SlideShare a Scribd company logo
1 of 32
Download to read offline
1
CHAPTER 9:
Moments of Inertia
! Moment of Inertia of Areas
! Second Moment, or Moment of Inertia, of an
Area
! Parallel-Axis Theorem
! Radius of Gyration of an Area
! Determination of the Moment of Inertia of an
Area by Integration
! Moments of Inertia of Composite Areas
! Polar Moment of Inertia
2
9.1 Moment of Inertia: Definition
x
y
y
x
dA=(dx)(dy)
∫=
A
x dAyI 2
)(
O
∫=
A
y dAxI 2
)(
3
x
y
x´= Centroidal axis
y´ = Centroidal axis
CG
dy
y´
dx x´
dA
∫ +=
A
yx dAdyI 2
)'(
∫ ++=
A
yy dAddyy ])())('(2)'[( 22
∫∫∫ ++=
A
y
A
y
A
dAddAdydAy 22
)())('(2)'(
∫∫ ++=
A
y
A
yx dAddAydI
2
'2
0, y´ = 0
AdII yxx
2
0 ++=
AdII xyy
2
0 ++=
9.2 Parallel-Axis Theorem of an Area
2
AdJJ CO +=
O
4
y
x
kx
O
A
A
J
k
A
I
k
A
I
k O
O
y
y
x
x ===
9.3 Radius of Gyration of an Area
2
The radius of gyration of an area
A with respect to the x axis is
defined as the distance kx, where
Ix = kx A. With similar definitions for
the radii of gyration of A with
respect to the y axis and with
respect to O, we have
5
The rectangular moments of inertia Ix
and Iy of an area are defined as
These computations are reduced to single integrations by choosing dA to be a thin
strip parallel to one of the coordinate axes. The result is
x
y
y
dx
x
∫∫ == dAxIdAyI yx
22
dxyxdIdxydI yx
23
3
1
==
9.4 Determination of the Moment of Inertia of an
Area by Integration
6
x´
y´
b/2
h/2
• Moment of Inertia of a Rectangular Area.
x
y
b
h
y
dy
∫=
A
x dAyI 2
∫=
h
bdyy
0
2
)(
h
by
0
3
3
)(
=
y
dy
∫==
A
xx dAyII 2
'
∫=
h
dy
b
y
0
2
)
2
(4
2/
0
3
3
)
2
(4
h
yb
=
3
3
bh
=
12
3
bh
=
dA = bdy
dA = (b/2)dy
7
x´
y´
b/2
h/2
x
y b
h
∫=
A
y dAxI 2
∫=
b
hdxx
0
2
)(
b
hx
0
3
3
)(
=
∫==
A
yy dAxII 2
'
∫=
h
dx
h
x
0
2
)
2
(4
2/
0
3
3
)
2
(4
b
xh
=
3
3
hb
=
12
3
hb
=
x
dx
x
dx
dA = hdx
dA = (h/2)dx
8
x
y
b
h/2
h/2
12
3
bh
Ix =
3
3
bh
Ix =
2
AdII xx +=
2
3
)
2
)((
12
h
bh
bh
+=
412
33
bhbh
+=
3
3
bh
Ix =
9
dIx = y2 dA dA = l dy
Using similar triangles, we have
dy
h
yh
bdA
h
yh
bl
h
yh
b
l −
=
−
=
−
=
Integrating dIx from y = 0 to y = h, we obtain
∫∫
∫
−=
−
=
=
hh
x
dyyhy
h
b
dy
h
yh
by
dAyI
0
32
0
2
2
)(
12
]
43
[
3
0
43
bhyy
h
h
b h
=−=
• Moment of Inertia of a Triangular Area.
2
AdII xx +=
36
)
3
)(
2
(
12
3
2
3
2
bhhbhbh
AdII xx
=−=
−=
y
x
h
b/2
h-y
b/2
dy
yl
10
Example 9.1
Determine the moment of inertia of the shaded area shown with respect to
each of the coordinate axes.
x
y
a
y = kx2
b
11
x
y
a
y = kx2
b
• Moment of Inertia Ix.
dy
dA = (a-x)dy
2
kxy =
2
kab =
2
a
b
k =
2/1
2/1
2
2
y
b
a
xorx
a
b
y ==
Substituting x = a and y=b
∫=
A
x dAyI 2
∫ −=
b
dyxay
0
2
)(
∫ −=
b
dyy
b
a
ay
0
2/1
2/1
2
)(
dyy
b
a
dyya
bb
∫∫ −=
0
2/5
2/1
0
2
bb
y
b
aay
0
2/7
2/1
0
3
)
7
2
(
3
−=
)
7
2
(
3
2/7
2/1
3
b
b
aab
−=
7
2
3
33
abab
−=
21
3
ab
=
12
x
y
a
y = kx2
b
• Moment of Inertia Iy.
2
2
x
a
b
y = ∫=
A
y dAxI 2
∫=
a
ydxx
0
2
dx
dA = ydx
∫=
a
dxx
a
b
x
0
2
2
2
)(
∫=
a
dxx
a
b
0
4
2
a
x
a
b
0
5
2
)
5
)((=
)
5
)((
5
2
a
a
b
=
5
3
ba
=
13
Example 9.2
Determine the moment of inertia of the shaded area shown with respect to
each of the coordinate axes.
x
y
y2 = x2
y1 = x
(a,b)
14
x
y
y2 = x2
y1 = x
(a,b)
dy
dA = (x2 - x1)dy
∫=
A
x dAyI 2
∫ −=
b
dyxxy
0
2
)( 12
∫ −=
b
dyyyy
0
2/12
)(
∫∫ −=
bb
dyydyy
0
3
0
2/5
)()(
bb
y
y
0
4
0
2/7
47
2
−=
• Moment of Inertia Ix.
47
2 4
2/7 b
b −=
15
x
y
y2 = x2
y1 = x
(a,b)
• Moment of Inertia Iy.
∫=
A
y dAxI 2
∫ −=
a
dxyyx
0
1
2
)( 2
dx
dA = (y1 - y2)dx
∫ −=
a
dxxxx
0
22
)(
∫∫ −=
aa
dxxdxx
0
4
0
3
)()(
aa
xx
0
5
0
4
54
−=
54
54
aa
−=
16
The parallel-axis theorem is used very effectively to compute the moment of
inertia of a composite area with respect to a given axis.
d
c
o
centroid are related to the distance d between points C and O by the relationship
2
AdJJ CO +=
9.5 Moment of Inertia of Composite Areas
A similar theorem can be used with
the polar moment of inertia. The
polar moment of inertia
JO of an area about O and the polar
moment of inertia JC of the area
about its
17
Example 9.3
Compute the moment of inertia of the composite area shown.
75 mm
75 mm
100 mm
25 mm
x
18
SOLUTION
75 mm
75 mm
100 mm
x
25 mm
= (dy)Cir
Ciryxctx AdI
bh
I )()
3
(
2
Re
3
+−=
Circt ])75)(25()25(
4
1
[])150)(100(
3
1
[ 224
Re
3
×+−= ππ
= 101x106 mm4
19
Example 9.4
Determine the moments of inertia of the beam’s cross-sectional area
shown about the x and y centroidal axes.
400
Dimension in mm
100
400
100
600
100
x
y
C
20
400
Dimension in mm
100
400
100
600
100
x
y
C
SOLUTION
A
dyA
B
dyD
D
CyxByxAyxx AdIAdIAdII )()()(
222
+++++=
])200)(300100()300)(100(
12
1
[
]0)100)(600(
12
1
[])200)(300100()300)(100(
12
1
[
23
323
×++
++×+=
= 2.9x109 mm4
0
21
400
Dimension in mm
100
400
100
600
100
x
y
C
CxyBxyAxyy AdIAdIAdII )()()(
222
+++++=
C
BA
])250)(300100()100)(300(
12
1
[
]0)600)(100(
12
1
[])250)(300100()100)(300(
12
1
[
23
323
×++
++×+=
= 5.6x109 mm4
A
dxA
dxD
D
0
22
Example 9.5 (Problem 9.31,33)
Determine the moments of inertia and the radius of gyration of the
shaded area with respect to the x and y axes.
6 mm
O x
y
24 mm
24 mm
6 mm
12 mm12 mm
24 mm 24 mm
8 mm
23
6 mm
O
x
y
24 mm
24 mm
6 mm
12 mm12 mm
24 mm 24 mm
8 mm
SOLUTION
A
dyA
B
Ix = 390x103 mm4
mm
A
I
k x
x 9.21
)]648()488()624[(
10390 3
=
×+×+×
×
==
CyxByxAyxx AdIAdIAdII )()()(
222
+++++=
Iy = 64.3x103 mm4
CBA ])48)(6(
12
1
[])8)(48(
12
1
[])24)(6(
12
1
[ 333
++=
0 00
CxyBxyAxyy AdIAdIAdII )()()(
222
+++++=
mm
A
I
k
y
y 87.8
)]648()488()624[(
103.64 3
=
×+×+×
×
==
0
C
B
A
])27)(648()6)(48(
12
1
[
]0)48)(8(
12
1
[
])27)(624()6)(24(
12
1
[
23
3
23
×++
++
×+=
C
dyC
24
Example 9.6 (Problem 9.32,34)
Determine the moments of inertia and the radius of gyration of the
shaded area with respect to the x and y axes.
2 m
O
1 m
1 m
1 m
1 m
0.5 m0.5 m
2 m 2 m
0.5 m0.5 m
x
y
25
2 m
O
1 m
1 m
1 m
1 m
0.5 m0.5 m 2 m 2 m
0.5 m0.5 m
x
y
A
B
dyB
C
dyC
Ix = 46 m4
m
A
I
k x
x 599.1
)]14()24()65[(
46
=
×−×−×
==
14
2
24
2
65
2
)()()( ××× +−+−+= CyxByxAyxx AdIAdIAdII
0
C
BA
])5.1)(14()1)(4(
12
1
[
])2)(42()2)(4(
12
1
[]0)6)(5(
12
1
[
23
233
×+−
×+−+=
Iy = 46.5 m4
CBA ])4)(1(
12
1
[])4)(2(
12
1
[])5)(6(
12
1
[ 333
−−=
0 00
CxyBxyAxyy AdIAdIAdII )()()(
222
+−+−+=
m
A
I
k
y
y 607.1
)]14()24()65[(
5.46
=
×−×−×
==
26
Example 9.7
Determine the moments of inertia and the radius of gyration of the
shaded area with respect to the x and y axes and at the centroidal axes.
1 cm 1 cm
5 cm
1 cm
5 cm
x
y
27
1 cm 1 cm
5 cm
1 cm
5 cm
x
y
CG
Y
∑∑ = AyAY
cm
Y
5.2
)15(3
)51)(5.0()]15)(5.3[(2
=
×
×+×
=
4
2
2
25.51
)5.2)(15(145
cm
AdII yxx
=
−=
−=
• Moments of inertia about centroid
4
23
23
25.51
])2)(15()1)(5(
12
1
[(
])1)(15()5)(1(
12
1
[(2
cm
I
OR
x
=
×++
×+=
cm
A
I
kk x
yx 848.1
15
25.51
====
4
323
145
)1)(5(
3
1
])5.3)(15()5)(1(
12
1
[(2
cm
Ix
=
+×+=
• Moments of inertia about x axis
4
323
25.51
)5)(1(
12
1
])2)(15()1)(5(
12
1
[(2
cm
II yy
=
+×+==
0.5
3.5
2
28
Example 9.8
The strength of a W360 x 57 rolled-steel beam is increased by attaching a
229 mm x 19 mm plate to its upper flange as shown. Determine the
moment of inertia and the radius of gyration of the composite section with
respect to an axis which is parallel to the plate and passes through the
centroid C of the section.
C
229 mm
19 mm
358 mm
172 mm
29
229 mm
172 mm
SOLUTION
19 mm
358 mm x
O
C x´
Y
188.5 mm
The wide-flange shape of W360 x 57
found by referring to Fig. 9.13
A = 7230 mm2 4
2.160 mmIx =
AyAY Σ=Σ
Aplate = (229)(19) = 4351 mm2
)7230)(0()4351)(5.188()72304351( +=+Y
mmY 8.70=
• Centroid
• Moment of Inertia
flangewidexplatexx III −+= )()( '''
flangewidexplatex YAIAdI −+++= )()( 2
'
2
'
[ ]
46
26
23
108.256
)8.70)(7230(102.160
)8.705.188)(4351()19)(229(
12
1
mm×=
+×+




−+=
• Radius of Gyration
)72304351(
108.256 6
'2
'
+
×
==
A
I
k x
x
mmkx 149' =
46
' 10257 mmIx ×=
d
30
The polar moment of inertia of
an area A with respect to the pole
O is defined as
The distance from O to the element of area dA is r. Observing that r 2 =x 2 + y 2 , we
established the relation
y
xx
y
r
A
dA
O ∫= dArJO
2
yxO IIJ +=
9.6 Polar Moment of Inertia
31
Example 9.9
(a) Determine the centroidal polar moment of inertia of a circular area by
direct integration. (b) Using the result of part a, determine the moment of
inertia of a circular area with respect to a diameter.
y
x
r
O
32
u
du
O
y
x
r
SOLUTION
a. Polar Moment of Inertia.
duudAdAudJO π22
==
∫∫ ∫ ===
rr
OO duuduuudJJ
0
3
0
2
2)2( ππ
4
2
rJO
π
=
b. Moment of Inertia with Respect to a Diameter.
xyxO IIIJ 2=+=
xIr 2
2
4
=
π
4
4
rII xdiameter
π
==

More Related Content

What's hot

Shear Force And Bending Moment Diagram For Beam And Frame
Shear Force And Bending Moment Diagram For Beam And FrameShear Force And Bending Moment Diagram For Beam And Frame
Shear Force And Bending Moment Diagram For Beam And Framegueste4b1b7
 
Numericals on Columns and struts_-_solved
Numericals on Columns and struts_-_solvedNumericals on Columns and struts_-_solved
Numericals on Columns and struts_-_solvedViriSharma
 
cross sectional properties of structural members
cross sectional properties of structural memberscross sectional properties of structural members
cross sectional properties of structural membersNabeh Wildan
 
Chapter 8-deflections
Chapter 8-deflectionsChapter 8-deflections
Chapter 8-deflectionsISET NABEUL
 
Ch06 07 pure bending & transverse shear
Ch06 07 pure bending & transverse shearCh06 07 pure bending & transverse shear
Ch06 07 pure bending & transverse shearDario Ch
 
Fluid tutorial 3
Fluid tutorial 3Fluid tutorial 3
Fluid tutorial 3dr walid
 
Deflection in beams
Deflection in beamsDeflection in beams
Deflection in beamsYatin Singh
 
Shear stresses in beams p
Shear stresses in beams pShear stresses in beams p
Shear stresses in beams psushma chinta
 
CURVED BEAMS/CRANE HOOK CURVED BARS SOM ppt by Sandeep Kumar
CURVED BEAMS/CRANE HOOK CURVED BARS SOM ppt by Sandeep KumarCURVED BEAMS/CRANE HOOK CURVED BARS SOM ppt by Sandeep Kumar
CURVED BEAMS/CRANE HOOK CURVED BARS SOM ppt by Sandeep KumarSandeep Kumar
 
Anchor bolt design
Anchor bolt designAnchor bolt design
Anchor bolt designVaradaraj Ck
 
Hibbeler chapter5
Hibbeler chapter5Hibbeler chapter5
Hibbeler chapter5laiba javed
 
Chapter 5 failure theories final
Chapter 5  failure theories finalChapter 5  failure theories final
Chapter 5 failure theories finalKhalil Alhatab
 

What's hot (20)

Chapter 07 in som
Chapter 07 in som Chapter 07 in som
Chapter 07 in som
 
Shear Force And Bending Moment Diagram For Beam And Frame
Shear Force And Bending Moment Diagram For Beam And FrameShear Force And Bending Moment Diagram For Beam And Frame
Shear Force And Bending Moment Diagram For Beam And Frame
 
TORSION (MECHANICS OF SOLIDS)
TORSION (MECHANICS OF SOLIDS)TORSION (MECHANICS OF SOLIDS)
TORSION (MECHANICS OF SOLIDS)
 
Numericals on Columns and struts_-_solved
Numericals on Columns and struts_-_solvedNumericals on Columns and struts_-_solved
Numericals on Columns and struts_-_solved
 
Thin cylinders 1
Thin cylinders 1Thin cylinders 1
Thin cylinders 1
 
cross sectional properties of structural members
cross sectional properties of structural memberscross sectional properties of structural members
cross sectional properties of structural members
 
Chapter 8-deflections
Chapter 8-deflectionsChapter 8-deflections
Chapter 8-deflections
 
Ch06 07 pure bending & transverse shear
Ch06 07 pure bending & transverse shearCh06 07 pure bending & transverse shear
Ch06 07 pure bending & transverse shear
 
Deflection
DeflectionDeflection
Deflection
 
Fluid tutorial 3
Fluid tutorial 3Fluid tutorial 3
Fluid tutorial 3
 
Deflection in beams
Deflection in beamsDeflection in beams
Deflection in beams
 
Bearing stress
Bearing stressBearing stress
Bearing stress
 
Stresses in beams
Stresses in beamsStresses in beams
Stresses in beams
 
Shear stresses in beams p
Shear stresses in beams pShear stresses in beams p
Shear stresses in beams p
 
CURVED BEAMS/CRANE HOOK CURVED BARS SOM ppt by Sandeep Kumar
CURVED BEAMS/CRANE HOOK CURVED BARS SOM ppt by Sandeep KumarCURVED BEAMS/CRANE HOOK CURVED BARS SOM ppt by Sandeep Kumar
CURVED BEAMS/CRANE HOOK CURVED BARS SOM ppt by Sandeep Kumar
 
Anchor bolt design
Anchor bolt designAnchor bolt design
Anchor bolt design
 
Deflection of beams
Deflection of beamsDeflection of beams
Deflection of beams
 
Inertia formulas
Inertia formulasInertia formulas
Inertia formulas
 
Hibbeler chapter5
Hibbeler chapter5Hibbeler chapter5
Hibbeler chapter5
 
Chapter 5 failure theories final
Chapter 5  failure theories finalChapter 5  failure theories final
Chapter 5 failure theories final
 

Similar to 09 review

Math06reviewsheet (3)
Math06reviewsheet (3)Math06reviewsheet (3)
Math06reviewsheet (3)Angel Baez
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1cideni
 
Applied mathematics for CBE assignment
Applied mathematics for CBE assignmentApplied mathematics for CBE assignment
Applied mathematics for CBE assignmentSahl Buhary
 
Solution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and ContinuitySolution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and ContinuityHareem Aslam
 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdfnabal_iitb
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsHareem Aslam
 
Deformation of structures
Deformation of structuresDeformation of structures
Deformation of structuresAhmed zubydan
 
machine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdfmachine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdfMahamad Jawhar
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areasetcenterrbru
 
Possible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentPossible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentVictor Omotoriogun
 
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docxxy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docxericbrooks84875
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonPamelaew
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]Henrique Covatti
 
Additional mathematics
Additional mathematicsAdditional mathematics
Additional mathematicsgeraldsiew
 
Lesson 12 centroid of an area
Lesson 12 centroid of an areaLesson 12 centroid of an area
Lesson 12 centroid of an areaLawrence De Vera
 

Similar to 09 review (20)

Math06reviewsheet (3)
Math06reviewsheet (3)Math06reviewsheet (3)
Math06reviewsheet (3)
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008
 
Applied mathematics for CBE assignment
Applied mathematics for CBE assignmentApplied mathematics for CBE assignment
Applied mathematics for CBE assignment
 
Solution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and ContinuitySolution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and Continuity
 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdf
 
2 compression
2  compression2  compression
2 compression
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 Functions
 
Deformation of structures
Deformation of structuresDeformation of structures
Deformation of structures
 
RCC BMD
RCC BMDRCC BMD
RCC BMD
 
machine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdfmachine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdf
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas
 
KUY Limeng,e20190482(I4GCI-B).pdf
KUY Limeng,e20190482(I4GCI-B).pdfKUY Limeng,e20190482(I4GCI-B).pdf
KUY Limeng,e20190482(I4GCI-B).pdf
 
Possible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentPossible solution struct_hub_design assessment
Possible solution struct_hub_design assessment
 
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docxxy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
 
Capítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerwwCapítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerww
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Additional mathematics
Additional mathematicsAdditional mathematics
Additional mathematics
 
Lesson 12 centroid of an area
Lesson 12 centroid of an areaLesson 12 centroid of an area
Lesson 12 centroid of an area
 

Recently uploaded

High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 

Recently uploaded (20)

High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 

09 review

  • 1. 1 CHAPTER 9: Moments of Inertia ! Moment of Inertia of Areas ! Second Moment, or Moment of Inertia, of an Area ! Parallel-Axis Theorem ! Radius of Gyration of an Area ! Determination of the Moment of Inertia of an Area by Integration ! Moments of Inertia of Composite Areas ! Polar Moment of Inertia
  • 2. 2 9.1 Moment of Inertia: Definition x y y x dA=(dx)(dy) ∫= A x dAyI 2 )( O ∫= A y dAxI 2 )(
  • 3. 3 x y x´= Centroidal axis y´ = Centroidal axis CG dy y´ dx x´ dA ∫ += A yx dAdyI 2 )'( ∫ ++= A yy dAddyy ])())('(2)'[( 22 ∫∫∫ ++= A y A y A dAddAdydAy 22 )())('(2)'( ∫∫ ++= A y A yx dAddAydI 2 '2 0, y´ = 0 AdII yxx 2 0 ++= AdII xyy 2 0 ++= 9.2 Parallel-Axis Theorem of an Area 2 AdJJ CO += O
  • 4. 4 y x kx O A A J k A I k A I k O O y y x x === 9.3 Radius of Gyration of an Area 2 The radius of gyration of an area A with respect to the x axis is defined as the distance kx, where Ix = kx A. With similar definitions for the radii of gyration of A with respect to the y axis and with respect to O, we have
  • 5. 5 The rectangular moments of inertia Ix and Iy of an area are defined as These computations are reduced to single integrations by choosing dA to be a thin strip parallel to one of the coordinate axes. The result is x y y dx x ∫∫ == dAxIdAyI yx 22 dxyxdIdxydI yx 23 3 1 == 9.4 Determination of the Moment of Inertia of an Area by Integration
  • 6. 6 x´ y´ b/2 h/2 • Moment of Inertia of a Rectangular Area. x y b h y dy ∫= A x dAyI 2 ∫= h bdyy 0 2 )( h by 0 3 3 )( = y dy ∫== A xx dAyII 2 ' ∫= h dy b y 0 2 ) 2 (4 2/ 0 3 3 ) 2 (4 h yb = 3 3 bh = 12 3 bh = dA = bdy dA = (b/2)dy
  • 7. 7 x´ y´ b/2 h/2 x y b h ∫= A y dAxI 2 ∫= b hdxx 0 2 )( b hx 0 3 3 )( = ∫== A yy dAxII 2 ' ∫= h dx h x 0 2 ) 2 (4 2/ 0 3 3 ) 2 (4 b xh = 3 3 hb = 12 3 hb = x dx x dx dA = hdx dA = (h/2)dx
  • 8. 8 x y b h/2 h/2 12 3 bh Ix = 3 3 bh Ix = 2 AdII xx += 2 3 ) 2 )(( 12 h bh bh += 412 33 bhbh += 3 3 bh Ix =
  • 9. 9 dIx = y2 dA dA = l dy Using similar triangles, we have dy h yh bdA h yh bl h yh b l − = − = − = Integrating dIx from y = 0 to y = h, we obtain ∫∫ ∫ −= − = = hh x dyyhy h b dy h yh by dAyI 0 32 0 2 2 )( 12 ] 43 [ 3 0 43 bhyy h h b h =−= • Moment of Inertia of a Triangular Area. 2 AdII xx += 36 ) 3 )( 2 ( 12 3 2 3 2 bhhbhbh AdII xx =−= −= y x h b/2 h-y b/2 dy yl
  • 10. 10 Example 9.1 Determine the moment of inertia of the shaded area shown with respect to each of the coordinate axes. x y a y = kx2 b
  • 11. 11 x y a y = kx2 b • Moment of Inertia Ix. dy dA = (a-x)dy 2 kxy = 2 kab = 2 a b k = 2/1 2/1 2 2 y b a xorx a b y == Substituting x = a and y=b ∫= A x dAyI 2 ∫ −= b dyxay 0 2 )( ∫ −= b dyy b a ay 0 2/1 2/1 2 )( dyy b a dyya bb ∫∫ −= 0 2/5 2/1 0 2 bb y b aay 0 2/7 2/1 0 3 ) 7 2 ( 3 −= ) 7 2 ( 3 2/7 2/1 3 b b aab −= 7 2 3 33 abab −= 21 3 ab =
  • 12. 12 x y a y = kx2 b • Moment of Inertia Iy. 2 2 x a b y = ∫= A y dAxI 2 ∫= a ydxx 0 2 dx dA = ydx ∫= a dxx a b x 0 2 2 2 )( ∫= a dxx a b 0 4 2 a x a b 0 5 2 ) 5 )((= ) 5 )(( 5 2 a a b = 5 3 ba =
  • 13. 13 Example 9.2 Determine the moment of inertia of the shaded area shown with respect to each of the coordinate axes. x y y2 = x2 y1 = x (a,b)
  • 14. 14 x y y2 = x2 y1 = x (a,b) dy dA = (x2 - x1)dy ∫= A x dAyI 2 ∫ −= b dyxxy 0 2 )( 12 ∫ −= b dyyyy 0 2/12 )( ∫∫ −= bb dyydyy 0 3 0 2/5 )()( bb y y 0 4 0 2/7 47 2 −= • Moment of Inertia Ix. 47 2 4 2/7 b b −=
  • 15. 15 x y y2 = x2 y1 = x (a,b) • Moment of Inertia Iy. ∫= A y dAxI 2 ∫ −= a dxyyx 0 1 2 )( 2 dx dA = (y1 - y2)dx ∫ −= a dxxxx 0 22 )( ∫∫ −= aa dxxdxx 0 4 0 3 )()( aa xx 0 5 0 4 54 −= 54 54 aa −=
  • 16. 16 The parallel-axis theorem is used very effectively to compute the moment of inertia of a composite area with respect to a given axis. d c o centroid are related to the distance d between points C and O by the relationship 2 AdJJ CO += 9.5 Moment of Inertia of Composite Areas A similar theorem can be used with the polar moment of inertia. The polar moment of inertia JO of an area about O and the polar moment of inertia JC of the area about its
  • 17. 17 Example 9.3 Compute the moment of inertia of the composite area shown. 75 mm 75 mm 100 mm 25 mm x
  • 18. 18 SOLUTION 75 mm 75 mm 100 mm x 25 mm = (dy)Cir Ciryxctx AdI bh I )() 3 ( 2 Re 3 +−= Circt ])75)(25()25( 4 1 [])150)(100( 3 1 [ 224 Re 3 ×+−= ππ = 101x106 mm4
  • 19. 19 Example 9.4 Determine the moments of inertia of the beam’s cross-sectional area shown about the x and y centroidal axes. 400 Dimension in mm 100 400 100 600 100 x y C
  • 20. 20 400 Dimension in mm 100 400 100 600 100 x y C SOLUTION A dyA B dyD D CyxByxAyxx AdIAdIAdII )()()( 222 +++++= ])200)(300100()300)(100( 12 1 [ ]0)100)(600( 12 1 [])200)(300100()300)(100( 12 1 [ 23 323 ×++ ++×+= = 2.9x109 mm4 0
  • 21. 21 400 Dimension in mm 100 400 100 600 100 x y C CxyBxyAxyy AdIAdIAdII )()()( 222 +++++= C BA ])250)(300100()100)(300( 12 1 [ ]0)600)(100( 12 1 [])250)(300100()100)(300( 12 1 [ 23 323 ×++ ++×+= = 5.6x109 mm4 A dxA dxD D 0
  • 22. 22 Example 9.5 (Problem 9.31,33) Determine the moments of inertia and the radius of gyration of the shaded area with respect to the x and y axes. 6 mm O x y 24 mm 24 mm 6 mm 12 mm12 mm 24 mm 24 mm 8 mm
  • 23. 23 6 mm O x y 24 mm 24 mm 6 mm 12 mm12 mm 24 mm 24 mm 8 mm SOLUTION A dyA B Ix = 390x103 mm4 mm A I k x x 9.21 )]648()488()624[( 10390 3 = ×+×+× × == CyxByxAyxx AdIAdIAdII )()()( 222 +++++= Iy = 64.3x103 mm4 CBA ])48)(6( 12 1 [])8)(48( 12 1 [])24)(6( 12 1 [ 333 ++= 0 00 CxyBxyAxyy AdIAdIAdII )()()( 222 +++++= mm A I k y y 87.8 )]648()488()624[( 103.64 3 = ×+×+× × == 0 C B A ])27)(648()6)(48( 12 1 [ ]0)48)(8( 12 1 [ ])27)(624()6)(24( 12 1 [ 23 3 23 ×++ ++ ×+= C dyC
  • 24. 24 Example 9.6 (Problem 9.32,34) Determine the moments of inertia and the radius of gyration of the shaded area with respect to the x and y axes. 2 m O 1 m 1 m 1 m 1 m 0.5 m0.5 m 2 m 2 m 0.5 m0.5 m x y
  • 25. 25 2 m O 1 m 1 m 1 m 1 m 0.5 m0.5 m 2 m 2 m 0.5 m0.5 m x y A B dyB C dyC Ix = 46 m4 m A I k x x 599.1 )]14()24()65[( 46 = ×−×−× == 14 2 24 2 65 2 )()()( ××× +−+−+= CyxByxAyxx AdIAdIAdII 0 C BA ])5.1)(14()1)(4( 12 1 [ ])2)(42()2)(4( 12 1 []0)6)(5( 12 1 [ 23 233 ×+− ×+−+= Iy = 46.5 m4 CBA ])4)(1( 12 1 [])4)(2( 12 1 [])5)(6( 12 1 [ 333 −−= 0 00 CxyBxyAxyy AdIAdIAdII )()()( 222 +−+−+= m A I k y y 607.1 )]14()24()65[( 5.46 = ×−×−× ==
  • 26. 26 Example 9.7 Determine the moments of inertia and the radius of gyration of the shaded area with respect to the x and y axes and at the centroidal axes. 1 cm 1 cm 5 cm 1 cm 5 cm x y
  • 27. 27 1 cm 1 cm 5 cm 1 cm 5 cm x y CG Y ∑∑ = AyAY cm Y 5.2 )15(3 )51)(5.0()]15)(5.3[(2 = × ×+× = 4 2 2 25.51 )5.2)(15(145 cm AdII yxx = −= −= • Moments of inertia about centroid 4 23 23 25.51 ])2)(15()1)(5( 12 1 [( ])1)(15()5)(1( 12 1 [(2 cm I OR x = ×++ ×+= cm A I kk x yx 848.1 15 25.51 ==== 4 323 145 )1)(5( 3 1 ])5.3)(15()5)(1( 12 1 [(2 cm Ix = +×+= • Moments of inertia about x axis 4 323 25.51 )5)(1( 12 1 ])2)(15()1)(5( 12 1 [(2 cm II yy = +×+== 0.5 3.5 2
  • 28. 28 Example 9.8 The strength of a W360 x 57 rolled-steel beam is increased by attaching a 229 mm x 19 mm plate to its upper flange as shown. Determine the moment of inertia and the radius of gyration of the composite section with respect to an axis which is parallel to the plate and passes through the centroid C of the section. C 229 mm 19 mm 358 mm 172 mm
  • 29. 29 229 mm 172 mm SOLUTION 19 mm 358 mm x O C x´ Y 188.5 mm The wide-flange shape of W360 x 57 found by referring to Fig. 9.13 A = 7230 mm2 4 2.160 mmIx = AyAY Σ=Σ Aplate = (229)(19) = 4351 mm2 )7230)(0()4351)(5.188()72304351( +=+Y mmY 8.70= • Centroid • Moment of Inertia flangewidexplatexx III −+= )()( ''' flangewidexplatex YAIAdI −+++= )()( 2 ' 2 ' [ ] 46 26 23 108.256 )8.70)(7230(102.160 )8.705.188)(4351()19)(229( 12 1 mm×= +×+     −+= • Radius of Gyration )72304351( 108.256 6 '2 ' + × == A I k x x mmkx 149' = 46 ' 10257 mmIx ×= d
  • 30. 30 The polar moment of inertia of an area A with respect to the pole O is defined as The distance from O to the element of area dA is r. Observing that r 2 =x 2 + y 2 , we established the relation y xx y r A dA O ∫= dArJO 2 yxO IIJ += 9.6 Polar Moment of Inertia
  • 31. 31 Example 9.9 (a) Determine the centroidal polar moment of inertia of a circular area by direct integration. (b) Using the result of part a, determine the moment of inertia of a circular area with respect to a diameter. y x r O
  • 32. 32 u du O y x r SOLUTION a. Polar Moment of Inertia. duudAdAudJO π22 == ∫∫ ∫ === rr OO duuduuudJJ 0 3 0 2 2)2( ππ 4 2 rJO π = b. Moment of Inertia with Respect to a Diameter. xyxO IIIJ 2=+= xIr 2 2 4 = π 4 4 rII xdiameter π ==