SlideShare a Scribd company logo
1 of 31
Chapter 3 BIOPSYCHOLOGY
PowerPoint Image Slideshow
PSYCHOLOGY
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
Different brain imaging techniques provide scientists with insight into different aspects of how the
human brain functions. Left to right, PET scan (positron emission tomography), CT scan (computed
tomography), and fMRI (functional magnetic resonance imaging) are three types of scans. (credit
“left”: modification of work by Health and Human Services Department, National Institutes of Health;
credit “center”: modification of work by “Aceofhearts1968”/Wikimedia Commons; credit “right”:
modification of work by Kim J, Matthews NL, Park S.)
FIGURE 3.1
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
Normal blood cells travel freely through the blood vessels, while sickle-shaped cells
form blockages preventing blood flow.
FIGURE 3.2
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
(a) In 1859, Charles Darwin proposed his theory of evolution by natural selection in his
book, On the Origin of Species.
(b) The book contains just one illustration: this diagram that shows how species evolve
over time through natural selection.
FIGURE 3.3
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
(a) Genotype refers to the genetic makeup of an individual based on the genetic material (DNA)
inherited from one’s parents.
(b) Phenotype describes an individual’s observable characteristics, such as hair color, skin color,
height, and build. (credit a: modification of work by Caroline Davis; credit b: modification of work
by Cory Zanker)
FIGURE 3.4
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
(a) A Punnett square is a tool used to predict how genes will interact in the production of offspring. The
capital B represents the dominant allele, and the lowercase b represents the recessive allele. In the
example of the cleft chin, where B is cleft chin (dominant allele), wherever a pair contains the dominant
allele, B, you can expect a cleft chin phenotype. You can expect a smooth chin phenotype only when
there are two copies of the recessive allele, bb.
(b) A cleft chin, shown here, is an inherited trait.
FIGURE 3.5
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
In this Punnett square, N represents the normal allele, and p represents the recessive
allele that is associated with PKU. If two individuals mate who are both heterozygous
for the allele associated with PKU, their offspring have a 25% chance of expressing the
PKU phenotype.
FIGURE 3.6
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
Nature and nurture work together like complex pieces of a human puzzle. The
interaction of our environment and genes makes us the individuals we are. (credit
“puzzle”: modification of work by Cory Zanker; credit “houses”: modification of work by
Ben Salter; credit “DNA”: modification of work by NHGRI)
FIGURE 3.7
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
This illustration shows a prototypical neuron, which is being myelinated.
FIGURE 3.8
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
(a) The synapse is the space between the terminal button of one neuron and the dendrite of another neuron.
(b) In this pseudo-colored image from a scanning electron microscope, a terminal button (green) has been
opened to reveal the synaptic vesicles (orange and blue) inside. Each vesicle contains about 10,000
neurotransmitter molecules. (credit b: modification of work by Tina Carvalho, NIH-NIGMS; scale-bar data
from Matt Russell)
FIGURE 3.9
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
At resting potential, Na+ (blue pentagons) is more highly concentrated outside the cell in the
extracellular fluid (shown in blue), whereas K+ (purple squares) is more highly concentrated
near the membrane in the cytoplasm or intracellular fluid. Other molecules, such as chloride
ions (yellow circles) and negatively charged proteins (brown squares), help contribute to a
positive net charge in the extracellular fluid and a negative net charge in the intracellular fluid.
FIGURE 3.10
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
During the action potential, the electrical charge across the membrane changes
dramatically.
FIGURE 3.11
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
Reuptake involves moving a neurotransmitter from the synapse back into the axon
terminal from which it was released.
FIGURE 3.12
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
The nervous system is divided into two major parts:
(a) the Central Nervous System and
(b) the Peripheral Nervous System.
FIGURE 3.13
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
The sympathetic and parasympathetic
divisions of the autonomic nervous
system have the opposite effects on
various systems.
FIGURE 3.14
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
The surface of the brain is covered with gyri and sulci. A deep sulcus is called a fissure,
such as the longitudinal fissure that divides the brain into left and right hemispheres.
(credit: modification of work by Bruce Blaus)
FIGURE 3.15
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
(a, b) The corpus callosum connects the left and right hemispheres of the brain. (c) A
scientist spreads this dissected sheep brain apart to show the corpus callosum
between the hemispheres. (credit c: modification of work by Aaron Bornstein)
FIGURE 3.16
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
The brain and its parts can be divided into three main categories: the forebrain,
midbrain, and hindbrain.
FIGURE 3.17
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
The lobes of the brain are shown.
FIGURE 3.18
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
(a) Phineas Gage holds the iron rod that penetrated his skull in an 1848 railroad construction
accident.
(b) Gage’s prefrontal cortex was severely damaged in the left hemisphere. The rod entered Gage’s
face on the left side, passed behind his eye, and exited through the top of his skull, before
landing about 80 feet away. (credit a: modification of work by Jack and Beverly Wilgus)
FIGURE 3.19
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
Spatial relationships in the body are mirrored in the organization of the somatosensory
cortex.
FIGURE 3.20
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
Damage to either Broca’s area or Wernicke’s area can result in language deficits. The
types of deficits are very different, however, depending on which area is affected.
FIGURE 3.21
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
The thalamus serves as the relay center of the brain where most senses are routed for
processing.
FIGURE 3.22
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
The limbic system is involved in mediating emotional response and memory.
FIGURE 3.23
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
The substantia nigra and ventral tegmental area (VTA) are located in the midbrain.
FIGURE 3.24
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
The pons, medulla, and cerebellum make up the hindbrain.
FIGURE 3.25
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
A CT scan can be used to show brain tumors. (a) The image on the left shows a
healthy brain, whereas (b) the image on the right indicates a brain tumor in the left
frontal lobe. (credit a: modification of work by “Aceofhearts1968”/Wikimedia Commons;
credit b: modification of work by Roland Schmitt et al)
FIGURE 3.26
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
A PET scan is helpful for showing activity
in different parts of the brain. (credit:
Health and Human Services Department,
National Institutes of Health)
FIGURE 3.27
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
An fMRI shows activity in the brain over
time. This image represents a single
frame from an fMRI. (credit: modification
of work by Kim J, Matthews NL, Park S.)
FIGURE 3.28
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
Using caps with electrodes, modern EEG research can study the precise timing of
overall brain activities. (credit: SMI Eye Tracking)
FIGURE 3.29
This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax,
Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources.
The major glands of the endocrine system are shown.
FIGURE 3.30

More Related Content

Similar to Openstax - Psychology ch03

Current Applications of Quasi Vivo
Current Applications of Quasi VivoCurrent Applications of Quasi Vivo
Current Applications of Quasi Vivo
SCIMS4
 
Industrial Organizational Psychology
Industrial Organizational Psychology  Industrial Organizational Psychology
Industrial Organizational Psychology
vwagner1
 

Similar to Openstax - Psychology ch03 (20)

Psychology ch10
Psychology ch10Psychology ch10
Psychology ch10
 
Openstax Psychology ch 01
Openstax Psychology ch 01Openstax Psychology ch 01
Openstax Psychology ch 01
 
Chapter 6 Learning
Chapter 6 LearningChapter 6 Learning
Chapter 6 Learning
 
Biology2e chapter12
Biology2e chapter12Biology2e chapter12
Biology2e chapter12
 
Psychology ch11
Psychology ch11Psychology ch11
Psychology ch11
 
Biology.pptx
Biology.pptxBiology.pptx
Biology.pptx
 
Psychology ch15
Psychology ch15Psychology ch15
Psychology ch15
 
Psychology ch09
Psychology ch09Psychology ch09
Psychology ch09
 
Psychology ch07
Psychology ch07Psychology ch07
Psychology ch07
 
Psychology Ch14 Stress, Well-being, and Health
Psychology Ch14 Stress, Well-being, and HealthPsychology Ch14 Stress, Well-being, and Health
Psychology Ch14 Stress, Well-being, and Health
 
Psychology ch16
Psychology ch16Psychology ch16
Psychology ch16
 
Psychology ch12
Psychology ch12Psychology ch12
Psychology ch12
 
Chapter 2 Psychological Research
Chapter 2 Psychological ResearchChapter 2 Psychological Research
Chapter 2 Psychological Research
 
Cuckoo Search Optimization of Blebs in Human Embryonic Stem Cells
Cuckoo Search Optimization of Blebs in Human Embryonic Stem CellsCuckoo Search Optimization of Blebs in Human Embryonic Stem Cells
Cuckoo Search Optimization of Blebs in Human Embryonic Stem Cells
 
Current Applications of Quasi Vivo
Current Applications of Quasi VivoCurrent Applications of Quasi Vivo
Current Applications of Quasi Vivo
 
Industrial Organizational Psychology
Industrial Organizational Psychology  Industrial Organizational Psychology
Industrial Organizational Psychology
 
Tissue Engineering introduction for physicists - Lecture one
Tissue Engineering introduction for physicists - Lecture one Tissue Engineering introduction for physicists - Lecture one
Tissue Engineering introduction for physicists - Lecture one
 
Metagenomics as a tool for biodiversity and health
Metagenomics as a tool for biodiversity and healthMetagenomics as a tool for biodiversity and health
Metagenomics as a tool for biodiversity and health
 
Bioinformatics final
Bioinformatics finalBioinformatics final
Bioinformatics final
 
Dynamic Semantic Metadata in Biomedical Communications
Dynamic Semantic Metadata in Biomedical CommunicationsDynamic Semantic Metadata in Biomedical Communications
Dynamic Semantic Metadata in Biomedical Communications
 

Recently uploaded

QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
httgc7rh9c
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
EADTU
 
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
EADTU
 

Recently uploaded (20)

Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
 
Simple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfSimple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdf
 
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdfDiuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
 
Observing-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxObserving-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptx
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdfUGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
 
Including Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdfIncluding Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdf
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 

Openstax - Psychology ch03

  • 1. Chapter 3 BIOPSYCHOLOGY PowerPoint Image Slideshow PSYCHOLOGY
  • 2. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. Different brain imaging techniques provide scientists with insight into different aspects of how the human brain functions. Left to right, PET scan (positron emission tomography), CT scan (computed tomography), and fMRI (functional magnetic resonance imaging) are three types of scans. (credit “left”: modification of work by Health and Human Services Department, National Institutes of Health; credit “center”: modification of work by “Aceofhearts1968”/Wikimedia Commons; credit “right”: modification of work by Kim J, Matthews NL, Park S.) FIGURE 3.1
  • 3. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. Normal blood cells travel freely through the blood vessels, while sickle-shaped cells form blockages preventing blood flow. FIGURE 3.2
  • 4. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. (a) In 1859, Charles Darwin proposed his theory of evolution by natural selection in his book, On the Origin of Species. (b) The book contains just one illustration: this diagram that shows how species evolve over time through natural selection. FIGURE 3.3
  • 5. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. (a) Genotype refers to the genetic makeup of an individual based on the genetic material (DNA) inherited from one’s parents. (b) Phenotype describes an individual’s observable characteristics, such as hair color, skin color, height, and build. (credit a: modification of work by Caroline Davis; credit b: modification of work by Cory Zanker) FIGURE 3.4
  • 6. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. (a) A Punnett square is a tool used to predict how genes will interact in the production of offspring. The capital B represents the dominant allele, and the lowercase b represents the recessive allele. In the example of the cleft chin, where B is cleft chin (dominant allele), wherever a pair contains the dominant allele, B, you can expect a cleft chin phenotype. You can expect a smooth chin phenotype only when there are two copies of the recessive allele, bb. (b) A cleft chin, shown here, is an inherited trait. FIGURE 3.5
  • 7. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. In this Punnett square, N represents the normal allele, and p represents the recessive allele that is associated with PKU. If two individuals mate who are both heterozygous for the allele associated with PKU, their offspring have a 25% chance of expressing the PKU phenotype. FIGURE 3.6
  • 8. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. Nature and nurture work together like complex pieces of a human puzzle. The interaction of our environment and genes makes us the individuals we are. (credit “puzzle”: modification of work by Cory Zanker; credit “houses”: modification of work by Ben Salter; credit “DNA”: modification of work by NHGRI) FIGURE 3.7
  • 9. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. This illustration shows a prototypical neuron, which is being myelinated. FIGURE 3.8
  • 10. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. (a) The synapse is the space between the terminal button of one neuron and the dendrite of another neuron. (b) In this pseudo-colored image from a scanning electron microscope, a terminal button (green) has been opened to reveal the synaptic vesicles (orange and blue) inside. Each vesicle contains about 10,000 neurotransmitter molecules. (credit b: modification of work by Tina Carvalho, NIH-NIGMS; scale-bar data from Matt Russell) FIGURE 3.9
  • 11. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. At resting potential, Na+ (blue pentagons) is more highly concentrated outside the cell in the extracellular fluid (shown in blue), whereas K+ (purple squares) is more highly concentrated near the membrane in the cytoplasm or intracellular fluid. Other molecules, such as chloride ions (yellow circles) and negatively charged proteins (brown squares), help contribute to a positive net charge in the extracellular fluid and a negative net charge in the intracellular fluid. FIGURE 3.10
  • 12. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. During the action potential, the electrical charge across the membrane changes dramatically. FIGURE 3.11
  • 13. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. Reuptake involves moving a neurotransmitter from the synapse back into the axon terminal from which it was released. FIGURE 3.12
  • 14. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. The nervous system is divided into two major parts: (a) the Central Nervous System and (b) the Peripheral Nervous System. FIGURE 3.13
  • 15. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. The sympathetic and parasympathetic divisions of the autonomic nervous system have the opposite effects on various systems. FIGURE 3.14
  • 16. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. The surface of the brain is covered with gyri and sulci. A deep sulcus is called a fissure, such as the longitudinal fissure that divides the brain into left and right hemispheres. (credit: modification of work by Bruce Blaus) FIGURE 3.15
  • 17. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. (a, b) The corpus callosum connects the left and right hemispheres of the brain. (c) A scientist spreads this dissected sheep brain apart to show the corpus callosum between the hemispheres. (credit c: modification of work by Aaron Bornstein) FIGURE 3.16
  • 18. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. The brain and its parts can be divided into three main categories: the forebrain, midbrain, and hindbrain. FIGURE 3.17
  • 19. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. The lobes of the brain are shown. FIGURE 3.18
  • 20. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. (a) Phineas Gage holds the iron rod that penetrated his skull in an 1848 railroad construction accident. (b) Gage’s prefrontal cortex was severely damaged in the left hemisphere. The rod entered Gage’s face on the left side, passed behind his eye, and exited through the top of his skull, before landing about 80 feet away. (credit a: modification of work by Jack and Beverly Wilgus) FIGURE 3.19
  • 21. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. Spatial relationships in the body are mirrored in the organization of the somatosensory cortex. FIGURE 3.20
  • 22. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. Damage to either Broca’s area or Wernicke’s area can result in language deficits. The types of deficits are very different, however, depending on which area is affected. FIGURE 3.21
  • 23. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. The thalamus serves as the relay center of the brain where most senses are routed for processing. FIGURE 3.22
  • 24. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. The limbic system is involved in mediating emotional response and memory. FIGURE 3.23
  • 25. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. The substantia nigra and ventral tegmental area (VTA) are located in the midbrain. FIGURE 3.24
  • 26. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. The pons, medulla, and cerebellum make up the hindbrain. FIGURE 3.25
  • 27. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. A CT scan can be used to show brain tumors. (a) The image on the left shows a healthy brain, whereas (b) the image on the right indicates a brain tumor in the left frontal lobe. (credit a: modification of work by “Aceofhearts1968”/Wikimedia Commons; credit b: modification of work by Roland Schmitt et al) FIGURE 3.26
  • 28. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. A PET scan is helpful for showing activity in different parts of the brain. (credit: Health and Human Services Department, National Institutes of Health) FIGURE 3.27
  • 29. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. An fMRI shows activity in the brain over time. This image represents a single frame from an fMRI. (credit: modification of work by Kim J, Matthews NL, Park S.) FIGURE 3.28
  • 30. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. Using caps with electrodes, modern EEG research can study the precise timing of overall brain activities. (credit: SMI Eye Tracking) FIGURE 3.29
  • 31. This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted. Any images credited to other sources are similarly available for reproduction, but must be attributed to their sources. The major glands of the endocrine system are shown. FIGURE 3.30