Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Monitoring Forest Management Activities using Airborne LiDAR and ALOS PALSAR<br />Akira Kato1, Manabu Watanabe2, Tatsuaki,...
ALOS PALSAR ⇔Airborne LiDAR<br />ALOS PALSAR<br />    - L-band radar -> polarization (indirect measurement)<br />    - Mul...
Problem ⇒ study frame<br />             ALOS PALSAR ⇔ limited field samples<br />Bottom-up approach<br />State Level: <br ...
Forest Biomass ⇔ Volume Scattering<br />Past studies<br />1. Saturation level of forest biomass using L-band<br />100 ton/...
Volume Scattering ⇔stand condition<br />Stand condition is defined by<br />     - stem density<br />     - tree height<br ...
Study frame ⇒forest management activities<br /><ul><li>2010Summer</li></ul>ALOS PALSAR data after thinning<br />The second...
Terrestrial LiDAR (after thinning)<br />
Study Area<br />Sanmu City, Chiba Prefecture, JAPAN<br />-> Commercial timber production area<br />Research area is around...
Data – Airborne LiDAR<br />HH<br />HV<br />Before thinning<br />After thinning<br />
Data – ALOS PALSAR<br />L-band FBD (Fine beam Double Polarization)<br />Resolution: 20m <br />ALOS satellite endedat May 2...
16 days observation cycle.</li></ul>Before <br />thinning<br />After <br />thinning<br />Backscattering coefficient<br />-...
Preprocessing – ALOS PALSAR<br />1.Geometric and terrain correction<br />⇒MapReady (Alaska Satellite Facility, ver 2.3, 20...
Preprocessing – Airborne LiDAR<br />Digital Terrain Model<br />Digital Canopy Model<br />⇒Tree Top location<br />Digital S...
Preprocessing <br /> <br />DSM (50cm)<br />DTM (50cm)<br />      <br />Thinned area <br />⇒ white<br />2010 DCM (50cm)<br />
Methodology – Identify Tree Tops<br />Stem height and location have been identified by<br />(Bloomenthal et al., 1997)<br ...
Tree top location and height<br />   <br />Before Thinning (Aug 2009)<br />After Thinning (July 2010)<br />m<br />
Methodology<br />Biomass estimation<br />Biomass = (stem volume = f (tree height, dbh))<br />× (density factor)<br />     ...
Results and Discussion<br />Airborne LiDAR<br />  Stem density                             Tree height <br />Stem density ...
Results and Discussion<br />V =  20.94 log(N) + 82.94 log(H) - 113.10<br />m<br />m<br />
Stem Volume Change (m3)<br />HH<br />HV<br />High: 137.03<br />Low: -116.04<br />m<br />
Results and Discussion<br />ALOS PALSAR<br />HV/HH is shifted in 9.8 degrees<br />Y-axis: HV backscattering <br />coeffici...
Future consideration<br />1. Full polarization data should be utilized for the biomass change analysis.<br />⇒ averaging s...
FAO global woody biomass map<br />
Future Study<br />Volume Scattering ⇒ Canopy Condition<br />Crown volume from<br /> wrapping method(m3)<br />Wrapping meth...
Upcoming SlideShare
Loading in …5
×

MONITORING FOREST MANAGEMENT ACTIVTIES USING AIRBORNE LIDAR AND ALOS PALSAR.pptx

1,005 views

Published on

  • Be the first to comment

MONITORING FOREST MANAGEMENT ACTIVTIES USING AIRBORNE LIDAR AND ALOS PALSAR.pptx

  1. 1. Monitoring Forest Management Activities using Airborne LiDAR and ALOS PALSAR<br />Akira Kato1, Manabu Watanabe2, Tatsuaki, Kobayashi1, <br />Yoshio Yamaguchi3,and Joji Iisaka4<br />1Graduate School of Horticulture, Chiba University, Japan<br />2Center for Northeast Asian Studies, Tohoku University, Japan<br />3Graduate School of Science & Technology, Niigata University,, Japan<br />4Department of Geography, University of Victoria, Canada<br />
  2. 2. ALOS PALSAR ⇔Airborne LiDAR<br />ALOS PALSAR<br /> - L-band radar -> polarization (indirect measurement)<br /> - Multi-temporal data<br /> - Lowcost<br /> - Globalacquisition<br /> - 15m~ resolution-> plot level estimation<br />Airborne LiDAR<br /> - Near-infrared red laser -> direct measurement<br /> - (Multi-) temporal data<br /> - Highcost <br /> - Local acquisition<br /> - 10cm ~ resolution-> single tree level estimation<br />
  3. 3. Problem ⇒ study frame<br /> ALOS PALSAR ⇔ limited field samples<br />Bottom-up approach<br />State Level: <br />Biomass change is monitored using PALSAR<br />as same quality as global scale.<br />District Level: <br />Biomass change is monitored using Airborne LiDAR<br />Stand Level: <br />Biomass change is monitored using <br /> Airborne or terrestorialLiDAR<br />
  4. 4. Forest Biomass ⇔ Volume Scattering<br />Past studies<br />1. Saturation level of forest biomass using L-band<br />100 ton/ha in homogeneous pine forest (Imhoffet al., 1995)<br />⇒ Approx. 5meters spacing of 20 m height trees.<br />40 ton/ha in broadleaf evergreen forest (Lucas et al., 2006)<br />2. HV polarization is higher correlation with forest biomass (Lucas et al., 2006)<br /> ALOS PALSAR is a good sensor to detect the forest <br />management activities, but correlation between <br /> backscattering coefficient and the change is still unknown.<br />
  5. 5. Volume Scattering ⇔stand condition<br />Stand condition is defined by<br /> - stem density<br /> - tree height<br /> - tree forms (the shape of tree crown)<br /> - tree age<br />⇒ airborne LiDARis used to bridge between field measurement and backscattering coefficient of ALOS PALSAR as the ground truth. <br />
  6. 6. Study frame ⇒forest management activities<br /><ul><li>2010Summer</li></ul>ALOS PALSAR data after thinning<br />The second airborne LiDARacquisiton<br />2009 Summer<br />ALOS PALSAR data before thinning<br />The first airborne LiDARacquisiton<br />Wider scale<br />biomass change<br />Ground Truth<br />Continuous samples<br />modeling<br />Discrete samples<br />field work<br />- measure trees.<br />2009& 2010 Winter We thinned trees.<br />
  7. 7. Terrestrial LiDAR (after thinning)<br />
  8. 8. Study Area<br />Sanmu City, Chiba Prefecture, JAPAN<br />-> Commercial timber production area<br />Research area is around 9 km2<br />- Dominant species is Japanese cedar <br />(Cryptomeria japonica)<br /><ul><li>Homogeneous stands </li></ul>- 30 plots (20m x 20m) were set<br />
  9. 9. Data – Airborne LiDAR<br />HH<br />HV<br />Before thinning<br />After thinning<br />
  10. 10. Data – ALOS PALSAR<br />L-band FBD (Fine beam Double Polarization)<br />Resolution: 20m <br />ALOS satellite endedat May 2011.<br />- 20 m resolution L-band SAR. <br />- 46 days observation cycle.<br />ALOS 2 will be launched at 2013. <br /><ul><li>1~3 m resolution L-band SAR.
  11. 11. 16 days observation cycle.</li></ul>Before <br />thinning<br />After <br />thinning<br />Backscattering coefficient<br />- σ0(dB, amplitude value) <br />HH<br />HV<br />
  12. 12. Preprocessing – ALOS PALSAR<br />1.Geometric and terrain correction<br />⇒MapReady (Alaska Satellite Facility, ver 2.3, 2010). <br />2. layover / shadow regions for the terrain correction<br />  ⇒5m resolution DEM provided by Geospatial Information Authority of Japan <br />3. Speckle filtering<br />⇒Averaging the values of multi-temporal data. The data before thinning (before August 2010) and after thinning (after August 2010) are averaged separately. <br />4. Pixel alignment<br />⇒Manual geo-referencing was applied to match the images with less than half pixel of error (10m) among the multi-temporal data <br />
  13. 13. Preprocessing – Airborne LiDAR<br />Digital Terrain Model<br />Digital Canopy Model<br />⇒Tree Top location<br />Digital Surface Model<br />
  14. 14. Preprocessing <br /> <br />DSM (50cm)<br />DTM (50cm)<br />      <br />Thinned area <br />⇒ white<br />2010 DCM (50cm)<br />
  15. 15. Methodology – Identify Tree Tops<br />Stem height and location have been identified by<br />(Bloomenthal et al., 1997)<br />Second order Taylor’s approximation<br />
  16. 16. Tree top location and height<br />   <br />Before Thinning (Aug 2009)<br />After Thinning (July 2010)<br />m<br />
  17. 17. Methodology<br />Biomass estimation<br />Biomass = (stem volume = f (tree height, dbh))<br />× (density factor)<br /> ×(expansion factor of branch) <br /> ×(expansion factor of stem) <br />Stem volume = α(stem density) +β(tree height) + C<br />
  18. 18. Results and Discussion<br />Airborne LiDAR<br /> Stem density Tree height <br />Stem density correction: <br /> y = 2.5034x - 12.41<br /> where x: the number of stems derived from airborne lidar<br /> y: the corrected number of stems <br />
  19. 19. Results and Discussion<br />V = 20.94 log(N) + 82.94 log(H) - 113.10<br />m<br />m<br />
  20. 20. Stem Volume Change (m3)<br />HH<br />HV<br />High: 137.03<br />Low: -116.04<br />m<br />
  21. 21. Results and Discussion<br />ALOS PALSAR<br />HV/HH is shifted in 9.8 degrees<br />Y-axis: HV backscattering <br />coefficients (σ0, dB)<br />X-axis: HH backscattering coefficients (σ0, dB)<br />Before Thinning After Thinning<br />The axis is rotated towards right (when trees are thinned) <br />
  22. 22. Future consideration<br />1. Full polarization data should be utilized for the biomass change analysis.<br />⇒ averaging speckle filtering requires data accumulation.<br />interferometric analysis needs the shorter observation cycle. <br />2. Full polarization interferometry analysis can raise the saturation level (more than 100 ton / ha). <br />⇒ registration among multi-temporal images should be accurate enough.<br />3. World biomass map shows the limitation to use the backscattering coefficient for the biomass stock, but the biomass change can be monitored.<br />
  23. 23. FAO global woody biomass map<br />
  24. 24. Future Study<br />Volume Scattering ⇒ Canopy Condition<br />Crown volume from<br /> wrapping method(m3)<br />Wrapping method - Kato et al., (2009) <br />Remote Sensing of Environment 113 : 1148-1162<br />Field measured crown volume (m3)<br />Green: Low density stands <br />Blue: High density stands<br />Quantifying the thickness of canopy from <br />crown volume derived by the wrapping method <br />
  25. 25. Thank you very much.<br />Any questions?<br />Contact:<br />Dr. Akira Kato<br />akiran@faculty.chiba-u.jp<br />Acknowledgement <br />This research was supported by the Environment Research and Technology Development Fund (RF-1006) of the Ministry of the Environment, Japan.<br />

×