SlideShare a Scribd company logo
1 of 51
1
TWO PORTTWO PORT
NETWORKSNETWORKS
2
SUB - TOPICSSUB - TOPICS
Z – PARAMETER
Y – PARAMETER
T (ABCD) – PARAMETER
TERMINATED TWO PORT NETWORKS
3
OBJECTIVESOBJECTIVES
• TO UNDERSTAND ABOUT TWO – PORT
NETWORKS AND ITS FUNTIONS.
• TO UNDERSTAND THE DIFFERENT
BETWEEN Z – PARAMETER, Y –
PARAMETER, T – PARAMETER AND
TERMINATED TWO PORT NETWORKS.
• TO INVERTIGATE AND ANALYSIS THE
BEHAVIOUR OF TWO – PORT NETWORKS.
4
TWO – PORT NETWORKSTWO – PORT NETWORKS
• A pair of terminals through which a
current may enter or leave a network is
known as a port.
• Two terminal devices or elements (such as
resistors, capacitors, and inductors)
results in one – port network.
• Most of the circuits we have dealt with so
far are two – terminal or one – port
circuits.
5
• A two – port network is an electrical
network with two separate ports for
input and output.
• It has two terminal pairs acting as
access points. The current entering
one terminal of a pair leaves the
other terminal in the pair.
6
Linear network
+
V
-
I
I
One – port network
Linear network
+
V1
-
I1
I1 I2
I2
+
V2
-
Two – port network
7
• Two (2) reason why to study two port –
network:
Such networks are useful in
communication, control system, power
systems and electronics.
Knowing the parameters of a two – port
network enables us to treat it as a
“black box” when embedded within a
larger network.
8
• From the network, we can observe that
there are 4 variables that is I1, I2, V1and V2,
which two are independent.
• The various term that relate these
voltages and currents are called
parameters.
9
Z – PARAMETERZ – PARAMETER
• Z – parameter also called as impedance
parameter and the units is ohm (Ω)
• Impedance parameters is commonly used
in the synthesis of filters and also useful in
the design and analysis of impedance
matching networks and power distribution
networks.
• The two – port network may be voltage –
driven or current – driven.
10
• Two – port network driven by
voltage source.
• Two – port network driven by current
sources.
Linear network
I1 I2
+
−
+
−
V1 V2
I1 I2
+
V1
-
Linear network
+
V2
-
11
• The “black box” is replace with Z-parameter
is as shown below.
• The terminal voltage can be related to the
terminal current as:
+
V1
-
I1
I2
+
V2
-
Z11
Z21
Z12
Z22
2221212
2121111
IzIzV
IzIzV
+=
+= (1)
(2)
12
• In matrix form as:
• The Z-parameter that we want to
determine are z11, z12, z21, z22.
• The value of the parameters can be
evaluated by setting:
1. I1= 0 (input port open – circuited)
2. I2= 0 (output port open – circuited)












=





2
1
2221
1211
2
1
I
I
zz
zz
V
V
13
• Thus,
01
2
21
01
1
11
2
2
=
=
=
=
I
I
I
V
z
I
V
z
02
2
22
02
1
12
1
1
=
=
=
=
I
I
I
V
z
I
V
z
14
• Where;
z11 = open – circuit input impedance.
z12 = open – circuit transfer impedance from
port 1 to port 2.
z21 = open – circuit transfer impedance from
port 2 to port 1.
z22 = open – circuit output impedance.
15
Example 1Example 1
Find the Z – parameter of the circuit below.
40Ω
240Ω
120Ω
+
V1
_
+
V2
_
I1
I2
16
SolutionSolution
i) I2 = 0(open circuit port 2). Redraw the
circuit.
40Ω
240Ω
120Ω
+
V1
_
+
V2
_
I1
Ia
Ib
17
Ω==∴
→
=
=
84
(2)(1)sub
)2......(
400
280
)1.......(120
1
1
11
1
1
I
V
Z
II
IV
b
b
Ω==∴
→
=
=
72
(3)(4)sub
)4.......(
400
120
.......(3)240
1
2
21
1
2
I
V
Z
II
IV
a
a
18
ii) I1 = 0 (open circuit port 1). Redraw the
circuit.
40Ω
240Ω
120Ω
+
V1
_
+
V2
_
Iy I2
Ix
19
Ω==∴
→
=
=
96Z
(2)(1)sub
)2.......(
400
160
)1.......(240
2
2
22
2
2
I
V
II
IV
x
x
Ω==∴
→
=
=
72
(3)(4)sub
)4.......(
400
240
)3.......(120
2
1
12
2
1
I
V
Z
II
IV
y
y
[ ] 





=
9672
7284
Z
In matrix form:
20
Example 2Example 2
Find the Z – parameter of the circuit below
+
_
+
V1
_
+
V2
_-j20Ω
10Ωj4Ω2Ω
10I2
I2I1
21
SolutionSolution
i) I2 = 0 (open circuit port 2). Redraw the circuit.
Ω=∴
=
Ω+==∴
+=
0Z
circuit)(short0V
j4)(2
I
V
Z
j4)(2IV
21
2
1
1
11
11
+
V1
_
j4Ω2ΩI1
+
V2
_
I2 = 0
22
ii) I1 = 0 (open circuit port 1). Redraw the circuit.
Ω==∴






+=
+
−
=
Ω==∴
=
j8)-(16
I
V
Z
10
1
20
j
V2I
10
10I-V
j20
V
I
10
I
V
Z
10IV
2
2
22
22
222
2
2
1
12
21
[ ] 




 +
=
j8)-(1610
0j4)(2
Z
form;matrixIn
+
_
+
V1
_
+
V2
_-j20Ω
10Ω
10I2
I2I1 = 0
23
Y - PARAMETERY - PARAMETER
• Y – parameter also called admittance
parameter and the units is siemens (S).
• The “black box” that we want to replace
with the Y-parameter is shown below.
+
V1
-
I1
I2
+
V2
-
Y11
Y21
Y12
Y22
24
• The terminal current can be expressed in
term of terminal voltage as:
• In matrix form:
2221212
2121111
VyVyI
VyVyI
+=
+= (1)
(2)












=





2
1
2221
1211
2
1
V
V
yy
yy
I
I
25
• The y-parameter that we want to determine
are Y11, Y12, Y21, Y22. The values of the
parameters can be evaluate by setting:
i) V1 = 0 (input port short – circuited).
ii) V2 = 0 (output port short – circuited).
• Thus;
01
2
21
01
1
11
2
2
=
=
=
=
V
V
V
I
Y
V
I
Y
02
2
22
02
1
12
1
1
=
=
=
=
V
V
V
I
Y
V
I
Y
26
Example 1Example 1
Find the Y – parameter of the circuit shown
below.
5Ω
15Ω20Ω
+
V1
_
+
V2
_
I1
I2
27
SolutionSolution
i) V2 = 0
5Ω
20Ω
+
V1
_
I1
I2
Ia
S
V
I
Y
II
IV
a
a
4
1
(2)(1)sub
)2.......(
25
5
)1.......(20
1
1
11
1
1
==∴
→
=
=
S
V
I
Y
IV
5
1
5
1
2
21
21
−==∴
−=
28
ii) V1 = 0
In matrix form;
5Ω
15Ω
+
V2
_
I1
I2
Ix
S
V
I
Y
II
IV
x
x
15
4
(4)(3)sub
)4.......(
25
5
)3.......(15
2
2
22
2
2
==∴
→
=
=
S
V
I
Y
IV
5
1
5
2
1
12
12
−==∴
−=
[ ] SY










−
−
=
15
4
5
1
5
1
4
1
29
Example 2 (circuit withExample 2 (circuit with
dependent source)dependent source)
Find the Y – parameters of the circuit
shown.
+
_
+
V1
_
+
V2
_-j20Ω
10Ωj4Ω2Ω
10I2
I2I1
30
SolutionSolution
i) V2 = 0 (short – circuit port 2). Redraw the circuit.
+
_
+
V1
_
10Ωj4Ω2Ω
10I2
I2
I1
S0
V
I
Y
Sj0.2)-(0.1
j42
1
V
I
Y
j4)I(2V
0I
1
2
21
1
1
11
11
==∴
=
+
==∴
+=
=
31
ii) V1 = 0 (short – circuit port 1). Redraw the circuit.
)2.......(
j20-
1
10
1
V2I
10
10I-V
j20-
V
I
)........(1
j42
10I-
I
22
222
2
2
1






+=
+=
+
=
+
_
+
V2
_-j20Ω
10Ωj4Ω2Ω
10I2
I2I1
[ ] S
j0.0250.050
j0.0751.0j0.20.1
Y
form;matrixIn
Sj0.075)(-0.1
V
I
Y
(1)(2)sub
Sj0.025)(0.05
V
I
Y
2
1
12
2
2
22






+
+−+
=∴
+==
→
+==∴
32
T (ABCD) PARAMETERT (ABCD) PARAMETER
• T – parameter or ABCD – parameter is a
another set of parameters relates the
variables at the input port to those at the
output port.
• T – parameter also called transmission
parameters because this parameter are
useful in the analysis of transmission lines
because they express sending – end
variables (V1 and I1) in terms of the
receiving – end variables (V2 and -I2).
33
• The “black box” that we want to replace with T –
parameter is as shown below.
• The equation is:
+
V1
-
I1
I2
+
V2
-
A11
C21
B12
D22
)2.......(
)1.......(
221
221
DICVI
BIAVV
−=
−=
34
• In matrix form is:
• The T – parameter that we want
determine are A, B, C and D where A and
D are dimensionless, B is in ohm (Ω) and
C is in siemens (S).
• The values can be evaluated by setting
i) I2 = 0 (input port open – circuit)
ii) V2 = 0 (output port short circuit)






−





=





2
2
1
1
I
V
DC
BA
I
V
35
• Thus;
• In term of the transmission parameter, a
network is reciprocal if;
02
1
02
1
2
2
=
=
=
=
I
I
V
I
C
V
V
A
02
1
02
1
2
2
=
=
=
=
V
V
I
I
D
I
V
B
1BC-AD =
36
ExampleExample
Find the ABCD – parameter of the circuit
shown below.
2Ω
10Ω
+
V2
_
I1 I2
+
V1
_
4Ω
37
SolutionSolution
i) I2 = 0,
2Ω
10Ω
+
V2
_
I1
+
V1
_
2.1
5
6
10
2
2
1.0
10
2
1
22
2
1
211
2
1
12
==∴
=+





=
+=
==∴
=
V
V
A
VV
V
V
VIV
S
V
I
C
IV
38
ii) V2 = 0,
( )
Ω=−=∴
+





−=
+=
++=
=−=∴
−=
8.6
10
10
14
12
1012
102
4.1
14
10
2
1
221
211
2111
2
1
12
I
V
B
IIV
IIV
IIIV
I
I
D
II
2Ω
10Ω
I1 I2
+
V1
_
4Ω
I1 + I2
[ ] 





=
4.11.0
8.62.1
T
39
TERMINATED TWO – PORTTERMINATED TWO – PORT
NETWORKSNETWORKS
• In typical application of two port network,
the circuit is driven at port 1 and loaded at
port 2.
• Figure below shows the typical terminated
2 port model.
+
V1
-
I1 I2
+
V2
-
+
−
Zg
ZLVg
Two – port
network
40
• Zg represents the internal impedance of
the source and Vg is the internal voltage of
the source and ZL is the load impedance.
• There are a few characteristics of the
terminated two-port network and some of
them are;
gV
V
V
V
I
I
I
V
I
V
2
g
1
2
v
1
2
i
2
2
o
1
1
i
Again,voltageoverallv)
Again,voltageiv)
Again,currentiii)
Zimpedance,outputii)
Zimpedance,inputi)
=
=
=
=
=
41
• The derivation of any one of the desired
expression involves the algebraic
manipulation of the two – port equation. The
equation are:
1) the two-port parameter equation either Z
or Y or ABCD.
For example, Z-parameter,
)2.......(IZIZV
)1.......(IZIV
2221212
2121111
+=
+= Z
42
2) KVL at input,
3) KVL at the output,
• From these equations, all the characteristic
can be obtained.
.......(3)ZIVV g1g1 −=
)4.......(ZIV L22 −=
43
Example 1Example 1
For the two-port shown below, obtain the
suitable value of Rs such that maximum
power is available at the input terminal. The
Z-parameter of the two-port network is given
as
With Rs = 5Ω,what would be the value of






=





44
26
2221
1211
ZZ
ZZ
s
2
V
V
+
V1
-
I1 I2
+
V2
-
+
−
Rs
4ΩVs
Z
44
SolutionSolution
1) Z-parameter equation becomes;
2) KVL at the output;
Subs. (3) into (2)
)2.......(44
)1.......(26
212
211
IIV
IIV
+=
+=
)3.......(4 22 IV −=
)4.......(
2
1
2
I
I −=
45
Subs. (4) into (1)
For the circuit to have maximum power,
)5.......(5 11 IV =
Ω==∴ 5
1
1
1
I
V
Z
Ω== 51ZRs
46
To find at max. power transfer, voltage
drop at Z1 is half of Vs
From equations (3), (4), (5) & (6)
Overall voltage gain,
s
2
V
V
)6.......(
2
1
sV
V =
5
12
==
s
g
V
V
A
47
Example 2Example 2
The ABCD parameter of two – port network shown
below are.
The output port is connected to a variable load for
a maximum power transfer. Find RL and the
maximum power transferred.





 Ω
20.1S
204
48
ABCD parameter equation becomes
V1 = 4V2 – 20I2
I1 = 0.1V2 – 2I2
At the input port, V1 = -10I
(1)
(2)
(3)
Solution
49
(3) Into (1)
-10I1 = 4V2 – 20I2
I1 = -0.4V2 2I2
(2) = (4)
0.1V2 – 2I2 = -0.4V2 + 2I2
0.5V2 = 4I2
From (5);
ZTH = V2/I2 = 8Ω
(4)
(5)
(6)
50
But from Figure (b), we know that
V1 = 50 – 10I1 and I2 =0
Sub. these into (1) and (2)
50 – 10I1 = 4V2
I1 = 0.1V2
(8)
(7)
51
Sub (8) into (7)
V2 = 10
Thus, VTH = V2 = 10V
RL for maximum power transfer,
RL = ZTH = 8Ω
The maximum power
P = I2
RL = (VTH/2RL)2
x RL = V2
TH/4RL = 3.125W

More Related Content

What's hot

Zener and avalanche diode
Zener and avalanche diode    Zener and avalanche diode
Zener and avalanche diode AnuJyothi2
 
Collector to base bias & self bias
Collector to base bias & self biasCollector to base bias & self bias
Collector to base bias & self biasPRAVEENA N G
 
Bipolar Junction Transistor (BJT).pptx
Bipolar Junction Transistor (BJT).pptxBipolar Junction Transistor (BJT).pptx
Bipolar Junction Transistor (BJT).pptxDarwin Nesakumar
 
Field Effect Biasing - Part 1
Field Effect Biasing - Part 1Field Effect Biasing - Part 1
Field Effect Biasing - Part 1Jess Rangcasajo
 
Hybrid Transistor Model with Two Port Network
Hybrid Transistor Model with Two Port NetworkHybrid Transistor Model with Two Port Network
Hybrid Transistor Model with Two Port NetworkRidwanul Hoque
 
36.voltage divider bias
36.voltage divider bias36.voltage divider bias
36.voltage divider biasDoCircuits
 
Diode Application
Diode ApplicationDiode Application
Diode ApplicationUMAR ALI
 
Unit 1 Numerical Problems on PN Junction Diode
Unit 1 Numerical Problems on PN Junction DiodeUnit 1 Numerical Problems on PN Junction Diode
Unit 1 Numerical Problems on PN Junction DiodeDr Piyush Charan
 
Operational Amplifier Design
Operational Amplifier DesignOperational Amplifier Design
Operational Amplifier DesignBharat Biyani
 
classification of second order partial differential equation
classification of second order partial differential equationclassification of second order partial differential equation
classification of second order partial differential equationjigar methaniya
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2Shiwam Isrie
 
BOOLEAN ALGEBRA AND LOGIC GATE
BOOLEAN ALGEBRA AND LOGIC GATE BOOLEAN ALGEBRA AND LOGIC GATE
BOOLEAN ALGEBRA AND LOGIC GATE Tamim Tanvir
 
Zener Diode Presentation
Zener Diode PresentationZener Diode Presentation
Zener Diode PresentationPritom Mojumder
 
Diodes
DiodesDiodes
Diodescallr
 

What's hot (20)

Zener and avalanche diode
Zener and avalanche diode    Zener and avalanche diode
Zener and avalanche diode
 
Collector to base bias & self bias
Collector to base bias & self biasCollector to base bias & self bias
Collector to base bias & self bias
 
Two ports
Two ports Two ports
Two ports
 
Block Diagram For Control Systems.
Block Diagram For Control Systems.Block Diagram For Control Systems.
Block Diagram For Control Systems.
 
Bipolar Junction Transistor (BJT).pptx
Bipolar Junction Transistor (BJT).pptxBipolar Junction Transistor (BJT).pptx
Bipolar Junction Transistor (BJT).pptx
 
Z parameters
Z parametersZ parameters
Z parameters
 
Field Effect Biasing - Part 1
Field Effect Biasing - Part 1Field Effect Biasing - Part 1
Field Effect Biasing - Part 1
 
Diodes
Diodes Diodes
Diodes
 
Hybrid Transistor Model with Two Port Network
Hybrid Transistor Model with Two Port NetworkHybrid Transistor Model with Two Port Network
Hybrid Transistor Model with Two Port Network
 
36.voltage divider bias
36.voltage divider bias36.voltage divider bias
36.voltage divider bias
 
Diode Application
Diode ApplicationDiode Application
Diode Application
 
Unit 1 Numerical Problems on PN Junction Diode
Unit 1 Numerical Problems on PN Junction DiodeUnit 1 Numerical Problems on PN Junction Diode
Unit 1 Numerical Problems on PN Junction Diode
 
Operational Amplifier Design
Operational Amplifier DesignOperational Amplifier Design
Operational Amplifier Design
 
classification of second order partial differential equation
classification of second order partial differential equationclassification of second order partial differential equation
classification of second order partial differential equation
 
Chapter 4 bjt
Chapter 4 bjtChapter 4 bjt
Chapter 4 bjt
 
Diode
DiodeDiode
Diode
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2
 
BOOLEAN ALGEBRA AND LOGIC GATE
BOOLEAN ALGEBRA AND LOGIC GATE BOOLEAN ALGEBRA AND LOGIC GATE
BOOLEAN ALGEBRA AND LOGIC GATE
 
Zener Diode Presentation
Zener Diode PresentationZener Diode Presentation
Zener Diode Presentation
 
Diodes
DiodesDiodes
Diodes
 

Similar to 2portnetwork-150303092056-conversion-gate01

Notes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptxNotes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptxashokranjitha2006
 
2. Nodal Analysis Complete.pdf
2. Nodal Analysis Complete.pdf2. Nodal Analysis Complete.pdf
2. Nodal Analysis Complete.pdfNirmalCTEVT
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitancePei-Che Chang
 
LC2-EE3726-C16-Two-port_networks.pdf
LC2-EE3726-C16-Two-port_networks.pdfLC2-EE3726-C16-Two-port_networks.pdf
LC2-EE3726-C16-Two-port_networks.pdfVQuangKhi
 
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfChapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfLiewChiaPing
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinationalDefri Tan
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.pptShivamChaturvedi67
 
NAS-Unit-5_Two Port Networks
NAS-Unit-5_Two Port NetworksNAS-Unit-5_Two Port Networks
NAS-Unit-5_Two Port NetworksHussain K
 
Linear Algebra and Complex Variables
Linear Algebra and Complex VariablesLinear Algebra and Complex Variables
Linear Algebra and Complex VariablesMahirHassan5
 
Coupled inductor boost integrated flyback converter with high-voltage gain-1
Coupled inductor boost integrated flyback converter with high-voltage gain-1Coupled inductor boost integrated flyback converter with high-voltage gain-1
Coupled inductor boost integrated flyback converter with high-voltage gain-1Jeetendra Prasad
 
Comm Engg mod & demod
Comm Engg mod & demod Comm Engg mod & demod
Comm Engg mod & demod rmkrva
 
BEEE-UNIT 1.pptx
BEEE-UNIT 1.pptxBEEE-UNIT 1.pptx
BEEE-UNIT 1.pptxGigi203211
 
Three State Switching Boost Converter ppt
Three State Switching Boost Converter pptThree State Switching Boost Converter ppt
Three State Switching Boost Converter pptMamta Bagoria
 
Chapter 03
Chapter 03Chapter 03
Chapter 03Tha Mike
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solAnkit Chaurasia
 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxLiewChiaPing
 

Similar to 2portnetwork-150303092056-conversion-gate01 (20)

Two port networks
Two port networksTwo port networks
Two port networks
 
Notes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptxNotes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptx
 
2. Nodal Analysis Complete.pdf
2. Nodal Analysis Complete.pdf2. Nodal Analysis Complete.pdf
2. Nodal Analysis Complete.pdf
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
LC2-EE3726-C16-Two-port_networks.pdf
LC2-EE3726-C16-Two-port_networks.pdfLC2-EE3726-C16-Two-port_networks.pdf
LC2-EE3726-C16-Two-port_networks.pdf
 
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfChapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdf
 
Digital Logic circuit
Digital Logic circuitDigital Logic circuit
Digital Logic circuit
 
Two port network
Two port networkTwo port network
Two port network
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinational
 
Lecture 11.pptx
Lecture 11.pptxLecture 11.pptx
Lecture 11.pptx
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
 
NAS-Unit-5_Two Port Networks
NAS-Unit-5_Two Port NetworksNAS-Unit-5_Two Port Networks
NAS-Unit-5_Two Port Networks
 
Linear Algebra and Complex Variables
Linear Algebra and Complex VariablesLinear Algebra and Complex Variables
Linear Algebra and Complex Variables
 
Coupled inductor boost integrated flyback converter with high-voltage gain-1
Coupled inductor boost integrated flyback converter with high-voltage gain-1Coupled inductor boost integrated flyback converter with high-voltage gain-1
Coupled inductor boost integrated flyback converter with high-voltage gain-1
 
Comm Engg mod & demod
Comm Engg mod & demod Comm Engg mod & demod
Comm Engg mod & demod
 
BEEE-UNIT 1.pptx
BEEE-UNIT 1.pptxBEEE-UNIT 1.pptx
BEEE-UNIT 1.pptx
 
Three State Switching Boost Converter ppt
Three State Switching Boost Converter pptThree State Switching Boost Converter ppt
Three State Switching Boost Converter ppt
 
Chapter 03
Chapter 03Chapter 03
Chapter 03
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptx
 

2portnetwork-150303092056-conversion-gate01

  • 2. 2 SUB - TOPICSSUB - TOPICS Z – PARAMETER Y – PARAMETER T (ABCD) – PARAMETER TERMINATED TWO PORT NETWORKS
  • 3. 3 OBJECTIVESOBJECTIVES • TO UNDERSTAND ABOUT TWO – PORT NETWORKS AND ITS FUNTIONS. • TO UNDERSTAND THE DIFFERENT BETWEEN Z – PARAMETER, Y – PARAMETER, T – PARAMETER AND TERMINATED TWO PORT NETWORKS. • TO INVERTIGATE AND ANALYSIS THE BEHAVIOUR OF TWO – PORT NETWORKS.
  • 4. 4 TWO – PORT NETWORKSTWO – PORT NETWORKS • A pair of terminals through which a current may enter or leave a network is known as a port. • Two terminal devices or elements (such as resistors, capacitors, and inductors) results in one – port network. • Most of the circuits we have dealt with so far are two – terminal or one – port circuits.
  • 5. 5 • A two – port network is an electrical network with two separate ports for input and output. • It has two terminal pairs acting as access points. The current entering one terminal of a pair leaves the other terminal in the pair.
  • 6. 6 Linear network + V - I I One – port network Linear network + V1 - I1 I1 I2 I2 + V2 - Two – port network
  • 7. 7 • Two (2) reason why to study two port – network: Such networks are useful in communication, control system, power systems and electronics. Knowing the parameters of a two – port network enables us to treat it as a “black box” when embedded within a larger network.
  • 8. 8 • From the network, we can observe that there are 4 variables that is I1, I2, V1and V2, which two are independent. • The various term that relate these voltages and currents are called parameters.
  • 9. 9 Z – PARAMETERZ – PARAMETER • Z – parameter also called as impedance parameter and the units is ohm (Ω) • Impedance parameters is commonly used in the synthesis of filters and also useful in the design and analysis of impedance matching networks and power distribution networks. • The two – port network may be voltage – driven or current – driven.
  • 10. 10 • Two – port network driven by voltage source. • Two – port network driven by current sources. Linear network I1 I2 + − + − V1 V2 I1 I2 + V1 - Linear network + V2 -
  • 11. 11 • The “black box” is replace with Z-parameter is as shown below. • The terminal voltage can be related to the terminal current as: + V1 - I1 I2 + V2 - Z11 Z21 Z12 Z22 2221212 2121111 IzIzV IzIzV += += (1) (2)
  • 12. 12 • In matrix form as: • The Z-parameter that we want to determine are z11, z12, z21, z22. • The value of the parameters can be evaluated by setting: 1. I1= 0 (input port open – circuited) 2. I2= 0 (output port open – circuited)             =      2 1 2221 1211 2 1 I I zz zz V V
  • 14. 14 • Where; z11 = open – circuit input impedance. z12 = open – circuit transfer impedance from port 1 to port 2. z21 = open – circuit transfer impedance from port 2 to port 1. z22 = open – circuit output impedance.
  • 15. 15 Example 1Example 1 Find the Z – parameter of the circuit below. 40Ω 240Ω 120Ω + V1 _ + V2 _ I1 I2
  • 16. 16 SolutionSolution i) I2 = 0(open circuit port 2). Redraw the circuit. 40Ω 240Ω 120Ω + V1 _ + V2 _ I1 Ia Ib
  • 18. 18 ii) I1 = 0 (open circuit port 1). Redraw the circuit. 40Ω 240Ω 120Ω + V1 _ + V2 _ Iy I2 Ix
  • 20. 20 Example 2Example 2 Find the Z – parameter of the circuit below + _ + V1 _ + V2 _-j20Ω 10Ωj4Ω2Ω 10I2 I2I1
  • 21. 21 SolutionSolution i) I2 = 0 (open circuit port 2). Redraw the circuit. Ω=∴ = Ω+==∴ += 0Z circuit)(short0V j4)(2 I V Z j4)(2IV 21 2 1 1 11 11 + V1 _ j4Ω2ΩI1 + V2 _ I2 = 0
  • 22. 22 ii) I1 = 0 (open circuit port 1). Redraw the circuit. Ω==∴       += + − = Ω==∴ = j8)-(16 I V Z 10 1 20 j V2I 10 10I-V j20 V I 10 I V Z 10IV 2 2 22 22 222 2 2 1 12 21 [ ]       + = j8)-(1610 0j4)(2 Z form;matrixIn + _ + V1 _ + V2 _-j20Ω 10Ω 10I2 I2I1 = 0
  • 23. 23 Y - PARAMETERY - PARAMETER • Y – parameter also called admittance parameter and the units is siemens (S). • The “black box” that we want to replace with the Y-parameter is shown below. + V1 - I1 I2 + V2 - Y11 Y21 Y12 Y22
  • 24. 24 • The terminal current can be expressed in term of terminal voltage as: • In matrix form: 2221212 2121111 VyVyI VyVyI += += (1) (2)             =      2 1 2221 1211 2 1 V V yy yy I I
  • 25. 25 • The y-parameter that we want to determine are Y11, Y12, Y21, Y22. The values of the parameters can be evaluate by setting: i) V1 = 0 (input port short – circuited). ii) V2 = 0 (output port short – circuited). • Thus; 01 2 21 01 1 11 2 2 = = = = V V V I Y V I Y 02 2 22 02 1 12 1 1 = = = = V V V I Y V I Y
  • 26. 26 Example 1Example 1 Find the Y – parameter of the circuit shown below. 5Ω 15Ω20Ω + V1 _ + V2 _ I1 I2
  • 27. 27 SolutionSolution i) V2 = 0 5Ω 20Ω + V1 _ I1 I2 Ia S V I Y II IV a a 4 1 (2)(1)sub )2.......( 25 5 )1.......(20 1 1 11 1 1 ==∴ → = = S V I Y IV 5 1 5 1 2 21 21 −==∴ −=
  • 28. 28 ii) V1 = 0 In matrix form; 5Ω 15Ω + V2 _ I1 I2 Ix S V I Y II IV x x 15 4 (4)(3)sub )4.......( 25 5 )3.......(15 2 2 22 2 2 ==∴ → = = S V I Y IV 5 1 5 2 1 12 12 −==∴ −= [ ] SY           − − = 15 4 5 1 5 1 4 1
  • 29. 29 Example 2 (circuit withExample 2 (circuit with dependent source)dependent source) Find the Y – parameters of the circuit shown. + _ + V1 _ + V2 _-j20Ω 10Ωj4Ω2Ω 10I2 I2I1
  • 30. 30 SolutionSolution i) V2 = 0 (short – circuit port 2). Redraw the circuit. + _ + V1 _ 10Ωj4Ω2Ω 10I2 I2 I1 S0 V I Y Sj0.2)-(0.1 j42 1 V I Y j4)I(2V 0I 1 2 21 1 1 11 11 ==∴ = + ==∴ += =
  • 31. 31 ii) V1 = 0 (short – circuit port 1). Redraw the circuit. )2.......( j20- 1 10 1 V2I 10 10I-V j20- V I )........(1 j42 10I- I 22 222 2 2 1       += += + = + _ + V2 _-j20Ω 10Ωj4Ω2Ω 10I2 I2I1 [ ] S j0.0250.050 j0.0751.0j0.20.1 Y form;matrixIn Sj0.075)(-0.1 V I Y (1)(2)sub Sj0.025)(0.05 V I Y 2 1 12 2 2 22       + +−+ =∴ +== → +==∴
  • 32. 32 T (ABCD) PARAMETERT (ABCD) PARAMETER • T – parameter or ABCD – parameter is a another set of parameters relates the variables at the input port to those at the output port. • T – parameter also called transmission parameters because this parameter are useful in the analysis of transmission lines because they express sending – end variables (V1 and I1) in terms of the receiving – end variables (V2 and -I2).
  • 33. 33 • The “black box” that we want to replace with T – parameter is as shown below. • The equation is: + V1 - I1 I2 + V2 - A11 C21 B12 D22 )2.......( )1.......( 221 221 DICVI BIAVV −= −=
  • 34. 34 • In matrix form is: • The T – parameter that we want determine are A, B, C and D where A and D are dimensionless, B is in ohm (Ω) and C is in siemens (S). • The values can be evaluated by setting i) I2 = 0 (input port open – circuit) ii) V2 = 0 (output port short circuit)       −      =      2 2 1 1 I V DC BA I V
  • 35. 35 • Thus; • In term of the transmission parameter, a network is reciprocal if; 02 1 02 1 2 2 = = = = I I V I C V V A 02 1 02 1 2 2 = = = = V V I I D I V B 1BC-AD =
  • 36. 36 ExampleExample Find the ABCD – parameter of the circuit shown below. 2Ω 10Ω + V2 _ I1 I2 + V1 _ 4Ω
  • 37. 37 SolutionSolution i) I2 = 0, 2Ω 10Ω + V2 _ I1 + V1 _ 2.1 5 6 10 2 2 1.0 10 2 1 22 2 1 211 2 1 12 ==∴ =+      = += ==∴ = V V A VV V V VIV S V I C IV
  • 38. 38 ii) V2 = 0, ( ) Ω=−=∴ +      −= += ++= =−=∴ −= 8.6 10 10 14 12 1012 102 4.1 14 10 2 1 221 211 2111 2 1 12 I V B IIV IIV IIIV I I D II 2Ω 10Ω I1 I2 + V1 _ 4Ω I1 + I2 [ ]       = 4.11.0 8.62.1 T
  • 39. 39 TERMINATED TWO – PORTTERMINATED TWO – PORT NETWORKSNETWORKS • In typical application of two port network, the circuit is driven at port 1 and loaded at port 2. • Figure below shows the typical terminated 2 port model. + V1 - I1 I2 + V2 - + − Zg ZLVg Two – port network
  • 40. 40 • Zg represents the internal impedance of the source and Vg is the internal voltage of the source and ZL is the load impedance. • There are a few characteristics of the terminated two-port network and some of them are; gV V V V I I I V I V 2 g 1 2 v 1 2 i 2 2 o 1 1 i Again,voltageoverallv) Again,voltageiv) Again,currentiii) Zimpedance,outputii) Zimpedance,inputi) = = = = =
  • 41. 41 • The derivation of any one of the desired expression involves the algebraic manipulation of the two – port equation. The equation are: 1) the two-port parameter equation either Z or Y or ABCD. For example, Z-parameter, )2.......(IZIZV )1.......(IZIV 2221212 2121111 += += Z
  • 42. 42 2) KVL at input, 3) KVL at the output, • From these equations, all the characteristic can be obtained. .......(3)ZIVV g1g1 −= )4.......(ZIV L22 −=
  • 43. 43 Example 1Example 1 For the two-port shown below, obtain the suitable value of Rs such that maximum power is available at the input terminal. The Z-parameter of the two-port network is given as With Rs = 5Ω,what would be the value of       =      44 26 2221 1211 ZZ ZZ s 2 V V + V1 - I1 I2 + V2 - + − Rs 4ΩVs Z
  • 44. 44 SolutionSolution 1) Z-parameter equation becomes; 2) KVL at the output; Subs. (3) into (2) )2.......(44 )1.......(26 212 211 IIV IIV += += )3.......(4 22 IV −= )4.......( 2 1 2 I I −=
  • 45. 45 Subs. (4) into (1) For the circuit to have maximum power, )5.......(5 11 IV = Ω==∴ 5 1 1 1 I V Z Ω== 51ZRs
  • 46. 46 To find at max. power transfer, voltage drop at Z1 is half of Vs From equations (3), (4), (5) & (6) Overall voltage gain, s 2 V V )6.......( 2 1 sV V = 5 12 == s g V V A
  • 47. 47 Example 2Example 2 The ABCD parameter of two – port network shown below are. The output port is connected to a variable load for a maximum power transfer. Find RL and the maximum power transferred.       Ω 20.1S 204
  • 48. 48 ABCD parameter equation becomes V1 = 4V2 – 20I2 I1 = 0.1V2 – 2I2 At the input port, V1 = -10I (1) (2) (3) Solution
  • 49. 49 (3) Into (1) -10I1 = 4V2 – 20I2 I1 = -0.4V2 2I2 (2) = (4) 0.1V2 – 2I2 = -0.4V2 + 2I2 0.5V2 = 4I2 From (5); ZTH = V2/I2 = 8Ω (4) (5) (6)
  • 50. 50 But from Figure (b), we know that V1 = 50 – 10I1 and I2 =0 Sub. these into (1) and (2) 50 – 10I1 = 4V2 I1 = 0.1V2 (8) (7)
  • 51. 51 Sub (8) into (7) V2 = 10 Thus, VTH = V2 = 10V RL for maximum power transfer, RL = ZTH = 8Ω The maximum power P = I2 RL = (VTH/2RL)2 x RL = V2 TH/4RL = 3.125W