SlideShare a Scribd company logo
1 of 129
2017
 Definisi electronic spectra (spektra
elektronik)
 Teori transisi elektronik
 Teori yang menjelaskan electronic spectra :
warna senyawa kompleks
 DiagramTanabeTsugano
 Deret spektrokimia
 Kemagnetan seny. kompleks
 Moment magnetik seny. kompleks
 Bil. Oksidasi bervariasi
 Warna
 Kemagnetan
 Ikatan kovalen koordinasi
 Interaksi asam-basa lewis
Berbagai warna senyawa logam transisi periode 4
titanium oxide
sodium chromate
potassium
ferricyanide
nickel(II) nitrate
hexahydrate
zinc sulfate
heptahydrate
scandium oxide
vanadyl sulfate
dihydrate
manganese(II)
chloride
tetrahydrate cobalt(II)
chloride
hexahydrate
copper(II) sulfate
pentahydrate
 Gemstone owe their color from trace
transition-metal ions
 Corundum mineral, Al2O3: Colorless
 Cr  Al : Ruby
 Mn  Al: Amethyst
 Fe  Al: Topaz
 Ti &Co  Al: Sapphire
 Beryl mineral, Be3 Al2Si6O18: Colorless
 Cr  Al : Emerald
 Fe  Al : Aquamarine
6
warna berbagai senyawa kompleks dalam
larutan air :
3+ 3+ 2+ 2+ 2+ 2+ 2+
Ti , Cr , Mn , Fe , Co , Ni , Cu .
Mn(II) Mn(VI) Mn(VII)
V(V)
Cr(VI)
Mn(VII)
Warna seny. Kompleks dgn biloks bervariasi
[V(H2O)6]2+ [V(H2O)6]3+
[Cr(NH3)6]3+
[Cr(NH3)5Cl]2+
 VBT : ikatan
 CFT : elektronik spektra : warna dan
kemagnetan (spektra UV danVisible)
 MOT : ikatan
 LFT : elektronik spektra : warna dan
kemagnetan
 Mempelajari tentang spektra senyawa
kompleks berdasarkan tingkat energi
elektron dari suatu orbital (spektra
elektronik)
-->Aplikasi : bonding dan structure
 Absorpsi energi cahaya berada dalam daerah
sinar tampak oleh suatu senyawa ---->>
spektrum visible ---->> warna
 Absorpsi mengakibatkan terjadinya transisi
antara tingkat energi elektronik (transisi
elektronik)
Energi cahaya yang diserap oleh molekul
mengakibatkan transisi elektron ke tingkat
energi yang lebih tinggi setara (sama dengan)
perbedaan energi pada tingkat energi orbital
Warna senyawa kompleks
 Teori yang menjelaskan tentang eksitasi yang
teramati pada sebuah senyawa kompleks
Theory to explain electronic
excitations/transitions observed for metal
complexes
Selection rules
(determine intensities)
Laporte rule
g  g forbidden (that is, d-d forbidden)
but g  u allowed (that is, d-p allowed)
Spin rule
Transitions between states of different multiplicities forbidden
Transitions between states of same multiplicities allowed
Since these selection rules must be strictly obeyed,
why do many d-block metal complexes exhibit ‘d–d’
bands in their electronic spectra?
These rules are relaxed by molecular vibrations, and spin-orbit coupling
Breakdown of selection rules
 Vibrounic Coupling
Spin-allowed ‘d–d’ transitions remain Laporte-forbidden
and their observation is explained by a mechanism called
‘vibronic coupling
An octahedral complex possesses a centre of symmetry,
but molecular vibrations result in its temporary loss. At an
instant when the molecule does not possess a centre of
symmetry, mixing of d and p orbitals can occur. Since the
lifetime of the vibration (1013 s) is longer than that of an
electronic transition (1018 s), a ‘d–d’ transition involving an
orbital of mixed pd character can occur although the
absorption is still relatively weak
 Spin Orbit Coupling :
A spin-forbidden transition becomes
‘allowed’ if, for example, a singlet state mixes
to some extent with a triplet state.
but for first row metals, the degree of mixing
is small and so bands associated with ‘spin-
forbidden’ transitions are very weak
 In a molecule which is noncentrosymmetric
(e.g. tetrahedral), p–d mixing can occur to
a greater extent and so the probability of ‘d–d’
transitions is greater than in a
centrosymmetric complex.This leads to
tetrahedral complexes being more intensely
coloured than octahedral complexes.
 Macam-macam transisi elektronik :
a. transisi dalam tingkat energi orbital d ion
logam (d-d ‘ transition)
b.Transisi antara ion logam dengan ligan dalam
orbital molekul (charge transfer)
- LMCT (ligand to metal CT)
- MLCT (metal to ligandCT)
Intensitas absorbsi oleh transisi CT lebih tinggi
dibandingkan transisi d-d’
Absorption bands in electronic spectra are usually
broad; the absorption of a photon of light occurs in
10-18 s whereas molecular vibrations and rotations
occur more slowly
Therefore, an electronic transition is a ‘snapshot’ of
a molecule in a particular vibrational and rotational
state, and it follows that the electronic spectrum will
record a range of energies corresponding to
different vibrational and rotational states.
 Elektronic spectra :

 1T1g←1A1g and 1T2g←1A1g
 [Co(NH3)6]Cl3
 Absorbs violet/blue, ends up being orange-yellow
 2 absorption bands, symmetrical, Oh
 [CoCl(NH3)5]Cl2
 Absorbs green, ends up being magenta
 2 absorption bands, broadening on one
 C4v symmetry
Group theory analysis of term splitting
Free ion
term for d2
3F, 3P, 1G, 1D, 1S
Real complexes
Tanabe-Sugano diagrams
d2
• show correlation of
spectroscopic transitions
observed for ideal Oh complexes
with electronic states
• energy axes are parameterized
in terms of Δo and the Racah
parameter (B) which measures
repulsion between terms of the
same multiplicity
d2 complex: Electronic transitions and spectra
only 2 of 3 predicted transitions
observed
TS diagramsOther dn configurations
d1 d9
d3
d2 d8
d3
Other configurations
The limit between
high spin and low spin
The d5 case
All possible transitions forbidden
Very weak signals, faint color
symmetry labels
Charge transfer spectra
LMCT
MLCT
Ligand character
Metal character
Metal character
Ligand character
Much more intense bands
[Cr(NH3)6]3+
Determining Do from spectra
d1
d9
One transition allowed of energy Do
Lowest energy transition = Do
mixing
mixing
Determining Do from spectra
Ground state mixing
E (T1gA2g) - E (T1gT2g) = Do
56
 Melibatkan serapan cahaya tampak.
 Warna yang tampak adalah warna komplemen
dari warna yang diserap.
Blue light
absorbed
Red light
transmitted
 Warna yang tampak adalah komplemen dari
Warna yang diserap
Warna yg
diserap
Warna
tampak
CFT
LFT : MOT dan CFT
 CFT : energi orbital d ion logam terpisah
(split) akibat adanya medan elektrostatik dari
ligan
 Model explaining bonding for transition metal
complexes
 • Originally developed to explain properties for
crystalline material
 • Basic idea:
 Electrostatic interaction between lone-pair electrons result in coordination.
 CFT - Electrostatic between metal ion and donor atom
i) Separate metal and ligand
high energy
ii) Coordinated Metal - ligand
stabilized
iii) Destabilization due to
ligand -d electron repulsion
iv) Splitting due to octahedral
field.
i
ii
iii
iv
Crystal FieldTheory - Describes bonding in Metal Complexes
 Basic Assumption in CFT:
 Electrostatic interaction between ligand and metal
d-orbitals align along the octahedral
axis will be affected the most.
More directly the ligand attacks the
metal orbital, the higher the the
energy of the d-orbital.
In an octahedral field the
degeneracy of the five d-orbitals is
lifted
Ligands
approach
metal
d-orbitals not pointing directly at axis are least
affected (stabilized) by electrostatic interaction
d-orbitals pointing directly at axis are
affected most by electrostatic
interaction
 Octahedral field Splitting Pattern:

The energy gap is
referred to as
D(10 Dq) , the
crystal field
splitting energy.
The dz2 and dx2-y2 orbitals lie on the same axes as negative charges.
Therefore, there is a large, unfavorable interaction between ligand (-) orbitals.
These orbitals form the degenerate high energy pair of energy levels.
The dxy , dyx and dxz orbitals bisect the negative charges.
Therefore, there is a smaller repulsion between ligand & metal for these
orbitals.
These orbitals form the degenerate low energy set of energy levels.
 Color of the Complex depends on magnitude of D
 1. Metal: Larger metal  larger D
 Higher Oxidation State  larger D
 2. Ligand: Spectrochemical series
 Cl- < F- < H2O < NH3 < en < NO2
- < (N-bonded) < CN-
 Weak field Ligand: Low electrostatic interaction: small CF
splitting.
 High field Ligand: High electrostatic interaction: large CF
splitting.
Spectrochemical series: Increasing D
 Electron configuration of metal ion:
 s-electrons are lost first.
 Ti3+ is a d1, V3+ is d2 , and Cr3+ is
d3
 Hund's rule:
 First three electrons are in
separate d orbitals with their spins
parallel.
 Fourth e- has choice:
 Higher orbital if D is small; High
spin
 Lower orbital if D is large: Low
spin.
 Weak field ligands
 Small D , High spin complex
 Strong field Ligands
 Large D , Low spin complex
Electron Configuration for Octahedral complexes of metal ion having d1 to
d10 configuration [M(H2O)6]+n.
Only the d4 through d7 cases have both high-spin and low spin configuration.
Electron configurations
for octahedral
complexes of metal ions
having from d1 to d10
configurations. Only
the d4 through d7 cases
have both high-spin and
low-spin configurations.
 The Colors of Some Complexes of
the Co3+ Ion
The complex with fluoride ion, [CoF6]3+ , is high spin and has one absorption band.
The other complexes are low spin and have two absorption bands. In all but one
case, one of these absorptionsis in the visible region of the spectrum.The
wavelengths refer to the center of that absorption band.
Complex Ion Wavelength of Color of Light Color of Complex
light absorbed Absorbed
[CoF6] 3+ 700 (nm) Red Green
[Co(C2O4)3] 3+ 600, 420 Yellow, violet Dark green
[Co(H2O)6] 3+ 600, 400 Yellow, violet Blue-green
[Co(NH3)6] 3+ 475, 340 Blue, violet Yellow-orange
[Co(en)3] 3+ 470, 340 Blue, ultraviolet Yellow-orange
[Co(CN)6] 3+ 310 Ultraviolet PaleYellow
 Warna seny. kompleks berkaitan dengan
adanya transisi elektron antar sub level
orbital d yang terpisah (split)
 Panjang gelombang pada serapan maks seny.
komplek dapat digunakan untuk menghitung
energi pemisahan antar sub level orbital d
yang terpisah
Ephoton = hn = hc/l = D
 Absorpsi radiasi UV-visible radiation oleh
atom, ion, molekul:
 Terjadi jika radiasi memiliki energi yang sama yang
dibutuhkan oleh atom, ion, molekul untuk eksitasi
elektron dari ground state ke excited state.
white
light
red light
absorbed
green light
observed
71
Quantum-mechanical
description
 Absorption of light may occur
when the frequency of the
incoming photon, multiplied by
the Plank constant, is equal to the
difference in energy between
these two levels.
72
Example:
 Ion cupric hidrat menyerap foton pada frekuensi Hz or 600
nm.
 Energi yang melibatkan transisi elektron pada ion
adalah
 Dapat dikatakan bahwa ion (Cu(H2O)6)2+ berwarna biru maka
ini berarti ion menyerap foton pada panjang gelombang 600 nm
(oranye) sehingga memberikan warna biru pada mata kita
34 14 -1 -19
(6.63 10 J s)(5 10 s ) 3 10 JE hn 
D   
2+
2 6Cu[H O]
14
5 10
2+
2 6Cu[H O]
74
Example
 Ti memiliki konfigurasi , sehingga ion menjadi
ion. Ini berarti pada groundstate, 1 elektron akan menempati level
energi terendah pada d orbitals, sedangkan level energi yang lebih
tinggi kosong, setelah menyerap foton dengan energi tertentu, level
energi terendah pada d orbitals akan kosong.
3+
2 6Ti[H O]
2 2
4s 3d
3+
Ti
1
d
75
ion absorbs light in the visible region; the wavelenght corresponding
to maximum absorption is 498 nm.
Crystal field splitting :
Itu adalah energi yang dibutuhkan untuk mengeksitasisatu elektron pada
ion
-34 8
-19
-9
(6.63 10 Js)(3 10 m/s)
3.99 10 J=240 kJ/mol
498 10 m
hc
hn
l
D    
3+
2 6Ti[H O]
3+
2 6Ti[H O]
76
Spliting d-orbital sebesar 240 kJ per mol sesuai dengan panjang
gelombang cahaya warna blue-green ; absorpsi cahaya ini
mempromosikan elektron ke level energi yang lebih tinggi pada d
orbitals, yang merepresentasikan keadaan tereksitasi dari kompleks
Apabila kita melewatkan cahaya pada larutan maka cahaya
warna blue-green akan diabsorb dan larutan akan menampakkan
warna violet .
3+
2 6Ti[H O]
3+
2 6Ti[H O]
 Spektra larutan [Ti(H2O)6 ]3+
 Serapan senyawa Co (III)
warna senyawa kompleks kobalt (III) dalam larutan air
dengan berbagai macam ligan
Kiri : weak-field ligand – serapan pada energi rendah -
λ warna merah - warna tampak : hijau
Kanan : strong-field ligan – serapan pada energi besar
- λ warna ungu - warna tampak : oranye/kuning
 Perbedaan warna disebabkan oleh perbedaan
besarnya D
▪ D besar = energy untuk menyerap cahaya besar
▪ Panjang gelombang pendek
▪ D kecil = energy untuk menyerap cahaya kecil
▪ Panjang gelombang panjang
 Besarnya D tergantung pada:
▪ ligand
▪ logam
 Logam
a. logam ukuran besar  D besar
[Fe(H2O)6]3+
[Co(H2O)6]2+
[Ni(H2O)6]2+
[Cu(H2O)6]2+
[Zn(H2O)6]2+
b. biloks logam tinggi  D besar
[V(H2O)6]2+ [V(H2O)6]3+
Mn(II) Mn(VI) Mn(VII)
 Deret yang menyatakan urutan kekuatan ligan
berdasarkan besarnya ∆ yang dihasilkan
 Deret kekuatan ligan berdasarkan besarnya
∆o
 Deret kekuatan logam berdasarkan besarnya
∆o
 Menggabungkan penjelasan tentang orbital
molekul dengan perbedaan tingkat energi
pemisahan orbital /splitting
N  C *
Splitting from  - bonding: Weak and Strong Field ligands
Contoh ligan Cl- (weak) danCN- (strong)
Cl
N  C
M
N  C
 - bonding as before
Now  - bonding between p & dxy, dxz, dyz
 - bonding as before
Now  - bonding between CN- * & dxy, dxz, dyz
No  - bonding with CN- 
M
sp hybridized for -bonding,
left over p orbitals make  and * orbitals
 Ligan dengan orbital p terisi
s*
p*
dxy, dxz, dyz
  
d* = eg
= t2g
6
4p
4s
3d
6 Ligands
Cl- sp orbitals
Metal LigandMolecule
12 Cl- p orbitals
E (Cl- p) < E (M d) !!!
Decrease Doct
 Weak Field Ligand
     
 - bonding: p orbitals give Weak Field Ligands (Cl- example)
Input d e-’s
Cl
-bonding orbitals
*-antibonding orbitals
 Ligan yang memiliki orbital π * kosong
Ligan Phi-akseptor
s*
p*
dxy, dxz, dyz
  
d* = eg
= t2g
6
4p
4s
3d
6 Ligands
CN- sp orbitals
Metal LigandMolecule
12 CN- * orbitals
E (CN- * ) > E (M d) !!!
Increase Doct
 Strong Field Ligand
 - bonding: * orbitals give Strong Field Ligands
Input d e-’s
N  C *
-bonding orbitals
*- antibonding orbitals
Molecular OrbitalTheory Explains Field Strength of Ligands
1) Ligand p orbitals cause  - bonding that raises t2g energies
Weak Field Ligands
2) Ligand * orbitals cause  - bonding that lowers t2g energies
Strong Field Ligands
3) sp3 hybridized ligands do not change t2g orbitals very much
Medium Field Ligands
dxy, dxz, dyz
d* = eg
= t2g
12 Cl- p orbitals
dxy, dxz, dyz
d* = eg
= t2g
12 CN- * orbitals
*

No p or * orbitals for -bonding !!!
 Metal to ligand : M---L
Phi akseptor/phi acid
 Ligan to metal : L---M
phi donor/phi base
 Ligan
a.Weak field ligan
interaksi elektrostatik ligan dengan
logam rendah - ∆ kecil
b. Strong field ligan
interaksi elektrostatik ligan dengan logam
tinggi - ∆ besar
 Ligan diklasifikasikan berdasarkan kemampuan
donor atau akseptor π
 Ligan dgn orbital p terisi ----- π donor
Ligan dgn orbital π * atau d kosong ---- π akseptor
 Kemagnetan senyawa kompleks
berhubungan dengan bagaimana elektron
terdistribusi pada orbital d.
 Kemagnetan senyawa kompleks diukur pada
suatu medan magnet.
 Senyawa kompleks dengan elektron tidak
berpasangan : menghasilkan medan magnet /
tertarik pada medan magnet.
 Senyawa kompleks dengan elektron
berpasangan : tidak menghasilkan medan
magnet / menolak medan magnet.
 Momen magnetik
Suatu ukuran yang berkaitan dengan jumlah
elektron tidak berpasangan.
 Moment magnetik :
Dimana :
 Dengan g = 2,0003 = 2 dalam Bohr magneton,
dan momentum orbital diabaikan, maka
 Dan S = n/2, maka momen magnetik :
 Satuan moment magnetik = BM (Bohr
Magneton)
1 BM = 9,27 x 10-24 Joule/Tesla
1. Hitung moment magnetik komplek Cr(III) dan
Ti (III)
2. Moment magnetik Kompleks Co(II) adalah
4,0BM. Prediksikan konfigurasi elektron
orbital d pada kompleks tersebut!
3. Moment magnetik Kompleks Fe(III) adalah
5,3BM. Prediksikan konfigurasi elektron
orbital d pada kompleks tersebut!
 Jawab :
1. Cr3+
n = 3
μs = √3(3+2) BM
= 3,87 BM
 Jawab :
3. Fe 3+ , n = 5
a. dihitung μs untuk kompleks high spin dan low
spin.
b. kemudian tentukan mana yang nilainya paling
mendekati nilai sebenarnya/eksperimen (5,3 BM)
c.kemudian tulis konfigurasi elektron high spin
atau low spin sesuai hasil b. Misal : untuk
jawaban highspin, maka konf elektronny t2g3eg2
4. PadaT = 298 K diketahui bahwa momen
magnetik kompleks [Cr(NH3)6]Cl2 adalah
4,85BM. Nyatakan apakah kompleks tersebut
high spin?
 TUGAS :
Baca buku Huhey, Douglas, dan buku teks
Anorganik lain yang menjelaskan tentang
spektra elektronik senyawa kompleks dan
kemagnetan
Silahkan berlatih menghitung momen
magnetik dari soal-soal yang ada di buku teks

More Related Content

What's hot

laporan kimia fisik - Kelarutan sebagai fungsi temperatur
laporan kimia fisik - Kelarutan sebagai fungsi temperaturlaporan kimia fisik - Kelarutan sebagai fungsi temperatur
laporan kimia fisik - Kelarutan sebagai fungsi temperaturqlp
 
Laporan Praktikum Pembuatan Tawas
Laporan Praktikum Pembuatan TawasLaporan Praktikum Pembuatan Tawas
Laporan Praktikum Pembuatan TawasDila Adila
 
Sejarah senyawa-kompleks-koordinasi-paling-baru
Sejarah senyawa-kompleks-koordinasi-paling-baruSejarah senyawa-kompleks-koordinasi-paling-baru
Sejarah senyawa-kompleks-koordinasi-paling-baruNonong Isdayanti
 
Penentuan kinetika ester saponifikasi dengan metode konduktometri
Penentuan kinetika ester saponifikasi dengan metode konduktometriPenentuan kinetika ester saponifikasi dengan metode konduktometri
Penentuan kinetika ester saponifikasi dengan metode konduktometriqlp
 
laporan kimia fisik - Penentuan berat molekul polimer
laporan kimia fisik - Penentuan berat molekul polimerlaporan kimia fisik - Penentuan berat molekul polimer
laporan kimia fisik - Penentuan berat molekul polimerqlp
 
Bab9 kinetika kimia
Bab9 kinetika kimiaBab9 kinetika kimia
Bab9 kinetika kimiaImo Priyanto
 
Makalah retrosintesis Kimia Organik 3
Makalah retrosintesis Kimia Organik 3Makalah retrosintesis Kimia Organik 3
Makalah retrosintesis Kimia Organik 3yunita97544748
 
Kinetika kimia (pertemuan 4)
Kinetika kimia (pertemuan 4)Kinetika kimia (pertemuan 4)
Kinetika kimia (pertemuan 4)Utami Irawati
 
Praktikum organik aldehid keton
Praktikum organik aldehid ketonPraktikum organik aldehid keton
Praktikum organik aldehid ketonDwi Atika Atika
 
V. warna kelarutan dan kesetimbangan ion kompleks ni(ii)
V. warna kelarutan dan kesetimbangan ion kompleks ni(ii)V. warna kelarutan dan kesetimbangan ion kompleks ni(ii)
V. warna kelarutan dan kesetimbangan ion kompleks ni(ii)Nurmalina Adhiyanti
 
363346658 16-soal-jawab-kinetik-kimia-nop-bahan-uas-docx
363346658 16-soal-jawab-kinetik-kimia-nop-bahan-uas-docx363346658 16-soal-jawab-kinetik-kimia-nop-bahan-uas-docx
363346658 16-soal-jawab-kinetik-kimia-nop-bahan-uas-docxSaya Kamu
 
Termodinamika kimia (pertemuan 1)
Termodinamika kimia (pertemuan 1)Termodinamika kimia (pertemuan 1)
Termodinamika kimia (pertemuan 1)Utami Irawati
 
Kompleksometri teknik kimia universitas sriwijaya palembang, sumatera selatan...
Kompleksometri teknik kimia universitas sriwijaya palembang, sumatera selatan...Kompleksometri teknik kimia universitas sriwijaya palembang, sumatera selatan...
Kompleksometri teknik kimia universitas sriwijaya palembang, sumatera selatan...Olika Adzalia
 
45715687 aplikasi-senyawa-kompleks
45715687 aplikasi-senyawa-kompleks45715687 aplikasi-senyawa-kompleks
45715687 aplikasi-senyawa-kompleksandragrup01
 
Asam karboksilat dan turunannya
Asam karboksilat dan turunannyaAsam karboksilat dan turunannya
Asam karboksilat dan turunannyaIndra Yudhipratama
 

What's hot (20)

Kestabilan ion kompleks
Kestabilan ion kompleksKestabilan ion kompleks
Kestabilan ion kompleks
 
Anor ii bab123siap cetak
Anor ii bab123siap cetakAnor ii bab123siap cetak
Anor ii bab123siap cetak
 
laporan kimia fisik - Kelarutan sebagai fungsi temperatur
laporan kimia fisik - Kelarutan sebagai fungsi temperaturlaporan kimia fisik - Kelarutan sebagai fungsi temperatur
laporan kimia fisik - Kelarutan sebagai fungsi temperatur
 
Laporan Praktikum Pembuatan Tawas
Laporan Praktikum Pembuatan TawasLaporan Praktikum Pembuatan Tawas
Laporan Praktikum Pembuatan Tawas
 
Campuran sederhana
Campuran sederhanaCampuran sederhana
Campuran sederhana
 
Sejarah senyawa-kompleks-koordinasi-paling-baru
Sejarah senyawa-kompleks-koordinasi-paling-baruSejarah senyawa-kompleks-koordinasi-paling-baru
Sejarah senyawa-kompleks-koordinasi-paling-baru
 
Penentuan kinetika ester saponifikasi dengan metode konduktometri
Penentuan kinetika ester saponifikasi dengan metode konduktometriPenentuan kinetika ester saponifikasi dengan metode konduktometri
Penentuan kinetika ester saponifikasi dengan metode konduktometri
 
Laporan ekstraksi pelarut
Laporan ekstraksi pelarutLaporan ekstraksi pelarut
Laporan ekstraksi pelarut
 
laporan kimia fisik - Penentuan berat molekul polimer
laporan kimia fisik - Penentuan berat molekul polimerlaporan kimia fisik - Penentuan berat molekul polimer
laporan kimia fisik - Penentuan berat molekul polimer
 
Bab9 kinetika kimia
Bab9 kinetika kimiaBab9 kinetika kimia
Bab9 kinetika kimia
 
Makalah retrosintesis Kimia Organik 3
Makalah retrosintesis Kimia Organik 3Makalah retrosintesis Kimia Organik 3
Makalah retrosintesis Kimia Organik 3
 
Kinetika kimia (pertemuan 4)
Kinetika kimia (pertemuan 4)Kinetika kimia (pertemuan 4)
Kinetika kimia (pertemuan 4)
 
Praktikum organik aldehid keton
Praktikum organik aldehid ketonPraktikum organik aldehid keton
Praktikum organik aldehid keton
 
V. warna kelarutan dan kesetimbangan ion kompleks ni(ii)
V. warna kelarutan dan kesetimbangan ion kompleks ni(ii)V. warna kelarutan dan kesetimbangan ion kompleks ni(ii)
V. warna kelarutan dan kesetimbangan ion kompleks ni(ii)
 
Kimia Fisika Organik
Kimia Fisika OrganikKimia Fisika Organik
Kimia Fisika Organik
 
363346658 16-soal-jawab-kinetik-kimia-nop-bahan-uas-docx
363346658 16-soal-jawab-kinetik-kimia-nop-bahan-uas-docx363346658 16-soal-jawab-kinetik-kimia-nop-bahan-uas-docx
363346658 16-soal-jawab-kinetik-kimia-nop-bahan-uas-docx
 
Termodinamika kimia (pertemuan 1)
Termodinamika kimia (pertemuan 1)Termodinamika kimia (pertemuan 1)
Termodinamika kimia (pertemuan 1)
 
Kompleksometri teknik kimia universitas sriwijaya palembang, sumatera selatan...
Kompleksometri teknik kimia universitas sriwijaya palembang, sumatera selatan...Kompleksometri teknik kimia universitas sriwijaya palembang, sumatera selatan...
Kompleksometri teknik kimia universitas sriwijaya palembang, sumatera selatan...
 
45715687 aplikasi-senyawa-kompleks
45715687 aplikasi-senyawa-kompleks45715687 aplikasi-senyawa-kompleks
45715687 aplikasi-senyawa-kompleks
 
Asam karboksilat dan turunannya
Asam karboksilat dan turunannyaAsam karboksilat dan turunannya
Asam karboksilat dan turunannya
 

Similar to Warna &amp; kemagnetan senyawa kompleks 2017 1

Crystal field theory
Crystal field theoryCrystal field theory
Crystal field theorysurya287
 
Bonding in Coordination Compounds
Bonding in Coordination CompoundsBonding in Coordination Compounds
Bonding in Coordination CompoundsChris Sonntag
 
Coordination chemistry - CFT
Coordination chemistry - CFTCoordination chemistry - CFT
Coordination chemistry - CFTSANTHANAM V
 
d & f-block elements 12th Chemistry.pdf
d & f-block elements 12th Chemistry.pdfd & f-block elements 12th Chemistry.pdf
d & f-block elements 12th Chemistry.pdfKapilPooniya
 
INORGANIC CHEMISTRY 1.2-TRANSITION ELEMENT
INORGANIC CHEMISTRY 1.2-TRANSITION ELEMENTINORGANIC CHEMISTRY 1.2-TRANSITION ELEMENT
INORGANIC CHEMISTRY 1.2-TRANSITION ELEMENTshahzadebaujiti
 
topic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptxtopic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptxJaimin Surani
 
Chapter 8-d-f-block-elements
Chapter 8-d-f-block-elementsChapter 8-d-f-block-elements
Chapter 8-d-f-block-elementsAshima Aggarwal
 
Evidence of Metal Ligand Bonding.pptx
Evidence of Metal Ligand Bonding.pptxEvidence of Metal Ligand Bonding.pptx
Evidence of Metal Ligand Bonding.pptxSudha durairaj
 
Inorganic chemistry
Inorganic chemistryInorganic chemistry
Inorganic chemistryadinakazmi
 
d- and f- block elements (part 1)
d- and f- block elements (part 1)d- and f- block elements (part 1)
d- and f- block elements (part 1)Arunesh Gupta
 
d and f block elements.pptx
d and f block elements.pptxd and f block elements.pptx
d and f block elements.pptxPariJain51
 
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...ABDERRAHMANE REGGAD
 
Class 12th d block 421 unit 4.pdf
Class 12th d block         421 unit 4.pdfClass 12th d block         421 unit 4.pdf
Class 12th d block 421 unit 4.pdfsinghvinodrawat893
 
Ligand field theory - Supratim Chakraborty
Ligand field theory - Supratim ChakrabortyLigand field theory - Supratim Chakraborty
Ligand field theory - Supratim ChakrabortySupratimChakraborty19
 
Chapter 8 the d and f block elements
Chapter 8 the d and f block elementsChapter 8 the d and f block elements
Chapter 8 the d and f block elementssuresh gdvm
 

Similar to Warna &amp; kemagnetan senyawa kompleks 2017 1 (20)

Crystal field theory
Crystal field theoryCrystal field theory
Crystal field theory
 
Bonding in Coordination Compounds
Bonding in Coordination CompoundsBonding in Coordination Compounds
Bonding in Coordination Compounds
 
CFT 1.pptx
CFT 1.pptxCFT 1.pptx
CFT 1.pptx
 
Coordination chemistry - CFT
Coordination chemistry - CFTCoordination chemistry - CFT
Coordination chemistry - CFT
 
d & f-block elements 12th Chemistry.pdf
d & f-block elements 12th Chemistry.pdfd & f-block elements 12th Chemistry.pdf
d & f-block elements 12th Chemistry.pdf
 
INORGANIC CHEMISTRY 1.2-TRANSITION ELEMENT
INORGANIC CHEMISTRY 1.2-TRANSITION ELEMENTINORGANIC CHEMISTRY 1.2-TRANSITION ELEMENT
INORGANIC CHEMISTRY 1.2-TRANSITION ELEMENT
 
topic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptxtopic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptx
 
Crystal field theory
Crystal field theory   Crystal field theory
Crystal field theory
 
Chapter 8-d-f-block-elements
Chapter 8-d-f-block-elementsChapter 8-d-f-block-elements
Chapter 8-d-f-block-elements
 
Evidence of Metal Ligand Bonding.pptx
Evidence of Metal Ligand Bonding.pptxEvidence of Metal Ligand Bonding.pptx
Evidence of Metal Ligand Bonding.pptx
 
Inorganic chemistry
Inorganic chemistryInorganic chemistry
Inorganic chemistry
 
d- and f- block elements (part 1)
d- and f- block elements (part 1)d- and f- block elements (part 1)
d- and f- block elements (part 1)
 
d and f block elements.pptx
d and f block elements.pptxd and f block elements.pptx
d and f block elements.pptx
 
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
 
Coordination chemistry-2
Coordination chemistry-2Coordination chemistry-2
Coordination chemistry-2
 
Class 12th d block 421 unit 4.pdf
Class 12th d block         421 unit 4.pdfClass 12th d block         421 unit 4.pdf
Class 12th d block 421 unit 4.pdf
 
d block.pptx
d block.pptxd block.pptx
d block.pptx
 
Ligand field theory - Supratim Chakraborty
Ligand field theory - Supratim ChakrabortyLigand field theory - Supratim Chakraborty
Ligand field theory - Supratim Chakraborty
 
Chapter 8 the d and f block elements
Chapter 8 the d and f block elementsChapter 8 the d and f block elements
Chapter 8 the d and f block elements
 
Electronic spectra
Electronic spectraElectronic spectra
Electronic spectra
 

Recently uploaded

How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 

Recently uploaded (20)

How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 

Warna &amp; kemagnetan senyawa kompleks 2017 1

  • 2.  Definisi electronic spectra (spektra elektronik)  Teori transisi elektronik  Teori yang menjelaskan electronic spectra : warna senyawa kompleks  DiagramTanabeTsugano  Deret spektrokimia  Kemagnetan seny. kompleks  Moment magnetik seny. kompleks
  • 3.  Bil. Oksidasi bervariasi  Warna  Kemagnetan  Ikatan kovalen koordinasi  Interaksi asam-basa lewis
  • 4. Berbagai warna senyawa logam transisi periode 4 titanium oxide sodium chromate potassium ferricyanide nickel(II) nitrate hexahydrate zinc sulfate heptahydrate scandium oxide vanadyl sulfate dihydrate manganese(II) chloride tetrahydrate cobalt(II) chloride hexahydrate copper(II) sulfate pentahydrate
  • 5.  Gemstone owe their color from trace transition-metal ions  Corundum mineral, Al2O3: Colorless  Cr  Al : Ruby  Mn  Al: Amethyst  Fe  Al: Topaz  Ti &Co  Al: Sapphire  Beryl mineral, Be3 Al2Si6O18: Colorless  Cr  Al : Emerald  Fe  Al : Aquamarine
  • 6. 6 warna berbagai senyawa kompleks dalam larutan air : 3+ 3+ 2+ 2+ 2+ 2+ 2+ Ti , Cr , Mn , Fe , Co , Ni , Cu .
  • 7. Mn(II) Mn(VI) Mn(VII) V(V) Cr(VI) Mn(VII) Warna seny. Kompleks dgn biloks bervariasi
  • 9.  VBT : ikatan  CFT : elektronik spektra : warna dan kemagnetan (spektra UV danVisible)  MOT : ikatan  LFT : elektronik spektra : warna dan kemagnetan
  • 10.  Mempelajari tentang spektra senyawa kompleks berdasarkan tingkat energi elektron dari suatu orbital (spektra elektronik) -->Aplikasi : bonding dan structure
  • 11.  Absorpsi energi cahaya berada dalam daerah sinar tampak oleh suatu senyawa ---->> spektrum visible ---->> warna  Absorpsi mengakibatkan terjadinya transisi antara tingkat energi elektronik (transisi elektronik) Energi cahaya yang diserap oleh molekul mengakibatkan transisi elektron ke tingkat energi yang lebih tinggi setara (sama dengan) perbedaan energi pada tingkat energi orbital
  • 13.
  • 14.
  • 15.  Teori yang menjelaskan tentang eksitasi yang teramati pada sebuah senyawa kompleks Theory to explain electronic excitations/transitions observed for metal complexes
  • 16.
  • 17. Selection rules (determine intensities) Laporte rule g  g forbidden (that is, d-d forbidden) but g  u allowed (that is, d-p allowed) Spin rule Transitions between states of different multiplicities forbidden Transitions between states of same multiplicities allowed
  • 18.
  • 19. Since these selection rules must be strictly obeyed, why do many d-block metal complexes exhibit ‘d–d’ bands in their electronic spectra? These rules are relaxed by molecular vibrations, and spin-orbit coupling
  • 21.  Vibrounic Coupling Spin-allowed ‘d–d’ transitions remain Laporte-forbidden and their observation is explained by a mechanism called ‘vibronic coupling An octahedral complex possesses a centre of symmetry, but molecular vibrations result in its temporary loss. At an instant when the molecule does not possess a centre of symmetry, mixing of d and p orbitals can occur. Since the lifetime of the vibration (1013 s) is longer than that of an electronic transition (1018 s), a ‘d–d’ transition involving an orbital of mixed pd character can occur although the absorption is still relatively weak
  • 22.  Spin Orbit Coupling : A spin-forbidden transition becomes ‘allowed’ if, for example, a singlet state mixes to some extent with a triplet state. but for first row metals, the degree of mixing is small and so bands associated with ‘spin- forbidden’ transitions are very weak
  • 23.  In a molecule which is noncentrosymmetric (e.g. tetrahedral), p–d mixing can occur to a greater extent and so the probability of ‘d–d’ transitions is greater than in a centrosymmetric complex.This leads to tetrahedral complexes being more intensely coloured than octahedral complexes.
  • 24.
  • 25.
  • 26.
  • 27.  Macam-macam transisi elektronik : a. transisi dalam tingkat energi orbital d ion logam (d-d ‘ transition) b.Transisi antara ion logam dengan ligan dalam orbital molekul (charge transfer) - LMCT (ligand to metal CT) - MLCT (metal to ligandCT) Intensitas absorbsi oleh transisi CT lebih tinggi dibandingkan transisi d-d’
  • 28. Absorption bands in electronic spectra are usually broad; the absorption of a photon of light occurs in 10-18 s whereas molecular vibrations and rotations occur more slowly Therefore, an electronic transition is a ‘snapshot’ of a molecule in a particular vibrational and rotational state, and it follows that the electronic spectrum will record a range of energies corresponding to different vibrational and rotational states.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.  1T1g←1A1g and 1T2g←1A1g  [Co(NH3)6]Cl3  Absorbs violet/blue, ends up being orange-yellow  2 absorption bands, symmetrical, Oh  [CoCl(NH3)5]Cl2  Absorbs green, ends up being magenta  2 absorption bands, broadening on one  C4v symmetry
  • 36. Group theory analysis of term splitting
  • 37.
  • 38. Free ion term for d2 3F, 3P, 1G, 1D, 1S Real complexes
  • 39. Tanabe-Sugano diagrams d2 • show correlation of spectroscopic transitions observed for ideal Oh complexes with electronic states • energy axes are parameterized in terms of Δo and the Racah parameter (B) which measures repulsion between terms of the same multiplicity
  • 40. d2 complex: Electronic transitions and spectra only 2 of 3 predicted transitions observed
  • 41. TS diagramsOther dn configurations d1 d9 d3 d2 d8
  • 42. d3 Other configurations The limit between high spin and low spin
  • 43.
  • 44. The d5 case All possible transitions forbidden Very weak signals, faint color
  • 46.
  • 47.
  • 48.
  • 49.
  • 50. Charge transfer spectra LMCT MLCT Ligand character Metal character Metal character Ligand character Much more intense bands
  • 52.
  • 53. Determining Do from spectra d1 d9 One transition allowed of energy Do
  • 54. Lowest energy transition = Do mixing mixing Determining Do from spectra
  • 55. Ground state mixing E (T1gA2g) - E (T1gT2g) = Do
  • 56. 56  Melibatkan serapan cahaya tampak.  Warna yang tampak adalah warna komplemen dari warna yang diserap. Blue light absorbed Red light transmitted
  • 57.  Warna yang tampak adalah komplemen dari Warna yang diserap Warna yg diserap Warna tampak
  • 59.  CFT : energi orbital d ion logam terpisah (split) akibat adanya medan elektrostatik dari ligan
  • 60.  Model explaining bonding for transition metal complexes  • Originally developed to explain properties for crystalline material  • Basic idea:  Electrostatic interaction between lone-pair electrons result in coordination.
  • 61.  CFT - Electrostatic between metal ion and donor atom i) Separate metal and ligand high energy ii) Coordinated Metal - ligand stabilized iii) Destabilization due to ligand -d electron repulsion iv) Splitting due to octahedral field. i ii iii iv
  • 62. Crystal FieldTheory - Describes bonding in Metal Complexes  Basic Assumption in CFT:  Electrostatic interaction between ligand and metal d-orbitals align along the octahedral axis will be affected the most. More directly the ligand attacks the metal orbital, the higher the the energy of the d-orbital. In an octahedral field the degeneracy of the five d-orbitals is lifted
  • 63. Ligands approach metal d-orbitals not pointing directly at axis are least affected (stabilized) by electrostatic interaction d-orbitals pointing directly at axis are affected most by electrostatic interaction
  • 64.  Octahedral field Splitting Pattern:  The energy gap is referred to as D(10 Dq) , the crystal field splitting energy. The dz2 and dx2-y2 orbitals lie on the same axes as negative charges. Therefore, there is a large, unfavorable interaction between ligand (-) orbitals. These orbitals form the degenerate high energy pair of energy levels. The dxy , dyx and dxz orbitals bisect the negative charges. Therefore, there is a smaller repulsion between ligand & metal for these orbitals. These orbitals form the degenerate low energy set of energy levels.
  • 65.  Color of the Complex depends on magnitude of D  1. Metal: Larger metal  larger D  Higher Oxidation State  larger D  2. Ligand: Spectrochemical series  Cl- < F- < H2O < NH3 < en < NO2 - < (N-bonded) < CN-  Weak field Ligand: Low electrostatic interaction: small CF splitting.  High field Ligand: High electrostatic interaction: large CF splitting. Spectrochemical series: Increasing D
  • 66.  Electron configuration of metal ion:  s-electrons are lost first.  Ti3+ is a d1, V3+ is d2 , and Cr3+ is d3  Hund's rule:  First three electrons are in separate d orbitals with their spins parallel.  Fourth e- has choice:  Higher orbital if D is small; High spin  Lower orbital if D is large: Low spin.  Weak field ligands  Small D , High spin complex  Strong field Ligands  Large D , Low spin complex
  • 67. Electron Configuration for Octahedral complexes of metal ion having d1 to d10 configuration [M(H2O)6]+n. Only the d4 through d7 cases have both high-spin and low spin configuration. Electron configurations for octahedral complexes of metal ions having from d1 to d10 configurations. Only the d4 through d7 cases have both high-spin and low-spin configurations.
  • 68.  The Colors of Some Complexes of the Co3+ Ion The complex with fluoride ion, [CoF6]3+ , is high spin and has one absorption band. The other complexes are low spin and have two absorption bands. In all but one case, one of these absorptionsis in the visible region of the spectrum.The wavelengths refer to the center of that absorption band. Complex Ion Wavelength of Color of Light Color of Complex light absorbed Absorbed [CoF6] 3+ 700 (nm) Red Green [Co(C2O4)3] 3+ 600, 420 Yellow, violet Dark green [Co(H2O)6] 3+ 600, 400 Yellow, violet Blue-green [Co(NH3)6] 3+ 475, 340 Blue, violet Yellow-orange [Co(en)3] 3+ 470, 340 Blue, ultraviolet Yellow-orange [Co(CN)6] 3+ 310 Ultraviolet PaleYellow
  • 69.  Warna seny. kompleks berkaitan dengan adanya transisi elektron antar sub level orbital d yang terpisah (split)  Panjang gelombang pada serapan maks seny. komplek dapat digunakan untuk menghitung energi pemisahan antar sub level orbital d yang terpisah Ephoton = hn = hc/l = D
  • 70.  Absorpsi radiasi UV-visible radiation oleh atom, ion, molekul:  Terjadi jika radiasi memiliki energi yang sama yang dibutuhkan oleh atom, ion, molekul untuk eksitasi elektron dari ground state ke excited state. white light red light absorbed green light observed
  • 71. 71 Quantum-mechanical description  Absorption of light may occur when the frequency of the incoming photon, multiplied by the Plank constant, is equal to the difference in energy between these two levels.
  • 72. 72 Example:  Ion cupric hidrat menyerap foton pada frekuensi Hz or 600 nm.  Energi yang melibatkan transisi elektron pada ion adalah  Dapat dikatakan bahwa ion (Cu(H2O)6)2+ berwarna biru maka ini berarti ion menyerap foton pada panjang gelombang 600 nm (oranye) sehingga memberikan warna biru pada mata kita 34 14 -1 -19 (6.63 10 J s)(5 10 s ) 3 10 JE hn  D    2+ 2 6Cu[H O] 14 5 10 2+ 2 6Cu[H O]
  • 73.
  • 74. 74 Example  Ti memiliki konfigurasi , sehingga ion menjadi ion. Ini berarti pada groundstate, 1 elektron akan menempati level energi terendah pada d orbitals, sedangkan level energi yang lebih tinggi kosong, setelah menyerap foton dengan energi tertentu, level energi terendah pada d orbitals akan kosong. 3+ 2 6Ti[H O] 2 2 4s 3d 3+ Ti 1 d
  • 75. 75 ion absorbs light in the visible region; the wavelenght corresponding to maximum absorption is 498 nm. Crystal field splitting : Itu adalah energi yang dibutuhkan untuk mengeksitasisatu elektron pada ion -34 8 -19 -9 (6.63 10 Js)(3 10 m/s) 3.99 10 J=240 kJ/mol 498 10 m hc hn l D     3+ 2 6Ti[H O] 3+ 2 6Ti[H O]
  • 76. 76 Spliting d-orbital sebesar 240 kJ per mol sesuai dengan panjang gelombang cahaya warna blue-green ; absorpsi cahaya ini mempromosikan elektron ke level energi yang lebih tinggi pada d orbitals, yang merepresentasikan keadaan tereksitasi dari kompleks Apabila kita melewatkan cahaya pada larutan maka cahaya warna blue-green akan diabsorb dan larutan akan menampakkan warna violet . 3+ 2 6Ti[H O] 3+ 2 6Ti[H O]
  • 77.  Spektra larutan [Ti(H2O)6 ]3+
  • 78.  Serapan senyawa Co (III) warna senyawa kompleks kobalt (III) dalam larutan air dengan berbagai macam ligan Kiri : weak-field ligand – serapan pada energi rendah - λ warna merah - warna tampak : hijau Kanan : strong-field ligan – serapan pada energi besar - λ warna ungu - warna tampak : oranye/kuning
  • 79.
  • 80.  Perbedaan warna disebabkan oleh perbedaan besarnya D ▪ D besar = energy untuk menyerap cahaya besar ▪ Panjang gelombang pendek ▪ D kecil = energy untuk menyerap cahaya kecil ▪ Panjang gelombang panjang  Besarnya D tergantung pada: ▪ ligand ▪ logam
  • 81.  Logam a. logam ukuran besar  D besar [Fe(H2O)6]3+ [Co(H2O)6]2+ [Ni(H2O)6]2+ [Cu(H2O)6]2+ [Zn(H2O)6]2+
  • 82.
  • 83. b. biloks logam tinggi  D besar [V(H2O)6]2+ [V(H2O)6]3+ Mn(II) Mn(VI) Mn(VII)
  • 84.  Deret yang menyatakan urutan kekuatan ligan berdasarkan besarnya ∆ yang dihasilkan
  • 85.  Deret kekuatan ligan berdasarkan besarnya ∆o
  • 86.  Deret kekuatan logam berdasarkan besarnya ∆o
  • 87.  Menggabungkan penjelasan tentang orbital molekul dengan perbedaan tingkat energi pemisahan orbital /splitting
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97. N  C * Splitting from  - bonding: Weak and Strong Field ligands Contoh ligan Cl- (weak) danCN- (strong) Cl N  C M N  C  - bonding as before Now  - bonding between p & dxy, dxz, dyz  - bonding as before Now  - bonding between CN- * & dxy, dxz, dyz No  - bonding with CN-  M sp hybridized for -bonding, left over p orbitals make  and * orbitals
  • 98.  Ligan dengan orbital p terisi
  • 99.
  • 100. s* p* dxy, dxz, dyz    d* = eg = t2g 6 4p 4s 3d 6 Ligands Cl- sp orbitals Metal LigandMolecule 12 Cl- p orbitals E (Cl- p) < E (M d) !!! Decrease Doct  Weak Field Ligand        - bonding: p orbitals give Weak Field Ligands (Cl- example) Input d e-’s Cl -bonding orbitals *-antibonding orbitals
  • 101.
  • 102.  Ligan yang memiliki orbital π * kosong
  • 103.
  • 105.
  • 106. s* p* dxy, dxz, dyz    d* = eg = t2g 6 4p 4s 3d 6 Ligands CN- sp orbitals Metal LigandMolecule 12 CN- * orbitals E (CN- * ) > E (M d) !!! Increase Doct  Strong Field Ligand  - bonding: * orbitals give Strong Field Ligands Input d e-’s N  C * -bonding orbitals *- antibonding orbitals
  • 107.
  • 108. Molecular OrbitalTheory Explains Field Strength of Ligands 1) Ligand p orbitals cause  - bonding that raises t2g energies Weak Field Ligands 2) Ligand * orbitals cause  - bonding that lowers t2g energies Strong Field Ligands 3) sp3 hybridized ligands do not change t2g orbitals very much Medium Field Ligands dxy, dxz, dyz d* = eg = t2g 12 Cl- p orbitals dxy, dxz, dyz d* = eg = t2g 12 CN- * orbitals *  No p or * orbitals for -bonding !!!
  • 109.
  • 110.  Metal to ligand : M---L Phi akseptor/phi acid  Ligan to metal : L---M phi donor/phi base
  • 111.  Ligan a.Weak field ligan interaksi elektrostatik ligan dengan logam rendah - ∆ kecil b. Strong field ligan interaksi elektrostatik ligan dengan logam tinggi - ∆ besar
  • 112.
  • 113.  Ligan diklasifikasikan berdasarkan kemampuan donor atau akseptor π  Ligan dgn orbital p terisi ----- π donor Ligan dgn orbital π * atau d kosong ---- π akseptor
  • 114.
  • 115.
  • 116.
  • 117.  Kemagnetan senyawa kompleks berhubungan dengan bagaimana elektron terdistribusi pada orbital d.  Kemagnetan senyawa kompleks diukur pada suatu medan magnet.
  • 118.
  • 119.  Senyawa kompleks dengan elektron tidak berpasangan : menghasilkan medan magnet / tertarik pada medan magnet.  Senyawa kompleks dengan elektron berpasangan : tidak menghasilkan medan magnet / menolak medan magnet.
  • 120.  Momen magnetik Suatu ukuran yang berkaitan dengan jumlah elektron tidak berpasangan.
  • 121.  Moment magnetik : Dimana :
  • 122.  Dengan g = 2,0003 = 2 dalam Bohr magneton, dan momentum orbital diabaikan, maka
  • 123.  Dan S = n/2, maka momen magnetik :  Satuan moment magnetik = BM (Bohr Magneton) 1 BM = 9,27 x 10-24 Joule/Tesla
  • 124.
  • 125. 1. Hitung moment magnetik komplek Cr(III) dan Ti (III) 2. Moment magnetik Kompleks Co(II) adalah 4,0BM. Prediksikan konfigurasi elektron orbital d pada kompleks tersebut! 3. Moment magnetik Kompleks Fe(III) adalah 5,3BM. Prediksikan konfigurasi elektron orbital d pada kompleks tersebut!
  • 126.  Jawab : 1. Cr3+ n = 3 μs = √3(3+2) BM = 3,87 BM
  • 127.  Jawab : 3. Fe 3+ , n = 5 a. dihitung μs untuk kompleks high spin dan low spin. b. kemudian tentukan mana yang nilainya paling mendekati nilai sebenarnya/eksperimen (5,3 BM) c.kemudian tulis konfigurasi elektron high spin atau low spin sesuai hasil b. Misal : untuk jawaban highspin, maka konf elektronny t2g3eg2
  • 128. 4. PadaT = 298 K diketahui bahwa momen magnetik kompleks [Cr(NH3)6]Cl2 adalah 4,85BM. Nyatakan apakah kompleks tersebut high spin?
  • 129.  TUGAS : Baca buku Huhey, Douglas, dan buku teks Anorganik lain yang menjelaskan tentang spektra elektronik senyawa kompleks dan kemagnetan Silahkan berlatih menghitung momen magnetik dari soal-soal yang ada di buku teks