SlideShare a Scribd company logo
1 of 10
Download to read offline
PERHITUNGAN KINERJA
TURBIN GAS
Power Plant Tech
Educate and share about Mechanical Engineering
Pendahuluan
1. Pengertian kinerja/Performance adalah sesuatu yang dicapai atau prestasi yang diperlihatkan atau kemampuan kerja
suatu peralatan.
2. Performance turbin gas:
 Design
 Off Design
3. Asumsi Perhitungan Performance turbin gas (Siklus Ideal)
 Proses Kompresi dan ekspansi ialah berlangsung secara revessible, isentropik dan adiabatic
 Fluida kerja berperilaku sebagai gas ideal.
 Setiap komponen dianalisis sebagai volume atur pada kondisi tunak.
 Efek energi kinetik dan potensial dapat diabaikan.
 Penuruan atau kenaikan tekanan pada pembakaran di ruang bakar di abaikan
4. Persamaan yang digunakan Hukum Pertama Termodinamika
Q = Ξ”U + W
οƒΌ Desain Sistem Termodinamika
οƒΌ Performance Test Pabrik
οƒΌ Performance Test Commisioning
οƒΌ Performance Test Setelah melakukan Maintanace
ataupun repair)
Metode Perhitungan
β€’ Perhitungan Langsung / Metode Input-output
β€’ Perhitungan tidak langsung
GT Operation Data
Unit Conversion
Parameters Value Unit
Compressor
Compressor Inlet Temperature 29 C
Compressor Inlet Flow 307302.30 kg/hr
Compressor Inlet Pressure 1.03 kg/cm2
Compressor Discharge Temperature 414.00 C
Compressor Discharge Pressure 1.26 Mpa
Combustion Chamber
Combustion Chamber Pressure 2467 Kpa
Combustion Chamber Temperature 1203.00 C
Fuel Flow Gas 5442.96 kg/hr
LHV 51971.35 kJ/kg
Turbine
Exhaust GT Temperature 597.27 C
Exhaust GT Pressure 0.19 Kpa
Net Load GT 24 MW
Parameters Value Unit Symbols
Compressor
Compressor Inlet Temperature 302.15K T1
Compressor Inlet Flow 85.36kg/s ma
Compressor Inlet Pressure 1.01Bar P1
Compressor Discharge Temperature 687.15K T2
Compressor Discharge Pressure 12.60Bar P2
Combustion Chamber
Combustion Chamber Pressure 24.67Bar P3
Combustion Chamber Temperature 1476.15K T3
Fuel Flow Gas 1.51kg/s mf
LHV 51971.35kJ/kg
Turbine
Exhaust GT Temperature 870.42K T4
Exhaust GT Pressure 1.90Bar P4
Net Load GT 24000Kw Pout
mf 1.51kg/s
GHV 51971.35kJ/kg
T3 1476.15K
P3 24.67Bar
T4 870.42K
P4 1.90Bar
T1 302.15K
P1 1.01Bar
ma 85.36kg/s
1
2 3
4
T2 687.15K
P2 12.60Bar
Compressor
Combustion Chamber
Turbine
Generators
Net Load GT 24000 Kw
Compressor Work (Wc)
Efficiency Compressor (Ξ·c)
Efficiency Combustion Chamber
Heat in Combustion Chamber
Turbine Work (Wt)
Efficiency Turbine (Ξ·t)
GT Performance
Shaft Work
Efficiency Thermal
Air fuel Ratio
Back Work Ratio
Cycle Work ratio
Spesific Fuel Comsumption
Hate Rate
Efficiency PLTG
Parameters Symbols Value Unit
Pressure Ratio compresor rp 12.47
Pressure Ratio Turbine rp 0.08
Panas spesifik udara (Kompresi) Ξ³ 1.40
Panas spesifik udara (Ekspansi) Ξ³ 1.30
Temperature Isentropic compressor T2s 621.34K
Temperature Isentropic Turbine T4s 816.94K
Determine the isentropic temperature in the compression and expansion process
Isentropic Compression Isentropic Expansion
Pressure Ratio
rp =
P2
P1
=
12.60 Bar
1.01 Bar
= 12.47 Bar
Isentropic Compression
Ξ³ = 1.4 Rasio Panas Spesifik udara (Gas ideal) proses kompresi
Ξ³ = 1.3 Rasio Panas Spesifik udara (Gas ideal) proses ekspansi
𝑇2𝑠 = 𝑇1
𝑃2
π›Ύβˆ’1
𝛾
𝑃1
= 301.15 𝐾 π‘₯ 12.47 π΅π‘Žπ‘Ÿ
1.4βˆ’1
1.4 = 621.34 K
2s
1
4s
2
3
4
T T2 = 687.15 K
T2s = 621.34 K
S
Compressor Inlet Temperature T1 302.15K
Enthalpy Inlet compressor H1 302.35kJ/kg
Compressor Discharge Temperature T2 687.15K
Enthalpy outlet compressor H2 699.47kJ/kg
Temperature Isentropic compressor T2s 621.34K
Enthalpy Isentropic compressor H2s 629.49kJ/kg
Combustion Chamber Temperature T3 1476.15K
Enthalpy Combustion Chamber H3 1486.83kJ/kg
Exhaust GT Temperature T4 870.42K
Enthalpy outlet turbine H4 899.88kJ/kg
Temperature Isentropic Turbine T4s 816.94K
Enthalpy Isentropic turbine H4s 840.606kJ/kg
Determine the enthalpy
β€’ Using the table of properties of ideal gas air
Interpolasi = (H atas – Hbawah) / (Tatas - Tbawah) * (T - Tbawah ) + Hbawah
= (300.19 – 305.22) / (300 – 305) x (302.15 – 305) + 305.22
= 302.35 Kj/kg
Wc (actual) = ma Β· (H2 – H1)
Wc (ideal) = ma Β· (H2s – H1)
Ξ·C =
𝑇2𝑠 βˆ’π‘‡1
𝑇2 βˆ’π‘‡1
=
𝐻2𝑠 βˆ’π»1
𝐻2 βˆ’π»1
Compressor
Qin (Ideal) = mf Β· LHV
Qin (Actual) = ma + mf x H3 - (ma - H2)
Combustion Chamber
Turbine
WT (Actual) = ma + mf Β· (H3 – H4)
Wt (Ideal) = ma + mf * (GHV - H4S)
Ξ·T =
𝑇3 βˆ’π‘‡4
𝑇3 βˆ’π‘‡4𝑠
=
𝐻3 βˆ’π»4
𝐻3 βˆ’π»4𝑠
Exhaust
Qout = ma + mf Β· (H4 – H1)
Symbols Value Unit
Compressor
Compressor Work (Actual) Wca 33898.86Kw
Compressor Work (Ideal) Wc Ideal 27924.73kw
Compressor Losses Wlosses 5974.13kw
Efficiency Compressor
0.82
%
82
Combustion Chamber
Heat in Combustion Chamber (Actual) Qin 69458.33Kw
Heat in Combustion Chamber (Ideal) Qin 78577.212Kw
Combustion Chamber Losses Qlosses 9118.88kw
Efficiency Combustion Chamber
0.88
%
88
Turbine
Turbine Work (Actual) Wta 50990.25kw
Turbine Work (Ideal) Wt ideal 77391.63kw
Efficiency Turbine
0.91
90.8%
Exhaust
Heat out Exhaust 51909.81Kw
CALCULATION
Performance Calculation
Symbols Value Unit
Shaft Work Wnett 17091.39kw
Efficiency Thermal Ξ·tr 21.75%
Spesific Fuel Comsumption SFC 0.318kg/kwh
Back Work Ratio BWR 0.66%
Air fuel Ratio AFR 56.5
Efficiency PLTG Ξ·p 0.35%
Hate Rate HR 3.2741kJ/kwh
Cycle Work ratio CWR 34%
Shaft Work (Wnett) Wnett = Turbine work – Compressor work
Specific Fuel Consumption (SFC ) =
3600 π‘₯ π‘šπ‘“
π‘Šπ‘›π‘’π‘‘π‘‘
Back work ratio (BWR) =
πΆπ‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘œπ‘Ÿ π‘Šπ‘œπ‘Ÿπ‘˜
π‘‡π‘’π‘Ÿπ‘π‘–π‘›π‘’ π‘Šπ‘œπ‘Ÿπ‘˜
Air-fuel ratio (AFR) =
π‘šπ‘Ž
π‘šπ‘“
Cycle Work ratio (CWR) =
π‘†β„Žπ‘Žπ‘“t π‘€π‘œπ‘Ÿπ‘˜
π‘‡π‘’π‘Ÿπ‘π‘–π‘›π‘’ π‘€π‘œπ‘Ÿπ‘˜
Efficiency GT / Thermal Ξ·t =
π‘Šπ‘›π‘’π‘‘π‘‘
π‘šπ‘“ π‘₯ 𝐿𝐻𝑉 π‘Žπ‘‘π‘Žπ‘’ 𝐻𝐻𝑉
Efficiency power generation (Ξ·p) =
π·π‘Žπ‘¦π‘Ž πΊπ‘’π‘›π‘’π‘Ÿπ‘Žπ‘‘π‘œπ‘Ÿ
𝑄𝑖𝑛
Heat rate =
π‘šπ‘“ π‘₯ πΏπ»π‘‰π‘Žπ‘‘π‘Žπ‘’ 𝐻𝐻𝑉
π·π‘Žπ‘¦π‘Ž πΊπ‘’π‘›π‘’π‘Ÿπ‘Žπ‘‘π‘œπ‘Ÿ
1
2 3
4
T2 687.15K
P2 12.60Bar
T2s 621.34K
H2 699.47kJ/kg
H2s 629.49kJ/kg
Wc Ideal 27924.73kW
Wca 33898.86kW
Ξ·C 82%
T1 302.15K
P1 1.01Bar
ma 85.36kg/s
H1 302.35kJ/kg
mf 1.51kg/s
GHV 51971.35kJ/kg
Qin 78577.21Kw
Ξ·Cc 88%
Qin (Actual) 69458.33Kw
Turbine
Compressor
GT Performance
Shaft Work 17091.39kW
Efficiency Thermal 21.75%
Spesific Fuel Comsumption 0.318kg/kWh
Back Work Ratio 0.66%
Air fuel Ratio 56.5
Hate Rate 3.2741kJ/kWh
Cycle Work ratio 0.34%
Efficiency PLTG 0.35 %
Generators
Net Load GT 24000 Kw
T3 1476.15K
P3 24.67Bar
H3 1486.83kJ/kg
Wt Ideal 77391.63kW
Wt 50990.25kW
Ξ·t 90.8%
T4 870.42K
P4 1.90Bar
H4 899.88kJ/kg
T4S 816.9K
H4S 840.61kJ/kg
Qout Ideal 46760.19kW
Qout 51909.81kW
Combustion Chamber
Compressor Losses
5974.13kW
Combustion Chamber Losses
9118.88kW
Turbine Losses
26401.39kW
TERIMA KASIH

More Related Content

What's hot

Pertemuan 6 pesawat angkat ok
Pertemuan 6 pesawat angkat ok Pertemuan 6 pesawat angkat ok
Pertemuan 6 pesawat angkat ok Marfizal Marfizal
Β 
Thermax report (1)
Thermax report (1)Thermax report (1)
Thermax report (1)Anurag Baruah
Β 
Makalah Maintenance turbin gas
Makalah Maintenance turbin gasMakalah Maintenance turbin gas
Makalah Maintenance turbin gasAmrih Prayogo
Β 
Studi kasus siklus kombinasi (Siklus Brayton dan Rankine) menggunakan EES sof...
Studi kasus siklus kombinasi (Siklus Brayton dan Rankine) menggunakan EES sof...Studi kasus siklus kombinasi (Siklus Brayton dan Rankine) menggunakan EES sof...
Studi kasus siklus kombinasi (Siklus Brayton dan Rankine) menggunakan EES sof...Ali Hasimi Pane
Β 
Permasalahan umum pada turbin uap
Permasalahan umum pada turbin uapPermasalahan umum pada turbin uap
Permasalahan umum pada turbin uapErna Pratiwi
Β 
Contoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasiContoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasiAli Hasimi Pane
Β 
Dokumen.tips turbin uap-kuliahppt
Dokumen.tips turbin uap-kuliahpptDokumen.tips turbin uap-kuliahppt
Dokumen.tips turbin uap-kuliahpptambarpratomo
Β 
Shell and Tube Exchanger - Perancangan Alat Penukar Kalor
Shell and Tube Exchanger - Perancangan Alat Penukar KalorShell and Tube Exchanger - Perancangan Alat Penukar Kalor
Shell and Tube Exchanger - Perancangan Alat Penukar KalorFaiprianda Assyari Rahmatullah
Β 
Improving Power Plant Gas Turbine Performance - Case Study | Parker Hannifin
Improving Power Plant Gas Turbine Performance - Case Study | Parker HannifinImproving Power Plant Gas Turbine Performance - Case Study | Parker Hannifin
Improving Power Plant Gas Turbine Performance - Case Study | Parker HannifinParker Hannifin Corporation
Β 
Thermodinamika : Hukum I - Sistem Terbuka
Thermodinamika : Hukum I - Sistem TerbukaThermodinamika : Hukum I - Sistem Terbuka
Thermodinamika : Hukum I - Sistem TerbukaIskandar Tambunan
Β 
Bahan Ajar Refrigerasi Dasar
Bahan Ajar Refrigerasi DasarBahan Ajar Refrigerasi Dasar
Bahan Ajar Refrigerasi DasarRizaldi Satria N
Β 
Transmisi Rantai dan Sprocket.pptx
Transmisi Rantai dan Sprocket.pptxTransmisi Rantai dan Sprocket.pptx
Transmisi Rantai dan Sprocket.pptxZwingCADAcademy
Β 
Gas turbine
Gas turbine Gas turbine
Gas turbine Manu Khurana
Β 
The Coal mill performance monitoring
The Coal mill performance monitoringThe Coal mill performance monitoring
The Coal mill performance monitoringManohar Tatwawadi
Β 

What's hot (20)

Pertemuan 6 pesawat angkat ok
Pertemuan 6 pesawat angkat ok Pertemuan 6 pesawat angkat ok
Pertemuan 6 pesawat angkat ok
Β 
Siklus rankine
Siklus rankineSiklus rankine
Siklus rankine
Β 
Thermax report (1)
Thermax report (1)Thermax report (1)
Thermax report (1)
Β 
Makalah Maintenance turbin gas
Makalah Maintenance turbin gasMakalah Maintenance turbin gas
Makalah Maintenance turbin gas
Β 
Studi kasus siklus kombinasi (Siklus Brayton dan Rankine) menggunakan EES sof...
Studi kasus siklus kombinasi (Siklus Brayton dan Rankine) menggunakan EES sof...Studi kasus siklus kombinasi (Siklus Brayton dan Rankine) menggunakan EES sof...
Studi kasus siklus kombinasi (Siklus Brayton dan Rankine) menggunakan EES sof...
Β 
Termo siklus rankine
Termo siklus rankineTermo siklus rankine
Termo siklus rankine
Β 
Dasar2 termo
Dasar2 termoDasar2 termo
Dasar2 termo
Β 
Permasalahan umum pada turbin uap
Permasalahan umum pada turbin uapPermasalahan umum pada turbin uap
Permasalahan umum pada turbin uap
Β 
Contoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasiContoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasi
Β 
ppt Turbin Uap
ppt Turbin Uapppt Turbin Uap
ppt Turbin Uap
Β 
Turbin gas
Turbin gasTurbin gas
Turbin gas
Β 
Dokumen.tips turbin uap-kuliahppt
Dokumen.tips turbin uap-kuliahpptDokumen.tips turbin uap-kuliahppt
Dokumen.tips turbin uap-kuliahppt
Β 
Shell and Tube Exchanger - Perancangan Alat Penukar Kalor
Shell and Tube Exchanger - Perancangan Alat Penukar KalorShell and Tube Exchanger - Perancangan Alat Penukar Kalor
Shell and Tube Exchanger - Perancangan Alat Penukar Kalor
Β 
Improving Power Plant Gas Turbine Performance - Case Study | Parker Hannifin
Improving Power Plant Gas Turbine Performance - Case Study | Parker HannifinImproving Power Plant Gas Turbine Performance - Case Study | Parker Hannifin
Improving Power Plant Gas Turbine Performance - Case Study | Parker Hannifin
Β 
Thermodinamika : Hukum I - Sistem Terbuka
Thermodinamika : Hukum I - Sistem TerbukaThermodinamika : Hukum I - Sistem Terbuka
Thermodinamika : Hukum I - Sistem Terbuka
Β 
Bahan Ajar Refrigerasi Dasar
Bahan Ajar Refrigerasi DasarBahan Ajar Refrigerasi Dasar
Bahan Ajar Refrigerasi Dasar
Β 
Siklus Rankine dan Studi Kasus
Siklus Rankine dan Studi KasusSiklus Rankine dan Studi Kasus
Siklus Rankine dan Studi Kasus
Β 
Transmisi Rantai dan Sprocket.pptx
Transmisi Rantai dan Sprocket.pptxTransmisi Rantai dan Sprocket.pptx
Transmisi Rantai dan Sprocket.pptx
Β 
Gas turbine
Gas turbine Gas turbine
Gas turbine
Β 
The Coal mill performance monitoring
The Coal mill performance monitoringThe Coal mill performance monitoring
The Coal mill performance monitoring
Β 

Similar to Turbin gas cal.

Energy Conversion Ideal vs Real Operation Analysis Webinar
Energy Conversion Ideal vs Real Operation Analysis WebinarEnergy Conversion Ideal vs Real Operation Analysis Webinar
Energy Conversion Ideal vs Real Operation Analysis WebinarEngineering Software
Β 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachineryWalid Mohammed
Β 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009CangTo Cheah
Β 
Gas turbines
Gas turbines Gas turbines
Gas turbines krishna khot
Β 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionHashim Hasnain Hadi
Β 
Power Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis WebinarPower Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis WebinarEngineering Software
Β 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Centro Studi Galileo
Β 
introduction to gas turbine.pptx
introduction to gas turbine.pptxintroduction to gas turbine.pptx
introduction to gas turbine.pptxChandigaRichard1
Β 
GE Jebachers Gas Engine JGS620 technical specifications
GE Jebachers Gas Engine JGS620 technical specificationsGE Jebachers Gas Engine JGS620 technical specifications
GE Jebachers Gas Engine JGS620 technical specificationsMuhammad Asif Siddiqui
Β 
Energy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long VersionEnergy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long VersionEngineering Software
Β 
Gas Turbine Cycles - 5.pptx
Gas Turbine Cycles - 5.pptxGas Turbine Cycles - 5.pptx
Gas Turbine Cycles - 5.pptxsaumyairugalbandara
Β 
selfstudy-1.ppt
selfstudy-1.pptselfstudy-1.ppt
selfstudy-1.pptEanest
Β 
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.pptGas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.pptHafizMudaserAhmad
Β 
Gas Power Cycles.ppt
Gas Power Cycles.pptGas Power Cycles.ppt
Gas Power Cycles.pptWasifRazzaq2
Β 
Thermodynamic cycles4.ppt
Thermodynamic cycles4.pptThermodynamic cycles4.ppt
Thermodynamic cycles4.pptMehtab Rai
Β 
Cogeneration systems
Cogeneration systemsCogeneration systems
Cogeneration systemsrishabarani
Β 

Similar to Turbin gas cal. (20)

Energy Conversion Ideal vs Real Operation Analysis Webinar
Energy Conversion Ideal vs Real Operation Analysis WebinarEnergy Conversion Ideal vs Real Operation Analysis Webinar
Energy Conversion Ideal vs Real Operation Analysis Webinar
Β 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachinery
Β 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009
Β 
Gas turbines
Gas turbines Gas turbines
Gas turbines
Β 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-Introduction
Β 
Power Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis WebinarPower Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis Webinar
Β 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Β 
introduction to gas turbine.pptx
introduction to gas turbine.pptxintroduction to gas turbine.pptx
introduction to gas turbine.pptx
Β 
GE Jebachers Gas Engine JGS620 technical specifications
GE Jebachers Gas Engine JGS620 technical specificationsGE Jebachers Gas Engine JGS620 technical specifications
GE Jebachers Gas Engine JGS620 technical specifications
Β 
Ambrish
AmbrishAmbrish
Ambrish
Β 
Energy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long VersionEnergy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long Version
Β 
Chapter 4 Gas Turbine
Chapter 4 Gas TurbineChapter 4 Gas Turbine
Chapter 4 Gas Turbine
Β 
Gas Turbine Cycles - 5.pptx
Gas Turbine Cycles - 5.pptxGas Turbine Cycles - 5.pptx
Gas Turbine Cycles - 5.pptx
Β 
selfstudy-1.ppt
selfstudy-1.pptselfstudy-1.ppt
selfstudy-1.ppt
Β 
Gas turbine 1
Gas turbine  1Gas turbine  1
Gas turbine 1
Β 
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.pptGas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
Β 
Gas Power Cycles.ppt
Gas Power Cycles.pptGas Power Cycles.ppt
Gas Power Cycles.ppt
Β 
Thermodynamic cycles4.ppt
Thermodynamic cycles4.pptThermodynamic cycles4.ppt
Thermodynamic cycles4.ppt
Β 
Pr 1
Pr 1Pr 1
Pr 1
Β 
Cogeneration systems
Cogeneration systemsCogeneration systems
Cogeneration systems
Β 

More from M. Rio Rizky Saputra

PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG YANG DILENGK...
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG YANG DILENGK...PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG YANG DILENGK...
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG YANG DILENGK...M. Rio Rizky Saputra
Β 
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...M. Rio Rizky Saputra
Β 
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENGPERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENGM. Rio Rizky Saputra
Β 
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...M. Rio Rizky Saputra
Β 
pengujian material DT dan NDT
pengujian material DT dan NDTpengujian material DT dan NDT
pengujian material DT dan NDTM. Rio Rizky Saputra
Β 

More from M. Rio Rizky Saputra (18)

PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG YANG DILENGK...
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG YANG DILENGK...PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG YANG DILENGK...
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG YANG DILENGK...
Β 
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
Β 
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENGPERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG
Β 
Sistem Perpipaan Gas Alam
Sistem Perpipaan Gas AlamSistem Perpipaan Gas Alam
Sistem Perpipaan Gas Alam
Β 
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
Β 
Ocean Energy
Ocean EnergyOcean Energy
Ocean Energy
Β 
Boiler/Ketel
Boiler/KetelBoiler/Ketel
Boiler/Ketel
Β 
pengujian material DT dan NDT
pengujian material DT dan NDTpengujian material DT dan NDT
pengujian material DT dan NDT
Β 
HEAT TREATMENT MATERIALS
HEAT TREATMENT MATERIALSHEAT TREATMENT MATERIALS
HEAT TREATMENT MATERIALS
Β 
Baja - Besi Tuang - Al
Baja - Besi Tuang - AlBaja - Besi Tuang - Al
Baja - Besi Tuang - Al
Β 
Bearing (bantalan) 2014
Bearing (bantalan) 2014Bearing (bantalan) 2014
Bearing (bantalan) 2014
Β 
Pembakaran coal
Pembakaran coalPembakaran coal
Pembakaran coal
Β 
centrifugal pump
centrifugal pumpcentrifugal pump
centrifugal pump
Β 
Pengukuran laju aliran
Pengukuran laju aliranPengukuran laju aliran
Pengukuran laju aliran
Β 
Pompa
Pompa Pompa
Pompa
Β 
DRAWING PROSES
DRAWING PROSESDRAWING PROSES
DRAWING PROSES
Β 
Presentation1
Presentation1Presentation1
Presentation1
Β 
Rivets joint
Rivets jointRivets joint
Rivets joint
Β 

Recently uploaded

main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
Β 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixingviprabot1
Β 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
Β 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
Β 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
Β 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
Β 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
Β 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
Β 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoΓ£o Esperancinha
Β 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
Β 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
Β 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture designssuser87fa0c1
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
Β 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
Β 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
Β 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
Β 

Recently uploaded (20)

main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
Β 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixing
Β 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
Β 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
Β 
young call girls in Green ParkπŸ” 9953056974 πŸ” escort Service
young call girls in Green ParkπŸ” 9953056974 πŸ” escort Serviceyoung call girls in Green ParkπŸ” 9953056974 πŸ” escort Service
young call girls in Green ParkπŸ” 9953056974 πŸ” escort Service
Β 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
Β 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Β 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
Β 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
Β 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
Β 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Β 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
Β 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
Β 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture design
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
Β 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
Β 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
Β 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
Β 

Turbin gas cal.

  • 1. PERHITUNGAN KINERJA TURBIN GAS Power Plant Tech Educate and share about Mechanical Engineering
  • 2. Pendahuluan 1. Pengertian kinerja/Performance adalah sesuatu yang dicapai atau prestasi yang diperlihatkan atau kemampuan kerja suatu peralatan. 2. Performance turbin gas:  Design  Off Design 3. Asumsi Perhitungan Performance turbin gas (Siklus Ideal)  Proses Kompresi dan ekspansi ialah berlangsung secara revessible, isentropik dan adiabatic  Fluida kerja berperilaku sebagai gas ideal.  Setiap komponen dianalisis sebagai volume atur pada kondisi tunak.  Efek energi kinetik dan potensial dapat diabaikan.  Penuruan atau kenaikan tekanan pada pembakaran di ruang bakar di abaikan 4. Persamaan yang digunakan Hukum Pertama Termodinamika Q = Ξ”U + W οƒΌ Desain Sistem Termodinamika οƒΌ Performance Test Pabrik οƒΌ Performance Test Commisioning οƒΌ Performance Test Setelah melakukan Maintanace ataupun repair) Metode Perhitungan β€’ Perhitungan Langsung / Metode Input-output β€’ Perhitungan tidak langsung
  • 3. GT Operation Data Unit Conversion Parameters Value Unit Compressor Compressor Inlet Temperature 29 C Compressor Inlet Flow 307302.30 kg/hr Compressor Inlet Pressure 1.03 kg/cm2 Compressor Discharge Temperature 414.00 C Compressor Discharge Pressure 1.26 Mpa Combustion Chamber Combustion Chamber Pressure 2467 Kpa Combustion Chamber Temperature 1203.00 C Fuel Flow Gas 5442.96 kg/hr LHV 51971.35 kJ/kg Turbine Exhaust GT Temperature 597.27 C Exhaust GT Pressure 0.19 Kpa Net Load GT 24 MW Parameters Value Unit Symbols Compressor Compressor Inlet Temperature 302.15K T1 Compressor Inlet Flow 85.36kg/s ma Compressor Inlet Pressure 1.01Bar P1 Compressor Discharge Temperature 687.15K T2 Compressor Discharge Pressure 12.60Bar P2 Combustion Chamber Combustion Chamber Pressure 24.67Bar P3 Combustion Chamber Temperature 1476.15K T3 Fuel Flow Gas 1.51kg/s mf LHV 51971.35kJ/kg Turbine Exhaust GT Temperature 870.42K T4 Exhaust GT Pressure 1.90Bar P4 Net Load GT 24000Kw Pout
  • 4. mf 1.51kg/s GHV 51971.35kJ/kg T3 1476.15K P3 24.67Bar T4 870.42K P4 1.90Bar T1 302.15K P1 1.01Bar ma 85.36kg/s 1 2 3 4 T2 687.15K P2 12.60Bar Compressor Combustion Chamber Turbine Generators Net Load GT 24000 Kw Compressor Work (Wc) Efficiency Compressor (Ξ·c) Efficiency Combustion Chamber Heat in Combustion Chamber Turbine Work (Wt) Efficiency Turbine (Ξ·t) GT Performance Shaft Work Efficiency Thermal Air fuel Ratio Back Work Ratio Cycle Work ratio Spesific Fuel Comsumption Hate Rate Efficiency PLTG
  • 5. Parameters Symbols Value Unit Pressure Ratio compresor rp 12.47 Pressure Ratio Turbine rp 0.08 Panas spesifik udara (Kompresi) Ξ³ 1.40 Panas spesifik udara (Ekspansi) Ξ³ 1.30 Temperature Isentropic compressor T2s 621.34K Temperature Isentropic Turbine T4s 816.94K Determine the isentropic temperature in the compression and expansion process Isentropic Compression Isentropic Expansion Pressure Ratio rp = P2 P1 = 12.60 Bar 1.01 Bar = 12.47 Bar Isentropic Compression Ξ³ = 1.4 Rasio Panas Spesifik udara (Gas ideal) proses kompresi Ξ³ = 1.3 Rasio Panas Spesifik udara (Gas ideal) proses ekspansi 𝑇2𝑠 = 𝑇1 𝑃2 π›Ύβˆ’1 𝛾 𝑃1 = 301.15 𝐾 π‘₯ 12.47 π΅π‘Žπ‘Ÿ 1.4βˆ’1 1.4 = 621.34 K 2s 1 4s 2 3 4 T T2 = 687.15 K T2s = 621.34 K S
  • 6. Compressor Inlet Temperature T1 302.15K Enthalpy Inlet compressor H1 302.35kJ/kg Compressor Discharge Temperature T2 687.15K Enthalpy outlet compressor H2 699.47kJ/kg Temperature Isentropic compressor T2s 621.34K Enthalpy Isentropic compressor H2s 629.49kJ/kg Combustion Chamber Temperature T3 1476.15K Enthalpy Combustion Chamber H3 1486.83kJ/kg Exhaust GT Temperature T4 870.42K Enthalpy outlet turbine H4 899.88kJ/kg Temperature Isentropic Turbine T4s 816.94K Enthalpy Isentropic turbine H4s 840.606kJ/kg Determine the enthalpy β€’ Using the table of properties of ideal gas air Interpolasi = (H atas – Hbawah) / (Tatas - Tbawah) * (T - Tbawah ) + Hbawah = (300.19 – 305.22) / (300 – 305) x (302.15 – 305) + 305.22 = 302.35 Kj/kg
  • 7. Wc (actual) = ma Β· (H2 – H1) Wc (ideal) = ma Β· (H2s – H1) Ξ·C = 𝑇2𝑠 βˆ’π‘‡1 𝑇2 βˆ’π‘‡1 = 𝐻2𝑠 βˆ’π»1 𝐻2 βˆ’π»1 Compressor Qin (Ideal) = mf Β· LHV Qin (Actual) = ma + mf x H3 - (ma - H2) Combustion Chamber Turbine WT (Actual) = ma + mf Β· (H3 – H4) Wt (Ideal) = ma + mf * (GHV - H4S) Ξ·T = 𝑇3 βˆ’π‘‡4 𝑇3 βˆ’π‘‡4𝑠 = 𝐻3 βˆ’π»4 𝐻3 βˆ’π»4𝑠 Exhaust Qout = ma + mf Β· (H4 – H1) Symbols Value Unit Compressor Compressor Work (Actual) Wca 33898.86Kw Compressor Work (Ideal) Wc Ideal 27924.73kw Compressor Losses Wlosses 5974.13kw Efficiency Compressor 0.82 % 82 Combustion Chamber Heat in Combustion Chamber (Actual) Qin 69458.33Kw Heat in Combustion Chamber (Ideal) Qin 78577.212Kw Combustion Chamber Losses Qlosses 9118.88kw Efficiency Combustion Chamber 0.88 % 88 Turbine Turbine Work (Actual) Wta 50990.25kw Turbine Work (Ideal) Wt ideal 77391.63kw Efficiency Turbine 0.91 90.8% Exhaust Heat out Exhaust 51909.81Kw CALCULATION
  • 8. Performance Calculation Symbols Value Unit Shaft Work Wnett 17091.39kw Efficiency Thermal Ξ·tr 21.75% Spesific Fuel Comsumption SFC 0.318kg/kwh Back Work Ratio BWR 0.66% Air fuel Ratio AFR 56.5 Efficiency PLTG Ξ·p 0.35% Hate Rate HR 3.2741kJ/kwh Cycle Work ratio CWR 34% Shaft Work (Wnett) Wnett = Turbine work – Compressor work Specific Fuel Consumption (SFC ) = 3600 π‘₯ π‘šπ‘“ π‘Šπ‘›π‘’π‘‘π‘‘ Back work ratio (BWR) = πΆπ‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘œπ‘Ÿ π‘Šπ‘œπ‘Ÿπ‘˜ π‘‡π‘’π‘Ÿπ‘π‘–π‘›π‘’ π‘Šπ‘œπ‘Ÿπ‘˜ Air-fuel ratio (AFR) = π‘šπ‘Ž π‘šπ‘“ Cycle Work ratio (CWR) = π‘†β„Žπ‘Žπ‘“t π‘€π‘œπ‘Ÿπ‘˜ π‘‡π‘’π‘Ÿπ‘π‘–π‘›π‘’ π‘€π‘œπ‘Ÿπ‘˜ Efficiency GT / Thermal Ξ·t = π‘Šπ‘›π‘’π‘‘π‘‘ π‘šπ‘“ π‘₯ 𝐿𝐻𝑉 π‘Žπ‘‘π‘Žπ‘’ 𝐻𝐻𝑉 Efficiency power generation (Ξ·p) = π·π‘Žπ‘¦π‘Ž πΊπ‘’π‘›π‘’π‘Ÿπ‘Žπ‘‘π‘œπ‘Ÿ 𝑄𝑖𝑛 Heat rate = π‘šπ‘“ π‘₯ πΏπ»π‘‰π‘Žπ‘‘π‘Žπ‘’ 𝐻𝐻𝑉 π·π‘Žπ‘¦π‘Ž πΊπ‘’π‘›π‘’π‘Ÿπ‘Žπ‘‘π‘œπ‘Ÿ
  • 9. 1 2 3 4 T2 687.15K P2 12.60Bar T2s 621.34K H2 699.47kJ/kg H2s 629.49kJ/kg Wc Ideal 27924.73kW Wca 33898.86kW Ξ·C 82% T1 302.15K P1 1.01Bar ma 85.36kg/s H1 302.35kJ/kg mf 1.51kg/s GHV 51971.35kJ/kg Qin 78577.21Kw Ξ·Cc 88% Qin (Actual) 69458.33Kw Turbine Compressor GT Performance Shaft Work 17091.39kW Efficiency Thermal 21.75% Spesific Fuel Comsumption 0.318kg/kWh Back Work Ratio 0.66% Air fuel Ratio 56.5 Hate Rate 3.2741kJ/kWh Cycle Work ratio 0.34% Efficiency PLTG 0.35 % Generators Net Load GT 24000 Kw T3 1476.15K P3 24.67Bar H3 1486.83kJ/kg Wt Ideal 77391.63kW Wt 50990.25kW Ξ·t 90.8% T4 870.42K P4 1.90Bar H4 899.88kJ/kg T4S 816.9K H4S 840.61kJ/kg Qout Ideal 46760.19kW Qout 51909.81kW Combustion Chamber Compressor Losses 5974.13kW Combustion Chamber Losses 9118.88kW Turbine Losses 26401.39kW