SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Successfully reported this slideshow.
Activate your 14 day free trial to unlock unlimited reading.
Esta ld -exploring-spatio-temporal-linked-statistical-data
Esta ld -exploring-spatio-temporal-linked-statistical-data
1.
Making the web an
exploratory place
for geospatial data
1
ESTA-LD: Exploring Spatio-Temporal Linked
Statistical Data
Vuk Mijović,Valentina Janev, Dejan Paunović
Mihajlo Pupin Institute
2.
Outline
• Introduction
• Modelling
• ESTA-LD
• FutureWork
1 5 S e p t e m b e r 2 0 1 5 2
3.
Motivation
• OGD (Open Government Data) initiatives have helped to open public data on:
– transport
– education
– infrastructure
– health
– environment
– …
• Public sector information is usually statistical in nature:
– SORS (Statistical Office of the Republic of Serbia
– SBRA (Serbian Business Registers Agency)
– Eurostat
• Public sector information often spans
across space and time
– Regional development
– Tourism data
– GDP
– …
• Statistical data on the web
– Create mash-ups
– Create visualizations
1 5 S e p t e m b e r 2 0 1 5 3
4.
Scenario
1 5 S e p t e m b e r 2 0 1 5 4
Agents –Data providers
Services
LOD
convertor
LOD
convertor
Harvesting
Sharing metadata
with Joinup
Metadata catalogue
SPARQL
endpoint
SPARQL
endpoint
RDBMS RDBMS
• Spatio-temporal analysis
• Querying and Exploration
• Authoring of Linked Data
• Semi-automatic link discovery
• Enrichment and Repair
• Extraction and Loading
5.
RDF Data CubeVocabulary
• Publishing multi-dimensional (statistical) data in a way that it can
be linked to related data sets and concepts
• Compatible with SDMX
• W3C Recommendation
• Kinds of data:
– Observations
– Organizational struct.
– Structural metadata
– Reference metadata
• The cube model:
– Dimensions
– Attributes
– Measures
1 5 S e p t e m b e r 2 0 1 5 5
6.
Data Cube Example
1 5 S e p t e m b e r 2 0 1 5 6
7.
Modelling Spatio-Temporal Data
• Use SDMX COG (ContentOriented Guidelines) available in RDF:
– Temporal dimension: sdmx-dimension:refPeriod
– Spatial dimension: sdmx-dimension:refArea
• Temporal Dimension
– Concept: sdmx-concept:refPeriod
– Time role: sdmx:TimeRole
– Range: xsd:gYear, xsd:gYearMonth, xsd:date…
• Spatial Dimension
– Concept: sdmx-concept:refArea
– There is no spatial role
– Define geometries for concepts using geo:hasDefaultGeometry and
geo:asWKT
– Hierarhies:
• Define a code list
• Define hierarchy levels using the SKOS vocabulary (skos:brader and skos:narrower)
1 5 S e p t e m b e r 2 0 1 5 7
8.
Example: Spatial andTemporal
1 5 S e p t e m b e r 2 0 1 5 8
9.
ESTA-LD
• Enables exploration and
analysis of spatio-temporal
linked statistical data
• Based on the RDF Data
Cube vocabulary
• Works with any SPARQL
Endpoint
• Part of the Linked Data
Stack developed within EU
FP7 project GeoKnow
1 5 S e p t e m b e r 2 0 1 5 9
10.
Setting Parameters
• Choose graph and dataset
• Choose measure, set dimension values and select dimensions to visualize
1 5 S e p t e m b e r 2 0 1 5 1 0
11.
ChartVisualization
• Visualization of up to
two dimensions
• SwitchingAxes
• Stacking
• Swapping series and
categories
1 5 S e p t e m b e r 2 0 1 5 1 1
12.
Temporal Dimension
• Time Chart:
– Dedicated chart for the
time dimension
• Select a period
• Slide through time
– Works with
SBRA/SORS code list
and XSD types
– Selection of the time
window updates the
map
1 5 S e p t e m b e r 2 0 1 5 h t t p : / / g e o k n o w. e u 12
13.
Spatial Dimension
• Choropleth Map:
– Visualizes data on a map
– Supports hierarchies
• Regions, municipalities …
– Selecting a region updates chart
– Regions need to point to polygons
supplied asWKT strings
– In combination with the time chart,
regions are coloured:
• Based on the selected time window,
• Based on every possible time
window of the same duration as the
one selected.
1 5 S e p t e m b e r 2 0 1 5 h t t p : / / g e o k n o w. e u 13
14.
AggregatedColoring
1 5 S e p t e m b e r 2 0 1 5 1 4
15.
Support for Preparing Data Cubes
• Temporal Dimension:
– In most cases where time is represented with URIs, those URIs contain year/month/date.
– Provides transformation of URIs to xsd types based on the provided pattern
• Spatial Dimension:
– In most cases country name or code is embedded in the URI
– Search for polygons in the LinkedGeoData dataset and add them to the Cube
1 5 S e p t e m b e r 2 0 1 5 h t t p : / / g e o k n o w. e u 15
16.
Final Remarks
• Try ESTA-LD:
– GitHub: https://github.com/GeoKnow/ESTA-LD
– Demo: http://geoknow.imp.bg.ac.rs/ESTA-LD
• Future Work:
– Add more chart types
– Enable comparisons, merging, slicing, etc.
– Reducing the need for replication (DSDs, polygons…)
– Advanced search and filtering capabilities
1 5 S e p t e m b e r 2 0 1 5 1 6
17.
Making the web an
exploratory place
for geospatial data
17
Thank you for your attention!
Questions?