SlideShare a Scribd company logo
1 of 63
Engineering Software
P.O. Box 2134
Kensington, MD 20891
Phone: (301) 919-9670
E-Mail: info@engineering-4e.com
http://www.engineering-4e.com
Copyright © 1996
Combustion Analysis Webinar Objectives
In this webinar, the engineering students and professionals get familiar with
the ideal combustion and its h - T diagram, operation and major performance
trends. Six different fuels (carbon, hydrogen, sulfur, coal, oil and gas) react
with air and oxygen enriched air as the oxidant at different stoichiometry
values (stoichiometry => 1) and oxidant inlet temperature values.
Performance Objectives:
Introduce basic energy conversion engineering assumptions and equations
Know basic elements of combustion and its h - T diagram
Be familiar with combustion operation
Understand general combustion performance trends
This webinar consists of the following single major section:
• Combustion -- six different fuels (carbon, hydrogen, sulfur, coal, oil and
gas) react with air and oxygen enriched air as the oxidant at different
stoichiometry values (stoichiometry => 1) and oxidant inlet
temperature values
In this webinar, first overall engineering assumptions and basic engineering
equations are provided. Furthermore, basic combustion engineering
equations, section material and conclusions are provided.
Combustion Analysis Webinar
The combustion analysis presented in this webinar considers ideal combustion
operation -- six different fuels (carbon, hydrogen, sulfur, coal, oil and gas) react with
air and oxygen enriched air as the oxidant at different stoichiometry values
(stoichiometry => 1) and oxidant inlet temperature values. Furthermore, the following
assumptions are valid:
Thermodynamic and Transport Properties
Single species consideration
Ideal gas approach is used (pv=RT)
Specific heat is not constant
Coefficients describing thermodynamic and transport properties were obtained from
the NASA Glenn Research Center at Lewis Field in Cleveland, OH -- such coefficients
conform with the standard reference temperature of 298.15 K (77 F) and the JANAF
Tables
Engineering Assumptions
Basic Conservation Equations
Continuity Equation
m = ρvA [kg/s]
Momentum Equation
F = (vm + pA) out - in [N]
Energy Equation
Q - W = ((h + v2/2 + gh)m)out - in [kW]
Basic Engineering Equations
Ideal Gas State Equation
pv = RT [kJ/kg]
Perfect Gas
cp = constant [kJ/kg*K]
Kappa
χ = cp/cv [/]
For air: χ = 1.4 [/], R = 0.2867 [kJ/kg*K] and
cp = 1.004 [kJ/kg*K]
Basic Engineering Equations
Combustion Engineering Equations
Combustion is ideal, complete with no heat loss and
fuel reacts with air and oxygen enriched air as the
oxidant at different stoichiometry values (stoichiometry
=> 1) and oxidant inlet temperature values.
Also,
Flame Temperature [K]
hreactants = hproducts [kJ/kg]
Combustion Schematic Layout
Fuel
Oxidant
Combustion Products
Combustion
Specific Enthalpy vs Temperature
-20,000
-10,000
0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
500 800 1,100 1,400 1,700 2,000 2,300 2,600 2,900 3,200 3,500 3,800 4,100 4,400 4,700 5,000
C(S) H2 S(S) N2 O2 H2O(L) CH4 CO2 H2O SO2
Combustion
SpecificEnthalpy[kJ/kg]
Temperature [K]
Combustion h - T Diagram
SpecificEnthalpy--h[kJ/kg]
Temperature -- T [K]
Reactants
Products
TflameTreference
Combustion
Combustion
Oxidant Composition
Fuel Composition
C
[kg/kg]
1.000
0.000
0.000
0.780
0.860
-
H
[kg/kg]
0.000
1.000
0.000
0.050
0.140
-
S
[kg/kg]
0.000
0.000
1.000
0.030
0.000
-
N
[kg/kg]
0.000
0.000
0.000
0.040
0.000
-
O
[kg/kg]
0.000
0.000
0.000
0.080
0.000
-
H2O
[kg/kg]
0.000
0.000
0.000
0.020
0.000
-
CH4
[kg/kg]
-
-
-
-
-
1.000
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
N
[kmol/kmol]
0.790
O
[kmol/kmol]
0.210
N
[kg/kg]
0.767
O
[kg/kg]
0.233
Oxidant
Air
Combustion
Stoichiometric Combustion
Combustion Products Composition on Weight and Mole Basis
CO2
[kg/kg]
0.295
0.000
0.000
0.249
0.202
0.151
H2O
[kg/kg]
0.000
0.255
0.000
0.041
0.080
0.124
SO2
[kg/kg]
0.000
0.000
0.378
0.005
0.000
0.000
N2
[kg/kg]
0.705
0.745
0.622
0.705
0.718
0.725
O2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
CO2
[kmol/kmol]
0.210
0.000
0.000
0.170
0.132
0.095
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
SO2
[kmol/kmol]
0.000
0.000
0.210
0.002
0.000
0.000
N2
[kmol/kmol]
0.790
0.653
0.790
0.759
0.739
0.715
Combustion Products Flame Temperature, Stoichiometric Oxidant to Fuel Ratio and HHV
Flame Temperature
[K]
2,460
2,525
1,972
2,484
2,484
2,327
Stoichiometric
Oxidant to Fuel Ratio
[/]
11.444
34.333
4.292
10.487
14.649
17.167
HHV
[Btu/lbm]
14,094
60,997
3,982
14,162
20,660
21,563
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
H2O
[kmol/kmol]
0.000
0.347
0.000
0.068
0.129
0.190
O2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
Carbon Hydrogen Sulfur Coal Oil Gas
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
Carbon Hydrogen Sulfur Coal Oil Gas
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Combustion Products Flame Temperature
1,900
2,000
2,100
2,200
2,300
2,400
2,500
2,600
Carbon Hydrogen Sulfur Coal Oil Gas
Flame Temperature [K]
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
FlameTemperature[K]
Combustion Stoichiometric Oxidant to Fuel Ratio
0
5
10
15
20
25
30
35
40
Carbon Hydrogen Sulfur Coal Oil Gas
Stoichiometric Oxidant to Fuel Ratio [/]
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
StoichiometricOxidanttoFuelRatio[/]
Higher Heating Value (HHV)
0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
Carbon Hydrogen Sulfur Coal Oil Gas
HHV [Btu/lbm]
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
HHV[Btu/lbm]
Combustion
Oxidant Composition
Fuel Composition
C
[kg/kg]
1.000
0.000
0.000
0.780
0.860
-
H
[kg/kg]
0.000
1.000
0.000
0.050
0.140
-
S
[kg/kg]
0.000
0.000
1.000
0.030
0.000
-
N
[kg/kg]
0.000
0.000
0.000
0.040
0.000
-
O
[kg/kg]
0.000
0.000
0.000
0.080
0.000
-
H2O
[kg/kg]
0.000
0.000
0.000
0.020
0.000
-
CH4
[kg/kg]
-
-
-
-
-
1.000
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
N
[kmol/kmol]
0.790
O
[kmol/kmol]
0.210
N
[kg/kg]
0.767
O
[kg/kg]
0.233
Oxidant
Air
Combustion
Stoichiometric Combustion
Flame Temperature
Hydrogen
[K]
2,525
2,583
2,640
2,689
2,757
2,818
2,879
2,942
Sulfur
[K]
1,972
2,045
2,118
2,191
2,267
2,343
2,421
2,501
Coal
[K]
2,484
2,551
2,618
2,686
2,756
2,827
2,899
2,972
Oil
[K]
2,484
2,551
2,616
2,683
2,751
2,820
2,891
2,963
Preheat Temperature
[K]
298
400
500
600
700
800
900
1,000
Combustion Products Stoichiometric Oxidant to Fuel Ratio and HHV
Stoichiometric
Oxidant to Fuel Ratio
[/]
11.444
34.333
4.292
10.487
14.649
17.167
HHV
[Btu/lbm]
14,094
60,997
3,982
14,162
20,660
21,563
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
Gas
[K]
2,327
2,391
2,455
2,520
2,586
2,653
2,721
2,791
Carbon
[K]
2,460
2,531
2,602
2,674
2,747
2,822
2,898
2,976
Combustion Products Flame Temperature
0
1,000
2,000
3,000
298 400 500 600 700 800 900 1,000
FlameTemperature[K]
Carbon Hydrogen Sulfur Coal Oil Gas
Combustion
Fuel Inlet Temperature: 298 [K]
Oxidant Preheat Temperature for Stoichiometric Combustion Conditions
Combustion
Oxidant Composition
Fuel Composition
C
[kg/kg]
1.000
0.000
0.000
0.780
0.860
-
H
[kg/kg]
0.000
1.000
0.000
0.050
0.140
-
S
[kg/kg]
0.000
0.000
1.000
0.030
0.000
-
N
[kg/kg]
0.000
0.000
0.000
0.040
0.000
-
O
[kg/kg]
0.000
0.000
0.000
0.080
0.000
-
H2O
[kg/kg]
0.000
0.000
0.000
0.020
0.000
-
CH4
[kg/kg]
-
-
-
-
-
1.000
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
N
[kmol/kmol]
0.790
O
[kmol/kmol]
0.210
N
[kg/kg]
0.767
O
[kg/kg]
0.233
Oxidant
Air
Combustion
Combustion Products Composition on Weight and Mole Basis
Combustion Products Flame Temperature and Oxidant to Fuel Ratio
Flame Temperature
[K]
2,460
1,506
1,145
952
831
748
Oxidant to Fuel Ratio
[/]
11.444
22.889
34.333
45.778
57.222
68.667
Stoichiometry
[/]
1
2
3
4
5
6
Fuel: Carbon
CO2
[kg/kg]
0.295
0.153
0.104
0.083
0.063
0.053
H2O
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
SO2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kg/kg]
0.705
0.735
0.745
0.751
0.754
0.756
O2
[kg/kg]
0.000
0.112
0.151
0.171
0.183
0.191
CO2
[kmol/kmol]
0.210
0.105
0.070
0.053
0.042
0.035
Stoichiometry
[/]
1
2
3
4
5
6
SO2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kmol/kmol]
0.790
0.790
0.790
0.790
0.790
0.790
H2O
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
O2
[kmol/kmol]
0.000
0.105
0.140
0.157
0.168
0.175
Combustion
Combustion Products Composition on Weight and Mole Basis
Flame Temperature
[K]
2,525
1,645
1,269
1,059
924
830
Oxidant to Fuel Ratio
[/]
34.333
68.667
103.000
137.333
171.667
206.000
Stoichiometry
[/]
1
2
3
4
5
6
Fuel: Hydrogen
CO2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
H2O
[kg/kg]
0.255
0.129
0.087
0.065
0.052
0.043
SO2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kg/kg]
0.745
0.756
0.760
0.761
0.763
0.763
O2
[kg/kg]
0.000
0.115
0.154
0.173
0.185
0.193
CO2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
Stoichiometry
[/]
1
2
3
4
5
6
SO2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kmol/kmol]
0.653
0.715
0.738
0.751
0.758
0.763
H2O
[kmol/kmol]
0.347
0.190
0.131
0.100
0.081
0.068
O2
[kmol/kmol]
0.000
0.095
0.131
0.150
0.161
0.169
Combustion Products Flame Temperature and Oxidant to Fuel Ratio
Combustion
Combustion Products Composition on Weight and Mole Basis
Flame Temperature
[K]
1,972
1,229
949
799
705
641
Oxidant to Fuel Ratio
[/]
4.292
8.583
12.875
17.167
21.458
25.750
Stoichiometry
[/]
1
2
3
4
5
6
Fuel: Sulfur
CO2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
H2O
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
SO2
[kg/kg]
0.378
0.209
0.144
0.110
0.089
0.075
N2
[kg/kg]
0.622
0.687
0.712
0.725
0.733
0.738
O2
[kg/kg]
0.000
0.104
0.144
0.165
0.178
0.187
CO2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
Stoichiometry
[/]
1
2
3
4
5
6
SO2
[kmol/kmol]
0.210
0.105
0.070
0.053
0.042
0.035
N2
[kmol/kmol]
0.790
0.790
0.790
0.790
0.790
0.790
H2O
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
O2
[kmol/kmol]
0.000
0.105
0.140
0.158
0.168
0.175
Combustion Products Flame Temperature and Oxidant to Fuel Ratio
Combustion
Combustion Products Composition on Weight and Mole Basis
Fuel: Coal
CO2
[kg/kg]
0.249
0.130
0.088
0.067
0.053
0.045
H2O
[kg/kg]
0.041
0.021
0.014
0.011
0.009
0.007
SO2
[kg/kg]
0.005
0.003
0.002
0.001
0.001
0.001
N2
[kg/kg]
0.705
0.735
0.745
0.750
0.754
0.756
O2
[kg/kg]
0.000
0.111
0.151
0.171
0.183
0.191
CO2
[kmol/kmol]
0.170
0.087
0.059
0.044
0.035
0.030
Stoichiometry
[/]
1
2
3
4
5
6
SO2
[kmol/kmol]
0.002
0.001
0.001
0.001
0.001
0.000
N2
[kmol/kmol]
0.760
0.774
0.779
0.782
0.783
0.785
H2O
[kmol/kmol]
0.068
0.035
0.024
0.018
0.014
0.012
O2
[kmol/kmol]
0.000
0.103
0.138
0.156
0.166
0.174
Flame Temperature
[K]
2,484
1,544
1,178
981
856
769
Oxidant to Fuel Ratio
[/]
10.487
20.992
31.497
42.002
52.507
63.013
Stoichiometry
[/]
1
2
3
4
5
6
Combustion Products Flame Temperature and Oxidant to Fuel Ratio
Combustion
Combustion Products Composition on Weight and Mole Basis
Flame Temperature
[K]
2,484
1,555
1,187
989
863
776
Oxidant to Fuel Ratio
[/]
14.694
29.298
43.947
58.596
73.244
87.893
Stoichiometry
[/]
1
2
3
4
5
6
Fuel: Oil
CO2
[kg/kg]
0.202
0.104
0.070
0.053
0.042
0.035
H2O
[kg/kg]
0.080
0.042
0.028
0.021
0.017
0.014
SO2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kg/kg]
0.718
0.742
0.750
0.754
0.757
0.758
O2
[kg/kg]
0.000
0.113
0.152
0.172
0.184
0.192
CO2
[kmol/kmol]
0.132
0.068
0.046
0.035
0.028
0.023
Stoichiometry
[/]
1
2
3
4
5
6
SO2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kmol/kmol]
0.739
0.764
0.772
0.777
0.779
0.781
H2O
[kmol/kmol]
0.129
0.067
0.045
0.034
0.027
0.023
O2
[kmol/kmol]
0.000
0.102
0.137
0.155
0.166
0.173
Combustion Products Flame Temperature and Oxidant to Fuel Ratio
Combustion
Combustion Products Composition on Weight and Mole Basis
Flame Temperature
[K]
2,327
1,480
1,137
951
832
750
Oxidant to Fuel Ratio
[/]
17.167
34.333
51.500
68.667
85.833
103.000
Stoichiometry
[/]
1
2
3
4
5
6
Fuel: Gas
CO2
[kg/kg]
0.151
0.078
0.052
0.039
0.032
0.026
H2O
[kg/kg]
0.124
0.064
0.043
0.032
0.026
0.022
SO2
[kg/kg]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kg/kg]
0.725
0.745
0.752
0.756
0.758
0.760
O2
[kg/kg]
0.000
0.113
0.152
0.172
0.184
0.192
CO2
[kmol/kmol]
0.095
0.050
0.034
0.026
0.021
0.017
Stoichiometry
[/]
1
2
3
4
5
6
SO2
[kmol/kmol]
0.000
0.000
0.000
0.000
0.000
0.000
N2
[kmol/kmol]
0.715
0.751
0.763
0.770
0.774
0.776
H2O
[kmol/kmol]
0.190
0.100
0.068
0.051
0.041
0.034
O2
[kmol/kmol]
0.000
0.100
0.135
0.153
0.165
0.172
Combustion Products Flame Temperature and Oxidant to Fuel Ratio
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
1 2 3 4 5 6
Combustion
Stoichiometry [/]
Fuel: Carbon
Fuel and Oxidant Inlet Temperature: 298 [K]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
1 2 3 4 5 6
Combustion
Stoichiometry [/]
Fuel: Carbon
Fuel and Oxidant Inlet Temperature: 298 [K]
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
1 2 3 4 5 6
Combustion
Fuel: Hydrogen
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
1 2 3 4 5 6
Combustion
Fuel: Hydrogen
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
1 2 3 4 5 6
Combustion
Fuel: Sulfur
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
1 2 3 4 5 6
Combustion
Fuel: Sulfur
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
1 2 3 4 5 6
Combustion
Fuel: Coal
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
1 2 3 4 5 6
Combustion
Fuel: Coal
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
1 2 3 4 5 6
Combustion
Fuel: Oil
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
1 2 3 4 5 6
Combustion
Fuel: Oil
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
1 2 3 4 5 6
Combustion
Fuel: Gas
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
1 2 3 4 5 6
Combustion
Fuel: Gas
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Products Flame Temperature
600
1,100
1,600
2,100
2,600
1 2 3 4 5 6
FlameTemperature[K]
Carbon Hydrogen Sulfur Coal Oil Gas
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion Oxidant to Fuel Ratio
0
40
80
120
160
200
240
1 2 3 4 5 6
OxidanttoFuelRatio[/]
Carbon Hydrogen Sulfur Coal Oil Gas
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometry [/]
Combustion
Oxidant Composition
N
[kmol/kmol]
0.790
0.580
0.370
O
[kmol/kmol]
0.210
0.420
0.630
N
[kg/kg]
0.767
0.550
0.340
O
[kg/kg]
0.233
0.450
0.660
Oxidant
[kmol/kmol]
O2 - 0.21
O2 - 0.42
O2 - 0.63
Fuel Composition
C
[kg/kg]
1.000
0.000
0.000
0.780
0.860
-
H
[kg/kg]
0.000
1.000
0.000
0.050
0.140
-
S
[kg/kg]
0.000
0.000
1.000
0.030
0.000
-
N
[kg/kg]
0.000
0.000
0.000
0.040
0.000
-
O
[kg/kg]
0.000
0.000
0.000
0.080
0.000
-
H2O
[kg/kg]
0.000
0.000
0.000
0.020
0.000
-
CH4
[kg/kg]
-
-
-
-
-
1.000
Fuel
Carbon
Hydrogen
Sulfur
Coal
Oil
Gas
Combustion
Stoichiometric Combustion
Combustion Products Composition on Weight and Mole Basis
Combustion Products Flame Temperature and Stoichiometric Oxidant to Fuel Ratio
Stoichiometric
Oxidant to Fuel Ratio
[/]
11.444
5.889
4.037
Fuel: Carbon
CO2
[kg/kg]
0.295
0.532
0.728
H2O
[kg/kg]
0.000
0.000
0.000
SO2
[kg/kg]
0.000
0.000
0.000
N2
[kg/kg]
0.705
0.468
0.272
O2
[kg/kg]
0.000
0.000
0.000
CO2
[kmol/kmol]
0.210
0.420
0.630
Oxidant
[kmol/kmol]
O2 - 0.21
O2 - 0.42
O2 - 0.63
SO2
[kmol/kmol]
0.000
0.000
0.000
N2
[kmol/kmol]
0.790
0.580
0.370
H2O
[kmol/kmol]
0.000
0.000
0.000
O2
[kmol/kmol]
0.000
0.000
0.000
Oxidant
[kmol/kmol]
O2 - 0.21
O2 - 0.42
O2 - 0.63
Flame Temperature
[K]
2,460
3,985
> 5,000
Combustion
Fuel: Hydrogen
CO2
[kg/kg]
0.000
0.000
0.000
H2O
[kg/kg]
0.255
0.482
0.686
SO2
[kg/kg]
0.000
0.000
0.000
N2
[kg/kg]
0.745
0.518
0.314
O2
[kg/kg]
0.000
0.000
0.000
CO2
[kmol/kmol]
0.000
0.000
0.000
Oxidant
[kmol/kmol]
O2 - 0.21
O2 - 0.42
O2 - 0.63
SO2
[kmol/kmol]
0.000
0.000
0.000
N2
[kmol/kmol]
0.653
0.408
0.227
H2O
[kmol/kmol]
0.347
0.592
0.773
O2
[kmol/kmol]
0.000
0.000
0.000
Stoichiometric Combustion
Combustion Products Composition on Weight and Mole Basis
Stoichiometric
Oxidant to Fuel Ratio
[/]
34.333
17.667
12.111
Combustion Products Flame Temperature and Stoichiometric Oxidant to Fuel Ratio
Oxidant
[kmol/kmol]
O2 - 0.21
O2 - 0.42
O2 - 0.63
Flame Temperature
[K]
2,525
3,625
4,294
Combustion
Fuel: Sulfur
CO2
[kg/kg]
0.000
0.000
0.000
H2O
[kg/kg]
0.000
0.000
0.000
SO2
[kg/kg]
0.378
0.623
0.796
N2
[kg/kg]
0.622
0.377
0.204
O2
[kg/kg]
0.000
0.000
0.000
CO2
[kmol/kmol]
0.000
0.000
0.000
Oxidant
[kmol/kmol]
O2 - 0.21
O2 - 0.42
O2 - 0.63
SO2
[kmol/kmol]
0.210
0.420
0.630
N2
[kmol/kmol]
0.790
0.580
0.370
H2O
[kmol/kmol]
0.000
0.000
0.000
O2
[kmol/kmol]
0.000
0.000
0.000
Stoichiometric Combustion
Combustion Products Composition on Weight and Mole Basis
Stoichiometric
Oxidant to Fuel Ratio
[/]
4.292
2.208
1.514
Combustion Products Flame Temperature and Stoichiometric Oxidant to Fuel Ratio
Oxidant
[kmol/kmol]
O2 - 0.21
O2 - 0.42
O2 - 0.63
Flame Temperature
[K]
1,972
3,167
4,125
Combustion
Fuel: Coal
CO2
[kg/kg]
0.249
0.448
0.610
H2O
[kg/kg]
0.041
0.074
0.100
SO2
[kg/kg]
0.005
0.009
0.013
N2
[kg/kg]
0.705
0.469
0.277
O2
[kg/kg]
0.000
0.000
0.000
CO2
[kmol/kmol]
0.170
0.326
0.470
Oxidant
[kmol/kmol]
O2 - 0.21
O2 - 0.42
O2 - 0.63
SO2
[kmol/kmol]
0.002
0.005
0.007
N2
[kmol/kmol]
0.759
0.538
0.335
H2O
[kmol/kmol]
0.068
0.131
0.189
O2
[kmol/kmol]
0.000
0.000
0.000
Stoichiometric Combustion
Combustion Products Composition on Weight and Mole Basis
Flame Temperature
[K]
2,484
3,889
4,913
Stoichiometric
Oxidant to Fuel Ratio
[/]
10.487
5.388
3.688
Combustion Products Flame Temperature and Stoichiometric Oxidant to Fuel Ratio
Oxidant
[kmol/kmol]
O2 - 0.21
O2 - 0.42
O2 - 0.63
Combustion
Fuel: Oil
CO2
[kg/kg]
0.202
0.369
0.511
H2O
[kg/kg]
0.081
0.148
0.204
SO2
[kg/kg]
0.000
0.000
0.000
N2
[kg/kg]
0.718
0.483
0.284
O2
[kg/kg]
0.000
0.000
0.000
CO2
[kmol/kmol]
0.132
0.248
0.351
Oxidant
[kmol/kmol]
O2 - 0.21
O2 - 0.42
O2 - 0.63
SO2
[kmol/kmol]
0.000
0.000
0.000
N2
[kmol/kmol]
0.739
0.510
0.307
H2O
[kmol/kmol]
0.129
0.242
0.343
O2
[kmol/kmol]
0.000
0.000
0.000
Stoichiometric Combustion
Combustion Products Composition on Weight and Mole Basis
Stoichiometric
Oxidant to Fuel Ratio
[/]
14.649
7.538
5.167
Combustion Products Flame Temperature and Stoichiometric Oxidant to Fuel Ratio
Oxidant
[kmol/kmol]
O2 - 0.21
O2 - 0.42
O2 - 0.63
Flame Temperature
[K]
2,484
3,836
4,789
Combustion
Fuel: Gas
CO2
[kg/kg]
0.151
0.280
0.390
H2O
[kg/kg]
0.124
0.229
0.319
SO2
[kg/kg]
0.000
0.000
0.000
N2
[kg/kg]
0.725
0.492
0.291
O2
[kg/kg]
0.000
0.000
0.000
CO2
[kmol/kmol]
0.095
0.174
0.240
Oxidant
[kmol/kmol]
O2 - 0.21
O2 - 0.42
O2 - 0.63
SO2
[kmol/kmol]
0.000
0.000
0.000
N2
[kmol/kmol]
0.715
0.479
0.281
H2O
[kmol/kmol]
0.190
0.347
0.479
O2
[kmol/kmol]
0.000
0.000
0.000
Stoichiometric Combustion
Combustion Products Composition on Weight and Mole Basis
Flame Temperature
[K]
2,327
3,505
4,300
Stoichiometric
Oxidant to Fuel Ratio
[/]
17.167
8.833
6.056
Combustion Products Flame Temperature and Stoichiometric Oxidant to Fuel Ratio
Oxidant
[kmol/kmol]
O2 - 0.21
O2 - 0.42
O2 - 0.63
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
O2 - 0.21 O2 - 0.42 O2 - 0.63
Combustion
Fuel: Carbon
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
O2 - 0.21 O2 - 0.42 O2 - 0.63
Combustion
Fuel: Carbon
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
O2 - 0.21 O2 - 0.42 O2 - 0.63
Combustion
Fuel: Hydrogen
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
O2 - 0.21 O2 - 0.42 O2 - 0.63
Combustion
Fuel: Hydrogen
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
O2 - 0.21 O2 - 0.42 O2 - 0.63
Combustion
Fuel: Sulfur
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
O2 - 0.21 O2 - 0.42 O2 - 0.63
Combustion
Fuel: Sulfur
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
O2 - 0.21 O2 - 0.42 O2 - 0.63
Combustion
Fuel: Coal
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
O2 - 0.21 O2 - 0.42 O2 - 0.63
Combustion
Fuel: Coal
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
O2 - 0.21 O2 - 0.42 O2 - 0.63
Combustion
Fuel: Oil
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
O2 - 0.21 O2 - 0.42 O2 - 0.63
Combustion
Fuel: Oil
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Products -- Weight Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kg/kg]
O2 - 0.21 O2 - 0.42 O2 - 0.63
Combustion
Fuel: Gas
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Products -- Mole Basis
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CO2 H2O SO2 N2 O2
CombustionProducts[kmol/kmol]
O2 - 0.21 O2 - 0.42 O2 - 0.63
Combustion
Fuel: Gas
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Products Flame Temperature
0
1,000
2,000
3,000
4,000
5,000
O2 - 0.21 O2 - 0.42 O2 - 0.63
FlameTemperature[K]
Carbon Hydrogen Sulfur Coal Oil Gas
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Stoichiometric Oxidant to Fuel Ratio
0
10
20
30
40
O2 - 0.21 O2 - 0.42 O2 - 0.63
StoichiometricOxidanttoFuelRatio[/]
Carbon Hydrogen Sulfur Coal Oil Gas
Combustion
Fuel and Oxidant Inlet Temperature: 298 [K]
Stoichiometric Combustion
Combustion Conclusions
Hydrogen as the fuel has the highest flame temperature (when reacting with air at
stiochiometric conditions), requires the most mass amount of oxidant in order to have
complete combustion per unit mass amount of fuel and has the largest fuel higher
heating value.
When hydrogen reacts with oxidant, there is no CO2 present in the combustion
products.
The flame temperature increases as the oxidant preheat temperature increases for a
fixed stoichiometry value.
The flame temperature decreases as the stoichiometry values increase.
For stoichiometric combustion conditions, the amount of oxidant decreases as the
oxygen enriched air level in the oxidant increases. Also, the flame temperature for
such combustion conditions increases.

More Related Content

What's hot

Energy Efficiency in Thermal System - Case Studies from Nepal
Energy Efficiency in Thermal System - Case Studies from NepalEnergy Efficiency in Thermal System - Case Studies from Nepal
Energy Efficiency in Thermal System - Case Studies from Nepaleecfncci
 
Energy efficiency of industrial utilities
Energy efficiency of industrial utilitiesEnergy efficiency of industrial utilities
Energy efficiency of industrial utilitiesPratap Jung Rai
 
Episode 60 : Pinch Diagram and Heat Integration
Episode 60 :  Pinch Diagram and Heat IntegrationEpisode 60 :  Pinch Diagram and Heat Integration
Episode 60 : Pinch Diagram and Heat IntegrationSAJJAD KHUDHUR ABBAS
 
Semester Project 4: Projection of Expansion: Assens to Ejby
Semester Project 4: Projection of Expansion: Assens to EjbySemester Project 4: Projection of Expansion: Assens to Ejby
Semester Project 4: Projection of Expansion: Assens to EjbySøren Aagaard
 
1 s2.0-s1876610217320210-main
1 s2.0-s1876610217320210-main1 s2.0-s1876610217320210-main
1 s2.0-s1876610217320210-mainHeri Faisandra
 
Unite conversion emision
Unite conversion emisionUnite conversion emision
Unite conversion emisionwalled ashwah
 
Overview of a Strategy to Exempt Multiple Process Heaters from the “Boiler MA...
Overview of a Strategy to Exempt Multiple Process Heaters from the “Boiler MA...Overview of a Strategy to Exempt Multiple Process Heaters from the “Boiler MA...
Overview of a Strategy to Exempt Multiple Process Heaters from the “Boiler MA...Antea Group
 
Enhancing the Kinetics of Mill Scale Reduction: An Eco-Friendly Approach (Par...
Enhancing the Kinetics of Mill Scale Reduction: An Eco-Friendly Approach (Par...Enhancing the Kinetics of Mill Scale Reduction: An Eco-Friendly Approach (Par...
Enhancing the Kinetics of Mill Scale Reduction: An Eco-Friendly Approach (Par...chin2014
 
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)chin2014
 
1 ijebm jan-2018-1-combustion adjustment in a natural
1 ijebm jan-2018-1-combustion adjustment in a natural1 ijebm jan-2018-1-combustion adjustment in a natural
1 ijebm jan-2018-1-combustion adjustment in a naturalAI Publications
 

What's hot (16)

Energy Efficiency in Thermal System - Case Studies from Nepal
Energy Efficiency in Thermal System - Case Studies from NepalEnergy Efficiency in Thermal System - Case Studies from Nepal
Energy Efficiency in Thermal System - Case Studies from Nepal
 
Energy efficiency of industrial utilities
Energy efficiency of industrial utilitiesEnergy efficiency of industrial utilities
Energy efficiency of industrial utilities
 
OCTAVIUS - Optimisation of CO2 capture technology allowing verification and i...
OCTAVIUS - Optimisation of CO2 capture technology allowing verification and i...OCTAVIUS - Optimisation of CO2 capture technology allowing verification and i...
OCTAVIUS - Optimisation of CO2 capture technology allowing verification and i...
 
Episode 60 : Pinch Diagram and Heat Integration
Episode 60 :  Pinch Diagram and Heat IntegrationEpisode 60 :  Pinch Diagram and Heat Integration
Episode 60 : Pinch Diagram and Heat Integration
 
Semester Project 4: Projection of Expansion: Assens to Ejby
Semester Project 4: Projection of Expansion: Assens to EjbySemester Project 4: Projection of Expansion: Assens to Ejby
Semester Project 4: Projection of Expansion: Assens to Ejby
 
India study i g c c
India study i g c cIndia study i g c c
India study i g c c
 
1 s2.0-s1876610217320210-main
1 s2.0-s1876610217320210-main1 s2.0-s1876610217320210-main
1 s2.0-s1876610217320210-main
 
Oxyfuel Power Plant with Novel CO2 Separation and Compression Technology - Dr...
Oxyfuel Power Plant with Novel CO2 Separation and Compression Technology - Dr...Oxyfuel Power Plant with Novel CO2 Separation and Compression Technology - Dr...
Oxyfuel Power Plant with Novel CO2 Separation and Compression Technology - Dr...
 
Unite conversion emision
Unite conversion emisionUnite conversion emision
Unite conversion emision
 
H2P_Energy_Final_Presentation_ENCH_531
H2P_Energy_Final_Presentation_ENCH_531H2P_Energy_Final_Presentation_ENCH_531
H2P_Energy_Final_Presentation_ENCH_531
 
Ascoli et al. 2014 ICFFR
Ascoli et al. 2014 ICFFRAscoli et al. 2014 ICFFR
Ascoli et al. 2014 ICFFR
 
A perspective on transition engineering options from capture-readiness to ful...
A perspective on transition engineering options from capture-readiness to ful...A perspective on transition engineering options from capture-readiness to ful...
A perspective on transition engineering options from capture-readiness to ful...
 
Overview of a Strategy to Exempt Multiple Process Heaters from the “Boiler MA...
Overview of a Strategy to Exempt Multiple Process Heaters from the “Boiler MA...Overview of a Strategy to Exempt Multiple Process Heaters from the “Boiler MA...
Overview of a Strategy to Exempt Multiple Process Heaters from the “Boiler MA...
 
Enhancing the Kinetics of Mill Scale Reduction: An Eco-Friendly Approach (Par...
Enhancing the Kinetics of Mill Scale Reduction: An Eco-Friendly Approach (Par...Enhancing the Kinetics of Mill Scale Reduction: An Eco-Friendly Approach (Par...
Enhancing the Kinetics of Mill Scale Reduction: An Eco-Friendly Approach (Par...
 
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
 
1 ijebm jan-2018-1-combustion adjustment in a natural
1 ijebm jan-2018-1-combustion adjustment in a natural1 ijebm jan-2018-1-combustion adjustment in a natural
1 ijebm jan-2018-1-combustion adjustment in a natural
 

Similar to Power Cycle Components/Processes and Compressible Flow Analysis Webinar

Power Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis WebinarPower Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis WebinarEngineering Software
 
Energy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long VersionEnergy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long VersionEngineering Software
 
Acutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-IAcutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-IS.Vijaya Bhaskar
 
ENERGY AND EXERGY ANALYSIS OF BIOMASS INTEGRATED GASIFICATION.pptx
ENERGY AND EXERGY ANALYSIS OF BIOMASS INTEGRATED GASIFICATION.pptxENERGY AND EXERGY ANALYSIS OF BIOMASS INTEGRATED GASIFICATION.pptx
ENERGY AND EXERGY ANALYSIS OF BIOMASS INTEGRATED GASIFICATION.pptxDhananjay Raj chauhan
 
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdfOmkarVartak6
 
Soild fuels 20210701.ppt
Soild fuels 20210701.pptSoild fuels 20210701.ppt
Soild fuels 20210701.pptYaserAli48
 
Boiler Efficiency Improvement through Analysis of Losses
Boiler Efficiency Improvement through Analysis of LossesBoiler Efficiency Improvement through Analysis of Losses
Boiler Efficiency Improvement through Analysis of Lossesijsrd.com
 
Module 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculationsModule 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculationsbalaaguywithagang1
 
Chemical Looping Combustion
Chemical Looping CombustionChemical Looping Combustion
Chemical Looping CombustionRajan Lanjekar
 
Effect of Combustion Air Pre-Heating In Carbon Monoxide Emission in Diesel Fi...
Effect of Combustion Air Pre-Heating In Carbon Monoxide Emission in Diesel Fi...Effect of Combustion Air Pre-Heating In Carbon Monoxide Emission in Diesel Fi...
Effect of Combustion Air Pre-Heating In Carbon Monoxide Emission in Diesel Fi...IJERA Editor
 
01 fuel and industrial gases
01 fuel and industrial gases01 fuel and industrial gases
01 fuel and industrial gasesNaveen Choudhary
 
Analysis Procedures of Coal
Analysis Procedures of CoalAnalysis Procedures of Coal
Analysis Procedures of CoalWahid Dino Samo
 
Design project_PPT
Design project_PPTDesign project_PPT
Design project_PPTshamraj19
 

Similar to Power Cycle Components/Processes and Compressible Flow Analysis Webinar (20)

Power Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis WebinarPower Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis Webinar
 
Energy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long VersionEnergy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long Version
 
Acutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-IAcutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-I
 
ENERGY AND EXERGY ANALYSIS OF BIOMASS INTEGRATED GASIFICATION.pptx
ENERGY AND EXERGY ANALYSIS OF BIOMASS INTEGRATED GASIFICATION.pptxENERGY AND EXERGY ANALYSIS OF BIOMASS INTEGRATED GASIFICATION.pptx
ENERGY AND EXERGY ANALYSIS OF BIOMASS INTEGRATED GASIFICATION.pptx
 
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
 
Soild fuels 20210701.ppt
Soild fuels 20210701.pptSoild fuels 20210701.ppt
Soild fuels 20210701.ppt
 
Boiler Efficiency Improvement through Analysis of Losses
Boiler Efficiency Improvement through Analysis of LossesBoiler Efficiency Improvement through Analysis of Losses
Boiler Efficiency Improvement through Analysis of Losses
 
H2SO4.pptx
H2SO4.pptxH2SO4.pptx
H2SO4.pptx
 
INPLANT TRAINNING.pptx
INPLANT TRAINNING.pptxINPLANT TRAINNING.pptx
INPLANT TRAINNING.pptx
 
Module 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculationsModule 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculations
 
Gas Turbines at PACT - talk by Karen Finney, University of Leeds, at the open...
Gas Turbines at PACT - talk by Karen Finney, University of Leeds, at the open...Gas Turbines at PACT - talk by Karen Finney, University of Leeds, at the open...
Gas Turbines at PACT - talk by Karen Finney, University of Leeds, at the open...
 
Beer combustion
Beer combustionBeer combustion
Beer combustion
 
Chemical Looping Combustion
Chemical Looping CombustionChemical Looping Combustion
Chemical Looping Combustion
 
Combustion
CombustionCombustion
Combustion
 
Effect of Combustion Air Pre-Heating In Carbon Monoxide Emission in Diesel Fi...
Effect of Combustion Air Pre-Heating In Carbon Monoxide Emission in Diesel Fi...Effect of Combustion Air Pre-Heating In Carbon Monoxide Emission in Diesel Fi...
Effect of Combustion Air Pre-Heating In Carbon Monoxide Emission in Diesel Fi...
 
Md. habibur rahman
Md. habibur rahmanMd. habibur rahman
Md. habibur rahman
 
01 fuel and industrial gases
01 fuel and industrial gases01 fuel and industrial gases
01 fuel and industrial gases
 
Analysis Procedures of Coal
Analysis Procedures of CoalAnalysis Procedures of Coal
Analysis Procedures of Coal
 
Selection of Optimal Solid Sorbents for CO2 Capture Based on Gas Phase CO2 Co...
Selection of Optimal Solid Sorbents for CO2 Capture Based on Gas Phase CO2 Co...Selection of Optimal Solid Sorbents for CO2 Capture Based on Gas Phase CO2 Co...
Selection of Optimal Solid Sorbents for CO2 Capture Based on Gas Phase CO2 Co...
 
Design project_PPT
Design project_PPTDesign project_PPT
Design project_PPT
 

More from Engineering Software

More from Engineering Software (10)

Combustion Analysis Webinar
Combustion Analysis WebinarCombustion Analysis Webinar
Combustion Analysis Webinar
 
Physical Properties Tables and Plots
Physical Properties Tables and PlotsPhysical Properties Tables and Plots
Physical Properties Tables and Plots
 
Power Cycle Components/Processes Tables and Plots
Power Cycle Components/Processes Tables and PlotsPower Cycle Components/Processes Tables and Plots
Power Cycle Components/Processes Tables and Plots
 
Engineering Energy Conversion Assumptions and Equations
Engineering Energy Conversion Assumptions and EquationsEngineering Energy Conversion Assumptions and Equations
Engineering Energy Conversion Assumptions and Equations
 
Physical Properties
Physical PropertiesPhysical Properties
Physical Properties
 
Power Cycles
Power CyclesPower Cycles
Power Cycles
 
Compressible Flow
Compressible FlowCompressible Flow
Compressible Flow
 
Compressible Flow Tables and Plots
Compressible Flow Tables and PlotsCompressible Flow Tables and Plots
Compressible Flow Tables and Plots
 
Power Cycles Tables and Plots
Power Cycles Tables and PlotsPower Cycles Tables and Plots
Power Cycles Tables and Plots
 
Engineering Simulation
Engineering SimulationEngineering Simulation
Engineering Simulation
 

Recently uploaded

Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 

Recently uploaded (20)

Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 

Power Cycle Components/Processes and Compressible Flow Analysis Webinar

  • 1. Engineering Software P.O. Box 2134 Kensington, MD 20891 Phone: (301) 919-9670 E-Mail: info@engineering-4e.com http://www.engineering-4e.com Copyright © 1996
  • 2. Combustion Analysis Webinar Objectives In this webinar, the engineering students and professionals get familiar with the ideal combustion and its h - T diagram, operation and major performance trends. Six different fuels (carbon, hydrogen, sulfur, coal, oil and gas) react with air and oxygen enriched air as the oxidant at different stoichiometry values (stoichiometry => 1) and oxidant inlet temperature values. Performance Objectives: Introduce basic energy conversion engineering assumptions and equations Know basic elements of combustion and its h - T diagram Be familiar with combustion operation Understand general combustion performance trends
  • 3. This webinar consists of the following single major section: • Combustion -- six different fuels (carbon, hydrogen, sulfur, coal, oil and gas) react with air and oxygen enriched air as the oxidant at different stoichiometry values (stoichiometry => 1) and oxidant inlet temperature values In this webinar, first overall engineering assumptions and basic engineering equations are provided. Furthermore, basic combustion engineering equations, section material and conclusions are provided. Combustion Analysis Webinar
  • 4. The combustion analysis presented in this webinar considers ideal combustion operation -- six different fuels (carbon, hydrogen, sulfur, coal, oil and gas) react with air and oxygen enriched air as the oxidant at different stoichiometry values (stoichiometry => 1) and oxidant inlet temperature values. Furthermore, the following assumptions are valid: Thermodynamic and Transport Properties Single species consideration Ideal gas approach is used (pv=RT) Specific heat is not constant Coefficients describing thermodynamic and transport properties were obtained from the NASA Glenn Research Center at Lewis Field in Cleveland, OH -- such coefficients conform with the standard reference temperature of 298.15 K (77 F) and the JANAF Tables Engineering Assumptions
  • 5. Basic Conservation Equations Continuity Equation m = ρvA [kg/s] Momentum Equation F = (vm + pA) out - in [N] Energy Equation Q - W = ((h + v2/2 + gh)m)out - in [kW] Basic Engineering Equations
  • 6. Ideal Gas State Equation pv = RT [kJ/kg] Perfect Gas cp = constant [kJ/kg*K] Kappa χ = cp/cv [/] For air: χ = 1.4 [/], R = 0.2867 [kJ/kg*K] and cp = 1.004 [kJ/kg*K] Basic Engineering Equations
  • 7. Combustion Engineering Equations Combustion is ideal, complete with no heat loss and fuel reacts with air and oxygen enriched air as the oxidant at different stoichiometry values (stoichiometry => 1) and oxidant inlet temperature values. Also, Flame Temperature [K] hreactants = hproducts [kJ/kg]
  • 9. Specific Enthalpy vs Temperature -20,000 -10,000 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 500 800 1,100 1,400 1,700 2,000 2,300 2,600 2,900 3,200 3,500 3,800 4,100 4,400 4,700 5,000 C(S) H2 S(S) N2 O2 H2O(L) CH4 CO2 H2O SO2 Combustion SpecificEnthalpy[kJ/kg] Temperature [K]
  • 10. Combustion h - T Diagram SpecificEnthalpy--h[kJ/kg] Temperature -- T [K] Reactants Products TflameTreference Combustion
  • 12. Combustion Stoichiometric Combustion Combustion Products Composition on Weight and Mole Basis CO2 [kg/kg] 0.295 0.000 0.000 0.249 0.202 0.151 H2O [kg/kg] 0.000 0.255 0.000 0.041 0.080 0.124 SO2 [kg/kg] 0.000 0.000 0.378 0.005 0.000 0.000 N2 [kg/kg] 0.705 0.745 0.622 0.705 0.718 0.725 O2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 CO2 [kmol/kmol] 0.210 0.000 0.000 0.170 0.132 0.095 Fuel Carbon Hydrogen Sulfur Coal Oil Gas SO2 [kmol/kmol] 0.000 0.000 0.210 0.002 0.000 0.000 N2 [kmol/kmol] 0.790 0.653 0.790 0.759 0.739 0.715 Combustion Products Flame Temperature, Stoichiometric Oxidant to Fuel Ratio and HHV Flame Temperature [K] 2,460 2,525 1,972 2,484 2,484 2,327 Stoichiometric Oxidant to Fuel Ratio [/] 11.444 34.333 4.292 10.487 14.649 17.167 HHV [Btu/lbm] 14,094 60,997 3,982 14,162 20,660 21,563 Fuel Carbon Hydrogen Sulfur Coal Oil Gas H2O [kmol/kmol] 0.000 0.347 0.000 0.068 0.129 0.190 O2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000
  • 13. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K]
  • 14. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K]
  • 15. Combustion Products Flame Temperature 1,900 2,000 2,100 2,200 2,300 2,400 2,500 2,600 Carbon Hydrogen Sulfur Coal Oil Gas Flame Temperature [K] Combustion Fuel and Oxidant Inlet Temperature: 298 [K] FlameTemperature[K]
  • 16. Combustion Stoichiometric Oxidant to Fuel Ratio 0 5 10 15 20 25 30 35 40 Carbon Hydrogen Sulfur Coal Oil Gas Stoichiometric Oxidant to Fuel Ratio [/] Combustion Fuel and Oxidant Inlet Temperature: 298 [K] StoichiometricOxidanttoFuelRatio[/]
  • 17. Higher Heating Value (HHV) 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 Carbon Hydrogen Sulfur Coal Oil Gas HHV [Btu/lbm] Combustion Fuel and Oxidant Inlet Temperature: 298 [K] HHV[Btu/lbm]
  • 19. Combustion Stoichiometric Combustion Flame Temperature Hydrogen [K] 2,525 2,583 2,640 2,689 2,757 2,818 2,879 2,942 Sulfur [K] 1,972 2,045 2,118 2,191 2,267 2,343 2,421 2,501 Coal [K] 2,484 2,551 2,618 2,686 2,756 2,827 2,899 2,972 Oil [K] 2,484 2,551 2,616 2,683 2,751 2,820 2,891 2,963 Preheat Temperature [K] 298 400 500 600 700 800 900 1,000 Combustion Products Stoichiometric Oxidant to Fuel Ratio and HHV Stoichiometric Oxidant to Fuel Ratio [/] 11.444 34.333 4.292 10.487 14.649 17.167 HHV [Btu/lbm] 14,094 60,997 3,982 14,162 20,660 21,563 Fuel Carbon Hydrogen Sulfur Coal Oil Gas Gas [K] 2,327 2,391 2,455 2,520 2,586 2,653 2,721 2,791 Carbon [K] 2,460 2,531 2,602 2,674 2,747 2,822 2,898 2,976
  • 20. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions
  • 22. Combustion Combustion Products Composition on Weight and Mole Basis Combustion Products Flame Temperature and Oxidant to Fuel Ratio Flame Temperature [K] 2,460 1,506 1,145 952 831 748 Oxidant to Fuel Ratio [/] 11.444 22.889 34.333 45.778 57.222 68.667 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Carbon CO2 [kg/kg] 0.295 0.153 0.104 0.083 0.063 0.053 H2O [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 SO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kg/kg] 0.705 0.735 0.745 0.751 0.754 0.756 O2 [kg/kg] 0.000 0.112 0.151 0.171 0.183 0.191 CO2 [kmol/kmol] 0.210 0.105 0.070 0.053 0.042 0.035 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kmol/kmol] 0.790 0.790 0.790 0.790 0.790 0.790 H2O [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 O2 [kmol/kmol] 0.000 0.105 0.140 0.157 0.168 0.175
  • 23. Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 2,525 1,645 1,269 1,059 924 830 Oxidant to Fuel Ratio [/] 34.333 68.667 103.000 137.333 171.667 206.000 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Hydrogen CO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 H2O [kg/kg] 0.255 0.129 0.087 0.065 0.052 0.043 SO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kg/kg] 0.745 0.756 0.760 0.761 0.763 0.763 O2 [kg/kg] 0.000 0.115 0.154 0.173 0.185 0.193 CO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kmol/kmol] 0.653 0.715 0.738 0.751 0.758 0.763 H2O [kmol/kmol] 0.347 0.190 0.131 0.100 0.081 0.068 O2 [kmol/kmol] 0.000 0.095 0.131 0.150 0.161 0.169 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  • 24. Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 1,972 1,229 949 799 705 641 Oxidant to Fuel Ratio [/] 4.292 8.583 12.875 17.167 21.458 25.750 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Sulfur CO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 H2O [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 SO2 [kg/kg] 0.378 0.209 0.144 0.110 0.089 0.075 N2 [kg/kg] 0.622 0.687 0.712 0.725 0.733 0.738 O2 [kg/kg] 0.000 0.104 0.144 0.165 0.178 0.187 CO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.210 0.105 0.070 0.053 0.042 0.035 N2 [kmol/kmol] 0.790 0.790 0.790 0.790 0.790 0.790 H2O [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 O2 [kmol/kmol] 0.000 0.105 0.140 0.158 0.168 0.175 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  • 25. Combustion Combustion Products Composition on Weight and Mole Basis Fuel: Coal CO2 [kg/kg] 0.249 0.130 0.088 0.067 0.053 0.045 H2O [kg/kg] 0.041 0.021 0.014 0.011 0.009 0.007 SO2 [kg/kg] 0.005 0.003 0.002 0.001 0.001 0.001 N2 [kg/kg] 0.705 0.735 0.745 0.750 0.754 0.756 O2 [kg/kg] 0.000 0.111 0.151 0.171 0.183 0.191 CO2 [kmol/kmol] 0.170 0.087 0.059 0.044 0.035 0.030 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.002 0.001 0.001 0.001 0.001 0.000 N2 [kmol/kmol] 0.760 0.774 0.779 0.782 0.783 0.785 H2O [kmol/kmol] 0.068 0.035 0.024 0.018 0.014 0.012 O2 [kmol/kmol] 0.000 0.103 0.138 0.156 0.166 0.174 Flame Temperature [K] 2,484 1,544 1,178 981 856 769 Oxidant to Fuel Ratio [/] 10.487 20.992 31.497 42.002 52.507 63.013 Stoichiometry [/] 1 2 3 4 5 6 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  • 26. Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 2,484 1,555 1,187 989 863 776 Oxidant to Fuel Ratio [/] 14.694 29.298 43.947 58.596 73.244 87.893 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Oil CO2 [kg/kg] 0.202 0.104 0.070 0.053 0.042 0.035 H2O [kg/kg] 0.080 0.042 0.028 0.021 0.017 0.014 SO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kg/kg] 0.718 0.742 0.750 0.754 0.757 0.758 O2 [kg/kg] 0.000 0.113 0.152 0.172 0.184 0.192 CO2 [kmol/kmol] 0.132 0.068 0.046 0.035 0.028 0.023 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kmol/kmol] 0.739 0.764 0.772 0.777 0.779 0.781 H2O [kmol/kmol] 0.129 0.067 0.045 0.034 0.027 0.023 O2 [kmol/kmol] 0.000 0.102 0.137 0.155 0.166 0.173 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  • 27. Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 2,327 1,480 1,137 951 832 750 Oxidant to Fuel Ratio [/] 17.167 34.333 51.500 68.667 85.833 103.000 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Gas CO2 [kg/kg] 0.151 0.078 0.052 0.039 0.032 0.026 H2O [kg/kg] 0.124 0.064 0.043 0.032 0.026 0.022 SO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kg/kg] 0.725 0.745 0.752 0.756 0.758 0.760 O2 [kg/kg] 0.000 0.113 0.152 0.172 0.184 0.192 CO2 [kmol/kmol] 0.095 0.050 0.034 0.026 0.021 0.017 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kmol/kmol] 0.715 0.751 0.763 0.770 0.774 0.776 H2O [kmol/kmol] 0.190 0.100 0.068 0.051 0.041 0.034 O2 [kmol/kmol] 0.000 0.100 0.135 0.153 0.165 0.172 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  • 28. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Stoichiometry [/] Fuel: Carbon Fuel and Oxidant Inlet Temperature: 298 [K]
  • 29. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Stoichiometry [/] Fuel: Carbon Fuel and Oxidant Inlet Temperature: 298 [K]
  • 30. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Hydrogen Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 31. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Hydrogen Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 32. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Sulfur Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 33. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Sulfur Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 34. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Coal Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 35. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Coal Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 36. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Oil Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 37. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Oil Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 38. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Gas Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 39. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Gas Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 40. Combustion Products Flame Temperature 600 1,100 1,600 2,100 2,600 1 2 3 4 5 6 FlameTemperature[K] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 41. Combustion Oxidant to Fuel Ratio 0 40 80 120 160 200 240 1 2 3 4 5 6 OxidanttoFuelRatio[/] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  • 42. Combustion Oxidant Composition N [kmol/kmol] 0.790 0.580 0.370 O [kmol/kmol] 0.210 0.420 0.630 N [kg/kg] 0.767 0.550 0.340 O [kg/kg] 0.233 0.450 0.660 Oxidant [kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 Fuel Composition C [kg/kg] 1.000 0.000 0.000 0.780 0.860 - H [kg/kg] 0.000 1.000 0.000 0.050 0.140 - S [kg/kg] 0.000 0.000 1.000 0.030 0.000 - N [kg/kg] 0.000 0.000 0.000 0.040 0.000 - O [kg/kg] 0.000 0.000 0.000 0.080 0.000 - H2O [kg/kg] 0.000 0.000 0.000 0.020 0.000 - CH4 [kg/kg] - - - - - 1.000 Fuel Carbon Hydrogen Sulfur Coal Oil Gas
  • 43. Combustion Stoichiometric Combustion Combustion Products Composition on Weight and Mole Basis Combustion Products Flame Temperature and Stoichiometric Oxidant to Fuel Ratio Stoichiometric Oxidant to Fuel Ratio [/] 11.444 5.889 4.037 Fuel: Carbon CO2 [kg/kg] 0.295 0.532 0.728 H2O [kg/kg] 0.000 0.000 0.000 SO2 [kg/kg] 0.000 0.000 0.000 N2 [kg/kg] 0.705 0.468 0.272 O2 [kg/kg] 0.000 0.000 0.000 CO2 [kmol/kmol] 0.210 0.420 0.630 Oxidant [kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 SO2 [kmol/kmol] 0.000 0.000 0.000 N2 [kmol/kmol] 0.790 0.580 0.370 H2O [kmol/kmol] 0.000 0.000 0.000 O2 [kmol/kmol] 0.000 0.000 0.000 Oxidant [kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 Flame Temperature [K] 2,460 3,985 > 5,000
  • 44. Combustion Fuel: Hydrogen CO2 [kg/kg] 0.000 0.000 0.000 H2O [kg/kg] 0.255 0.482 0.686 SO2 [kg/kg] 0.000 0.000 0.000 N2 [kg/kg] 0.745 0.518 0.314 O2 [kg/kg] 0.000 0.000 0.000 CO2 [kmol/kmol] 0.000 0.000 0.000 Oxidant [kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 SO2 [kmol/kmol] 0.000 0.000 0.000 N2 [kmol/kmol] 0.653 0.408 0.227 H2O [kmol/kmol] 0.347 0.592 0.773 O2 [kmol/kmol] 0.000 0.000 0.000 Stoichiometric Combustion Combustion Products Composition on Weight and Mole Basis Stoichiometric Oxidant to Fuel Ratio [/] 34.333 17.667 12.111 Combustion Products Flame Temperature and Stoichiometric Oxidant to Fuel Ratio Oxidant [kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 Flame Temperature [K] 2,525 3,625 4,294
  • 45. Combustion Fuel: Sulfur CO2 [kg/kg] 0.000 0.000 0.000 H2O [kg/kg] 0.000 0.000 0.000 SO2 [kg/kg] 0.378 0.623 0.796 N2 [kg/kg] 0.622 0.377 0.204 O2 [kg/kg] 0.000 0.000 0.000 CO2 [kmol/kmol] 0.000 0.000 0.000 Oxidant [kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 SO2 [kmol/kmol] 0.210 0.420 0.630 N2 [kmol/kmol] 0.790 0.580 0.370 H2O [kmol/kmol] 0.000 0.000 0.000 O2 [kmol/kmol] 0.000 0.000 0.000 Stoichiometric Combustion Combustion Products Composition on Weight and Mole Basis Stoichiometric Oxidant to Fuel Ratio [/] 4.292 2.208 1.514 Combustion Products Flame Temperature and Stoichiometric Oxidant to Fuel Ratio Oxidant [kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 Flame Temperature [K] 1,972 3,167 4,125
  • 46. Combustion Fuel: Coal CO2 [kg/kg] 0.249 0.448 0.610 H2O [kg/kg] 0.041 0.074 0.100 SO2 [kg/kg] 0.005 0.009 0.013 N2 [kg/kg] 0.705 0.469 0.277 O2 [kg/kg] 0.000 0.000 0.000 CO2 [kmol/kmol] 0.170 0.326 0.470 Oxidant [kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 SO2 [kmol/kmol] 0.002 0.005 0.007 N2 [kmol/kmol] 0.759 0.538 0.335 H2O [kmol/kmol] 0.068 0.131 0.189 O2 [kmol/kmol] 0.000 0.000 0.000 Stoichiometric Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 2,484 3,889 4,913 Stoichiometric Oxidant to Fuel Ratio [/] 10.487 5.388 3.688 Combustion Products Flame Temperature and Stoichiometric Oxidant to Fuel Ratio Oxidant [kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63
  • 47. Combustion Fuel: Oil CO2 [kg/kg] 0.202 0.369 0.511 H2O [kg/kg] 0.081 0.148 0.204 SO2 [kg/kg] 0.000 0.000 0.000 N2 [kg/kg] 0.718 0.483 0.284 O2 [kg/kg] 0.000 0.000 0.000 CO2 [kmol/kmol] 0.132 0.248 0.351 Oxidant [kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 SO2 [kmol/kmol] 0.000 0.000 0.000 N2 [kmol/kmol] 0.739 0.510 0.307 H2O [kmol/kmol] 0.129 0.242 0.343 O2 [kmol/kmol] 0.000 0.000 0.000 Stoichiometric Combustion Combustion Products Composition on Weight and Mole Basis Stoichiometric Oxidant to Fuel Ratio [/] 14.649 7.538 5.167 Combustion Products Flame Temperature and Stoichiometric Oxidant to Fuel Ratio Oxidant [kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 Flame Temperature [K] 2,484 3,836 4,789
  • 48. Combustion Fuel: Gas CO2 [kg/kg] 0.151 0.280 0.390 H2O [kg/kg] 0.124 0.229 0.319 SO2 [kg/kg] 0.000 0.000 0.000 N2 [kg/kg] 0.725 0.492 0.291 O2 [kg/kg] 0.000 0.000 0.000 CO2 [kmol/kmol] 0.095 0.174 0.240 Oxidant [kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 SO2 [kmol/kmol] 0.000 0.000 0.000 N2 [kmol/kmol] 0.715 0.479 0.281 H2O [kmol/kmol] 0.190 0.347 0.479 O2 [kmol/kmol] 0.000 0.000 0.000 Stoichiometric Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 2,327 3,505 4,300 Stoichiometric Oxidant to Fuel Ratio [/] 17.167 8.833 6.056 Combustion Products Flame Temperature and Stoichiometric Oxidant to Fuel Ratio Oxidant [kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63
  • 49. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] O2 - 0.21 O2 - 0.42 O2 - 0.63 Combustion Fuel: Carbon Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 50. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 Combustion Fuel: Carbon Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 51. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] O2 - 0.21 O2 - 0.42 O2 - 0.63 Combustion Fuel: Hydrogen Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 52. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 Combustion Fuel: Hydrogen Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 53. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] O2 - 0.21 O2 - 0.42 O2 - 0.63 Combustion Fuel: Sulfur Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 54. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 Combustion Fuel: Sulfur Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 55. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] O2 - 0.21 O2 - 0.42 O2 - 0.63 Combustion Fuel: Coal Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 56. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 Combustion Fuel: Coal Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 57. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] O2 - 0.21 O2 - 0.42 O2 - 0.63 Combustion Fuel: Oil Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 58. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 Combustion Fuel: Oil Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 59. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] O2 - 0.21 O2 - 0.42 O2 - 0.63 Combustion Fuel: Gas Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 60. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] O2 - 0.21 O2 - 0.42 O2 - 0.63 Combustion Fuel: Gas Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 61. Combustion Products Flame Temperature 0 1,000 2,000 3,000 4,000 5,000 O2 - 0.21 O2 - 0.42 O2 - 0.63 FlameTemperature[K] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 62. Combustion Stoichiometric Oxidant to Fuel Ratio 0 10 20 30 40 O2 - 0.21 O2 - 0.42 O2 - 0.63 StoichiometricOxidanttoFuelRatio[/] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometric Combustion
  • 63. Combustion Conclusions Hydrogen as the fuel has the highest flame temperature (when reacting with air at stiochiometric conditions), requires the most mass amount of oxidant in order to have complete combustion per unit mass amount of fuel and has the largest fuel higher heating value. When hydrogen reacts with oxidant, there is no CO2 present in the combustion products. The flame temperature increases as the oxidant preheat temperature increases for a fixed stoichiometry value. The flame temperature decreases as the stoichiometry values increase. For stoichiometric combustion conditions, the amount of oxidant decreases as the oxygen enriched air level in the oxidant increases. Also, the flame temperature for such combustion conditions increases.