durden Decomposition <ul><li>FDD 3-component scattering model based decomposition </li></ul><ul><ul><ul><li>Issues...
Freeman/Durden Decomposition <ul><li>4-component scattering model (Yamaguchi, 2005) </li></ul>Surface  Double bounce  Volu...
Touzi Decomposition (Touzi, 2007) Cloude/Pottier: Symmetric Target Touzi Pauli Basis: Kennaugh-Huynen For asymmetric target
<ul><li>Polarization Orientation Angles </li></ul>
Polarization Orientation Angle (POA) <ul><li>Orientation angle effect on PolSAR images: (Lee and Schuler, 1999) </li></ul>...
Urban (buildings) Orientation Effects Freeman Decomposition  Orientation Angle  <ul><ul><li>E-SAR  </li></ul></ul><ul><ul>...
The Effect of Radar Frequency <ul><li>JPL AIRSAR Freiburg Forest, 15 June 1991 </li></ul>POLSAR Derived Orientation Angles...
Polarization Orientation Angle Camp Roberts, CA.
Polarization Orientation Angle (POA) FLIGHT PO angles from C-band DEM  C-Band DEM L-Band PolSAR derived PO angle PO angles...
POA Compensation – Coherency T (Lee,2010) Rotation about LOS POA Estimation by Circular Pol Compensated results: 1)  (=  )...
POA Compensation – Coherency T <ul><li>Compensated results: </li></ul><ul><li>4)   (=  )   rotational invariant </li></ul>...
The  POA Compensation on Diagonal Terms ,   Orientation angle map After Before
B) Classification/Segmentation/Texture
UNSUPERVISED CLASSIFIER ( FREEMAN D. + WISHART)   |HH-VV|,   |HV |,  |HH+VV|   4 th  Iteration (15 classes) J.S. Lee, M.R....
DLR E-SAR L-Band Data Freeman Decomposition  Classification Map Experimental Results – Oberphaffenhofen
Classification/Segmentation/Texture <ul><li>High-resolution PolSAR data makes Circular Gaussian or Wishart distributions s...
Classification/Segmentation/Texture <ul><li>Wavelet texture model –(de Grandi, 2007) </li></ul><ul><li>Support Vector Mach...
Classification/Segmentation/Texture <ul><li>Issues involving evaluation of classification accuracy. </li></ul><ul><ul><li>...
C) Calibration/ Faraday Rotation
Calibration/ Faraday Rotation <ul><li>PolSAR calibration to compensate for Faraday rotation (Kimura 2009, Takeshiro 2009, ...
Faraday Rotation <ul><ul><li>Circular right-left and left-right correlation </li></ul></ul>ALOS PALSAR, Gakona, Alaska   P...
D) Speckle Filtering/ PolSAR Statistics
PolSAR Speckle Filtering <ul><li>Speckle reduction is necessary for classification, segmentation, target decomposition (H/...
PolSAR Speckle Filtering <ul><li>Intensity-Driven Adaptive Neighborhood - region grow (Vasile, 2006) </li></ul><ul><ul><li...
Improved Sigma Filter |HH-VV|,   |HV|,   |HH+VV| Original 5x5 Sigma Filtered (Lee, IGARSS2008)
PolSAR Speckle Filtering/ PolSAR Statistics <ul><li>Speckle filtering is not an exact science.  The filtering requirements...
E) Compact Polarimetry
Compact Polarimetry <ul><li>Alternative Dual-Pol SAR system: Transmitting a single polarization (  /4, circular) and rece...
Compact Polarimetry <ul><li>Consensus: Transmit Circular and receiving (H, V) </li></ul><ul><ul><ul><li>Transmit circular ...
Compact Polarimetry <ul><li>Incomplete polarimetric measurements </li></ul><ul><ul><li>CP measures only 4 parameters </li>...
F) High Resolution PolSAR
FSAR – “Future” Airborne SAR X-Band, PolSAR 2-Look,  0.5 m resolution ,  VV ,  HV ,  HH Images courtesy of Dr. Andreas Rei...
 
FSAR  S-Band
Partial References <ul><li>A) Target Decompositions, Orientation Angles </li></ul><ul><li>[1]  Wentao An,  Yi Cui,  Jian Y...
Partial References <ul><li>B. Classification/Segmentation/ Texture </li></ul><ul><li>[1] Ersahin, K.,  Cumming, I.G.,  War...
Partial References <ul><li>D. Speckle Filtering and PolSAR Statistics </li></ul><ul><li>[1]  Vasile, G.,  Ovarlez, J.-P., ...
Partial References <ul><li>F. Forest/Vegetation </li></ul><ul><li>[1] Neumann, M.,  Ferro-Famil, L.,  Reigber, A., “ Estim...
Partial References <ul><li>H.  Surface Parameter Estimation </li></ul><ul><li>[1] Yunjin Kim,  van Zyl, J.J,  “ A Time-Ser...
Partial References <ul><li>K.  Other Applications </li></ul><ul><li>[1] Suwa, K.  Iwamoto, M., “ A Two-Dimensional Bandwid...
Conclusion <ul><li>PolSAR information extraction research has reach a certain degree of maturity. </li></ul><ul><li>The av...
Upcoming SlideShare
Loading in …5
×

TU3.L09 - AN OVERVIEW OF RECENT ADVANCES IN POLARIMETRIC SAR INFORMATION EXTRACTION: ALGORITHMS AND APPLICATIONS

5,401 views

Published on

  • very good works!
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

TU3.L09 - AN OVERVIEW OF RECENT ADVANCES IN POLARIMETRIC SAR INFORMATION EXTRACTION: ALGORITHMS AND APPLICATIONS

  1. 1. AN OVERVIEW OF RECENT ADVANCES IN POLARIMETRIC SAR INFORMATION EXTRACTION: ALGORITHMS AND APPLICATIONS IGARSS 2010 - Hawaii July 25 - July 30 Jong-Sen Lee*, Thomas Ainsworth Naval Research laboratory Washington DC 20375, USA
  2. 2. Introduction <ul><li>PolSAR information extraction technology has reached a certain degree of maturity. </li></ul><ul><li>New PolSAR satellites: </li></ul><ul><ul><li>ALOS/PALSAR – L-band </li></ul></ul><ul><ul><li>RADARSAT-2 – C-band </li></ul></ul><ul><ul><li>TERRASAR-X – X-band </li></ul></ul><ul><li>PolSAR textbooks (English): </li></ul><ul><ul><ul><li>2010, Cloude, Polarisation: applications in remote sensing . </li></ul></ul></ul><ul><ul><ul><li>2009, Lee and Pottier, Polarimetric Radar Imaging: from basic to applications . </li></ul></ul></ul><ul><ul><ul><li>2008, Massonnet, and Souyris, Imaging with Synthetic Aperture Radar . </li></ul></ul></ul><ul><ul><ul><li>2007, Mott, Remote Sensing with Polarimetric Radar . </li></ul></ul></ul><ul><li>Golden age in developing PolSAR applications. </li></ul>
  3. 3. ALOS – PALSAR . (Launched in January 2006) Repeat cycle 46 days (Tomakomai, Japan) 20 m x 20 m resolution
  4. 4. TerraSAR – X . Launched in June 15, 2007 Dual - Pol (HH,VV), (HH,HV), (VH,VV) Quad-Pol (Experimental) Repeat cycle: 11 days 3 meter resolution
  5. 5. RADARSAT-2 (RS2) <ul><li>C-Band Fine Quad-Pol Mode (8 m x 8 m resolution) </li></ul>. <ul><li>Launched in </li></ul><ul><li>December 14 2007 </li></ul><ul><li>24 days revisit cycle </li></ul>
  6. 6. Topics to be covered <ul><li>Review Advances in PolSAR information extraction for the last five years (TGRS, IGARSS). </li></ul><ul><ul><li>A) Target Decompositions/Orientation Angles, </li></ul></ul><ul><ul><li>B) Classification/Segmentation/Texture, </li></ul></ul><ul><ul><li>C) Calibration/Faraday Rotation </li></ul></ul><ul><ul><li>D) Speckle Filtering/Statistics, </li></ul></ul><ul><ul><li>E) Compact Polarimetry. </li></ul></ul><ul><ul><li>F) High-resolution PolSAR </li></ul></ul><ul><ul><li>G) Others: Forest / Vegetation, Ocean, surface parameters, bistatic, wetland, hard targets </li></ul></ul><ul><li>Not covered: </li></ul><ul><ul><li>Pol-InSAR </li></ul></ul><ul><ul><li>Polarimetric GPR </li></ul></ul>
  7. 7. <ul><li>Target Decompositions (Orientation Angles) </li></ul>
  8. 8. H Original (4-look) 5x5 9x9 H / A /   VERSUS MULTI-LOOKING A
  9. 9. Multi-look Effect on H/A/  <ul><li>Cloude/ Pottier Decomposition </li></ul><ul><ul><li>Multi-look effect on </li></ul></ul><ul><ul><li>Lopez-Martinez (2005), Lee (2008) </li></ul></ul><ul><ul><ul><li>Entropy is underestimated, Anisotropy overestimated </li></ul></ul></ul><ul><ul><ul><li>Bias removal </li></ul></ul></ul>
  10. 10. Cloude/ Pottier Decomposition <ul><ul><li>Alternative H and  without eigenvalue and eigenvector computation (Praks, 2009) </li></ul></ul><ul><ul><li>Applications: </li></ul></ul><ul><ul><ul><li>Forest (Garestier, 2009),P-band anisotropy related to forest height) </li></ul></ul></ul><ul><ul><ul><li>Oil Slick (Miliaccio, 2009), SIR-C, C-band </li></ul></ul></ul>
  11. 11. Freeman/Durden Decomposition <ul><li>FDD 3-component scattering model based decomposition </li></ul><ul><ul><ul><li>Issues: 1. More unknowns than equations </li></ul></ul></ul><ul><ul><li> 2. Reflection symmetry assumption </li></ul></ul><ul><ul><li> 3. Negative power </li></ul></ul><ul><li>Two-component decomposition from forest (Freeman, 2007) </li></ul><ul><ul><li>Volume + (Surface or Double bounce) – 5 unknowns, 5 equation </li></ul></ul>Surface Double bounce Volume Volume (Canopy) Double Bounce Rough Surface
  12. 12. Freeman/Durden Decomposition <ul><li>4-component scattering model (Yamaguchi, 2005) </li></ul>Surface Double bounce Volume Helix <ul><li>T 13 is not accounted for. (Lee, 2009) </li></ul><ul><ul><li>5-component scattering model decomposition? </li></ul></ul><ul><li>Negative Power issue: </li></ul><ul><ul><li>Orientation compensation reduces HV, that reduce negative power pixels (Lee, 2009, An, 2009,) </li></ul></ul><ul><ul><li>New volume scattering model (Yamaguchi, 2005) </li></ul></ul><ul><ul><li>New scacttering models and non-negative eigenvalues (van Zyl and Arii, 2009, 2010) </li></ul></ul>
  13. 13. Touzi Decomposition (Touzi, 2007) Cloude/Pottier: Symmetric Target Touzi Pauli Basis: Kennaugh-Huynen For asymmetric target
  14. 14. <ul><li>Polarization Orientation Angles </li></ul>
  15. 15. Polarization Orientation Angle (POA) <ul><li>Orientation angle effect on PolSAR images: (Lee and Schuler, 1999) </li></ul><ul><ul><li>Topography can affect scattering mechanisms </li></ul></ul><ul><ul><ul><li>HV power increased for high azimuth slopped surface </li></ul></ul></ul><ul><ul><li>Building not aligned along the azimuth direction </li></ul></ul><ul><ul><ul><li>HV power increased </li></ul></ul></ul><ul><ul><li>Point targets and random scatterers </li></ul></ul><ul><li>POA compensation is necessary for applications. If not, </li></ul><ul><ul><li>High azimuthal slopped surface – forest </li></ul></ul><ul><ul><li>Buildings – forest </li></ul></ul><ul><li>Faraday rotation estimation by orientation angle (Kimura, 2008) </li></ul>
  16. 16. Urban (buildings) Orientation Effects Freeman Decomposition Orientation Angle <ul><ul><li>E-SAR </li></ul></ul><ul><ul><li>L-Band Dresden </li></ul></ul>
  17. 17. The Effect of Radar Frequency <ul><li>JPL AIRSAR Freiburg Forest, 15 June 1991 </li></ul>POLSAR Derived Orientation Angles BY Circular Co-Pol Algorithm P-Band P-Band Orientation Angles L-Band Orientation Angles |HH-VV|, |HV|+|VH|, |HH+VV|
  18. 18. Polarization Orientation Angle Camp Roberts, CA.
  19. 19. Polarization Orientation Angle (POA) FLIGHT PO angles from C-band DEM C-Band DEM L-Band PolSAR derived PO angle PO angles derived By L-Band PolSAR PO angles derived from DEM of C-Band interferometry JPL AIRSAR L-Band PolSAR |HH-VV|, |HV|+|VH|, | HH+VV|
  20. 20. POA Compensation – Coherency T (Lee,2010) Rotation about LOS POA Estimation by Circular Pol Compensated results: 1) (= ) rotational invariant 2) (= ) always decreasing to minimum 3) (= ) consistently increasing because of pan and are roll invariant J.S. Lee and T.L. Ainsworth, “The effect of orientation angle compensation on coherency matrix and model-based decompositions”, IEEE TGRS, IGARSS2009 special issue, (in press).
  21. 21. POA Compensation – Coherency T <ul><li>Compensated results: </li></ul><ul><li>4) (= ) rotational invariant </li></ul><ul><li>5) reduced to zero by PO compensation </li></ul><ul><li>6) Roll invariant </li></ul><ul><li>Apply FDD after POA compensation: </li></ul><ul><li>(Lee, 2009, An, 2009, Yamaguchi , IGARSS 2010 ) </li></ul><ul><li>Mitigating topography effect for PolSAR classification </li></ul><ul><li>( Ainsworth, IGARSS2010 ) </li></ul>
  22. 22. The POA Compensation on Diagonal Terms , Orientation angle map After Before
  23. 23. B) Classification/Segmentation/Texture
  24. 24. UNSUPERVISED CLASSIFIER ( FREEMAN D. + WISHART) |HH-VV|, |HV |, |HH+VV| 4 th Iteration (15 classes) J.S. Lee, M.R. Grunes, E. Pottier, L. Ferro-Famil, “Unsupervised terrain classification preserving scattering characteristics,” IEEE Transactions on Geoscience and Remote Sensing,vol. 42, no.4, pp. 722-731, April, 2004.
  25. 25. DLR E-SAR L-Band Data Freeman Decomposition Classification Map Experimental Results – Oberphaffenhofen
  26. 26. Classification/Segmentation/Texture <ul><li>High-resolution PolSAR data makes Circular Gaussian or Wishart distributions seemingly insufficient for areas, such as, forest - Texture. (Ersahin, 2010, Lardeux, 2009, Doulgeris, 2008, Jager, 2007, Morio, 2007, Frery, 2007) </li></ul><ul><li>Classification : Assign a class for each pixel </li></ul><ul><li>Segmentation : Partitioning the whole scene into regions of same attributes (homogeneous areas). </li></ul><ul><li>Texture model: The product model (For example, K-distribution) </li></ul><ul><ul><li>SLC </li></ul></ul><ul><ul><li>Multi-look </li></ul></ul><ul><ul><li>g is the texture parameter, and can have many different pdfs. </li></ul></ul><ul><li>Issues: </li></ul><ul><ul><li>All three polarizations have the same distribution – frequently invalid </li></ul></ul><ul><ul><li>Multi-look reduce the texture effect. </li></ul></ul>
  27. 27. Classification/Segmentation/Texture <ul><li>Wavelet texture model –(de Grandi, 2007) </li></ul><ul><li>Support Vector Machine: find a hyper plane to separate the training sets containing many polarimetric parameters (Lardex, 2009) </li></ul><ul><li>Minimizing Stochastical Complexity: partition the image by polygons of MSC (Mario, 2007) </li></ul><ul><li>Fuzzy H/alpha unsupervised classifier (Sang-Eun, 2007, Kersten, 2005). </li></ul>
  28. 28. Classification/Segmentation/Texture <ul><li>Issues involving evaluation of classification accuracy. </li></ul><ul><ul><li>Ground truth map – inhomogeneous training areas </li></ul></ul><ul><ul><li>For example, Urban, Park, Ocean, Mountain - improper for classification evaluation </li></ul></ul><ul><ul><li>Planting map for crop class.? </li></ul></ul><ul><li>Advantage of multi-frequency </li></ul><ul><li>Wishart classifier remains </li></ul><ul><ul><li>optimal for ‘homogeneous’ areas </li></ul></ul><ul><ul><li>(Lardex, 2009) </li></ul></ul>
  29. 29. C) Calibration/ Faraday Rotation
  30. 30. Calibration/ Faraday Rotation <ul><li>PolSAR calibration to compensate for Faraday rotation (Kimura 2009, Takeshiro 2009, Jehle 2009, Meyer 2008, Freeman ) </li></ul><ul><li>ALOS/PALSAR, L-band are subject to ionospheric Faraday rotation. </li></ul><ul><li>Faraday rotation estimation algorithms: </li></ul><ul><ul><li>Circular right-left and left-right correlation (Meyer 2008) </li></ul></ul><ul><ul><li>Based on orientation angle of buildings (Kimura 2009) </li></ul></ul><ul><li>PALSAR calibration (Touzi, 2009) </li></ul><ul><li>Orientation angle perserving calibration (Ainsworth 2006) </li></ul>
  31. 31. Faraday Rotation <ul><ul><li>Circular right-left and left-right correlation </li></ul></ul>ALOS PALSAR, Gakona, Alaska Pauli Faraday rotation
  32. 32. D) Speckle Filtering/ PolSAR Statistics
  33. 33. PolSAR Speckle Filtering <ul><li>Speckle reduction is necessary for classification, segmentation, target decomposition (H/A/  ), image analysis, etc. </li></ul><ul><li>“ PolSAR Speckle Filtering” also known as </li></ul><ul><ul><li>“ Coherency Matrix Estimation” </li></ul></ul><ul><ul><li>“ Polarimetric Parameter Estimation” ( Vasil, IGARSS2010 ) </li></ul></ul><ul><li>Basic principle: Preserve scattering characteristics (coherency or covariance matrix) </li></ul><ul><ul><li>Select neighboring pixels of the same scattering property </li></ul></ul><ul><ul><li>Filter each element of the matrix equally and independently </li></ul></ul><ul><ul><ul><li>Different opinion (Lopez-Martinez, 2008, Foucher and Lopez-Martinez, IGARSS2010 ) </li></ul></ul></ul><ul><ul><ul><ul><li>Increase correlations of off-diagonal elements – wavelet </li></ul></ul></ul></ul>
  34. 34. PolSAR Speckle Filtering <ul><li>Intensity-Driven Adaptive Neighborhood - region grow (Vasile, 2006) </li></ul><ul><ul><li>Bias due to applying sigma filter </li></ul></ul><ul><li>Speckle filtering based on classification map </li></ul><ul><ul><li>Preserving scattering mechanism (Lee, 2006) </li></ul></ul><ul><li>Improved sigma filter (Lee 2008) </li></ul><ul><ul><li>Filter distributed target by </li></ul></ul><ul><ul><li>an improved sigma filter – no bias </li></ul></ul><ul><ul><li>Preserving point (high-return) targets in HH+VV, HH-VV and HV </li></ul></ul><ul><li>zc > 98 percentile z98 </li></ul><ul><li>Number of z98 pixels ≥ 5 in a 3x3 window </li></ul>X X X X X
  35. 35. Improved Sigma Filter |HH-VV|, |HV|, |HH+VV| Original 5x5 Sigma Filtered (Lee, IGARSS2008)
  36. 36. PolSAR Speckle Filtering/ PolSAR Statistics <ul><li>Speckle filtering is not an exact science. The filtering requirements depend on </li></ul><ul><ul><li>Applications </li></ul></ul><ul><ul><li>Personal preference </li></ul></ul><ul><li>Comparison of PolSAR filters </li></ul><ul><ul><li>Foucher et al (IGARSS2009) </li></ul></ul><ul><li>PolSAR Statistics </li></ul><ul><ul><li>Correlation term has the combination of multiplicative and additive noise depending on coherence – extension to multi-look data (Lopes-Martinez, 2007) </li></ul></ul><ul><ul><li>PDF for normalized coherency matrix (Vasile, 2010) </li></ul></ul>
  37. 37. E) Compact Polarimetry
  38. 38. Compact Polarimetry <ul><li>Alternative Dual-Pol SAR system: Transmitting a single polarization (  /4, circular) and receiving two orthogonal polarizations (H and V, CR and CL). Additional assumptions required for pseudo quad-pol reconstruction. </li></ul><ul><ul><li>Reduce pulse repetition frequency – double swath width </li></ul></ul><ul><ul><li>Simplify SAR system </li></ul></ul><ul><li>The  /4 mode (Souyris, 2005) named it “compact polarimetry” </li></ul><ul><ul><li>Transmit at 45  polarization and receiving (H,V) </li></ul></ul><ul><li>Modes:  /4 , CR transmit dual Circular Receiving , CR transmit (H,V) Receiving (Souyris, Stacy, Nord, Dubois-Fernandez, Raney) </li></ul>
  39. 39. Compact Polarimetry <ul><li>Consensus: Transmit Circular and receiving (H, V) </li></ul><ul><ul><ul><li>Transmit circular and receive (CR, CL) for ionosphere </li></ul></ul></ul><ul><li>Pseudo quad-pol reconstruction </li></ul><ul><ul><li>Reflection symmetry assumption </li></ul></ul><ul><ul><li>Additional identity is required </li></ul></ul><ul><ul><ul><li>Souyris, 2005 </li></ul></ul></ul><ul><ul><ul><li>Nord and Ainsworth, 2009 </li></ul></ul></ul>
  40. 40. Compact Polarimetry <ul><li>Incomplete polarimetric measurements </li></ul><ul><ul><li>CP measures only 4 parameters </li></ul></ul><ul><ul><li>Quad-pol measures 9 parameters </li></ul></ul><ul><li>Reconstruction is unreliable </li></ul><ul><ul><li>|HV| reconstruction </li></ul></ul><ul><ul><li>Polarization orientation angle can not be measured, especially for distributed targets </li></ul></ul><ul><ul><li>Target decompositions: H/A/  , Model-based decompositions </li></ul></ul><ul><li>Hardware issues of transmitting perfect circular pol </li></ul><ul><li>Summary: Compact polarimetry does not replace quad-pol in acquiring polarimetric information. </li></ul><ul><li>( Boerner, IGARSS2010 ) </li></ul>
  41. 41. F) High Resolution PolSAR
  42. 42. FSAR – “Future” Airborne SAR X-Band, PolSAR 2-Look, 0.5 m resolution , VV , HV , HH Images courtesy of Dr. Andreas Reigber, DLR, Germany
  43. 44. FSAR S-Band
  44. 45. Partial References <ul><li>A) Target Decompositions, Orientation Angles </li></ul><ul><li>[1] Wentao An,  Yi Cui,  Jian Yang, “ Three-Component Model-Based Decomposition for Polarimetric SAR Data ,” IEEE TGRS , vol.48, June 2010. </li></ul><ul><li>[2] Ballester-Berman, J.D.,  Lopez-Sanchez, J.M., “ Applying the Freeman–Durden Decomposition Concept to Polarimetric SAR Interferometry ,” IEEE TGRS , January 2010. </li></ul><ul><li>[3] Touzi, R.,  Deschamps, A.,  Rother, G., “ Phase of Target Scattering for Wetland Characterization Using Polarimetric C-Band SAR ,” IEEE TGRS , vol. 47, September 2009. </li></ul><ul><li>[4] Praks, J.,  Koeniguer, E.C.,  Hallikainen, M.T., “ Alternatives to Target Entropy and Alpha Angle in SAR Polarimetry ,” IEEE TGRS , vol. 47, July 2009. </li></ul><ul><li>[5] Lee, J.S., Ainsworth, T.L.,  Kelly, J.P.,  Lopez-Martinez, C., “ Evaluation and Bias Removal of Multilook Effect on Entropy/Alpha/Anisotropy in Polarimetric SAR Decomposition ,” IEEE TGRS , vol. 46, October 2008. </li></ul><ul><li>[6] Yajima, Y.,  Yamaguchi, Y.,  Sato, R.,  Yamada, H.,  Boerner, W.-M, “ POLSAR Image Analysis of Wetlands Using a Modified Four-Component Scattering Power Decomposition ,” IEEE TGRS , vol.46, June 2008. </li></ul><ul><li>[7] Freeman, A., “ Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests ,” IEEE TGRS , vol. 45, August 2007. </li></ul><ul><li>[8] Touzi, R., “ Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters ,” IEEE TGRS , vol. 45, January 2007. </li></ul><ul><li>[9] Cameron, W.L.,  Rais, H., “ Conservative Polarimetric Scatterers and Their Role in Incorrect Extensions of the Cameron Decomposition ,” IEEE TGRS , vol. 44, December 2006. </li></ul><ul><li>[10] Lopez-Martinez, C., Pottier, E.,  Cloude, S.R., “ Statistical Assessment of Eigenvector-Based Target Decomposition Theorems in Radar Polarimetry ,” IEEE TGRS , vol. 43, September 2005. </li></ul><ul><li>[11] Yamaguchi, Y.,  Moriyama, T.,  Ishido, M.,  Yamada, H., “ Four-component scattering model for polarimetric SAR image decomposition ,” IEEE TGRS , vol. 43, August 2005. </li></ul><ul><li>[12] Iribe, K.,  Sato, M., “ Analysis of Polarization Orientation Angle Shifts by Artificial Structures ,” IEEE TGRS , vol.45, November 2007 </li></ul><ul><li>[13] Marino, A., Cloude, S.R.,  Woodhouse, I.H., “ A Polarimetric Target Detector Using the Huynen Fork ,” IEEE TGRS , vol.48, May 2010. </li></ul><ul><li>[14] M. Arii, J.J. van Zyl, Y. Kim, “Adaptive decomposition of polarimetric SAR covariance matrix,” presented at IGARSS’2009, Cape Town, South Africa, July 2009. </li></ul><ul><li>[15] Lee, J.-S., Thomas L. Ainsworth, Kun-Shan Chen, “The effect of orientation angle compensation on polarimetric target decompositions,” Proceedings of IGARSS’2009 , Cape Town, South Africa, July 2009. </li></ul>
  45. 46. Partial References <ul><li>B. Classification/Segmentation/ Texture </li></ul><ul><li>[1] Ersahin, K.,  Cumming, I.G.,  Ward, R.K, “ Segmentation and Classification of Polarimetric SAR Data Using Spectral Graph Partitioning ,” IEEE TGRS , vol. 47, January 2010 </li></ul><ul><li>[2] Lardeux, C.,  Frison, P.-L., Tison, C.,  Souyris, J.-C.,  Stoll, B.,  Fruneau, B.,  Rudant, J.-P, “ Support Vector Machine for Multifrequency SAR Polarimetric Data Classification ,” IEEE TGRS vol.47, December 2009. </li></ul><ul><li>[3] Doulgeris, A.P.,  Anfinsen, S.N.,  Eltoft, T., “ Classification with a Non-Gaussian Model for PolSAR Data ,” IEEE TGRS , vol.46, October 2008. </li></ul><ul><li>[4] De Grandi, G.D., Lee, J.S., Schuler, D.L, “ Target Detection and Texture Segmentation in Polarimetric SAR Images Using a Wavelet Frame: Theoretical Aspects ,” IEEE TGRS , vol.45, November 2007. </li></ul><ul><li>[5] Jager, M., Neumann, M.,  Guillaso, S.,  Reigber, A., “ A Self-Initializing PolInSAR Classifier Using Interferometric Phase Differences ,” IEEE TGRS , vol.45, November 2007. </li></ul><ul><li>[6] Morio, J.,  Goudail, F.,  Dupuis, X.,  Dubois-Fernandez, P.C.,  Refregier, P., “ Polarimetric and Interferometric SAR Image Partition Into Statistically Homogeneous Regions Based on the Minimization of the Stochastic Complexity ,” IEEE TGRS , vol.45, November 2007. </li></ul><ul><li>[7] Frery, A.C.,  Correia, A.H.,  da Freitas, C.D., “ Classifying Multifrequency Fully Polarimetric Imagery With Multiple Sources of Statistical Evidence and Contextual Information ,” IEEE TGRS , vol.45, October 2007 </li></ul><ul><li>C. Calibration and Faraday Rotation </li></ul><ul><li>[1] Kimura, H., “ Calibration of Polarimetric PALSAR Imagery Affected by Faraday Rotation Using Polarization Orientation ,” IEEE TGRS vol.48, December 2009 </li></ul><ul><li>[2] Touzi, R.,  Shimada, M., “ Polarimetric PALSAR Calibration ,” IEEE TGRS, vol.48, December 2009 </li></ul><ul><li>[3] Takeshiro, A.,  Furuya, T.,  Fukuchi, H.,  “ Verification of Polarimetric Calibration Method Including Faraday Rotation Compensation Using PALSAR Data ,” IEEE TGRS, vol.47, December 2009 </li></ul><ul><li>[4] Jehle, M.,  Ruegg, M.,  Zuberbuhler, L.,  Small, D.,  Meier, E., “ Measurement of Ionospheric Faraday Rotation in Simulated and Real Spaceborne SAR Data ,” IEEE TGRS , vol. 47, May 2009. </li></ul><ul><li>[5] Meyer, F.J.,  Nicoll, J.B., “ Prediction, Detection, and Correction of Faraday Rotation in Full-Polarimetric L-Band SAR Data ,” IEEE TGRS , vol. 46, October 2008. </li></ul><ul><li>[6] Ren-Yuan Qi,  Ya-Qiu Jin, “ Analysis of the Effects of Faraday Rotation on Spaceborne Polarimetric SAR Observations at P-Band ,” IEEE TGRS , vol. 45, may 2007. </li></ul><ul><li>[7] Ainsworth, T.L.,  Ferro-Famil, L.,  Jong-Sen Lee, “ Orientation angle preserving a posteriori polarimetric SAR calibration ,” IEEE TGRS , vol . 44, April 2006. </li></ul>
  46. 47. Partial References <ul><li>D. Speckle Filtering and PolSAR Statistics </li></ul><ul><li>[1] Vasile, G.,  Ovarlez, J.-P.,  Pascal, F., Tison, C., “ Coherency Matrix Estimation of Heterogeneous Clutter in High-Resolution Polarimetric SAR Images ,” IEEE TGRS , vol.48, April 2010. </li></ul><ul><li>[2] Lopez-Martinez, C.,  Fabregas, X., “ Model-Based Polarimetric SAR Speckle Filter ,” IEEE TGRS , November 2008. </li></ul><ul><li>[3] Lopez-Martinez, C.,  Pottier, E., “ On the Extension of Multidimensional Speckle Noise Model From Single-Look to Multilook SAR Imagery ,” IEEE TGRS , February 2007. </li></ul><ul><li>[4] Vasile, G.,  Trouve, E.,  Jong-Sen Lee,  Buzuloiu, V., “ Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation ,” IEEE TGRS , vol. 44, June 2006. </li></ul><ul><li>[5] Jong-Sen Lee, Grunes, M.R.,  Schuler, D.L.,  Pottier, E.,  Ferro-Famil, L., “ Scattering-model-based speckle filtering of polarimetric SAR data ,” IEEE TGRS , vol. 44, January 2006. </li></ul><ul><li>[6] S. Foucher, C. Lopez-Martinez, G. Farage,  “An Evaluation of PolSAR Speckle Filters,”   Proceedings of IGARSS’2009 , Cape Town, South Africa, July 2009. </li></ul><ul><li>[9] Lee, JS, T.L. Ainsworth, K.S. Chen, “ Speckle filtering of dual-pol and polarimetric SAR data based on improved sigma filter ,” Proceedings of IGARSS2008, Boston, USA, 2008. </li></ul><ul><li>E. Compact Polarimetry </li></ul><ul><li>[1] Nord, M.E.,  Ainsworth, T.L.,  Jong-Sen Lee,  Stacy, N., “ Comparison of Compact Polarimetric Synthetic Aperture Radar Modes ,” IEEE TGRS , February 2009. </li></ul><ul><li>[2] Dubois-Fernandez, P.C.,  Souyris, J.-C.,  Angelliaume, S.,  Garestier, F., “ The Compact Polarimetry Alternative for Spaceborne SAR at Low Frequency ,” IEEE TGRS , Vol. 46, October 2008. </li></ul><ul><li>[3] Raney, R.K. “ Hybrid-Polarity SAR Architecture ,” IEEE TGRS , vol. 45, November 2007. </li></ul><ul><li>[4] Souyris, J.-C.,  et al. , “ Compact polarimetry based on symmetry properties of geophysical media: the π/4 mode ,” IEEE TGRS , vol. 43, March 2005. </li></ul>
  47. 48. Partial References <ul><li>F. Forest/Vegetation </li></ul><ul><li>[1] Neumann, M.,  Ferro-Famil, L.,  Reigber, A., “ Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data ,” IEEE TGRS , vol. 48, March 2010. </li></ul><ul><li>[2] Garestier, F.,  Dubois-Fernandez, P.C.,  Guyon, D.,  Le Toan, T., “ Forest Biophysical Parameter Estimation Using L- and P-Band Polarimetric SAR Data ,” IEEE TGRS , vol. 47, October 2009. </li></ul><ul><li>[3] Haipeng Wang, Ouchi, K., “A ccuracy of the K-Distribution Regression Model for Forest Biomass Estimation by High-Resolution Polarimetric SAR: Comparison of Model Estimation and Field Data ,” IEEE TGRS , vol. 46, April 2008. </li></ul><ul><li>[4] Watanabe, M., et al., “ Forest Structure Dependency of the Relation between L-Band and Biophysical Parameters ,” IEEE TGRS , vol. 44, November 2006. </li></ul><ul><li>[5] Lopez-Sanchez, J.M.,  et al.,  “ Indoor wide-band polarimetric measurements on maize plants: a study of the differential extinction coefficient ,” IEEE TGRS , vol. 44, April 2006. </li></ul><ul><li>[6] McNeill, S.,  Pairman, D., “ Stand age retrieval in production forest stands in New Zealand using C- and L-band polarimetric Radar ,” IEEE TGRS , vol.43, November 2005. </li></ul><ul><li>G. Ocean Applications, Ship and Sea Ice Detection </li></ul><ul><li>[1] Migliaccio, M.,  Gambardella, A.,  Nunziata, F.,  Shimada, M.,  Isoguchi, O., “ The PALSAR Polarimetric Mode for Sea Oil Slick Observation ,” IEEE TGRS vol.47, December 2009 </li></ul><ul><li>[2] Margarit, G.,  Mallorqui, J.J.,  Fortuny-Guasch, J.,  Lopez-Martinez, C., “ Exploitation of Ship Scattering in Polarimetric SAR for an Improved Classification Under High Clutter Conditions ,” IEEE TGRS , April, 2009 </li></ul><ul><li>[3] Migliaccio, M.,  Gambardella, A.,  Tranfaglia, M., “ SAR Polarimetry to Observe Oil Spills ,” IEEE TGRS , vol. 45, February 2007. </li></ul><ul><li>[4] Margarit, G.,  Mallorqui, J.J.,  Rius, J.M.,  Sanz-Marcos, J., “ On the Usage of GRECOSAR, an Orbital Polarimetric SAR Simulator of Complex Targets, to Vessel Classification Studies ,” IEEE TGRS , vol. 44, December 2006. </li></ul><ul><li>[5] Nakamura, K.,  Wakabayashi, H.  et al., “ Observation of sea-ice thickness in the sea of Okhotsk by using dual-frequency and fully polarimetric airborne SAR (pi-SAR) data ,” IEEE TGRS , vol. 43, November 2005. </li></ul>
  48. 49. Partial References <ul><li>H. Surface Parameter Estimation </li></ul><ul><li>[1] Yunjin Kim,  van Zyl, J.J, “ A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data ,” IEEE TGRS , August 2009. </li></ul><ul><li>[2] Sang-Eun Park,  Moon, W.M.  Duk-jin Kim, “ Estimation of Surface Roughness Parameter in Intertidal Mudflat Using Airborne Polarimetric SAR Data ,” IEEE TGRS , vol. 47, May 2009 </li></ul><ul><li>[3] Hajnsek, I.,  Jagdhuber, T.,  Schon, H.,  Papathanassiou, K.P., “ Potential of Estimating Soil Moisture Under Vegetation Cover by Means of PolSAR ,” IEEE TGRS vol. 47, February 2009. </li></ul><ul><li>I. Bistatic PolSAR </li></ul><ul><li>[1] Titin-Schnaider, C., “ Physical Meaning of Bistatic Polarimetric Parameters ,” IEEE TGRS , vol.48, May 2010. </li></ul><ul><li>[2] Feng Xu, Ya-Qiu Jin, “ Imaging Simulation of Bistatic Synthetic Aperture Radar and Its Polarimetric Analysis ,” IEEE TGRS , vol. 46, August 2008. </li></ul><ul><li>[3] Titin-Schnaider, C., “ Polarimetric Characterization of Bistatic Coherent Mechanisms ,” IEEE TGRS , vol. 46, May 2008. </li></ul><ul><li>[4] Souyris, J.-C.,  Tison, C., “ Polarimetric Analysis of Bistatic SAR Images From Polar Decomposition: A Quaternion Approach ,” IEEE TGRS , Vol. 45, September 2007. </li></ul><ul><li>J. Target Detection and Analysis </li></ul><ul><li>[1] Margarit, G.,  Mallorqui, J.J.,  Pipia, L., “ Polarimetric Characterization and Temporal Stability Analysis of Urban Target Scattering .” IEEE TGRS , vol. 48, April, 2010 </li></ul><ul><li>[2] Marquart, N.P.,  Molinet, F.,  Pottier, E.,  “ Investigations on the polarimetric behavior of a target near the soil ,” IEEE TGRS , vol.44, October 2006. </li></ul><ul><li>K. Other Applications </li></ul><ul><li>[1] Suwa, K.  Iwamoto, M., “ A Two-Dimensional Bandwidth Extrapolation Technique for Polarimetric Synthetic Aperture Radar Images ,” IEEE TGRS , vol.45, January 2007. </li></ul><ul><li>[2] Schneider, R.Z.  Papathanassiou, K.P.  Hajnsek, I.  Moreira, A., “ Polarimetric and interferometric characterization of coherent scatterers in urban areas ,” IEEE TGRS , Vol. 44, April 2006. </li></ul>
  49. 50. Partial References <ul><li>K. Other Applications </li></ul><ul><li>[1] Suwa, K.  Iwamoto, M., “ A Two-Dimensional Bandwidth Extrapolation Technique for Polarimetric Synthetic Aperture Radar Images ,” IEEE TGRS , vol.45, January 2007. </li></ul><ul><li>[2] Schneider, R.Z.  Papathanassiou, K.P.  Hajnsek, I.  Moreira, A., “ Polarimetric and interferometric characterization of coherent scatterers in urban areas ,” IEEE TGRS , Vol. 44, April 2006. </li></ul><ul><li>L. PolSAR Textbooks (in English) </li></ul><ul><li>[1] Cloude, S.R., Polarisation: applications in remote sensing , Oxford University Press, Oxford, New York, 2010. </li></ul><ul><li>[2] Lee, J.S. and Pottier, E., Polarimetric Radar Imaging: from basic to applications , Taylor & Francis/CRC Press, Boca Raton, London, New York, 2009. </li></ul><ul><li>[3] Massonnet, D. and Souyris, J-C, Imaging with Synthetic Aperture Radar , , Taylor & Francis/CRC Press, Boca Raton, London, New York, 2008. </li></ul><ul><li>[4] Mott, H., Remote Sensing with Polarimetric Radar , Wiley & Sons, New Jersey, 2007. </li></ul>
  50. 51. Conclusion <ul><li>PolSAR information extraction research has reach a certain degree of maturity. </li></ul><ul><li>The availability of space borne and airborne PolSAR data will stimulate applications and developing advanced information extraction algorithms. </li></ul><ul><li>TanDEM-X Mission: Bistatic PolSAR research </li></ul><ul><li>High resolution (less than 1 m) PolSAR will open up new area of research and applications. </li></ul><ul><li>ALOS/PALSAR, and RADARSAT-2 follow ups, and TerraSAR-L </li></ul><ul><li>PolSAR research has a bright future </li></ul>

×