SlideShare a Scribd company logo
1 of 133
Engineering Software
P.O. Box 2134
Kensington, MD 20891
Phone: (301) 919-9670
E-Mail: info@engineering-4e.com
http://www.engineering-4e.com
Copyright © 1996
Energy Conversion Ideal vs Real Operation
Analysis Webinar Objectives
In this webinar, the engineering students and professionals get familiar with the simple
and basic power cycles, power cycle components/processes and compressible flow
and their T - s, p - V and h - T diagrams, ideal vs real operation and major
performance trends when air is considered as the working fluid.
Performance Objectives:
Introduce basic energy conversion engineering assumptions and equations
Know basic elements of Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle,
compression, combustion and expansion processes and compressible flow (nozzle,
diffuser and thrust) and their T - s, p - V and h - T diagrams
Be familiar with Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression,
combustion, expansion and compressible flow (nozzle, diffuser and thrust) ideal vs
real operation
Understand general Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle,
compression, combustion, expansion and compressible flow (nozzle, diffuser and
thrust) performance trends
This webinar consists of the following three major sections:
• Power Cycles (Carnot, Brayton, Otto and Diesel)
• Power Cycle Components/Processes (compression,
combustion and expansion)
• Compressible Flow (nozzle, diffuser and thrust)
In this webinar, first overall engineering assumptions and basic engineering
equations are provided. Furthermore, for each major section, basic
engineering equations, section material and conclusions are provided.
Energy Conversion Analysis Webinar
The energy conversion analysis presented in this webinar considers ideal (isentropic) vs real operation and the
working fluid is air. Furthermore, the following assumptions are valid:
Power Cycles
Single species consideration -- fuel mass flow rate is ignored and its impact on the properties of the working
fluid
Basic equations hold (continuity, momentum and energy equations)
Specific heat is constant
Power Cycle Components/Processes
Single species consideration
Basic equations hold (continuity, momentum and energy equations)
Specific heat is constant
Compressible Flow
Single species consideration
Basic equations hold (continuity, momentum and energy equations)
Specific heat is constant
Thermodynamic and Transport Properties
Single species consideration
Ideal gas approach is used (pv=RT)
Specific heat is not constant
Coefficients describing thermodynamic and transport properties were obtained from the NASA Glenn Research
Center at Lewis Field in Cleveland, OH -- such coefficients conform with the standard reference temperature of
298.15 K (77 F) and the JANAF Tables
Engineering Assumptions
Basic Conservation Equations
Continuity Equation
m = ρvA [kg/s]
Momentum Equation
F = (vm + pA)out - in [N]
Energy Equation
Q - W = ((h + v2/2 + gh)m)out - in [kW]
Basic Engineering Equations
Ideal Gas State Equation
pv = RT [kJ/kg]
Perfect Gas
cp = constant [kJ/kg*K]
Kappa
χ = cp/cv [/]
For air: χ = 1.4 [/], R = 0.2867 [kJ/kg*K] and
cp = 1.004 [kJ/kg*K]
Basic Engineering Equations
Power Cycles Engineering Equations
Carnot Cycle Efficiency
 = 1 - TR/TA
Otto Cycle Efficiency
 = (cv(T3 - T2) - cv(T4 - T1))/(cv(T3 - T2))
Brayton Cycle Efficiency
 = (cp(T3 - T2) - cp(T4 - T1))/(cp(T3 - T2))
Diesel Cycle Efficiency
 = (cp(T3 - T2) - cv(T4- T1))/(cp(T3 - T2))
Cycle Efficiency
 = Wnet/Q [/]
Heat Rate
HR = (1/)3,412 [Btu/kWh]
rp = p2/p1 [/]; ε = V1/V2 [/]; φ = V3/V2 [/]
Power Cycles Engineering Equations
Otto Cycle
wnet = qh - ql = cv(T3 - T2) - cv(T4 - T1) [kJ/kg]
Wnet = wnetm [kW]
Brayton Cycle
wnet = qh - ql = cp(T3 - T2) - cp(T4 - T1) [kJ/kg]
Wnet = wnetm [kW]
Diesel Cycle
wnet = qh - ql = cp(T3 - T2) - cv(T4 - T1) [kJ/kg]
Wnet = wnetm [kW]
Carnot Cycle Schematic Layout
Compressor
Heat Exchanger
Gas Turbine
1
32
4
Heat Addition
Heat Exchanger
Heat Rejection
Carnot Cycle
Carnot Cycle T - s Diagram
1
32
4
Temperature--T[K]
Entropy -- s [kJ/kg*K]
Carnot Cycle
Carnot Cycle Efficiency
0
20
40
60
80
500 600 700 800 900 1,000
CarnotCycleEfficiency[%]
Heat Addition Temperature [K]
Compressor Inlet Temperature: 298 [K]
Carnot Cycle
Carnot Cycle Efficiency
0
20
40
60
80
278 288 298 308 318 328
CarnotCycleEfficiency[%]
Heat Rejection Temperature [K]
Turbine Inlet Temperature: 800 [K]
Carnot Cycle
Brayton Cycle (Gas Turbine) Schematic Layout -- Open Cycle
Compressor
Combustor
Gas Turbine
1
32
4
Fuel
Brayton Cycle (Gas Turbine)
Heat Addition
Working Fluid In Working Fluid Out
Brayton Cycle Schematic Layout -- Closed Cycle
Compressor
Heat Exchanger
Gas Turbine
1
32
4
Heat Addition
Heat Exchanger
Heat Rejection
Brayton Cycle (Gas Turbine)
Brayton Cycle (Gas Turbine) T - s Diagram
1
3
2s
4s
Temperature--T[K]
Entropy -- s [kJ/kg*K]
Brayton Cycle (Gas Turbine)
2
4
Brayton Cycle (Gas Turbine) Efficiency
0
20
40
60
80
5 10 15 20 25
Compression Ratio (P2/P1) [/]
BraytonCycle(GasTurbine)Efficiency[%]
85 90 95 100
Working Fluid: Air
Brayton Cycle (Gas Turbine)
Isentropic Compression Efficiency [%]
Ambient Temperature: 298 [K] -- Gas Turbine Inlet Temperature: 1,500 [K]
Brayton Cycle (Gas Turbine) Specific Power
Output
0
100
200
300
400
500
900 1,200 1,500
Gas Turbine Inlet Temperature [K]
BraytonCycle(GasTurbine)SpecificPower
Output[kJ/kg]
85 90 95 100
Working Fluid: Air
Compressor Inlet Temperature: 298 [K] -- Gas Turbine Inlet Pressure: 15 [atm]
Brayton Cycle (Gas Turbine)
Isentropic Compression Efficiency [%]
Compression Ratio (P2/P1) = 15 [/]
Brayton Cycle (Gas Turbine) Power Output
0
25
50
75
100
50 100 150
Working Fluid Mass Flow Rate [kg/s]
BraytonCycle(GasTurbine)PowerOutput[MW]
85 90 95 100
Working Fluid: Air
Brayton Cycle (Gas Turbine)
Isentropic Compression Efficiency [%]
Gas Turbine Inlet Temperature: 1,500 [K] -- Gas Turbine Inlet Pressure: 15 [atm]
Compression Ratio (P2/P1) = 15 [/]
Brayton Cycle (Gas Turbine) Efficiency
0
20
40
60
80
5 10 15 20 25
Compression Ratio (P2/P1) [/]
BraytonCycle(GasTurbine)Efficiency[%]
85 90 95 100
Working Fluid: Air
Brayton Cycle (Gas Turbine)
Isentropic Expansion Efficiency [%]
Ambient Temperature: 298 [K] -- Gas Turbine Inlet Temperature: 1,500 [K]
Brayton Cycle (Gas Turbine) Specific Power
Output
0
100
200
300
400
500
900 1,200 1,500
Gas Turbine Inlet Temperature [K]
BraytonCycle(GasTurbine)SpecificPower
Output[kJ/kg]
85 90 95 100
Working Fluid: Air
Brayton Cycle (Gas Turbine)
Isentropic Expansion Efficiency [%]
Compressor Inlet Temperature: 298 [K] -- Gas Turbine Inlet Pressure: 15 [atm]
Compression Ratio (P2/P1) = 15 [/]
Brayton Cycle (Gas Turbine) Power Output
0
25
50
75
100
50 100 150
Working Fluid Mass Flow Rate [kg/s]
BraytonCycle(GasTurbine)PowerOutput[MW]
85 90 95 100
Working Fluid: Air
Brayton Cycle (Gas Turbine)
Isentropic Expansion Efficiency [%]
Compression Ratio (P2/P1) = 15 [/]
Gas Turbine Inlet Temperature: 1,500 [K] -- Gas Turbine Inlet Pressure: 15 [atm]
Brayton Cycle (Gas Turbine) Efficiency
0
20
40
60
80
5 10 15 20 25
Compression Ratio (P2/P1) [/]
BraytonCycle(GasTurbine)Efficiency[%]
85 90 95 100
Working Fluid: Air
Brayton Cycle (Gas Turbine)
Isentropic Compression and Expansion Efficiency [%]
Ambient Temperature: 298 [K] -- Gas Turbine Inlet Temperature: 1,500 [K]
Brayton Cycle (Gas Turbine) Specific Power
Output
0
100
200
300
400
500
900 1,200 1,500
Gas Turbine Inlet Temperature [K]
BraytonCycle(GasTurbine)SpecificPower
Output[kJ/kg]
85 90 95 100
Working Fluid: Air
Brayton Cycle (Gas Turbine)
Isentropic Compression and Expansion Efficiency [%]
Compressor Inlet Temperature: 298 [K] -- Gas Turbine Inlet Pressure: 15 [atm]
Compression Ratio (P2/P1) = 15 [/]
Brayton Cycle (Gas Turbine) Power Output
0
25
50
75
100
50 100 150
Working Fluid Mass Flow Rate [kg/s]
BraytonCycle(GasTurbine)PowerOutput[MW]
85 90 95 100
Working Fluid: Air
Brayton Cycle (Gas Turbine)
Isentropic Compression and Expansion Efficiency [%]
Compression Ratio (P2/P1) = 15 [/]
Gas Turbine Inlet Temperature: 1,500 [K] -- Gas Turbine Inlet Pressure: 15 [atm]
Otto Cycle p - V Diagram
1
3
2s
4s
Pressure--p[atm]
Volume -- V [m^3]
Otto Cycle
Otto Cycle T - s Diagram
1
3
2s
4s
Temperature--T[K]
Entropy -- s [kJ/kg*K]
Otto Cycle
2
4
Otto Cycle Efficiency
0
20
40
60
80
2.5 5 7.5 10 12.5
Compression Ratio (V1/V2) [/]
OttoCycleEfficiency[%]
85 90 95 100
Working Fluid: Air
Otto Cycle
Isentropic Compression Efficiency [%]
Ambient Temperature: 298 [K] -- Combustion Temperature: 1,200 [K]
Otto Cycle Power Output
0
100
200
300
400
1,200 1,500 1,800
Combustion Temperature [K]
OttoCyclePowerOutput[kW]
85 90 95 100
Compression Ratio (V1/V2) = 10 [/]
Working Fluid: Air
Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s]
For Given Geometry of the Four Cylinder and Four Stroke Otto Engine
Otto Cycle
Isentropic Compression Efficiency [%]
Otto Cycle Efficiency
0
20
40
60
80
2.5 5 7.5 10 12.5
Compression Ratio (V1/V2) [/]
OttoCycleEfficiency[%]
85 90 95 100
Working Fluid: Air
Otto Cycle
Isentropic Expansion Efficiency [%]
Ambient Temperature: 298 [K] -- Combustion Temperature: 1,200 [K]
Otto Cycle Power Output
0
100
200
300
400
1,200 1,500 1,800
Combustion Temperature [K]
OttoCyclePowerOutput[kW]
85 90 95 100
Compression Ratio (V1/V2) = 10 [/]
Working Fluid: Air
Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s]
For Given Geometry of the Four Cylinder and Four Stroke Otto Engine
Otto Cycle
Isentropic Expansion Efficiency [%]
Otto Cycle Efficiency
0
20
40
60
80
2.5 5 7.5 10 12.5
Compression Ratio (V1/V2) [/]
OttoCycleEfficiency[%]
85 90 95 100
Working Fluid: Air
Otto Cycle
Isentropic Compression and Expansion Efficiency [%]
Ambient Temperature: 298 [K] -- Combustion Temperature: 1,200 [K]
Otto Cycle Power Output
0
100
200
300
400
1,200 1,500 1,800
Combustion Temperature [K]
OttoCyclePowerOutput[kW]
85 90 95 100
Compression Ratio (V1/V2) = 10 [/]
Working Fluid: Air
Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s]
For Given Geometry of the Four Cylinder and Four Stroke Otto Engine
Otto Cycle
Isentropic Compression and Expansion Efficiency [%]
Diesel Cycle p - V Diagram
1
32s
4s
Pressure--p[atm]
Volume -- V [m^3]
Diesel Cycle
Diesel Cycle T - s Diagram
1
3
2s
4s
Temperature--T[K]
Entropy -- s [kJ/kg*K]
Diesel Cycle
2
4
Diesel Cycle Efficiency
0
20
40
60
80
7.5 10 12.5 15 17.5
Compression Ratio (V1/V2) [/]
DieselCycleEfficiency[%]
85 90 95 100
Working Fluid: Air
Diesel Cycle
Isentropic Compression Efficiency [%]
Ambient Temperature: 298 [K]
Combustion Temperature: 1,800 [K]
Diesel Cycle Power Output
0
200
400
600
7.5 10 12.5 15 17.5
Compression Ratio (V1/V2) [/]
DieselCyclePowerOutput[kW]
85 90 95 100
Combustion Temperature: 1,800 [K]
Working Fluid: Air
Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s]
For Given Geometry of the Four Cylinder and Four Stroke Diesel Engine
Diesel Cycle
Isentropic Compression Efficiency [%]
Diesel Cycle Efficiency
0
20
40
60
80
7.5 10 12.5 15 17.5
Compression Ratio (V1/V2) [/]
DieselCycleEfficiency[%]
85 90 95 100
Working Fluid: Air
Diesel Cycle
Isentropic Expansion Efficiency [%]
Ambient Temperature: 298 [K]
Combustion Temperature: 1,800 [K]
Diesel Cycle Power Output
0
200
400
600
7.5 10 12.5 15 17.5
Compression Ratio (V1/V2) [/]
DieselCyclePowerOutput[kW]
85 90 95 100
Diesel Cycle
Isentropic Expansion Efficiency [%]
Combustion Temperature: 1,800 [K]
Working Fluid: Air
Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s]
For Given Geometry of the Four Cylinder and Four Stroke Diesel Engine
Diesel Cycle Efficiency
0
20
40
60
80
7.5 10 12.5 15 17.5
Compression Ratio (V1/V2) [/]
DieselCycleEfficiency[%]
85 90 95 100
Working Fluid: Air
Diesel Cycle
Isentropic Compression and Expansion Efficiency [%]
Ambient Temperature: 298 [K]
Combustion Temperature: 1,800 [K]
Diesel Cycle Power Output
0
200
400
600
7.5 10 12.5 15 17.5
Compression Ratio (V1/V2) [/]
DieselCyclePowerOutput[kW]
85 90 95 100
Diesel Cycle
Isentropic Compression and Expansion Efficiency [%]
Combustion Temperature: 1,800 [K]
Working Fluid: Air
Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s]
For Given Geometry of the Four Cylinder and Four Stroke Diesel Engine
Diesel Cycle Cut Off Ratio
0
1
2
3
4
7.5 10 12.5 15 17.5
Compression Ratio (V1/V2) [/]
DieselCycleCutOffRatio[/]
100
Diesel Cycle
Isentropic Compression and Expansion Efficiency [%]
Combustion Temperature: 1,800 [K]
Working Fluid: Air
Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s]
For Given Geometry of the Four Cylinder and Four Stroke Diesel Engine
Power Cycles Conclusions
The Carnot Cycle efficiency increases with an increase in the heat addition temperature when the heat rejection
temperature does not change at all. Furthermore, the Carnot Cycle efficiency decreases with an increase in the
heat rejection temperature when the heat addition temperature does not change at all. The Carnot Cycle
efficiency is not dependent on the working fluid properties.
The Brayton Cycle efficiency depends on the compression ratio values . The efficiency increases with an
increase in the compression ratio values for a fixed gas turbine inlet temperature. The Brayton Cycle specific
power output increases with an increase in the gas turbine inlet temperature for a fixed compression ratio.
Furthermore, the increase is greater for the higher gas turbine inlet temperature values.
The Brayton Cycle power output increases with an increase in the working fluid mass flow rate. The increase is
greater for the higher working fluid mass flow rate values for the fixed gas turbine inlet temperature and
compression ratio values.
The Otto Cycle efficiency increases with an increase in the compression ratio values for a fixed combustion
temperature. Also, the Otto Cycle power output increases with an increase in the combustion temperature for a
fixed compression ratio value and given geometry of the four cylinder and four stroke Otto engine.
The Diesel Cycle efficiency increases with an increase in the compression ratio and with a decrease in the cut
off ratio values for a fixed combustion temperature. Also, the Diesel Cycle power output increases with an
increase in the compression ratio values for a fixed combustion temperature value and given geometry of the
four cylinder and four stroke Diesel engine.
In general, as the isentropic compression and expansion efficiency values decrease, the cycle efficiency
decreases too.
Isentropic Compression
T2s/T1 = (p2/p1)(χ-1)/χ [/]
T2s/T1 = (V1/V2s)(χ-1) [/]
p2/p1 = (V1/V2s)χ [/]
wc = cp(T2 - T1) [kJ/kg]
Wc = cp(T2 - T1)m [kW]
c = (T2s - T1)/(T2 - T1) [/]
Power Cycle Components/Processes
Engineering Equations
Combustion is complete with and without heat loss and at
stoichiometric and stoichiometry > 1 conditions having different
oxidant preheat temperature and the oxidant is air.
Also,
Ideal Flame Temperature [K]
hreactants = hproducts [kJ/kg]
Real Flame Temperature [K]
hproducts = hreactants - heat loss [kJ/kg]
heat loss = (1 - combustion )HHV/(1 + oxidant to fuel ratio) [kJ/kg]
Power Cycle Components/Processes
Engineering Equations
Isentropic Expansion
T1/T2s = (p1/p2)(χ-1)/χ [/]
T1/T2s = (V2s/V1)(χ-1) [/]
p1/p2 = (V2s/V1)χ [/]
we = cp(T1 - T2) [kJ/kg]
We = cp(T1 - T2)m [kW]
e = (T1 - T2)/(T1 - T2s) [/]
Power Cycle Components/Processes
Engineering Equations
Compression Schematic Layout
Working Fluid In
Working Fluid Out
Compressor
1
2
Compression
Compression T - s Diagram
Temperature--T[K]
Entropy -- s [kJ/kg*K]
Compression
2s
1
2
Compression Specific Power Input
100
200
300
400
500
5 10 15
Compression Ratio (P2/P1) [/]
CompressionSpecificPowerInput[kJ/kg]
85 90 95 100
Working Fluid: Air
Compressor Inlet Temperature: 298 [K] -- Ambient Pressure: 1 [atm]
Compression
Isentropic Compression Efficiency [%]
Compression Power Input
0
25
50
75
100
50 100 150
Working Fluid Mass Flow Rate [kg/s]
CompressionPowerInput[MW]
85 90 95 100
Working Fluid: Air
Compressor Inlet Temperature: 298 [K] -- Compression Ratio (P2/P1): 15 [/]
Compression
Isentropic Compression Efficiency [%]
Combustion Schematic Layout
Fuel
Oxidant -- Air
Combustion Products
Combustion
Specific Enthalpy vs Temperature
-20,000
-10,000
0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
500 800 1,100 1,400 1,700 2,000 2,300 2,600 2,900 3,200 3,500 3,800 4,100 4,400 4,700 5,000
C(S) H2 S(S) N2 O2 H2O(L) CH4 CO2 H2O SO2
Combustion
SpecificEnthalpy[kJ/kg]
Temperature [K]
Combustion h - T Diagram
SpecificEnthalpy--h[kJ/kg]
Temperature -- T [K]
Reactants
Products
TflameTreference
Combustion
Heat Loss
Ideal
Real
Combustion
Oxidant Composition
Fuel Composition
C
[kg/kg]
1.000
0.000
0.000
0.780
0.860
-
H
[kg/kg]
0.000
1.000
0.000
0.050
0.140
-
S
[kg/kg]
0.000
0.000
1.000
0.030
0.000
-
N
[kg/kg]
0.000
0.000
0.000
0.040
0.000
-
O
[kg/kg]
0.000
0.000
0.000
0.080
0.000
-
H2O
[kg/kg]
0.000
0.000
0.000
0.020
0.000
-
CH4
[kg/kg]
-
-
-
-
-
1.000
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
N
[kmol/kmol]
0.790
O
[kmol/kmol]
0.210
N
[kg/kg]
0.767
O
[kg/kg]
0.233
Oxidant
Air
Combustion
CO2
[kg/kg]
0.295
0.000
0.000
0.249
0.202
0.151
H2O
[kg/kg]
0.000
0.255
0.000
0.041
0.080
0.124
SO2
[kg/kg]
0.000
0.000
0.378
0.005
0.000
0.000
N2
[kg/kg]
0.705
0.745
0.622
0.705
0.718
0.725
O2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
CO2
[kmol/kmol]
0.210
0.000
0.000
0.170
0.132
0.095
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
SO2
[kmol/kmol]
0.000
0.000
0.210
0.002
0.000
0.000
N2
[kmol/kmol]
0.790
0.653
0.790
0.759
0.739
0.715
Combustion Products Flame Temperature, Stoichiometric Oxidant to Fuel Ratio and HHV
Flame Temperature
[K]
2,460
2,525
1,972
2,484
2,484
2,327
Stoichiometric
Oxidant to Fuel Ratio
[/]
11.444
34.333
4.292
10.487
14.649
17.167
HHV
[Btu/lbm]
14,094
60,997
3,982
14,162
20,660
21,563
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
H2O
[kmol/kmol]
0.000
0.347
0.000
0.068
0.129
0.190
O2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
Stoichiometric Combustion
Combustion Products Composition on Weight and Mole Basis
Combustion
Carbon
[K]
2,460
2,361
2,262
2,163
Hydrogen
[K]
2,525
2,409
2,293
2,176
Sulfur
[K]
1,972
1,895
1,818
1,741
Coal
[K]
2,484
2,381
2,278
2,174
Oil
[K]
2,484
2,381
2,275
2,168
Gas
[K]
2,327
2,236
2,145
2,053
Combustion Efficiency
[/]
1.00
0.95
0.90
0.85
Combustion Products Flame Temperature, Stoichiometric Oxidant to Fuel Ratio and HHV
Ideal
Flame Temperature
[K]
2,460
2,525
1,972
2,484
2,484
2,327
Stoichiometric
Oxidant to Fuel Ratio
[/]
11.444
34.333
4.292
10.487
14.649
17.167
HHV
[Btu/lbm]
14,094
60,997
3,982
14,162
20,660
21,563
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
Stoichiometric Combustion
Combustion Products Ideal vs Real Flame Temperature
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
Carbon Hydrogen Sulfur Coal Oil Gas
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
Carbon Hydrogen Sulfur Coal Oil Gas
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Combustion Products Flame Temperature
1,900
2,000
2,100
2,200
2,300
2,400
2,500
2,600
Carbon Hydrogen Sulfur Coal Oil Gas
Flame Temperature [K]
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
FlameTemperature[K]
Combustion Products Flame Temperature
1,600
1,800
2,000
2,200
2,400
2,600
2,800
Carbon Hydrogen Sulfur Coal Oil Gas
FlameTemperature[K]
85 90 95 100
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Combustion Efficiency [%]
Combustion Stoichiometric Oxidant to Fuel Ratio
0
5
10
15
20
25
30
35
40
Carbon Hydrogen Sulfur Coal Oil Gas
Stoichiometric Oxidant to Fuel Ratio [/]
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
StoichiometricOxidanttoFuelRatio[/]
Higher Heating Value (HHV)
0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
Carbon Hydrogen Sulfur Coal Oil Gas
HHV [Btu/lbm]
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
HHV[Btu/lbm]
Combustion
Oxidant Composition
Fuel Composition
C
[kg/kg]
1.000
0.000
0.000
0.780
0.860
-
H
[kg/kg]
0.000
1.000
0.000
0.050
0.140
-
S
[kg/kg]
0.000
0.000
1.000
0.030
0.000
-
N
[kg/kg]
0.000
0.000
0.000
0.040
0.000
-
O
[kg/kg]
0.000
0.000
0.000
0.080
0.000
-
H2O
[kg/kg]
0.000
0.000
0.000
0.020
0.000
-
CH4
[kg/kg]
-
-
-
-
-
1.000
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
N
[kmol/kmol]
0.790
O
[kmol/kmol]
0.210
N
[kg/kg]
0.767
O
[kg/kg]
0.233
Oxidant
Air
Combustion
Stoichiometric Combustion
Flame Temperature
Hydrogen
[K]
2,525
2,583
2,640
2,689
2,757
2,818
2,879
2,942
Sulfur
[K]
1,972
2,045
2,118
2,191
2,267
2,343
2,421
2,501
Coal
[K]
2,484
2,551
2,618
2,686
2,756
2,827
2,899
2,972
Oil
[K]
2,484
2,551
2,616
2,683
2,751
2,820
2,891
2,963
Preheat Temperature
[K]
298
400
500
600
700
800
900
1,000
Combustion Products Stoichiometric Oxidant to Fuel Ratio and HHV
Stoichiometric
Oxidant to Fuel Ratio
[/]
11.444
34.333
4.292
10.487
14.649
17.167
HHV
[Btu/lbm]
14,094
60,997
3,982
14,162
20,660
21,563
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
Gas
[K]
2,327
2,391
2,455
2,520
2,586
2,653
2,721
2,791
Carbon
[K]
2,460
2,531
2,602
2,674
2,747
2,822
2,898
2,976
Combustion Products Flame Temperature
0
1,000
2,000
3,000
298 400 500 600 700 800 900 1,000
FlameTemperature[K]
Carbon Hydrogen Sulfur Coal Oil Gas
Combustion
Fuel Inlet Temperature: 298 [K]
Oxidant Preheat Temperature for Stoichiometric Combustion Conditions
Combustion
298
[K]
2,460
2,361
2,262
2,163
400
[K]
2,531
2,433
2,334
2,235
500
[K]
2,602
2,503
2,405
2,306
600
[K]
2,674
2,575
2,477
2,378
700
[K]
2,747
2,649
2,551
2,452
800
[K]
2,822
2,724
2,626
2,527
Combustion Efficiency
[/]
1.00
0.95
0.90
0.85
Combustion Products Ideal vs Real Flame Temperature as a Function of Preheat
Fuel: Carbon
900
[K]
2,898
2,800
2,702
2,604
1,000
[K]
2,976
2,878
2,780
2,682
Combustion
298
[K]
2,525
2,409
2,293
2,176
400
[K]
2,583
2,468
2,351
2,235
500
[K]
2,640
2,525
2,409
2,293
600
[K]
2,698
2,583
2,468
2,352
700
[K]
2,757
2,643
2,528
2,412
800
[K]
2,818
2,704
2,589
2,474
Combustion Efficiency
[/]
1.00
0.95
0.90
0.85
Combustion Products Ideal vs Real Flame Temperature as a Function of Preheat
Fuel: Hydrogen
900
[K]
2,879
2,765
2,651
2,536
1,000
[K]
2,942
2,828
2,714
2,600
Combustion
298
[K]
1,972
1,895
1,818
1,741
400
[K]
2,045
1,969
1,892
1,815
500
[K]
2,118
2,041
1,965
1,888
600
[K]
2,191
2,115
2,039
1,963
700
[K]
2,267
2,191
2,115
2,039
800
[K]
2,343
2,268
2,192
2,116
Combustion Efficiency
[/]
1.00
0.95
0.90
0.85
Combustion Products Ideal vs Real Flame Temperature as a Function of Preheat
Fuel: Sulfur
900
[K]
2,421
2,346
2,270
2,195
1,000
[K]
2,501
2,426
2,350
2,275
Combustion
298
[K]
2,484
2,381
2,278
2,174
400
[K]
2,551
2,449
2,346
2,243
500
[K]
2,618
2,516
2,413
2,310
600
[K]
2,686
2,584
2,482
2,379
700
[K]
2,756
2,654
2,552
2,449
800
[K]
2,827
2,725
2,623
2,521
Combustion Efficiency
[/]
1.00
0.95
0.90
0.85
Combustion Products Ideal vs Real Flame Temperature as a Function of Preheat
Fuel: Coal
900
[K]
2,899
2,797
2,695
2,593
1,000
[K]
2,972
2,871
2,769
2,667
Combustion
298
[K]
2,484
2,379
2,274
2,167
400
[K]
2,551
2,446
2,340
2,235
500
[K]
2,616
2,512
2,406
2,301
600
[K]
2,683
2,578
2,474
2,368
700
[K]
2,751
2,647
2,542
2,437
800
[K]
2,820
2,716
2,612
2,507
Combustion Efficiency
[/]
1.00
0.95
0.90
0.85
Combustion Products Ideal vs Real Flame Temperature as a Function of Preheat
Fuel: Oil
900
[K]
2,891
2,787
2,683
2,579
1,000
[K]
2,963
2,859
2,755
2,651
Combustion
298
[K]
2,327
2,236
2,145
2,053
400
[K]
2,391
2,301
2,210
2,118
500
[K]
2,455
2,365
2,274
2,182
600
[K]
2,520
2,429
2,339
2,248
700
[K]
2,586
2,496
2,405
2,315
800
[K]
2,653
2,563
2,473
2,383
Combustion Efficiency
[/]
1.00
0.95
0.90
0.85
Combustion Products Ideal vs Real Flame Temperature as a Function of Preheat
Fuel: Gas
900
[K]
2,721
2,632
2,542
2,452
1,000
[K]
2,791
2,702
2,612
2,522
Combustion Products Flame Temperature
0
1,000
2,000
3,000
298 400 500 600 700 800 900 1,000
FlameTemperature[K]
85 90 95 100
Combustion
Fuel Inlet Temperature: 298 [K]
Oxidant Preheat Temperature for Stoichiometric Combustion Conditions
Fuel: Carbon
Combustion Efficiency [%]
Combustion Products Flame Temperature
0
1,000
2,000
3,000
298 400 500 600 700 800 900 1,000
FlameTemperature[K]
85 90 95 100
Combustion
Fuel Inlet Temperature: 298 [K]
Oxidant Preheat Temperature for Stoichiometric Combustion Conditions
Fuel: Hydrogen
Combustion Efficiency [%]
Combustion Products Flame Temperature
0
1,000
2,000
3,000
298 400 500 600 700 800 900 1,000
FlameTemperature[K]
85 90 95 100
Combustion
Fuel Inlet Temperature: 298 [K]
Oxidant Preheat Temperature for Stoichiometric Combustion Conditions
Fuel: Sulfur
Combustion Efficiency [%]
Combustion Products Flame Temperature
0
1,000
2,000
3,000
298 400 500 600 700 800 900 1,000
FlameTemperature[K]
85 90 95 100
Combustion
Fuel Inlet Temperature: 298 [K]
Oxidant Preheat Temperature for Stoichiometric Combustion Conditions
Fuel: Coal
Combustion Efficiency [%]
Combustion Products Flame Temperature
0
1,000
2,000
3,000
298 400 500 600 700 800 900 1,000
FlameTemperature[K]
85 90 95 100
Combustion
Fuel Inlet Temperature: 298 [K]
Oxidant Preheat Temperature for Stoichiometric Combustion Conditions
Fuel: Oil
Combustion Efficiency [%]
Combustion Products Flame Temperature
0
1,000
2,000
3,000
298 400 500 600 700 800 900 1,000
FlameTemperature[K]
85 90 95 100
Combustion
Fuel Inlet Temperature: 298 [K]
Oxidant Preheat Temperature for Stoichiometric Combustion Conditions
Fuel: Gas
Combustion Efficiency [%]
Combustion
Oxidant Composition
Fuel Composition
C
[kg/kg]
1.000
0.000
0.000
0.780
0.860
-
H
[kg/kg]
0.000
1.000
0.000
0.050
0.140
-
S
[kg/kg]
0.000
0.000
1.000
0.030
0.000
-
N
[kg/kg]
0.000
0.000
0.000
0.040
0.000
-
O
[kg/kg]
0.000
0.000
0.000
0.080
0.000
-
H2O
[kg/kg]
0.000
0.000
0.000
0.020
0.000
-
CH4
[kg/kg]
-
-
-
-
-
1.000
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
N
[kmol/kmol]
0.790
O
[kmol/kmol]
0.210
N
[kg/kg]
0.767
O
[kg/kg]
0.233
Oxidant
Air
Combustion
Combustion Products Composition on Weight and Mole Basis
Combustion Products Flame Temperature and Oxidant to Fuel Ratio
Flame Temperature
[K]
2,460
1,506
1,145
952
831
748
Oxidant to Fuel Ratio
[/]
11.444
22.889
34.333
45.778
57.222
68.667
Stoichiometry
[/]
1
2
3
4
5
6
Fuel: Carbon
CO2
[kg/kg]
0.295
0.153
0.104
0.083
0.063
0.053
H2O
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
SO2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kg/kg]
0.705
0.735
0.745
0.751
0.754
0.756
O2
[kg/kg]
0.000
0.112
0.151
0.171
0.183
0.191
CO2
[kmol/kmol]
0.210
0.105
0.070
0.053
0.042
0.035
Stoichiometry
[/]
1
2
3
4
5
6
SO2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kmol/kmol]
0.790
0.790
0.790
0.790
0.790
0.790
H2O
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
O2
[kmol/kmol]
0.000
0.105
0.140
0.157
0.168
0.175
Combustion
1
[K]
2,460
2,361
2,262
2,163
2
[K]
1,506
1,450
1,395
1,339
3
[K]
1,145
1,106
1,066
1,027
4
[K]
952
922
891
860
5
[K]
831
806
781
755
6
[K]
748
726
705
683
Combustion Efficiency
[/]
1.00
0.95
0.90
0.85
Combustion Products Ideal vs Real Flame Temperature as a Function of Stoichiometry
Fuel: Carbon
Combustion
Combustion Products Composition on Weight and Mole Basis
Flame Temperature
[K]
2,525
1,645
1,269
1,059
924
830
Oxidant to Fuel Ratio
[/]
34.333
68.667
103.000
137.333
171.667
206.000
Stoichiometry
[/]
1
2
3
4
5
6
Fuel: Hydrogen
CO2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
H2O
[kg/kg]
0.255
0.129
0.087
0.065
0.052
0.043
SO2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kg/kg]
0.745
0.756
0.760
0.761
0.763
0.763
O2
[kg/kg]
0.000
0.115
0.154
0.173
0.185
0.193
CO2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
Stoichiometry
[/]
1
2
3
4
5
6
SO2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kmol/kmol]
0.653
0.715
0.738
0.751
0.758
0.763
H2O
[kmol/kmol]
0.347
0.190
0.131
0.100
0.081
0.068
O2
[kmol/kmol]
0.000
0.095
0.131
0.150
0.161
0.169
Combustion Products Flame Temperature and Oxidant to Fuel Ratio
Combustion
1
[K]
2,525
2,409
2,293
2,176
2
[K]
1,645
1,574
1,502
1,430
3
[K]
1,269
1,217
1,164
1,111
4
[K]
1,059
1,017
976
934
5
[K]
924
890
855
820
6
[K]
830
800
771
741
Combustion Efficiency
[/]
1.00
0.95
0.90
0.85
Combustion Products Ideal vs Real Flame Temperature as a Function of Stoichiometry
Fuel: Hydrogen
Combustion
Combustion Products Composition on Weight and Mole Basis
Flame Temperature
[K]
1,972
1,229
949
799
705
641
Oxidant to Fuel Ratio
[/]
4.292
8.583
12.875
17.167
21.458
25.750
Stoichiometry
[/]
1
2
3
4
5
6
Fuel: Sulfur
CO2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
H2O
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
SO2
[kg/kg]
0.378
0.209
0.144
0.110
0.089
0.075
N2
[kg/kg]
0.622
0.687
0.712
0.725
0.733
0.738
O2
[kg/kg]
0.000
0.104
0.144
0.165
0.178
0.187
CO2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
Stoichiometry
[/]
1
2
3
4
5
6
SO2
[kmol/kmol]
0.210
0.105
0.070
0.053
0.042
0.035
N2
[kmol/kmol]
0.790
0.790
0.790
0.790
0.790
0.790
H2O
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
O2
[kmol/kmol]
0.000
0.105
0.140
0.158
0.168
0.175
Combustion Products Flame Temperature and Oxidant to Fuel Ratio
Combustion
1
[K]
1,972
1,895
1,818
1,741
2
[K]
1,229
1,186
1,143
1,099
3
[K]
949
918
888
857
4
[K]
799
775
751
727
5
[K]
705
685
666
646
6
[K]
641
624
607
591
Combustion Efficiency
[/]
1.00
0.95
0.90
0.85
Combustion Products Ideal vs Real Flame Temperature as a Function of Stoichiometry
Fuel: Sulfur
Combustion
Combustion Products Composition on Weight and Mole Basis
Fuel: Coal
CO2
[kg/kg]
0.249
0.130
0.088
0.067
0.053
0.045
H2O
[kg/kg]
0.041
0.021
0.014
0.011
0.009
0.007
SO2
[kg/kg]
0.005
0.003
0.002
0.001
0.001
0.001
N2
[kg/kg]
0.705
0.735
0.745
0.750
0.754
0.756
O2
[kg/kg]
0.000
0.111
0.151
0.171
0.183
0.191
CO2
[kmol/kmol]
0.170
0.087
0.059
0.044
0.035
0.030
Stoichiometry
[/]
1
2
3
4
5
6
SO2
[kmol/kmol]
0.002
0.001
0.001
0.001
0.001
0.000
N2
[kmol/kmol]
0.760
0.774
0.779
0.782
0.783
0.785
H2O
[kmol/kmol]
0.068
0.035
0.024
0.018
0.014
0.012
O2
[kmol/kmol]
0.000
0.103
0.138
0.156
0.166
0.174
Flame Temperature
[K]
2,484
1,544
1,178
981
856
769
Oxidant to Fuel Ratio
[/]
10.487
20.992
31.497
42.002
52.507
63.013
Stoichiometry
[/]
1
2
3
4
5
6
Combustion Products Flame Temperature and Oxidant to Fuel Ratio
Combustion
1
[K]
2,484
2,381
2,278
2,174
2
[K]
1,544
1,486
1,427
1,367
3
[K]
1,178
1,136
1,094
1,051
4
[K]
981
948
915
881
5
[K]
856
829
801
774
6
[K]
769
746
723
699
Combustion Efficiency
[/]
1.00
0.95
0.90
0.85
Combustion Products Ideal vs Real Flame Temperature as a Function of Stoichiometry
Fuel: Coal
Combustion
Combustion Products Composition on Weight and Mole Basis
Flame Temperature
[K]
2,484
1,555
1,187
989
863
776
Oxidant to Fuel Ratio
[/]
14.694
29.298
43.947
58.596
73.244
87.893
Stoichiometry
[/]
1
2
3
4
5
6
Fuel: Oil
CO2
[kg/kg]
0.202
0.104
0.070
0.053
0.042
0.035
H2O
[kg/kg]
0.080
0.042
0.028
0.021
0.017
0.014
SO2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kg/kg]
0.718
0.742
0.750
0.754
0.757
0.758
O2
[kg/kg]
0.000
0.113
0.152
0.172
0.184
0.192
CO2
[kmol/kmol]
0.132
0.068
0.046
0.035
0.028
0.023
Stoichiometry
[/]
1
2
3
4
5
6
SO2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kmol/kmol]
0.739
0.764
0.772
0.777
0.779
0.781
H2O
[kmol/kmol]
0.129
0.067
0.045
0.034
0.027
0.023
O2
[kmol/kmol]
0.000
0.102
0.137
0.155
0.166
0.173
Combustion Products Flame Temperature and Oxidant to Fuel Ratio
Combustion
1
[K]
2,484
2,379
2,274
2,167
2
[K]
1,555
1,494
1,433
1,371
3
[K]
1,187
1,144
1,100
1,056
4
[K]
989
954
920
885
5
[K]
863
834
806
777
6
[K]
776
751
727
702
Combustion Efficiency
[/]
1.00
0.95
0.90
0.85
Combustion Products Ideal vs Real Flame Temperature as a Function of Stoichiometry
Fuel: Oil
Combustion
Combustion Products Composition on Weight and Mole Basis
Flame Temperature
[K]
2,327
1,480
1,137
951
832
750
Oxidant to Fuel Ratio
[/]
17.167
34.333
51.500
68.667
85.833
103.000
Stoichiometry
[/]
1
2
3
4
5
6
Fuel: Gas
CO2
[kg/kg]
0.151
0.078
0.052
0.039
0.032
0.026
H2O
[kg/kg]
0.124
0.064
0.043
0.032
0.026
0.022
SO2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kg/kg]
0.725
0.745
0.752
0.756
0.758
0.760
O2
[kg/kg]
0.000
0.113
0.152
0.172
0.184
0.192
CO2
[kmol/kmol]
0.095
0.050
0.034
0.026
0.021
0.017
Stoichiometry
[/]
1
2
3
4
5
6
SO2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kmol/kmol]
0.715
0.751
0.763
0.770
0.774
0.776
H2O
[kmol/kmol]
0.190
0.100
0.068
0.051
0.041
0.034
O2
[kmol/kmol]
0.000
0.100
0.135
0.153
0.165
0.172
Combustion Products Flame Temperature and Oxidant to Fuel Ratio
Combustion
1
[K]
2,327
2,236
2,145
2,053
2
[K]
1,480
1,426
1,372
1,317
3
[K]
1,137
1,099
1,060
1,020
4
[K]
951
920
889
859
5
[K]
832
807
781
756
6
[K]
750
728
706
685
Combustion Efficiency
[/]
1.00
0.95
0.90
0.85
Combustion Products Ideal vs Real Flame Temperature as a Function of Stoichiometry
Fuel: Gas
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
1 2 3 4 5 6
Combustion
Stoichiometry [/]
Fuel: Carbon
Fuel and Oxidant Inlet Temperature: 298 [K]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
1 2 3 4 5 6
Combustion
Stoichiometry [/]
Fuel: Carbon
Fuel and Oxidant Inlet Temperature: 298 [K]
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
1 2 3 4 5 6
Combustion
Fuel: Hydrogen
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
1 2 3 4 5 6
Combustion
Fuel: Hydrogen
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
1 2 3 4 5 6
Combustion
Fuel: Sulfur
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
1 2 3 4 5 6
Combustion
Fuel: Sulfur
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
1 2 3 4 5 6
Combustion
Fuel: Coal
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
1 2 3 4 5 6
Combustion
Fuel: Coal
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
1 2 3 4 5 6
Combustion
Fuel: Oil
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
1 2 3 4 5 6
Combustion
Fuel: Oil
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
1 2 3 4 5 6
Combustion
Fuel: Gas
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
1 2 3 4 5 6
Combustion
Fuel: Gas
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products Flame Temperature
600
1,100
1,600
2,100
2,600
1 2 3 4 5 6
FlameTemperature[K]
Carbon Hydrogen Sulfur Coal Oil Gas
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products Flame Temperature
500
1,000
1,500
2,000
2,500
3,000
1 2 3 4 5 6
FlameTemperature[K]
85 90 95 100
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Fuel: Carbon
Stoichiometry [/]
Combustion Efficiency [%]
Combustion Products Flame Temperature
500
1,000
1,500
2,000
2,500
3,000
1 2 3 4 5 6
FlameTemperature[K]
85 90 95 100
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Fuel: Hydrogen
Stoichiometry [/]
Combustion Efficiency [%]
Combustion Products Flame Temperature
500
1,000
1,500
2,000
2,500
3,000
1 2 3 4 5 6
FlameTemperature[K]
85 90 95 100
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Fuel: Sulfur
Stoichiometry [/]
Combustion Efficiency [%]
Combustion Products Flame Temperature
500
1,000
1,500
2,000
2,500
3,000
1 2 3 4 5 6
FlameTemperature[K]
85 90 95 100
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Fuel: Coal
Stoichiometry [/]
Combustion Efficiency [%]
Combustion Products Flame Temperature
500
1,000
1,500
2,000
2,500
3,000
1 2 3 4 5 6
FlameTemperature[K]
85 90 95 100
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Fuel: Oil
Stoichiometry [/]
Combustion Efficiency [%]
Combustion Products Flame Temperature
500
1,000
1,500
2,000
2,500
3,000
1 2 3 4 5 6
FlameTemperature[K]
85 90 95 100
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Combustion Efficiency [%]
Fuel: Gas
Stoichiometry [/]
Combustion Oxidant to Fuel Ratio
0
40
80
120
160
200
240
1 2 3 4 5 6
OxidanttoFuelRatio[/]
Carbon Hydrogen Sulfur Coal Oil Gas
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Expansion Schematic Layout
Working Fluid In
Working Fluid Out
Turbine
1
2
Expansion
Expansion T - s Diagram
Temperature--T[K]
Entropy -- s [kJ/kg*K]
Expansion
1
2s
2
Expansion Specific Power Output
400
500
600
700
800
900
5 10 15
Expansion Ratio (P1/P2) [/]
ExpansionSpecificPowerOutput[kJ/kg]
85 90 95 100
Working Fluid: Air
Turbine Inlet Temperature: 1,500 [K] -- Ambient Pressure: 1 [atm]
Expansion
Isentropic Expansion Efficiency [%]
Expansion Power Output
0
40
80
120
160
50 100 150
Working Fluid Mass Flow Rate [kg/s]
ExpansionPowerOutput[MW]
85 90 95 100
Working Fluid: Air
Turbine Inlet Temperature: 1,500 [K] -- Expansion Ratio (P1/P2): 15 [/]
Expansion
Isentropic Expansion Efficiency [%]
Power Cycle Components/Processes
Conclusions
The compression specific power input increases with an increase in the compression
ratio values for a fixed compression inlet temperature. As the working fluid mass flow
rate increases for the fixed compression ratio and compression inlet temperature
values, the compression power input requirements increase too. As the isentropic
compression efficiency decreases, the compression power input increases.
Hydrogen as the fuel has the highest flame temperature, requires the most mass
amount of oxidant/air in order to have complete combustion per unit mass amount of
fuel and has the largest fuel higher heating value. As the combustion efficiency
decreases, the combustion products flame temperature decreases.
When hydrogen reacts with oxidant/air, there is no CO2 present in the combustion
products.
The expansion specific power output increases with an increase in the expansion ratio
values for a fixed expansion inlet temperature. As the working fluid mass flow rate
increases for the fixed expansion ratio and expansion inlet temperature values, the
expansion power output values increase too. As the isentropic expansion efficiency
decreases, the expansion power output decreases.
Sonic Velocity
vsonic = (χ RT)1/2 [m/s]
Mach Number
M = v/vsonic [/]
Compressible Flow Engineering Equations
Isentropic Flow
Tt/Ts = (1 + M2(χ - 1)/2) [/]
pt/p = (1 + M2(χ - 1)/2)χ/(χ-1) [/]
ht = (hs + v2/2) [kJ/kg]
Tt = (Ts + v2/(2cp)) [K]
n = (T1 - T2)/(T1 - T2s) [/]
d = (T2s - T 1)/(T2 - T1) [/]
Thrust = vm + (p - pa)A [N]
Compressible Flow Engineering Equations
Nozzle Schematic Layout
Working Fluid In Working Fluid Out
Nozzle
1 2
Nozzle
Nozzle T - s Diagram
Temperature--T[K]
Entropy -- s [kJ/kg*K]
Nozzle
1
2s
2
Nozzle Performance
0.2
0.4
0.6
0.8
1.0
400 500 600
Velocity [m/s]
MachNumber[/]
85 90 95 100
Nozzle
Nozzle Inlet Stagnation Conditions -- Temperature: 1,500 [K] and Pressure: 10 [atm]
Isentropic Nozzle Efficiency [%]
Nozzle Performance
1.00
1.05
1.10
1.15
1.20
400 500 600
Velocity [m/s]
Tstagnation/Tstatic[/]
85 90 95 100
Nozzle
Nozzle Inlet Stagnation Conditions -- Temperature: 1,500 [K] and Pressure: 10 [atm]
Isentropic Nozzle Efficiency [%]
Nozzle Performance
1.20
1.30
1.40
1.50
1.60
400 500 600
Velocity [m/s]
Pstagnation/Pstatic[/]
85 90 95 100
Nozzle
Nozzle Inlet Stagnation Conditions -- Temperature: 1,500 [K] and Pressure: 10 [atm]
Isentropic Nozzle Efficiency [%]
Diffuser Schematic Layout
Working Fluid In Working Fluid Out
Diffuser
1 2
Diffuser
Diffuser T - s Diagram
Temperature--T[K]
Entropy -- s [kJ/kg*K]
Diffuser
2s
1
2
Diffuser Performance
0.2
0.4
0.6
0.8
1.0
100 200 300
Velocity [m/s]
MachNumber[/]
85 90 95 100
Diffuser
Diffuser Inlet Static Conditions -- Temperature: 298 [K] and Pressure: 1 [atm]
Isentropic Diffuser Efficiency [%]
Diffuser Performance
1.00
1.05
1.10
1.15
1.20
100 200 300
Velocity [m/s]
Tstagnation/Tstatic[/]
85 90 95 100
Diffuser
Isentropic Diffuser Efficiency [%]
Diffuser Inlet Static Conditions -- Temperature: 298 [K] and Pressure: 1 [atm]
Diffuser Performance
1.20
1.30
1.40
1.50
1.60
100 200 300
Velocity [m/s]
Pstagnation/Pstatic[/]
85 90 95 100
Diffuser
Isentropic Diffuser Efficiency [%]
Diffuser Inlet Static Conditions -- Temperature: 298 [K] and Pressure: 1 [atm]
Thrust Schematic Layout
Working Fluid Out
Nozzle
21
Working Fluid at Still
Thrust
Thrust T - s Diagram
Temperature--T[K]
Entropy -- s [kJ/kg*K]
Thrust
1
2s
2
Nozzle Performance
0.6
0.7
0.8
0.9
1.0
900 1,200 1,500
Nozzle Inlet Stagnation Temperature [K]
MachNumber[/]
85 90 95 100
Thrust
Isentropic Nozzle Efficiency [%]
Nozzle Inlet Stagnation Conditions -- Pressure: 10 [atm]
Nozzle Outlet Static Conditions -- Mach Number: 0.85 [/]
Nozzle Performance
1.00
1.05
1.10
1.15
1.20
900 1,200 1,500
Nozzle Inlet Stagnation Temperature [K]
Tstagnation/Tstatic[/]
85 90 95 100
Thrust
Isentropic Nozzle Efficiency [%]
Nozzle Inlet Stagnation Conditions -- Pressure: 10 [atm]
Nozzle Outlet Static Conditions -- Mach Number: 0.85 [/]
Nozzle Performance
1.40
1.50
1.60
1.70
1.80
900 1,200 1,500
Nozzle Inlet Stagnation Temperature [K]
Pstagnation/Pstatic[/]
85 90 95 100
Thrust
Nozzle Inlet Stagnation Conditions -- Pressure: 10 [atm]
Isentropic Nozzle Efficiency [%]
Nozzle Outlet Static Conditions -- Mach Number: 0.85 [/]
Thrust
800
900
1,000
1,100
1,200
900 1,200 1,500
Nozzle Inlet Stagnation Temperature [K]
Thrust[N]
85 90 95 100
Working Fluid Mass Flow Rate: 1 [kg/s]
Thrust
Nozzle Outlet Static Conditions -- Mach Number: 0.85 [/]
Nozzle Inlet Stagnation Pressure: 10 [atm] and Ambient Conditions Pressure: 1 [atm]
Isentropic Nozzle Efficiency [%]
Compressible Flow Conclusions
Nozzle stagnation over static temperature and pressure ratio values increase with an
increase in the velocity (Mach Number).
Diffuser stagnation over static temperature and pressure ratio values increase with an
increase in the velocity (Mach Number).
Thrust increases with an increase in the inlet stagnation temperature.
As the nozzle and diffuser efficiency values decrease, the nozzle, diffuser and thrust
performance decreases.

More Related Content

What's hot

Engine Performance Improvement
Engine Performance ImprovementEngine Performance Improvement
Engine Performance Improvementmp poonia
 
torque , power, volumetric efficiency and their dependence on unit air charge...
torque , power, volumetric efficiency and their dependence on unit air charge...torque , power, volumetric efficiency and their dependence on unit air charge...
torque , power, volumetric efficiency and their dependence on unit air charge...mp poonia
 
GT Inlet Cooling
GT Inlet CoolingGT Inlet Cooling
GT Inlet CoolingRoss Rhyme
 
Aircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet PerformanceAircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet PerformanceAnurak Atthasit
 
Measurement of friction power
Measurement of friction power Measurement of friction power
Measurement of friction power dishantpati
 
Internal combustion engine (ja304) chapter 4
Internal combustion engine (ja304) chapter 4Internal combustion engine (ja304) chapter 4
Internal combustion engine (ja304) chapter 4mechanical86
 
Mcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionMcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionAzeem Waqar
 
Turbofan Engine Design Report
Turbofan Engine Design ReportTurbofan Engine Design Report
Turbofan Engine Design ReportNicholas Cordero
 
Internal combustion engine power plant
Internal combustion engine power plantInternal combustion engine power plant
Internal combustion engine power plantYuri Melliza
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Centro Studi Galileo
 
Load test on a perkins diesel engine
Load test on a perkins diesel engineLoad test on a perkins diesel engine
Load test on a perkins diesel engineLahiru Dilshan
 
INTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERS
INTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERSINTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERS
INTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERSPEC University Chandigarh
 

What's hot (17)

Engine Performance Improvement
Engine Performance ImprovementEngine Performance Improvement
Engine Performance Improvement
 
torque , power, volumetric efficiency and their dependence on unit air charge...
torque , power, volumetric efficiency and their dependence on unit air charge...torque , power, volumetric efficiency and their dependence on unit air charge...
torque , power, volumetric efficiency and their dependence on unit air charge...
 
GT Inlet Cooling
GT Inlet CoolingGT Inlet Cooling
GT Inlet Cooling
 
Performance of ic engine
Performance of ic enginePerformance of ic engine
Performance of ic engine
 
Aircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet PerformanceAircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet Performance
 
Measurement of friction power
Measurement of friction power Measurement of friction power
Measurement of friction power
 
Internal combustion engine (ja304) chapter 4
Internal combustion engine (ja304) chapter 4Internal combustion engine (ja304) chapter 4
Internal combustion engine (ja304) chapter 4
 
Mcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionMcconkey Chapter 9 solution
Mcconkey Chapter 9 solution
 
Turbojet Design Project
Turbojet Design ProjectTurbojet Design Project
Turbojet Design Project
 
Turbofan Engine Design Report
Turbofan Engine Design ReportTurbofan Engine Design Report
Turbofan Engine Design Report
 
Power Cycles Tables and Plots
Power Cycles Tables and PlotsPower Cycles Tables and Plots
Power Cycles Tables and Plots
 
Internal combustion engine power plant
Internal combustion engine power plantInternal combustion engine power plant
Internal combustion engine power plant
 
Mc conkey 13-pb
Mc conkey 13-pbMc conkey 13-pb
Mc conkey 13-pb
 
Power Cycle Components/Processes
Power Cycle Components/ProcessesPower Cycle Components/Processes
Power Cycle Components/Processes
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
 
Load test on a perkins diesel engine
Load test on a perkins diesel engineLoad test on a perkins diesel engine
Load test on a perkins diesel engine
 
INTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERS
INTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERSINTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERS
INTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERS
 

Similar to Energy Conversion Ideal vs Real Operation Analysis Webinar

Energy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long VersionEnergy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long VersionEngineering Software
 
Power Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis WebinarPower Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis WebinarEngineering Software
 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachineryWalid Mohammed
 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009CangTo Cheah
 
Thermodynamic cycles4.ppt
Thermodynamic cycles4.pptThermodynamic cycles4.ppt
Thermodynamic cycles4.pptMehtab Rai
 
heat engine information detail
heat engine information detailheat engine information detail
heat engine information detailpratik darji
 
selfstudy-1.ppt
selfstudy-1.pptselfstudy-1.ppt
selfstudy-1.pptEanest
 
Excellent engineering and work for you all
Excellent engineering and work for you allExcellent engineering and work for you all
Excellent engineering and work for you allstevekzmm248
 
Power Cycle Components/Processes Tables and Plots
Power Cycle Components/Processes Tables and PlotsPower Cycle Components/Processes Tables and Plots
Power Cycle Components/Processes Tables and PlotsEngineering Software
 
Engine_theory_and_calculations-converted.docx
Engine_theory_and_calculations-converted.docxEngine_theory_and_calculations-converted.docx
Engine_theory_and_calculations-converted.docxPabitraMandal23
 
3-chapter-2.fgpdfffffgggggfsssfgggdfgfgggsd
3-chapter-2.fgpdfffffgggggfsssfgggdfgfgggsd3-chapter-2.fgpdfffffgggggfsssfgggdfgfgggsd
3-chapter-2.fgpdfffffgggggfsssfgggdfgfgggsdTemesgenErena
 
Thermodynamic Chapter 6 Thermal Power Plant
Thermodynamic Chapter 6 Thermal Power PlantThermodynamic Chapter 6 Thermal Power Plant
Thermodynamic Chapter 6 Thermal Power PlantMuhammad Surahman
 
Itenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9aItenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9aNoviyantiNugraha
 

Similar to Energy Conversion Ideal vs Real Operation Analysis Webinar (20)

Energy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long VersionEnergy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long Version
 
Power Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis WebinarPower Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis Webinar
 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachinery
 
Turbin gas cal.
Turbin gas cal.Turbin gas cal.
Turbin gas cal.
 
Engine Cycles Analysis
Engine Cycles AnalysisEngine Cycles Analysis
Engine Cycles Analysis
 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009
 
Thermodynamic cycles4.ppt
Thermodynamic cycles4.pptThermodynamic cycles4.ppt
Thermodynamic cycles4.ppt
 
heat engine information detail
heat engine information detailheat engine information detail
heat engine information detail
 
selfstudy-1.ppt
selfstudy-1.pptselfstudy-1.ppt
selfstudy-1.ppt
 
Excellent engineering and work for you all
Excellent engineering and work for you allExcellent engineering and work for you all
Excellent engineering and work for you all
 
Gas power-09
Gas power-09Gas power-09
Gas power-09
 
Power Cycle Components/Processes Tables and Plots
Power Cycle Components/Processes Tables and PlotsPower Cycle Components/Processes Tables and Plots
Power Cycle Components/Processes Tables and Plots
 
DJA3032 CHAPTER 2
DJA3032   CHAPTER 2DJA3032   CHAPTER 2
DJA3032 CHAPTER 2
 
AIR STANDARD CYCLE PPT.PPT
AIR STANDARD CYCLE PPT.PPTAIR STANDARD CYCLE PPT.PPT
AIR STANDARD CYCLE PPT.PPT
 
Engine_theory_and_calculations-converted.docx
Engine_theory_and_calculations-converted.docxEngine_theory_and_calculations-converted.docx
Engine_theory_and_calculations-converted.docx
 
Gas turbines
Gas turbines Gas turbines
Gas turbines
 
Unit-1_PPT.pptx
Unit-1_PPT.pptxUnit-1_PPT.pptx
Unit-1_PPT.pptx
 
3-chapter-2.fgpdfffffgggggfsssfgggdfgfgggsd
3-chapter-2.fgpdfffffgggggfsssfgggdfgfgggsd3-chapter-2.fgpdfffffgggggfsssfgggdfgfgggsd
3-chapter-2.fgpdfffffgggggfsssfgggdfgfgggsd
 
Thermodynamic Chapter 6 Thermal Power Plant
Thermodynamic Chapter 6 Thermal Power PlantThermodynamic Chapter 6 Thermal Power Plant
Thermodynamic Chapter 6 Thermal Power Plant
 
Itenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9aItenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9a
 

More from Engineering Software

More from Engineering Software (6)

Combustion Analysis Webinar
Combustion Analysis WebinarCombustion Analysis Webinar
Combustion Analysis Webinar
 
Physical Properties Tables and Plots
Physical Properties Tables and PlotsPhysical Properties Tables and Plots
Physical Properties Tables and Plots
 
Physical Properties
Physical PropertiesPhysical Properties
Physical Properties
 
Compressible Flow
Compressible FlowCompressible Flow
Compressible Flow
 
Compressible Flow Tables and Plots
Compressible Flow Tables and PlotsCompressible Flow Tables and Plots
Compressible Flow Tables and Plots
 
Engineering Simulation
Engineering SimulationEngineering Simulation
Engineering Simulation
 

Recently uploaded

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 

Recently uploaded (20)

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 

Energy Conversion Ideal vs Real Operation Analysis Webinar

  • 1. Engineering Software P.O. Box 2134 Kensington, MD 20891 Phone: (301) 919-9670 E-Mail: info@engineering-4e.com http://www.engineering-4e.com Copyright © 1996
  • 2. Energy Conversion Ideal vs Real Operation Analysis Webinar Objectives In this webinar, the engineering students and professionals get familiar with the simple and basic power cycles, power cycle components/processes and compressible flow and their T - s, p - V and h - T diagrams, ideal vs real operation and major performance trends when air is considered as the working fluid. Performance Objectives: Introduce basic energy conversion engineering assumptions and equations Know basic elements of Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion and expansion processes and compressible flow (nozzle, diffuser and thrust) and their T - s, p - V and h - T diagrams Be familiar with Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion, expansion and compressible flow (nozzle, diffuser and thrust) ideal vs real operation Understand general Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion, expansion and compressible flow (nozzle, diffuser and thrust) performance trends
  • 3. This webinar consists of the following three major sections: • Power Cycles (Carnot, Brayton, Otto and Diesel) • Power Cycle Components/Processes (compression, combustion and expansion) • Compressible Flow (nozzle, diffuser and thrust) In this webinar, first overall engineering assumptions and basic engineering equations are provided. Furthermore, for each major section, basic engineering equations, section material and conclusions are provided. Energy Conversion Analysis Webinar
  • 4. The energy conversion analysis presented in this webinar considers ideal (isentropic) vs real operation and the working fluid is air. Furthermore, the following assumptions are valid: Power Cycles Single species consideration -- fuel mass flow rate is ignored and its impact on the properties of the working fluid Basic equations hold (continuity, momentum and energy equations) Specific heat is constant Power Cycle Components/Processes Single species consideration Basic equations hold (continuity, momentum and energy equations) Specific heat is constant Compressible Flow Single species consideration Basic equations hold (continuity, momentum and energy equations) Specific heat is constant Thermodynamic and Transport Properties Single species consideration Ideal gas approach is used (pv=RT) Specific heat is not constant Coefficients describing thermodynamic and transport properties were obtained from the NASA Glenn Research Center at Lewis Field in Cleveland, OH -- such coefficients conform with the standard reference temperature of 298.15 K (77 F) and the JANAF Tables Engineering Assumptions
  • 5. Basic Conservation Equations Continuity Equation m = ρvA [kg/s] Momentum Equation F = (vm + pA)out - in [N] Energy Equation Q - W = ((h + v2/2 + gh)m)out - in [kW] Basic Engineering Equations
  • 6. Ideal Gas State Equation pv = RT [kJ/kg] Perfect Gas cp = constant [kJ/kg*K] Kappa χ = cp/cv [/] For air: χ = 1.4 [/], R = 0.2867 [kJ/kg*K] and cp = 1.004 [kJ/kg*K] Basic Engineering Equations
  • 7. Power Cycles Engineering Equations Carnot Cycle Efficiency  = 1 - TR/TA Otto Cycle Efficiency  = (cv(T3 - T2) - cv(T4 - T1))/(cv(T3 - T2)) Brayton Cycle Efficiency  = (cp(T3 - T2) - cp(T4 - T1))/(cp(T3 - T2)) Diesel Cycle Efficiency  = (cp(T3 - T2) - cv(T4- T1))/(cp(T3 - T2)) Cycle Efficiency  = Wnet/Q [/] Heat Rate HR = (1/)3,412 [Btu/kWh] rp = p2/p1 [/]; ε = V1/V2 [/]; φ = V3/V2 [/]
  • 8. Power Cycles Engineering Equations Otto Cycle wnet = qh - ql = cv(T3 - T2) - cv(T4 - T1) [kJ/kg] Wnet = wnetm [kW] Brayton Cycle wnet = qh - ql = cp(T3 - T2) - cp(T4 - T1) [kJ/kg] Wnet = wnetm [kW] Diesel Cycle wnet = qh - ql = cp(T3 - T2) - cv(T4 - T1) [kJ/kg] Wnet = wnetm [kW]
  • 9. Carnot Cycle Schematic Layout Compressor Heat Exchanger Gas Turbine 1 32 4 Heat Addition Heat Exchanger Heat Rejection Carnot Cycle
  • 10. Carnot Cycle T - s Diagram 1 32 4 Temperature--T[K] Entropy -- s [kJ/kg*K] Carnot Cycle
  • 11. Carnot Cycle Efficiency 0 20 40 60 80 500 600 700 800 900 1,000 CarnotCycleEfficiency[%] Heat Addition Temperature [K] Compressor Inlet Temperature: 298 [K] Carnot Cycle
  • 12. Carnot Cycle Efficiency 0 20 40 60 80 278 288 298 308 318 328 CarnotCycleEfficiency[%] Heat Rejection Temperature [K] Turbine Inlet Temperature: 800 [K] Carnot Cycle
  • 13. Brayton Cycle (Gas Turbine) Schematic Layout -- Open Cycle Compressor Combustor Gas Turbine 1 32 4 Fuel Brayton Cycle (Gas Turbine) Heat Addition Working Fluid In Working Fluid Out
  • 14. Brayton Cycle Schematic Layout -- Closed Cycle Compressor Heat Exchanger Gas Turbine 1 32 4 Heat Addition Heat Exchanger Heat Rejection Brayton Cycle (Gas Turbine)
  • 15. Brayton Cycle (Gas Turbine) T - s Diagram 1 3 2s 4s Temperature--T[K] Entropy -- s [kJ/kg*K] Brayton Cycle (Gas Turbine) 2 4
  • 16. Brayton Cycle (Gas Turbine) Efficiency 0 20 40 60 80 5 10 15 20 25 Compression Ratio (P2/P1) [/] BraytonCycle(GasTurbine)Efficiency[%] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Compression Efficiency [%] Ambient Temperature: 298 [K] -- Gas Turbine Inlet Temperature: 1,500 [K]
  • 17. Brayton Cycle (Gas Turbine) Specific Power Output 0 100 200 300 400 500 900 1,200 1,500 Gas Turbine Inlet Temperature [K] BraytonCycle(GasTurbine)SpecificPower Output[kJ/kg] 85 90 95 100 Working Fluid: Air Compressor Inlet Temperature: 298 [K] -- Gas Turbine Inlet Pressure: 15 [atm] Brayton Cycle (Gas Turbine) Isentropic Compression Efficiency [%] Compression Ratio (P2/P1) = 15 [/]
  • 18. Brayton Cycle (Gas Turbine) Power Output 0 25 50 75 100 50 100 150 Working Fluid Mass Flow Rate [kg/s] BraytonCycle(GasTurbine)PowerOutput[MW] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Compression Efficiency [%] Gas Turbine Inlet Temperature: 1,500 [K] -- Gas Turbine Inlet Pressure: 15 [atm] Compression Ratio (P2/P1) = 15 [/]
  • 19. Brayton Cycle (Gas Turbine) Efficiency 0 20 40 60 80 5 10 15 20 25 Compression Ratio (P2/P1) [/] BraytonCycle(GasTurbine)Efficiency[%] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Expansion Efficiency [%] Ambient Temperature: 298 [K] -- Gas Turbine Inlet Temperature: 1,500 [K]
  • 20. Brayton Cycle (Gas Turbine) Specific Power Output 0 100 200 300 400 500 900 1,200 1,500 Gas Turbine Inlet Temperature [K] BraytonCycle(GasTurbine)SpecificPower Output[kJ/kg] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Expansion Efficiency [%] Compressor Inlet Temperature: 298 [K] -- Gas Turbine Inlet Pressure: 15 [atm] Compression Ratio (P2/P1) = 15 [/]
  • 21. Brayton Cycle (Gas Turbine) Power Output 0 25 50 75 100 50 100 150 Working Fluid Mass Flow Rate [kg/s] BraytonCycle(GasTurbine)PowerOutput[MW] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Expansion Efficiency [%] Compression Ratio (P2/P1) = 15 [/] Gas Turbine Inlet Temperature: 1,500 [K] -- Gas Turbine Inlet Pressure: 15 [atm]
  • 22. Brayton Cycle (Gas Turbine) Efficiency 0 20 40 60 80 5 10 15 20 25 Compression Ratio (P2/P1) [/] BraytonCycle(GasTurbine)Efficiency[%] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Compression and Expansion Efficiency [%] Ambient Temperature: 298 [K] -- Gas Turbine Inlet Temperature: 1,500 [K]
  • 23. Brayton Cycle (Gas Turbine) Specific Power Output 0 100 200 300 400 500 900 1,200 1,500 Gas Turbine Inlet Temperature [K] BraytonCycle(GasTurbine)SpecificPower Output[kJ/kg] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Compression and Expansion Efficiency [%] Compressor Inlet Temperature: 298 [K] -- Gas Turbine Inlet Pressure: 15 [atm] Compression Ratio (P2/P1) = 15 [/]
  • 24. Brayton Cycle (Gas Turbine) Power Output 0 25 50 75 100 50 100 150 Working Fluid Mass Flow Rate [kg/s] BraytonCycle(GasTurbine)PowerOutput[MW] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Compression and Expansion Efficiency [%] Compression Ratio (P2/P1) = 15 [/] Gas Turbine Inlet Temperature: 1,500 [K] -- Gas Turbine Inlet Pressure: 15 [atm]
  • 25. Otto Cycle p - V Diagram 1 3 2s 4s Pressure--p[atm] Volume -- V [m^3] Otto Cycle
  • 26. Otto Cycle T - s Diagram 1 3 2s 4s Temperature--T[K] Entropy -- s [kJ/kg*K] Otto Cycle 2 4
  • 27. Otto Cycle Efficiency 0 20 40 60 80 2.5 5 7.5 10 12.5 Compression Ratio (V1/V2) [/] OttoCycleEfficiency[%] 85 90 95 100 Working Fluid: Air Otto Cycle Isentropic Compression Efficiency [%] Ambient Temperature: 298 [K] -- Combustion Temperature: 1,200 [K]
  • 28. Otto Cycle Power Output 0 100 200 300 400 1,200 1,500 1,800 Combustion Temperature [K] OttoCyclePowerOutput[kW] 85 90 95 100 Compression Ratio (V1/V2) = 10 [/] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Otto Engine Otto Cycle Isentropic Compression Efficiency [%]
  • 29. Otto Cycle Efficiency 0 20 40 60 80 2.5 5 7.5 10 12.5 Compression Ratio (V1/V2) [/] OttoCycleEfficiency[%] 85 90 95 100 Working Fluid: Air Otto Cycle Isentropic Expansion Efficiency [%] Ambient Temperature: 298 [K] -- Combustion Temperature: 1,200 [K]
  • 30. Otto Cycle Power Output 0 100 200 300 400 1,200 1,500 1,800 Combustion Temperature [K] OttoCyclePowerOutput[kW] 85 90 95 100 Compression Ratio (V1/V2) = 10 [/] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Otto Engine Otto Cycle Isentropic Expansion Efficiency [%]
  • 31. Otto Cycle Efficiency 0 20 40 60 80 2.5 5 7.5 10 12.5 Compression Ratio (V1/V2) [/] OttoCycleEfficiency[%] 85 90 95 100 Working Fluid: Air Otto Cycle Isentropic Compression and Expansion Efficiency [%] Ambient Temperature: 298 [K] -- Combustion Temperature: 1,200 [K]
  • 32. Otto Cycle Power Output 0 100 200 300 400 1,200 1,500 1,800 Combustion Temperature [K] OttoCyclePowerOutput[kW] 85 90 95 100 Compression Ratio (V1/V2) = 10 [/] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Otto Engine Otto Cycle Isentropic Compression and Expansion Efficiency [%]
  • 33. Diesel Cycle p - V Diagram 1 32s 4s Pressure--p[atm] Volume -- V [m^3] Diesel Cycle
  • 34. Diesel Cycle T - s Diagram 1 3 2s 4s Temperature--T[K] Entropy -- s [kJ/kg*K] Diesel Cycle 2 4
  • 35. Diesel Cycle Efficiency 0 20 40 60 80 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCycleEfficiency[%] 85 90 95 100 Working Fluid: Air Diesel Cycle Isentropic Compression Efficiency [%] Ambient Temperature: 298 [K] Combustion Temperature: 1,800 [K]
  • 36. Diesel Cycle Power Output 0 200 400 600 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCyclePowerOutput[kW] 85 90 95 100 Combustion Temperature: 1,800 [K] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Diesel Engine Diesel Cycle Isentropic Compression Efficiency [%]
  • 37. Diesel Cycle Efficiency 0 20 40 60 80 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCycleEfficiency[%] 85 90 95 100 Working Fluid: Air Diesel Cycle Isentropic Expansion Efficiency [%] Ambient Temperature: 298 [K] Combustion Temperature: 1,800 [K]
  • 38. Diesel Cycle Power Output 0 200 400 600 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCyclePowerOutput[kW] 85 90 95 100 Diesel Cycle Isentropic Expansion Efficiency [%] Combustion Temperature: 1,800 [K] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Diesel Engine
  • 39. Diesel Cycle Efficiency 0 20 40 60 80 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCycleEfficiency[%] 85 90 95 100 Working Fluid: Air Diesel Cycle Isentropic Compression and Expansion Efficiency [%] Ambient Temperature: 298 [K] Combustion Temperature: 1,800 [K]
  • 40. Diesel Cycle Power Output 0 200 400 600 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCyclePowerOutput[kW] 85 90 95 100 Diesel Cycle Isentropic Compression and Expansion Efficiency [%] Combustion Temperature: 1,800 [K] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Diesel Engine
  • 41. Diesel Cycle Cut Off Ratio 0 1 2 3 4 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCycleCutOffRatio[/] 100 Diesel Cycle Isentropic Compression and Expansion Efficiency [%] Combustion Temperature: 1,800 [K] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Diesel Engine
  • 42. Power Cycles Conclusions The Carnot Cycle efficiency increases with an increase in the heat addition temperature when the heat rejection temperature does not change at all. Furthermore, the Carnot Cycle efficiency decreases with an increase in the heat rejection temperature when the heat addition temperature does not change at all. The Carnot Cycle efficiency is not dependent on the working fluid properties. The Brayton Cycle efficiency depends on the compression ratio values . The efficiency increases with an increase in the compression ratio values for a fixed gas turbine inlet temperature. The Brayton Cycle specific power output increases with an increase in the gas turbine inlet temperature for a fixed compression ratio. Furthermore, the increase is greater for the higher gas turbine inlet temperature values. The Brayton Cycle power output increases with an increase in the working fluid mass flow rate. The increase is greater for the higher working fluid mass flow rate values for the fixed gas turbine inlet temperature and compression ratio values. The Otto Cycle efficiency increases with an increase in the compression ratio values for a fixed combustion temperature. Also, the Otto Cycle power output increases with an increase in the combustion temperature for a fixed compression ratio value and given geometry of the four cylinder and four stroke Otto engine. The Diesel Cycle efficiency increases with an increase in the compression ratio and with a decrease in the cut off ratio values for a fixed combustion temperature. Also, the Diesel Cycle power output increases with an increase in the compression ratio values for a fixed combustion temperature value and given geometry of the four cylinder and four stroke Diesel engine. In general, as the isentropic compression and expansion efficiency values decrease, the cycle efficiency decreases too.
  • 43. Isentropic Compression T2s/T1 = (p2/p1)(χ-1)/χ [/] T2s/T1 = (V1/V2s)(χ-1) [/] p2/p1 = (V1/V2s)χ [/] wc = cp(T2 - T1) [kJ/kg] Wc = cp(T2 - T1)m [kW] c = (T2s - T1)/(T2 - T1) [/] Power Cycle Components/Processes Engineering Equations
  • 44. Combustion is complete with and without heat loss and at stoichiometric and stoichiometry > 1 conditions having different oxidant preheat temperature and the oxidant is air. Also, Ideal Flame Temperature [K] hreactants = hproducts [kJ/kg] Real Flame Temperature [K] hproducts = hreactants - heat loss [kJ/kg] heat loss = (1 - combustion )HHV/(1 + oxidant to fuel ratio) [kJ/kg] Power Cycle Components/Processes Engineering Equations
  • 45. Isentropic Expansion T1/T2s = (p1/p2)(χ-1)/χ [/] T1/T2s = (V2s/V1)(χ-1) [/] p1/p2 = (V2s/V1)χ [/] we = cp(T1 - T2) [kJ/kg] We = cp(T1 - T2)m [kW] e = (T1 - T2)/(T1 - T2s) [/] Power Cycle Components/Processes Engineering Equations
  • 46. Compression Schematic Layout Working Fluid In Working Fluid Out Compressor 1 2 Compression
  • 47. Compression T - s Diagram Temperature--T[K] Entropy -- s [kJ/kg*K] Compression 2s 1 2
  • 48. Compression Specific Power Input 100 200 300 400 500 5 10 15 Compression Ratio (P2/P1) [/] CompressionSpecificPowerInput[kJ/kg] 85 90 95 100 Working Fluid: Air Compressor Inlet Temperature: 298 [K] -- Ambient Pressure: 1 [atm] Compression Isentropic Compression Efficiency [%]
  • 49. Compression Power Input 0 25 50 75 100 50 100 150 Working Fluid Mass Flow Rate [kg/s] CompressionPowerInput[MW] 85 90 95 100 Working Fluid: Air Compressor Inlet Temperature: 298 [K] -- Compression Ratio (P2/P1): 15 [/] Compression Isentropic Compression Efficiency [%]
  • 50. Combustion Schematic Layout Fuel Oxidant -- Air Combustion Products Combustion
  • 51. Specific Enthalpy vs Temperature -20,000 -10,000 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 500 800 1,100 1,400 1,700 2,000 2,300 2,600 2,900 3,200 3,500 3,800 4,100 4,400 4,700 5,000 C(S) H2 S(S) N2 O2 H2O(L) CH4 CO2 H2O SO2 Combustion SpecificEnthalpy[kJ/kg] Temperature [K]
  • 52. Combustion h - T Diagram SpecificEnthalpy--h[kJ/kg] Temperature -- T [K] Reactants Products TflameTreference Combustion Heat Loss Ideal Real
  • 54. Combustion CO2 [kg/kg] 0.295 0.000 0.000 0.249 0.202 0.151 H2O [kg/kg] 0.000 0.255 0.000 0.041 0.080 0.124 SO2 [kg/kg] 0.000 0.000 0.378 0.005 0.000 0.000 N2 [kg/kg] 0.705 0.745 0.622 0.705 0.718 0.725 O2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 CO2 [kmol/kmol] 0.210 0.000 0.000 0.170 0.132 0.095 Fuel Carbon Hydrogen Sulfur Coal Oil Gas SO2 [kmol/kmol] 0.000 0.000 0.210 0.002 0.000 0.000 N2 [kmol/kmol] 0.790 0.653 0.790 0.759 0.739 0.715 Combustion Products Flame Temperature, Stoichiometric Oxidant to Fuel Ratio and HHV Flame Temperature [K] 2,460 2,525 1,972 2,484 2,484 2,327 Stoichiometric Oxidant to Fuel Ratio [/] 11.444 34.333 4.292 10.487 14.649 17.167 HHV [Btu/lbm] 14,094 60,997 3,982 14,162 20,660 21,563 Fuel Carbon Hydrogen Sulfur Coal Oil Gas H2O [kmol/kmol] 0.000 0.347 0.000 0.068 0.129 0.190 O2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 Stoichiometric Combustion Combustion Products Composition on Weight and Mole Basis
  • 55. Combustion Carbon [K] 2,460 2,361 2,262 2,163 Hydrogen [K] 2,525 2,409 2,293 2,176 Sulfur [K] 1,972 1,895 1,818 1,741 Coal [K] 2,484 2,381 2,278 2,174 Oil [K] 2,484 2,381 2,275 2,168 Gas [K] 2,327 2,236 2,145 2,053 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Flame Temperature, Stoichiometric Oxidant to Fuel Ratio and HHV Ideal Flame Temperature [K] 2,460 2,525 1,972 2,484 2,484 2,327 Stoichiometric Oxidant to Fuel Ratio [/] 11.444 34.333 4.292 10.487 14.649 17.167 HHV [Btu/lbm] 14,094 60,997 3,982 14,162 20,660 21,563 Fuel Carbon Hydrogen Sulfur Coal Oil Gas Stoichiometric Combustion Combustion Products Ideal vs Real Flame Temperature
  • 56. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K]
  • 57. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K]
  • 58. Combustion Products Flame Temperature 1,900 2,000 2,100 2,200 2,300 2,400 2,500 2,600 Carbon Hydrogen Sulfur Coal Oil Gas Flame Temperature [K] Combustion Fuel and Oxidant Inlet Temperature: 298 [K] FlameTemperature[K]
  • 59. Combustion Products Flame Temperature 1,600 1,800 2,000 2,200 2,400 2,600 2,800 Carbon Hydrogen Sulfur Coal Oil Gas FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Combustion Efficiency [%]
  • 60. Combustion Stoichiometric Oxidant to Fuel Ratio 0 5 10 15 20 25 30 35 40 Carbon Hydrogen Sulfur Coal Oil Gas Stoichiometric Oxidant to Fuel Ratio [/] Combustion Fuel and Oxidant Inlet Temperature: 298 [K] StoichiometricOxidanttoFuelRatio[/]
  • 61. Higher Heating Value (HHV) 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 Carbon Hydrogen Sulfur Coal Oil Gas HHV [Btu/lbm] Combustion Fuel and Oxidant Inlet Temperature: 298 [K] HHV[Btu/lbm]
  • 63. Combustion Stoichiometric Combustion Flame Temperature Hydrogen [K] 2,525 2,583 2,640 2,689 2,757 2,818 2,879 2,942 Sulfur [K] 1,972 2,045 2,118 2,191 2,267 2,343 2,421 2,501 Coal [K] 2,484 2,551 2,618 2,686 2,756 2,827 2,899 2,972 Oil [K] 2,484 2,551 2,616 2,683 2,751 2,820 2,891 2,963 Preheat Temperature [K] 298 400 500 600 700 800 900 1,000 Combustion Products Stoichiometric Oxidant to Fuel Ratio and HHV Stoichiometric Oxidant to Fuel Ratio [/] 11.444 34.333 4.292 10.487 14.649 17.167 HHV [Btu/lbm] 14,094 60,997 3,982 14,162 20,660 21,563 Fuel Carbon Hydrogen Sulfur Coal Oil Gas Gas [K] 2,327 2,391 2,455 2,520 2,586 2,653 2,721 2,791 Carbon [K] 2,460 2,531 2,602 2,674 2,747 2,822 2,898 2,976
  • 64. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions
  • 71. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] 85 90 95 100 Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions Fuel: Carbon Combustion Efficiency [%]
  • 72. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] 85 90 95 100 Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions Fuel: Hydrogen Combustion Efficiency [%]
  • 73. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] 85 90 95 100 Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions Fuel: Sulfur Combustion Efficiency [%]
  • 74. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] 85 90 95 100 Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions Fuel: Coal Combustion Efficiency [%]
  • 75. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] 85 90 95 100 Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions Fuel: Oil Combustion Efficiency [%]
  • 76. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] 85 90 95 100 Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions Fuel: Gas Combustion Efficiency [%]
  • 78. Combustion Combustion Products Composition on Weight and Mole Basis Combustion Products Flame Temperature and Oxidant to Fuel Ratio Flame Temperature [K] 2,460 1,506 1,145 952 831 748 Oxidant to Fuel Ratio [/] 11.444 22.889 34.333 45.778 57.222 68.667 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Carbon CO2 [kg/kg] 0.295 0.153 0.104 0.083 0.063 0.053 H2O [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 SO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kg/kg] 0.705 0.735 0.745 0.751 0.754 0.756 O2 [kg/kg] 0.000 0.112 0.151 0.171 0.183 0.191 CO2 [kmol/kmol] 0.210 0.105 0.070 0.053 0.042 0.035 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kmol/kmol] 0.790 0.790 0.790 0.790 0.790 0.790 H2O [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 O2 [kmol/kmol] 0.000 0.105 0.140 0.157 0.168 0.175
  • 80. Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 2,525 1,645 1,269 1,059 924 830 Oxidant to Fuel Ratio [/] 34.333 68.667 103.000 137.333 171.667 206.000 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Hydrogen CO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 H2O [kg/kg] 0.255 0.129 0.087 0.065 0.052 0.043 SO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kg/kg] 0.745 0.756 0.760 0.761 0.763 0.763 O2 [kg/kg] 0.000 0.115 0.154 0.173 0.185 0.193 CO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kmol/kmol] 0.653 0.715 0.738 0.751 0.758 0.763 H2O [kmol/kmol] 0.347 0.190 0.131 0.100 0.081 0.068 O2 [kmol/kmol] 0.000 0.095 0.131 0.150 0.161 0.169 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  • 82. Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 1,972 1,229 949 799 705 641 Oxidant to Fuel Ratio [/] 4.292 8.583 12.875 17.167 21.458 25.750 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Sulfur CO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 H2O [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 SO2 [kg/kg] 0.378 0.209 0.144 0.110 0.089 0.075 N2 [kg/kg] 0.622 0.687 0.712 0.725 0.733 0.738 O2 [kg/kg] 0.000 0.104 0.144 0.165 0.178 0.187 CO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.210 0.105 0.070 0.053 0.042 0.035 N2 [kmol/kmol] 0.790 0.790 0.790 0.790 0.790 0.790 H2O [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 O2 [kmol/kmol] 0.000 0.105 0.140 0.158 0.168 0.175 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  • 84. Combustion Combustion Products Composition on Weight and Mole Basis Fuel: Coal CO2 [kg/kg] 0.249 0.130 0.088 0.067 0.053 0.045 H2O [kg/kg] 0.041 0.021 0.014 0.011 0.009 0.007 SO2 [kg/kg] 0.005 0.003 0.002 0.001 0.001 0.001 N2 [kg/kg] 0.705 0.735 0.745 0.750 0.754 0.756 O2 [kg/kg] 0.000 0.111 0.151 0.171 0.183 0.191 CO2 [kmol/kmol] 0.170 0.087 0.059 0.044 0.035 0.030 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.002 0.001 0.001 0.001 0.001 0.000 N2 [kmol/kmol] 0.760 0.774 0.779 0.782 0.783 0.785 H2O [kmol/kmol] 0.068 0.035 0.024 0.018 0.014 0.012 O2 [kmol/kmol] 0.000 0.103 0.138 0.156 0.166 0.174 Flame Temperature [K] 2,484 1,544 1,178 981 856 769 Oxidant to Fuel Ratio [/] 10.487 20.992 31.497 42.002 52.507 63.013 Stoichiometry [/] 1 2 3 4 5 6 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  • 86. Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 2,484 1,555 1,187 989 863 776 Oxidant to Fuel Ratio [/] 14.694 29.298 43.947 58.596 73.244 87.893 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Oil CO2 [kg/kg] 0.202 0.104 0.070 0.053 0.042 0.035 H2O [kg/kg] 0.080 0.042 0.028 0.021 0.017 0.014 SO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kg/kg] 0.718 0.742 0.750 0.754 0.757 0.758 O2 [kg/kg] 0.000 0.113 0.152 0.172 0.184 0.192 CO2 [kmol/kmol] 0.132 0.068 0.046 0.035 0.028 0.023 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kmol/kmol] 0.739 0.764 0.772 0.777 0.779 0.781 H2O [kmol/kmol] 0.129 0.067 0.045 0.034 0.027 0.023 O2 [kmol/kmol] 0.000 0.102 0.137 0.155 0.166 0.173 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  • 88. Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 2,327 1,480 1,137 951 832 750 Oxidant to Fuel Ratio [/] 17.167 34.333 51.500 68.667 85.833 103.000 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Gas CO2 [kg/kg] 0.151 0.078 0.052 0.039 0.032 0.026 H2O [kg/kg] 0.124 0.064 0.043 0.032 0.026 0.022 SO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kg/kg] 0.725 0.745 0.752 0.756 0.758 0.760 O2 [kg/kg] 0.000 0.113 0.152 0.172 0.184 0.192 CO2 [kmol/kmol] 0.095 0.050 0.034 0.026 0.021 0.017 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kmol/kmol] 0.715 0.751 0.763 0.770 0.774 0.776 H2O [kmol/kmol] 0.190 0.100 0.068 0.051 0.041 0.034 O2 [kmol/kmol] 0.000 0.100 0.135 0.153 0.165 0.172 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  • 90. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Stoichiometry [/] Fuel: Carbon Fuel and Oxidant Inlet Temperature: 298 [K]
  • 91. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Stoichiometry [/] Fuel: Carbon Fuel and Oxidant Inlet Temperature: 298 [K]
  • 92. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Hydrogen Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 93. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Hydrogen Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 94. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Sulfur Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 95. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Sulfur Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 96. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Coal Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 97. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Coal Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 98. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Oil Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 99. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Oil Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 100. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Gas Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 101. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Gas Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 102. Combustion Products Flame Temperature 600 1,100 1,600 2,100 2,600 1 2 3 4 5 6 FlameTemperature[K] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 103. Combustion Products Flame Temperature 500 1,000 1,500 2,000 2,500 3,000 1 2 3 4 5 6 FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Fuel: Carbon Stoichiometry [/] Combustion Efficiency [%]
  • 104. Combustion Products Flame Temperature 500 1,000 1,500 2,000 2,500 3,000 1 2 3 4 5 6 FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Fuel: Hydrogen Stoichiometry [/] Combustion Efficiency [%]
  • 105. Combustion Products Flame Temperature 500 1,000 1,500 2,000 2,500 3,000 1 2 3 4 5 6 FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Fuel: Sulfur Stoichiometry [/] Combustion Efficiency [%]
  • 106. Combustion Products Flame Temperature 500 1,000 1,500 2,000 2,500 3,000 1 2 3 4 5 6 FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Fuel: Coal Stoichiometry [/] Combustion Efficiency [%]
  • 107. Combustion Products Flame Temperature 500 1,000 1,500 2,000 2,500 3,000 1 2 3 4 5 6 FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Fuel: Oil Stoichiometry [/] Combustion Efficiency [%]
  • 108. Combustion Products Flame Temperature 500 1,000 1,500 2,000 2,500 3,000 1 2 3 4 5 6 FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Combustion Efficiency [%] Fuel: Gas Stoichiometry [/]
  • 109. Combustion Oxidant to Fuel Ratio 0 40 80 120 160 200 240 1 2 3 4 5 6 OxidanttoFuelRatio[/] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 110. Expansion Schematic Layout Working Fluid In Working Fluid Out Turbine 1 2 Expansion
  • 111. Expansion T - s Diagram Temperature--T[K] Entropy -- s [kJ/kg*K] Expansion 1 2s 2
  • 112. Expansion Specific Power Output 400 500 600 700 800 900 5 10 15 Expansion Ratio (P1/P2) [/] ExpansionSpecificPowerOutput[kJ/kg] 85 90 95 100 Working Fluid: Air Turbine Inlet Temperature: 1,500 [K] -- Ambient Pressure: 1 [atm] Expansion Isentropic Expansion Efficiency [%]
  • 113. Expansion Power Output 0 40 80 120 160 50 100 150 Working Fluid Mass Flow Rate [kg/s] ExpansionPowerOutput[MW] 85 90 95 100 Working Fluid: Air Turbine Inlet Temperature: 1,500 [K] -- Expansion Ratio (P1/P2): 15 [/] Expansion Isentropic Expansion Efficiency [%]
  • 114. Power Cycle Components/Processes Conclusions The compression specific power input increases with an increase in the compression ratio values for a fixed compression inlet temperature. As the working fluid mass flow rate increases for the fixed compression ratio and compression inlet temperature values, the compression power input requirements increase too. As the isentropic compression efficiency decreases, the compression power input increases. Hydrogen as the fuel has the highest flame temperature, requires the most mass amount of oxidant/air in order to have complete combustion per unit mass amount of fuel and has the largest fuel higher heating value. As the combustion efficiency decreases, the combustion products flame temperature decreases. When hydrogen reacts with oxidant/air, there is no CO2 present in the combustion products. The expansion specific power output increases with an increase in the expansion ratio values for a fixed expansion inlet temperature. As the working fluid mass flow rate increases for the fixed expansion ratio and expansion inlet temperature values, the expansion power output values increase too. As the isentropic expansion efficiency decreases, the expansion power output decreases.
  • 115. Sonic Velocity vsonic = (χ RT)1/2 [m/s] Mach Number M = v/vsonic [/] Compressible Flow Engineering Equations
  • 116. Isentropic Flow Tt/Ts = (1 + M2(χ - 1)/2) [/] pt/p = (1 + M2(χ - 1)/2)χ/(χ-1) [/] ht = (hs + v2/2) [kJ/kg] Tt = (Ts + v2/(2cp)) [K] n = (T1 - T2)/(T1 - T2s) [/] d = (T2s - T 1)/(T2 - T1) [/] Thrust = vm + (p - pa)A [N] Compressible Flow Engineering Equations
  • 117. Nozzle Schematic Layout Working Fluid In Working Fluid Out Nozzle 1 2 Nozzle
  • 118. Nozzle T - s Diagram Temperature--T[K] Entropy -- s [kJ/kg*K] Nozzle 1 2s 2
  • 119. Nozzle Performance 0.2 0.4 0.6 0.8 1.0 400 500 600 Velocity [m/s] MachNumber[/] 85 90 95 100 Nozzle Nozzle Inlet Stagnation Conditions -- Temperature: 1,500 [K] and Pressure: 10 [atm] Isentropic Nozzle Efficiency [%]
  • 120. Nozzle Performance 1.00 1.05 1.10 1.15 1.20 400 500 600 Velocity [m/s] Tstagnation/Tstatic[/] 85 90 95 100 Nozzle Nozzle Inlet Stagnation Conditions -- Temperature: 1,500 [K] and Pressure: 10 [atm] Isentropic Nozzle Efficiency [%]
  • 121. Nozzle Performance 1.20 1.30 1.40 1.50 1.60 400 500 600 Velocity [m/s] Pstagnation/Pstatic[/] 85 90 95 100 Nozzle Nozzle Inlet Stagnation Conditions -- Temperature: 1,500 [K] and Pressure: 10 [atm] Isentropic Nozzle Efficiency [%]
  • 122. Diffuser Schematic Layout Working Fluid In Working Fluid Out Diffuser 1 2 Diffuser
  • 123. Diffuser T - s Diagram Temperature--T[K] Entropy -- s [kJ/kg*K] Diffuser 2s 1 2
  • 124. Diffuser Performance 0.2 0.4 0.6 0.8 1.0 100 200 300 Velocity [m/s] MachNumber[/] 85 90 95 100 Diffuser Diffuser Inlet Static Conditions -- Temperature: 298 [K] and Pressure: 1 [atm] Isentropic Diffuser Efficiency [%]
  • 125. Diffuser Performance 1.00 1.05 1.10 1.15 1.20 100 200 300 Velocity [m/s] Tstagnation/Tstatic[/] 85 90 95 100 Diffuser Isentropic Diffuser Efficiency [%] Diffuser Inlet Static Conditions -- Temperature: 298 [K] and Pressure: 1 [atm]
  • 126. Diffuser Performance 1.20 1.30 1.40 1.50 1.60 100 200 300 Velocity [m/s] Pstagnation/Pstatic[/] 85 90 95 100 Diffuser Isentropic Diffuser Efficiency [%] Diffuser Inlet Static Conditions -- Temperature: 298 [K] and Pressure: 1 [atm]
  • 127. Thrust Schematic Layout Working Fluid Out Nozzle 21 Working Fluid at Still Thrust
  • 128. Thrust T - s Diagram Temperature--T[K] Entropy -- s [kJ/kg*K] Thrust 1 2s 2
  • 129. Nozzle Performance 0.6 0.7 0.8 0.9 1.0 900 1,200 1,500 Nozzle Inlet Stagnation Temperature [K] MachNumber[/] 85 90 95 100 Thrust Isentropic Nozzle Efficiency [%] Nozzle Inlet Stagnation Conditions -- Pressure: 10 [atm] Nozzle Outlet Static Conditions -- Mach Number: 0.85 [/]
  • 130. Nozzle Performance 1.00 1.05 1.10 1.15 1.20 900 1,200 1,500 Nozzle Inlet Stagnation Temperature [K] Tstagnation/Tstatic[/] 85 90 95 100 Thrust Isentropic Nozzle Efficiency [%] Nozzle Inlet Stagnation Conditions -- Pressure: 10 [atm] Nozzle Outlet Static Conditions -- Mach Number: 0.85 [/]
  • 131. Nozzle Performance 1.40 1.50 1.60 1.70 1.80 900 1,200 1,500 Nozzle Inlet Stagnation Temperature [K] Pstagnation/Pstatic[/] 85 90 95 100 Thrust Nozzle Inlet Stagnation Conditions -- Pressure: 10 [atm] Isentropic Nozzle Efficiency [%] Nozzle Outlet Static Conditions -- Mach Number: 0.85 [/]
  • 132. Thrust 800 900 1,000 1,100 1,200 900 1,200 1,500 Nozzle Inlet Stagnation Temperature [K] Thrust[N] 85 90 95 100 Working Fluid Mass Flow Rate: 1 [kg/s] Thrust Nozzle Outlet Static Conditions -- Mach Number: 0.85 [/] Nozzle Inlet Stagnation Pressure: 10 [atm] and Ambient Conditions Pressure: 1 [atm] Isentropic Nozzle Efficiency [%]
  • 133. Compressible Flow Conclusions Nozzle stagnation over static temperature and pressure ratio values increase with an increase in the velocity (Mach Number). Diffuser stagnation over static temperature and pressure ratio values increase with an increase in the velocity (Mach Number). Thrust increases with an increase in the inlet stagnation temperature. As the nozzle and diffuser efficiency values decrease, the nozzle, diffuser and thrust performance decreases.