SlideShare a Scribd company logo
1 of 39
Download to read offline
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
CutFEM on hierarchical B-Spline Cartesian grids
with applications to fluid-structure interaction
Dr. C. Kadapa, Dr. W. G. Dettmer and Prof. D. Peri´c
Zienkiewicz center for Computational Engineering
Swansea University, Swansea, UK.
06-June-2016, ECCOMAS 2016, Crete Island, Greece.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Outline
1 Motivation
2 Formulation
3 Adaptive integration
4 Numerical examples
5 Summary and Conclusions
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Motivation
Large deformations
Topological changes
Generic geometries
Added-mass instabilities
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Fictitious Domain/Distributed Lagrange multiplier method
Figure: Hierarchical B-Spline mesh.
200.00
250.00
300.00
148.39
326.94
pres
-60.00
-45.00
-30.00
-76.71
-20.91
pres
-320.00
-280.00
-240.00
-200.00
-355.18
-166.04
pres
30.00
45.00
60.00
75.00
21.46
80.45
pres
Figure: Pressure contour plots
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Fictitious Domain/Distributed Lagrange multiplier method
0.2
0.4
0.6
0.8
2.879e-04
9.365e-01
vel Magnitude
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Fictitious Domain/Distributed Lagrange multiplier method
Advantages
Equal-order interpolation for velocity and
pressure
Works very well for thin structures
Issues
Zeroes on the matrix diagonal
Zeroes on the matrix diagonal due to
Lagrange multipliers
Unnecessary DOF when bulky solids are
present
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
What is CutFEM?
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
What is CutFEM?
Advantages
Clean interfaces.
B-Splines of any order, along
with hierarchical refinement.
Stabilised formulation for fluids.
Fewer DOF.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
What is CutFEM?
Advantages
Clean interfaces.
B-Splines of any order, along
with hierarchical refinement.
Stabilised formulation for fluids.
Fewer DOF.
Issues
Integration of cut cells.
Ill-conditioned matrices due to
small cut cells.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Formulation
Incompressible Navier-Stokes
Find velocity, v = (v1, v2, v3), and pressure, p, such that
ρf ∂vf
∂t
+ ρf
(vf
· ∇)vf
− µf
∆vf
+ ∇p = gf
in Ωf
(1a)
∇ · vf
= 0 in Ωf
(1b)
vf
= vs
on Γf
D (1c)
σf
· nf
= tf
on Γf
N (1d)
where,
σf
= µ∇vf
− p I (2)
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Formulation (contd..)
Variational formulation
Bf
Gal({wf
, q}, {vf
, p}) + Bf
Stab({wf
, q}, {vf
, p}) + Bf
Nitsche({wf
, q}, {vf
, p})
+ Bf
GP({wf
, q}, {vf
, p}) = F f
Gal({wf
, q}) (3)
Standard Galerkin terms
Bf
Gal({wf
, q}, {vf
, p}) =
Ωf
wf
· ρf ∂vf
∂t
+ vf
· ∇vf
dΩf
+
Ωf
µ ∇wf
: ∇vf
dΩf
−
Ωf
(∇ · wf
) p dΩf
+
Ωf
q (∇ · vf
) dΩf
(4)
F f
Gal({wf
, q}) =
Ωf
wf
· gf
dΩf
+
Γ
f
N
wf
· tf
dΓ (5)
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Formulation (contd..)
Stabilisation
Bf
Stab({wf
, q}, {vf
, p}) =
nel
e=1 Ωfe
1
ρf
[τSUPG ρf
vf
· ∇wf
+ τPSPG ∇q] · rM dΩf
+
nel
e=1 Ωfe
τLSIC ρf
(∇ · wf
) (∇ · vf
) dΩf
(6)
where, rM is the residual of the momentum equation,
rM = ρf ∂vf
∂t
+ ρf
(vf
· ∇vf
) − µf
∆vf
+ ∇p − gf
(7)
Nitsche’s method
Bf
N({wf
, q}, {vf
, p}) = γN1
ΓD
wf
· (vf
− vs
) dΓ −
ΓD
wf
· (σ({vf
, p}) · nf
) dΓ
− γN2
ΓD
(σ({wf
, q}) · nf
) · (vf
− vs
) dΓ (8)
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Formulation (contd..)
Ghost penalty (Burman et al. [1])
Jump operator for a scalar valued problem:
gs(w, v) :=
k
j=1 F ∈F
h2(j−1)+s
F
[Dj
w][Dj
v] ds
[Djz] normal derivative of z, of order j, on face F
and k is degree of B-Splines.
Jump operator for a vector valued problem:
Gs(w, v) :=
d
i=1
k
j=1 F ∈F
h2(j−1)+s
F
[Dj
wi][Dj
vi] ds
Figure: Ghost-penalty
operators are applied on blue
coloured edges.
The ghost-penalty operator is given as,
Bf
GP({wf
, q)}, {(v, p)}) = γu
GP µ G1(wf
, vf
) + γp
GP
1
µ
g3(q, p) (9)
In this work, only the non-zero derivative of highest-order is considered.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Integration of cut-cells - Subtriangulation
Advantages
Exact integration for boundaries with straight
edges.
Easy when boundaries are discretised with
straight edges.
Fewer Gauss points.
Disadvantages
Difficult for generic geometries in 3D. Need to
use constrained tetrahedralisation.
Difficult when boundaries are discretised with
curved elements or NURBS.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Integration of cut-cells - adaptive integration
Subtriangularion: nGP = 420; % error = 1.55e-6.
(a) Level-3 adaptive integration
102
103
104
105
106
Number of Gauss points in cut-cells
10-5
10-4
10-3
10-2
10-1
100
abs(%errorinarea)
(b) nGP for different levels
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Integration of cut-cells - adaptive integration - merging
Subtriangularion: nGP = 420; % error = 1.55e-6.
(a) Level-3 adaptive integration
102
103
104
105
106
Number of Gauss points in cut-cells
10-5
10-4
10-3
10-2
10-1
100
abs(%errorinarea)
without merging
with merging
(b) nGP for different levels
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Integration of cut-cells - binary tree
(a) quad-tree (b) binary-tree
Figure: Adaptive integration - quad-tree Vs binary-tree.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Integration of cut-cells - adaptive integration
(a) Level-3 adaptive integration
102
103
104
105
106
Number of Gauss points in cut-cells
10-5
10-4
10-3
10-2
10-1
100
abs(%errorinarea)
quad-tree without merging
binary-tree without merging
quad-tree with merging
binary-tree with merging
(b) nGP for different levels
Binary subdivision helps to reduce number of Gauss points in cut-cells by
20%. (In 3D, for sphere, the reduction is about 30%.)
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Numerical examples
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
CutFEM - Basic scheme
W. G. Dettmer, C. Kadapa, and D. Peri´c. Ingredients for an
immersed interface methods for FSI. COUPLED Problems, Venice,
Italy, May-2015.
W. G. Dettmer, C. Kadapa, and D. Peri´c. A stabilised immersed
boundary method on hierarchical b-spline grids. Submitted for
publication.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Flow past a cylinder
10 20
15
15
1
vx = 1.0
vy = 0
vy = 0, tx = 0
vy = 0, tx = 0
tx=ty=0
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Flow past a cylinder - Re = 20
1 2 3 4 5 6 7 8 9
Number of Gauss points
1.0
1.5
2.0
2.5
3.0
Dragcoefficient(CD)
Level-0
Level-1
Level-2
Level-3
Level-4
(a) Q1
1 2 3 4 5 6 7 8 9
Number of Gauss points
1.0
1.5
2.0
2.5
3.0
Dragcoefficient(CD)
Level-0
Level-1
Level-2
Level-3
Level-4
(b) Q2
1 2 3 4 5 6 7 8 9
Number of Gauss points
1.0
1.5
2.0
2.5
3.0
Dragcoefficient(CD)
Level-0
Level-1
Level-2
Level-3
Level-4
(c) Q3
0 50 100 150 200 250 300 350
Number of edges
1.0
1.5
2.0
2.5
3.0
Dragcoefficient(CD)
Q1
Q2
Q3
(d) nIE
0 2 4 6 8 10 12 14
Number of Gauss points
1.0
1.5
2.0
2.5
3.0
Dragcoefficient(CD)
Q1
Q2
Q3
(e) nGPtria
10-6
10-5
10-4
10-3
10-2
10-1
100
101
Ghost penalty parameter (γGP)
1.0
1.5
2.0
2.5
3.0
Dragcoefficient(CD)
Q1
Q2
Q3
(f) γGP
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Flow past a cylinder - Re = 20
(a) Q2, Level-1 (b) Q2, Level-2
-0.300
0.000
0.300
-0.500
0.700
pres
(c) Q2, Level-3
(d) Q1, γGP = 100 (e) Q1, γGP = 10−2
-0.300
0.000
0.300
-0.500
0.700
pres
(f) Q1, γGP = 10−4
(g) Q2, nIE = 20 (h) Q2, nIE = 80
-0.300
0.000
0.300
-0.500
0.700
pres
(i) Q2, nIE = 320
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Flow past a cylinder - Re = 100
0 50 100 150 200
Time
1.0
1.1
1.2
1.3
1.4
1.5
1.6
Dragcoefficient(CD)
0 50 100 150 200
Time
−0.4
−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3
0.4
Liftcoefficient(CL)
Figure: CD and CL for Re = 100 with Q2 B-Splines with ∆t = 0.1.
Data CD CL St
Liu et al. [4] 1.35 ±0.339 0.165
Le et al. [3] 1.37 ±0.323 0.160
Kadapa et al. [2] 1.39 ±0.339 0.166
Present 1.37 ±0.331 0.167
Table: Comparison of CD, CL and St.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Pressure relief valve
19111
5
3.2
pin
pout
noslip
noslip
1.0 0.50.5
2.1
0.4
g
r
Table: DOF comparison
Level FDM CutFEM % of FDM
2 99720 72030 72.23
3 149352 95289 63.80
4 327648 168360 51.38
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Pressure relief valve
Simulation time ≈ 2 hours.
Figure: Level-3
refinement.
0 1 2 3 4 5 6 7 8
Time (ms)
−0.05
0.00
0.05
0.10
0.15
0.20
0.25
Valvelift(mm)
FDM-SC
CFM-subtrias
Figure: Valve lift with Q1 B-Splines. fP2
and β = 0.5.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Pressure relief valve
0.6043
1.2086
1.8129
-0.235
2.182
pres
(a) 22 bar
0
0.6773
1.3546
2.0319
-0.319
2.391
pres
(b) 24 bar
0
0.7477
1.4953
2.243
-0.393
2.598
pres
(c) 26 bar
0
0.8154
1.6309
2.4463
-0.455
2.806
pres
(d) 28 bar
0
0.8808
1.7615
-0.508
3.015
pres
(e) 30 bar
0
0.9428
1.8857
-0.552
3.219
pres
(f) 32 bar
Figure: Pressure contour plots.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Pressure relief valve
20 22 24 26 28 30
Inlet pressure (bar)
1.0
1.5
2.0
2.5
3.0
3.5
4.0Flowrate(l/min)
exp1
exp2
exp3
FDM
CFM
Figure: Flowrates - comparison with experiments
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Ball check valve
401248
7.5
3 17
7.4
15.2
4.6
pin
pout
no-slip
no-slip
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Ball check valve
ρf
= 800 kg/m3
. µf
= 800 cP. ms = 14.4 g. k = 0. Stop at 2mm.
pin = 0.5 sin(2πt/10)
−0.5
0.0
0.5
pin
0
1
2
disp
−2.5
0.0
2.0
velo
−50
100
250
Fbottom
0 5 10 15 20 25 30
Time (ms)
−50
100
250
Ftop
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Ball check valve
4.00
8.00
12.00
0.00
16.00
vel Magn
Figure: Velocity magnitude.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Bearing rotor
(a) Domains (b) Discretisation
Figure: Animation - velocity magnitude.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Flow past a sphere in 3D
Figure: Triangles = 776. DOF = 178084 for Q1.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Flow past a sphere in 3D
0 20 40 60 80 100 120 140 160
Reynolds number (Re)
0
1
2
3
4
5
Dragcoefficient(CD)
Shirayama
Schlichting
Analytical
CutFEM-Q1
CutFEM-Q2
Figure: Drag coefficient (CD) versus Reynolds number (Re).
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Pressure relief valve - 3D
(a) Geometry
(b) Discretisation
(c) Streamlines
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Summary and Conclusions and Future work
Summary and Conclusions
Implemented and tested CutFEM on hierarchical B-Spline grids.
Higher-order spatial discretisations for the background grid.
Demonstrated the performance with several examples.
The scheme is stable, accurate and robust.
Can capture large deformations and topological changes effectively.
Future work
Fine tuning ghost-penalty parameters
Covering/uncovering
Completely closed scenarios
Parallelisation
Fluid-flexible solid interactions.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
Acknowledgements
We thank Schaeffler Technologies AG & Co. KG, Germany, for funding
this project.
Thank you
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
References
E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing.
CutFEM: Discretizing geometry and partial differential equations.
International Journal for Numerical Methods in Engineering,
104:472–501, 2014.
C. Kadapa, W. G. Dettmer, and D. Peri´c.
A fictitious domain/distributed Lagrange multiplier based
fluidstructure interaction scheme with hierarchical B-Spline grids.
Computer Methods in Applied Mechanics and Engineering,
301:1–27, 2016.
D. V. Le, B. C. Khoo, and J. Peraire.
An immersed interface method for viscous incompressible flows
involving rigid and flexible boundaries.
Journal of Computational Physics, 220:109–138, 2006.
C. Liu, X. Sheng, and C. H. Sung.
Preconditioned multigrid methods for unsteady incompressible flows.
Journal of Computational Physics, 139:35–57, 1998.
Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions
References (contd..)
H. Schlichting.
Boundary-Layer Theory
McGraw-Hill, USA, 1979.
S. Shirayama.
Flow past a shpere: Topological transitions of the vorticity field
AIAA Journal, 30:349–358,1992.

More Related Content

What's hot

A new practical algorithm for volume estimation using annealing of convex bodies
A new practical algorithm for volume estimation using annealing of convex bodiesA new practical algorithm for volume estimation using annealing of convex bodies
A new practical algorithm for volume estimation using annealing of convex bodies
Vissarion Fisikopoulos
 
On Resolution Proofs for Combinational Equivalence
On Resolution Proofs for Combinational EquivalenceOn Resolution Proofs for Combinational Equivalence
On Resolution Proofs for Combinational Equivalence
satrajit
 
Reducing Structural Bias in Technology Mapping
Reducing Structural Bias in Technology MappingReducing Structural Bias in Technology Mapping
Reducing Structural Bias in Technology Mapping
satrajit
 
Paired-end alignments in sequence graphs
Paired-end alignments in sequence graphsPaired-end alignments in sequence graphs
Paired-end alignments in sequence graphs
Chirag Jain
 

What's hot (17)

Temporal graph
Temporal graphTemporal graph
Temporal graph
 
Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
 
A new practical algorithm for volume estimation using annealing of convex bodies
A new practical algorithm for volume estimation using annealing of convex bodiesA new practical algorithm for volume estimation using annealing of convex bodies
A new practical algorithm for volume estimation using annealing of convex bodies
 
20320140501020
2032014050102020320140501020
20320140501020
 
kmaps
 kmaps kmaps
kmaps
 
Graph theory discrete mathmatics
Graph theory discrete mathmaticsGraph theory discrete mathmatics
Graph theory discrete mathmatics
 
Lossy Kernelization
Lossy KernelizationLossy Kernelization
Lossy Kernelization
 
Efficient Random-Walk Methods forApproximating Polytope Volume
Efficient Random-Walk Methods forApproximating Polytope VolumeEfficient Random-Walk Methods forApproximating Polytope Volume
Efficient Random-Walk Methods forApproximating Polytope Volume
 
On Resolution Proofs for Combinational Equivalence
On Resolution Proofs for Combinational EquivalenceOn Resolution Proofs for Combinational Equivalence
On Resolution Proofs for Combinational Equivalence
 
Hydrologic analysis and design 4th edition mc cuen solutions manual
Hydrologic analysis and design 4th edition mc cuen solutions manualHydrologic analysis and design 4th edition mc cuen solutions manual
Hydrologic analysis and design 4th edition mc cuen solutions manual
 
The power and Arnoldi methods in an algebra of circulants
The power and Arnoldi methods in an algebra of circulantsThe power and Arnoldi methods in an algebra of circulants
The power and Arnoldi methods in an algebra of circulants
 
Reducing Structural Bias in Technology Mapping
Reducing Structural Bias in Technology MappingReducing Structural Bias in Technology Mapping
Reducing Structural Bias in Technology Mapping
 
Paired-end alignments in sequence graphs
Paired-end alignments in sequence graphsPaired-end alignments in sequence graphs
Paired-end alignments in sequence graphs
 
OPTIMAL BEAM STEERING ANGLES OF A SENSOR ARRAY FOR A MULTIPLE SOURCE SCENARIO
OPTIMAL BEAM STEERING ANGLES OF A SENSOR ARRAY FOR A MULTIPLE SOURCE SCENARIOOPTIMAL BEAM STEERING ANGLES OF A SENSOR ARRAY FOR A MULTIPLE SOURCE SCENARIO
OPTIMAL BEAM STEERING ANGLES OF A SENSOR ARRAY FOR A MULTIPLE SOURCE SCENARIO
 
Biconnectivity
BiconnectivityBiconnectivity
Biconnectivity
 
Extracts from paper SPE 162911: Exploration Assets Evaluation: A Practical Wa...
Extracts from paper SPE 162911: Exploration Assets Evaluation: A Practical Wa...Extracts from paper SPE 162911: Exploration Assets Evaluation: A Practical Wa...
Extracts from paper SPE 162911: Exploration Assets Evaluation: A Practical Wa...
 
Network flows
Network flowsNetwork flows
Network flows
 

Similar to CutFEM on hierarchical B-Spline Cartesian grids with applications to fluid-structure interaction

Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...
Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...
Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...
ahmed671895
 
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdfreservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
RTEFGDFGJU
 

Similar to CutFEM on hierarchical B-Spline Cartesian grids with applications to fluid-structure interaction (20)

Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
 
A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract...
A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract...A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract...
A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract...
 
Precomputation for SMC-ABC with undirected graphical models
Precomputation for SMC-ABC with undirected graphical modelsPrecomputation for SMC-ABC with undirected graphical models
Precomputation for SMC-ABC with undirected graphical models
 
RDataMining slides-regression-classification
RDataMining slides-regression-classificationRDataMining slides-regression-classification
RDataMining slides-regression-classification
 
Biochip
BiochipBiochip
Biochip
 
Multimodal Residual Learning for Visual Question-Answering
Multimodal Residual Learning for Visual Question-AnsweringMultimodal Residual Learning for Visual Question-Answering
Multimodal Residual Learning for Visual Question-Answering
 
Learning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for GraphsLearning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for Graphs
 
Cerutti -- TAFA2013
Cerutti -- TAFA2013Cerutti -- TAFA2013
Cerutti -- TAFA2013
 
Operational management of a centrifugal slurry pump
Operational management of a centrifugal slurry pumpOperational management of a centrifugal slurry pump
Operational management of a centrifugal slurry pump
 
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
 
Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...
Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...
Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...
 
Iterative methods with special structures
Iterative methods with special structuresIterative methods with special structures
Iterative methods with special structures
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Monte Carlo Simulation of the Statistical Uncertainty of Emission Measurement...
Monte Carlo Simulation of the Statistical Uncertainty of Emission Measurement...Monte Carlo Simulation of the Statistical Uncertainty of Emission Measurement...
Monte Carlo Simulation of the Statistical Uncertainty of Emission Measurement...
 
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdfreservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
 
Checking Unsatisfiability Proofs in Parallel
Checking Unsatisfiability Proofs in ParallelChecking Unsatisfiability Proofs in Parallel
Checking Unsatisfiability Proofs in Parallel
 
PosterA0_AH_II
PosterA0_AH_IIPosterA0_AH_II
PosterA0_AH_II
 
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
 
1406
14061406
1406
 
SBMF
SBMFSBMF
SBMF
 

Recently uploaded

Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 

Recently uploaded (20)

Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .ppt
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Computer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesComputer Graphics Introduction To Curves
Computer Graphics Introduction To Curves
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 

CutFEM on hierarchical B-Spline Cartesian grids with applications to fluid-structure interaction

  • 1. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions CutFEM on hierarchical B-Spline Cartesian grids with applications to fluid-structure interaction Dr. C. Kadapa, Dr. W. G. Dettmer and Prof. D. Peri´c Zienkiewicz center for Computational Engineering Swansea University, Swansea, UK. 06-June-2016, ECCOMAS 2016, Crete Island, Greece.
  • 2. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Outline 1 Motivation 2 Formulation 3 Adaptive integration 4 Numerical examples 5 Summary and Conclusions
  • 3. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Motivation Large deformations Topological changes Generic geometries Added-mass instabilities
  • 4. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Fictitious Domain/Distributed Lagrange multiplier method Figure: Hierarchical B-Spline mesh. 200.00 250.00 300.00 148.39 326.94 pres -60.00 -45.00 -30.00 -76.71 -20.91 pres -320.00 -280.00 -240.00 -200.00 -355.18 -166.04 pres 30.00 45.00 60.00 75.00 21.46 80.45 pres Figure: Pressure contour plots
  • 5. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Fictitious Domain/Distributed Lagrange multiplier method 0.2 0.4 0.6 0.8 2.879e-04 9.365e-01 vel Magnitude
  • 6. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Fictitious Domain/Distributed Lagrange multiplier method Advantages Equal-order interpolation for velocity and pressure Works very well for thin structures Issues Zeroes on the matrix diagonal Zeroes on the matrix diagonal due to Lagrange multipliers Unnecessary DOF when bulky solids are present
  • 7. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions What is CutFEM?
  • 8. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions What is CutFEM? Advantages Clean interfaces. B-Splines of any order, along with hierarchical refinement. Stabilised formulation for fluids. Fewer DOF.
  • 9. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions What is CutFEM? Advantages Clean interfaces. B-Splines of any order, along with hierarchical refinement. Stabilised formulation for fluids. Fewer DOF. Issues Integration of cut cells. Ill-conditioned matrices due to small cut cells.
  • 10. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Formulation Incompressible Navier-Stokes Find velocity, v = (v1, v2, v3), and pressure, p, such that ρf ∂vf ∂t + ρf (vf · ∇)vf − µf ∆vf + ∇p = gf in Ωf (1a) ∇ · vf = 0 in Ωf (1b) vf = vs on Γf D (1c) σf · nf = tf on Γf N (1d) where, σf = µ∇vf − p I (2)
  • 11. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Formulation (contd..) Variational formulation Bf Gal({wf , q}, {vf , p}) + Bf Stab({wf , q}, {vf , p}) + Bf Nitsche({wf , q}, {vf , p}) + Bf GP({wf , q}, {vf , p}) = F f Gal({wf , q}) (3) Standard Galerkin terms Bf Gal({wf , q}, {vf , p}) = Ωf wf · ρf ∂vf ∂t + vf · ∇vf dΩf + Ωf µ ∇wf : ∇vf dΩf − Ωf (∇ · wf ) p dΩf + Ωf q (∇ · vf ) dΩf (4) F f Gal({wf , q}) = Ωf wf · gf dΩf + Γ f N wf · tf dΓ (5)
  • 12. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Formulation (contd..) Stabilisation Bf Stab({wf , q}, {vf , p}) = nel e=1 Ωfe 1 ρf [τSUPG ρf vf · ∇wf + τPSPG ∇q] · rM dΩf + nel e=1 Ωfe τLSIC ρf (∇ · wf ) (∇ · vf ) dΩf (6) where, rM is the residual of the momentum equation, rM = ρf ∂vf ∂t + ρf (vf · ∇vf ) − µf ∆vf + ∇p − gf (7) Nitsche’s method Bf N({wf , q}, {vf , p}) = γN1 ΓD wf · (vf − vs ) dΓ − ΓD wf · (σ({vf , p}) · nf ) dΓ − γN2 ΓD (σ({wf , q}) · nf ) · (vf − vs ) dΓ (8)
  • 13. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Formulation (contd..) Ghost penalty (Burman et al. [1]) Jump operator for a scalar valued problem: gs(w, v) := k j=1 F ∈F h2(j−1)+s F [Dj w][Dj v] ds [Djz] normal derivative of z, of order j, on face F and k is degree of B-Splines. Jump operator for a vector valued problem: Gs(w, v) := d i=1 k j=1 F ∈F h2(j−1)+s F [Dj wi][Dj vi] ds Figure: Ghost-penalty operators are applied on blue coloured edges. The ghost-penalty operator is given as, Bf GP({wf , q)}, {(v, p)}) = γu GP µ G1(wf , vf ) + γp GP 1 µ g3(q, p) (9) In this work, only the non-zero derivative of highest-order is considered.
  • 14. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Integration of cut-cells - Subtriangulation Advantages Exact integration for boundaries with straight edges. Easy when boundaries are discretised with straight edges. Fewer Gauss points. Disadvantages Difficult for generic geometries in 3D. Need to use constrained tetrahedralisation. Difficult when boundaries are discretised with curved elements or NURBS.
  • 15. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Integration of cut-cells - adaptive integration Subtriangularion: nGP = 420; % error = 1.55e-6. (a) Level-3 adaptive integration 102 103 104 105 106 Number of Gauss points in cut-cells 10-5 10-4 10-3 10-2 10-1 100 abs(%errorinarea) (b) nGP for different levels
  • 16. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Integration of cut-cells - adaptive integration - merging Subtriangularion: nGP = 420; % error = 1.55e-6. (a) Level-3 adaptive integration 102 103 104 105 106 Number of Gauss points in cut-cells 10-5 10-4 10-3 10-2 10-1 100 abs(%errorinarea) without merging with merging (b) nGP for different levels
  • 17. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Integration of cut-cells - binary tree (a) quad-tree (b) binary-tree Figure: Adaptive integration - quad-tree Vs binary-tree.
  • 18. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Integration of cut-cells - adaptive integration (a) Level-3 adaptive integration 102 103 104 105 106 Number of Gauss points in cut-cells 10-5 10-4 10-3 10-2 10-1 100 abs(%errorinarea) quad-tree without merging binary-tree without merging quad-tree with merging binary-tree with merging (b) nGP for different levels Binary subdivision helps to reduce number of Gauss points in cut-cells by 20%. (In 3D, for sphere, the reduction is about 30%.)
  • 19. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Numerical examples
  • 20. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions CutFEM - Basic scheme W. G. Dettmer, C. Kadapa, and D. Peri´c. Ingredients for an immersed interface methods for FSI. COUPLED Problems, Venice, Italy, May-2015. W. G. Dettmer, C. Kadapa, and D. Peri´c. A stabilised immersed boundary method on hierarchical b-spline grids. Submitted for publication.
  • 21. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Flow past a cylinder 10 20 15 15 1 vx = 1.0 vy = 0 vy = 0, tx = 0 vy = 0, tx = 0 tx=ty=0
  • 22. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Flow past a cylinder - Re = 20 1 2 3 4 5 6 7 8 9 Number of Gauss points 1.0 1.5 2.0 2.5 3.0 Dragcoefficient(CD) Level-0 Level-1 Level-2 Level-3 Level-4 (a) Q1 1 2 3 4 5 6 7 8 9 Number of Gauss points 1.0 1.5 2.0 2.5 3.0 Dragcoefficient(CD) Level-0 Level-1 Level-2 Level-3 Level-4 (b) Q2 1 2 3 4 5 6 7 8 9 Number of Gauss points 1.0 1.5 2.0 2.5 3.0 Dragcoefficient(CD) Level-0 Level-1 Level-2 Level-3 Level-4 (c) Q3 0 50 100 150 200 250 300 350 Number of edges 1.0 1.5 2.0 2.5 3.0 Dragcoefficient(CD) Q1 Q2 Q3 (d) nIE 0 2 4 6 8 10 12 14 Number of Gauss points 1.0 1.5 2.0 2.5 3.0 Dragcoefficient(CD) Q1 Q2 Q3 (e) nGPtria 10-6 10-5 10-4 10-3 10-2 10-1 100 101 Ghost penalty parameter (γGP) 1.0 1.5 2.0 2.5 3.0 Dragcoefficient(CD) Q1 Q2 Q3 (f) γGP
  • 23. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Flow past a cylinder - Re = 20 (a) Q2, Level-1 (b) Q2, Level-2 -0.300 0.000 0.300 -0.500 0.700 pres (c) Q2, Level-3 (d) Q1, γGP = 100 (e) Q1, γGP = 10−2 -0.300 0.000 0.300 -0.500 0.700 pres (f) Q1, γGP = 10−4 (g) Q2, nIE = 20 (h) Q2, nIE = 80 -0.300 0.000 0.300 -0.500 0.700 pres (i) Q2, nIE = 320
  • 24. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Flow past a cylinder - Re = 100 0 50 100 150 200 Time 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Dragcoefficient(CD) 0 50 100 150 200 Time −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 Liftcoefficient(CL) Figure: CD and CL for Re = 100 with Q2 B-Splines with ∆t = 0.1. Data CD CL St Liu et al. [4] 1.35 ±0.339 0.165 Le et al. [3] 1.37 ±0.323 0.160 Kadapa et al. [2] 1.39 ±0.339 0.166 Present 1.37 ±0.331 0.167 Table: Comparison of CD, CL and St.
  • 25. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Pressure relief valve 19111 5 3.2 pin pout noslip noslip 1.0 0.50.5 2.1 0.4 g r Table: DOF comparison Level FDM CutFEM % of FDM 2 99720 72030 72.23 3 149352 95289 63.80 4 327648 168360 51.38
  • 26. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Pressure relief valve Simulation time ≈ 2 hours. Figure: Level-3 refinement. 0 1 2 3 4 5 6 7 8 Time (ms) −0.05 0.00 0.05 0.10 0.15 0.20 0.25 Valvelift(mm) FDM-SC CFM-subtrias Figure: Valve lift with Q1 B-Splines. fP2 and β = 0.5.
  • 27. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Pressure relief valve 0.6043 1.2086 1.8129 -0.235 2.182 pres (a) 22 bar 0 0.6773 1.3546 2.0319 -0.319 2.391 pres (b) 24 bar 0 0.7477 1.4953 2.243 -0.393 2.598 pres (c) 26 bar 0 0.8154 1.6309 2.4463 -0.455 2.806 pres (d) 28 bar 0 0.8808 1.7615 -0.508 3.015 pres (e) 30 bar 0 0.9428 1.8857 -0.552 3.219 pres (f) 32 bar Figure: Pressure contour plots.
  • 28. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Pressure relief valve 20 22 24 26 28 30 Inlet pressure (bar) 1.0 1.5 2.0 2.5 3.0 3.5 4.0Flowrate(l/min) exp1 exp2 exp3 FDM CFM Figure: Flowrates - comparison with experiments
  • 29. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Ball check valve 401248 7.5 3 17 7.4 15.2 4.6 pin pout no-slip no-slip
  • 30. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Ball check valve ρf = 800 kg/m3 . µf = 800 cP. ms = 14.4 g. k = 0. Stop at 2mm. pin = 0.5 sin(2πt/10) −0.5 0.0 0.5 pin 0 1 2 disp −2.5 0.0 2.0 velo −50 100 250 Fbottom 0 5 10 15 20 25 30 Time (ms) −50 100 250 Ftop
  • 31. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Ball check valve 4.00 8.00 12.00 0.00 16.00 vel Magn Figure: Velocity magnitude.
  • 32. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Bearing rotor (a) Domains (b) Discretisation Figure: Animation - velocity magnitude.
  • 33. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Flow past a sphere in 3D Figure: Triangles = 776. DOF = 178084 for Q1.
  • 34. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Flow past a sphere in 3D 0 20 40 60 80 100 120 140 160 Reynolds number (Re) 0 1 2 3 4 5 Dragcoefficient(CD) Shirayama Schlichting Analytical CutFEM-Q1 CutFEM-Q2 Figure: Drag coefficient (CD) versus Reynolds number (Re).
  • 35. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Pressure relief valve - 3D (a) Geometry (b) Discretisation (c) Streamlines
  • 36. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Summary and Conclusions and Future work Summary and Conclusions Implemented and tested CutFEM on hierarchical B-Spline grids. Higher-order spatial discretisations for the background grid. Demonstrated the performance with several examples. The scheme is stable, accurate and robust. Can capture large deformations and topological changes effectively. Future work Fine tuning ghost-penalty parameters Covering/uncovering Completely closed scenarios Parallelisation Fluid-flexible solid interactions.
  • 37. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions Acknowledgements We thank Schaeffler Technologies AG & Co. KG, Germany, for funding this project. Thank you
  • 38. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions References E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing. CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104:472–501, 2014. C. Kadapa, W. G. Dettmer, and D. Peri´c. A fictitious domain/distributed Lagrange multiplier based fluidstructure interaction scheme with hierarchical B-Spline grids. Computer Methods in Applied Mechanics and Engineering, 301:1–27, 2016. D. V. Le, B. C. Khoo, and J. Peraire. An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries. Journal of Computational Physics, 220:109–138, 2006. C. Liu, X. Sheng, and C. H. Sung. Preconditioned multigrid methods for unsteady incompressible flows. Journal of Computational Physics, 139:35–57, 1998.
  • 39. Motivation Formulation Adaptive integration Numerical examples Summary and Conclusions References (contd..) H. Schlichting. Boundary-Layer Theory McGraw-Hill, USA, 1979. S. Shirayama. Flow past a shpere: Topological transitions of the vorticity field AIAA Journal, 30:349–358,1992.