SlideShare a Scribd company logo
1 of 48
Download to read offline


Addition Reactions
Numerous compounds can add to carbon–carbon multiple bonds by the elec-
trophilic addition mechanism. These include halogens, interhalogens, pseu-
dohalogens, H–X compounds (water, inorganic and organic acids, alcohols,
thiols, ammonia, and amines), halogen–X reagents (hypohalous acids and
hypohalites, electrophilic sulfur, selenium and tellurium compounds, inorganic
and organic acyl halides), metal hydrides, metal halides, and organometallics.
Of these reactions only those having great chemical and practical significance
are discussed here. A short discussion about cycloaddition is also included.
Other additions, such as addition of (alkylation of alkenes with) alkyl halides
and carbonyl compounds, are discussed in Chapter 5, whereas Chapter 7 cov-
ers addition reactions involving carbon monoxide and carbon dioxide (hydro-
formylation, carboxylations). Electrophilic oxygenation of alkenes (epoxidation
by peroxyacids), in turn, is treated in Chapter 9. Hydrogen addition is discussed
in Chapter 11. The nucleophilic addition of organometallics to multiple bonds
is of great significance in the anionic polymerization of alkenes and dienes and
is treated in Chapter 13.
Hydrocarbon Chemistry, Third Edition. George A. Olah, Árpád Molnár and G. K. Surya Prakash.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
 Hydrocarbon Chemistry
. HX Addition
6.2.1 Hydrohalogenation
Hydrogen halides add to carbon–carbon double and triple bonds to yield halo-
genated hydrocarbons. The reactivity of the four hydrogen halides is in the
order HI > HBr > HCl > HF. HI and HBr, the two most reactive compounds,
add readily at room temperature to unsaturated hydrocarbons. HCl requires
heating or a catalyst, whereas HF often exhibits irregular behavior. Most stud-
ies of hydrohalogenations have focused on the use of HCl and HBr.110
Alkenes The reaction of hydrogen halides with alkenes is generally an elec-
trophilic addition. It occurs by a variety of mechanisms and involves a carboca-
tion intermediate in many cases. As a result, rearrangements may be observed,
and solvent incorporation may occur. The regioselectivity of the addition to
unsymmetrical double bounds is in accord with the Markovnikov rule; specif-
ically, the hydrogen adds to the site with the highest electron density. Stereo-
chemistry of electrophilic addition of hydrogen halides to alkenes may be syn
or anti. Reaction conditions, the nature of the solvent, and the structure of the
reacting alkene affect the stereochemical outcome of the reaction.
In contrast to HCl and HBr addition, there are no such systematic stud-
ies concerning the addition of HF and HI to alkenes. Aqueous HF exhibits
rather low reactivity toward alkenes, and anhydrous liquid HF is used instead
to effect hydrofluorination.111,112 Because of its low boiling point, high tox-
icity, and corrosive nature, alternative reagents were developed. The com-
bination of HF with organic bases gives more suitable reagents.113 They
react with alkenes in typical Markovnikov-type addition. Of these, pyri-
dinium poly(hydrogen fluoride)114–116 (PPHF, so called Olah’s reagent) and
melamine–HF solution117 are used most frequently. An effective solid flu-
orinating agent, a polymer-supported HF reagent, is prepared from poly-
4-vinylpyridine and anhydrous HF. Easy handling and convenient work-up
make polyvinylpyridinium poly(hydrogen fluoride)118,119 (PVPHF) an attrac-
tive reagent [Eq. (6.8)]. Olah and coworkers have developed stable dialkyl
ether/poly(hydrogen fluoride) complexes with cyclic poly(hydrogen fluoride)
bridge structure.120 The dimethyl ether–poly(hydrogen fluoride) complex
(DMEPHF) was shown to be a convenient and efficient fluorinating agent.
A Pd-catalyzed sequential regiospecific, syn-selective addition of H− and
“F+” to styrenes furnishes the corresponding benzyl fluorides in high yields
([Pd(PPh3)]4, Selectfluor, Et3SiH).121
PVPHF
CH2Cl2, 0−20 °C, 1−6 h
R
( )n ( )n
R = H, Me, n = 2, 3, 8
2,3-diMe-but-2-ene, norbornene
60−80%
F
R
(6.8)
6 Addition Reactions 
Detailed, wide-ranging studies are available on the addition of HCl and HBr
to alkenes.3,112,122 The most useful procedure is to react dry HCl gas and the
alkene neat or in an inert organic solvent. Water or acetic acid may also be
used. Alkenes yielding tertiary or benzylic alkyl chlorides react most readily.
Styrene, however, adds HCl only at −80 ◦C to give α-chloroethylbenzene with-
out polymerization.123 At more elevated (room) temperature, polymerization
prevails. HBr adds to alkenes in an exothermic process more rapidly than does
HCl. Rearrangements may occur during addition indicating the involvement of
a carbocation intermediate124 [Eq. (6.9)].
Cl
Cl
HCl
25 °C
neat 50% 50%
CH3NO2 17% 83%
+
(6.9)
A similar conclusion can be drawn from the higher reactivity of 1,1-
dialkylalkenes compared with 1,2-dialkylalkenes. Norbornene and related
bicyclic olefins were shown to react with HCl via the classical norbornyl cations
prior to full equilibration.125,126 The stereochemistry of addition may be syn
or anti. Product distributions can be strongly affected by the solvent used127
[Eq. (6.10)].
HCl
30 min
H
Cl
H
Cl
+
CH2Cl2, −98 °C 88% 12%
Et2O, 0 °C 5% 95%
(6.10)
Acenaphthylene, indene, and cis- and trans-1-phenylpropene, all possessing the
double bond in conjugation with an aromatic system, were found to react with
hydrogen halides in nonpolar solvents to give predominantly syn addition prod-
ucts.128 This stereochemistry is consistent with an AdE2 mechanism in which
the undissociated hydrogen halide reacts with the alkene (Scheme 6.2). First ion
pair 7 is formed with the halide ion retained on the same side of the alkene as
the hydrogen. Collapse of 7 gives exclusively the syn product. If the ion pair has
a long enough lifetime, the halide ion may migrate to the opposite side of the
planar carbocation to give the ion pair 8. Collapse of the latter leads to the anti
product. A similar ion-pair mechanism is operative in the hydrochlorination of
3,3-dimethylbutene and styrene in acetic acid.129
In contrast, kinetic studies indicate that another mechanism may also be
operative. It was found that the rate law for the addition of HCl and HBr to
alkenes in nonprotic solvents (hydrocarbons, diethyl ether, nitromethane) is
typically overall third order3,122,124,130 or even higher.131,132 It is usually first
order in the alkene and second order in the hydrogen halide. A slow irreversible
 Hydrocarbon Chemistry
C C C C
H X−
C
H
C
X
C C
H
+
C
H
C
X
7
8
+
X−
HX
Scheme .
proton transfer from the undissociated molecule to the alkene was shown to
be rate determining. The second molecule of HX assists this proton transfer
by bonding to the developing halide ion. This is a typical AdE3 mechanism
[Eq. (6.11)].
CH=CH2
R + 2HX RCHCH3 + HX2
−
+
slow fast
RCHCH3
X
+ HX
(6.11)
A more detailed picture could be obtained from the results of stereochemi-
cal studies.3,133 Since 1,2-dimethylcyclohexene, 1,6-dimethylcyclohexene, and
2-methylmethylenecyclohexane give different proportions of cis- and trans-
1,2-dimethylbromocyclohexanes, simultaneous formation of the C–H and
the C–Br bonds was suggested.134 A similar conclusion was reached based
on the stereoselective, predominantly anti addition of HCl and HBr to 1,2-
dimethylcyclopentene in pentane.135
The addition of DBr in AcOD to cyclopentene yields deuterocyclopentyl bro-
mide and deuterocyclopentyl acetate, both formed with better than 96% anti
stereoselectivity.136 A concerted anti AdE3 transition state (9) is consistent
with these and other experimental observations. A similar but syn transition
state (10) was evoked to explain the somewhat decreased degree of anti addi-
tion (84–85%) in the hydrohalogenation of linear isomeric alkenes.136 The reac-
tion of [1,3,3-2H3]-cyclohexene137 and 1,2-dimethylcyclohexene138 with HCl
in AcOH was shown to form the corresponding chlorides resulting from both
syn and anti additions. In these cases, an AdE2 mechanism competes with a
concerted anti AdE3 process. High HCl concentration and addition of chloride
salts such as Me4NCl favor the AdE3 mechanism.
C
H
C
Nu
X
E
δ−
δ+
δ+ C
H X
δ−
δ+
δ+
C
Nu
E
9 10
6 Addition Reactions 
Exceptions to the Markovnikov rule when hydrogen bromide reacts with
unsymmetrical alkenes have long been known.139,140 The reaction for this anti-
Markovnikov addition was explained as being a chain reaction with the involve-
ment of bromine atoms generated by peroxides.141–143 Both added peroxides
and peroxides formed by the action of the triplet oxygen (air) on the alkene are
effective.
The chain reaction is initiated by the interaction of a free radical [formed
according to Eq. (6.12)] with hydrogen bromide to form a bromine atom
[Eq. (6.13)], which, after reacting with the alkene, yields a bromoalkyl radical
[Eq. (6.14)]. The reaction of the latter with HBr yields the alkyl bromide and
regenerates the bromine atom [Eq. (6.15)].
RCOOH RO• + HO•
(6.12)
RO• + HBr ROH + Br•
(6.13)
CH2=CH2
R + Br• CHCH2
R Br (6.14)
CHCH2
R Br + HBr CH2CH2
R Br + Br•
(6.15)
Anti-Markovnikov free-radical-induced addition of HBr to alkenes can be pre-
vented by carrying out the reaction in the presence of small amounts of antiox-
idants that inhibit the reaction of oxygen with the alkene to form peroxides.
There was a significant notion that no other hydrogen halides add to alkenes,
contrary to the Markovnikov rule, even in the presence of free radicals. This
appears to be due to the difficulty of producing certain halogen radicals, par-
ticularly fluorine and chlorine, by reaction of the hydrogen halides induced by
radicals [Eq. (6.16)]. It is only in the case of bromine that the equilibrium in this
reaction is in the direction of the formation of the bromine atom.
RO• + H X ROH + X•
(6.16)
Contrary to this statement, direct anti-Markovnikov addition of HF and HCl
was accomplished by Nicewicz and coworkers using an efficient organic pho-
toredox catalyst system.144 Photoredox catalyst 11a is excited with visible light
to form acridine radical 11b, which is quenched by the alkene to form radi-
cal cation 12 (Scheme 6.3). Nucleophilic halide addition yields the more stable
Ph
Me
•+
Ph
Me
Ph
Me
X
•
HX
(X = F, Cl)
PhSH
PhS•
Ph
Me
H
X
11a 11b
12 13
Scheme .
 Hydrocarbon Chemistry
benzylic radical 13, and, finally, hydrogen atom transfer from thiol results in
the formation of the addition product.
N
Me
Me
Me
Me
−BF4
•
+
N
Me
Me
Me
Me
+
hν (450 nm)
11a 11b
Addition of HBr in nonpolar solvents to terminal alkenes was found to give
anti-Markovnikov products even under nonradical conditions.145 Products
formed in both the normal and abnormal additions may be obtained in near
quantitative yields by changing the temperature and the reagent/reactant ratio
[Eq. (6.17)]. On the basis of theoretical calculations and spectroscopic evidence,
a molecular mechanism for the formation of HBr–alkene complexes was sug-
gested. In a large excess of HBr, a 2:1 HBr–alkene complex is formed giving the
product of the normal addition. A 1:2 complex in excess alkene, in contrast,
accounts for the anti-Markovnikov product.
C6H13CH=CH2 C6H13CHCH3 + C6H13CH2CH2Br
HBr
hexane, −78 °C
HBr/oct-1-ene = 15 98 2
HBr/oct-1-ene = 0.125 100
Br (6.17)
Concentrated HI in water or acetic acid is usually utilized in hydroiodination
of alkenes. Markovnikov products are exclusively formed, and rearrangements
may be observed.
Special reagents introduced later allow significant improvements in hydro-
halogenation of alkenes. HCl, HBr, and HI in aqueous–organic two-phase sys-
tems under phase transfer conditions readily add to alkenes affording halides
in nearly quantitative yields.146 Appropriately prepared silica and alumina
have been found to mediate the addition of HCl, HBr, and HI to alkenes.147
The method is very convenient since it uses hydrogen halides prepared
in situ148 [Eq. (6.18)].147 Competing radical addition in hydrobromination is
not observed. It is suggested that surface-bound hydrogen halides with greatly
increased acidity through polarization of the hydrogen–halogen bond proto-
nate the double bond. A rapid transfer of the halide ion from the surface follows
affording predominantly the syn addition products. Highly acidic solid catalysts
(K10 montmorillonite, ZF520 zeolite) yield the Markovnikov addition product
6 Addition Reactions 
with high selectivity when methylcyclohexene is reacted with SOCl2 as the HCl
precursor.149
C6H13CH=CH2
CH2Cl2, 25 °C
C6H13CHCH3
X
(COCl)2, Al2O3, 1 h, X = Cl 98%
HBr, SiO2, 0.7 h, X = Br 96%
Me3SiI, SiO2, 1 h, X = I 98%
(6.18)
A study using core-electron spectroscopy on the addition of HCl to ethylene,
propylene, and isobutylene in the gas phase concludes that a significant portion
of the difference between Markovnikov and anti-Markovnikov addition is also
due to the charge distribution in the initial state and not to different ability
of the molecules to delocalize the added charge in the transition state.150 The
increase in reactivity with increasing substitution of the double bond is also
strongly influenced by the initial-state charge distribution.
The Me3SiCl and water system is a convenient reagent for the selec-
tive hydrochlorination of alkenes. The anti selective manner of addition
was shown to occur by reacting 9(10)-octalin to afford 4α-chloro-trans-
decahydronaphthaline exclusively.151
Dienes Reaction of allenes with HCl and HBr was mostly studied.3,112
Depending on the reagent, reaction conditions, and the structure of the react-
ing molecule, markedly different product distributions may be obtained.29,152
Monoalkyl-substituted allenes give predominantly the corresponding 2-halo-
2-alkenes. Phenylallene, in contrast, is converted exclusively to cynnamyl chlo-
ride153 [Eq. (6.19)]. Mechanistic studies established the formation of carboca-
tion intermediate 14 stabilized by the conjugation with the phenyl ring.
PhCH=C=CH2
HCl Cl–
AcOH, rt, 48 h
[PhCH CH CH2]
+
PhCH CH CH2 Cl
14 95%
(6.19)
Mixtures of isomeric allylic chlorides are formed when 1,1-disubstituted allenes
react with HCl. 1,3-Disubstituted allenes yield products of both central and ter-
minal carbon attacks. In contrast, selective transformations occur with HBr.
Photocatalytic addition of HBr in the gas phase selectively gives vinylic bro-
mides154 [Eq. (6.20)], whereas hydrobromination in the solution phase yields
allylic bromides155 [Eq. (6.21)].
C=C=CH2
Me
Me
HBr
Et2O, rt, 5 days
C
Me
Me
C
Me
Br
C=CH
Me
Me
CH2Br
97%
80%
HBr
900 W mercury lamp (6.20)
(6.21)
 Hydrocarbon Chemistry
Similar differences may be observed in hydrobromination of tetrasubstituted
allenes. Ring size and reaction conditions determine the outcome of hydro-
bromination of cyclic allenes.112 In gas-phase hydrobromination, where a radi-
cal mechanism is operative, the bromine atom always adds to the central carbon
atom of the allenic system. As a result, vinylic bromides are formed through
the stable allylic radical. In the solution phase under ionic addition conditions,
either the vinylic or the allylic cation may be the intermediate resulting in non-
selective hydrobromination. Allylic rearrangement or free-radical processes
may also affect product distributions.
Conjugated dienes may yield mixtures of products of 1,2- or 1,4-addition.
Product of 1,4-addition may be the initial product or may actually be formed
by 1,2-addition followed by isomerization. In any event, however, formation of
the 1,4-product involves isomerization of a carbocation.
Addition of HCl to buta-1,3-diene in the gas phase was shown to be a surface-
catalyzed reaction occurring at the walls between a multilayer of adsorbed HCl
and gaseous or weakly adsorbed buta-1,3-diene.156 The initial proton transfer
to the terminal carbon and the chloride attack occur almost simultaneously.
Chloride attack at C(2) or C(4) has equal probability thus producing equal
amounts of 1,2- and 1,4-addition.
The addition of 1 mol of HCl or HBr to isoprene yields the corresponding
primary halide produced through the rearrangement of the initially formed
tertiary halide112 [Eq. (6.22)]. The addition of a second molecule of hydrogen
halide gives the 1,3-dihalo compounds in good yields.157
X X
X
X
HX
HX
(6.22)
Addition of DBr to cyclohexa-1,3-diene occurs by a 1,2-anti and 1,4-syn
process,158 a conclusion also predicted by molecular orbital calculations.159
Stereospecific allylic rearrangement of the 1,2-trans product, however, even-
tually produces a reaction mixture containing predominantly cis prod-
ucts. A single chloro compound, trans-1-phenyl-3-chlorobut-1-ene (16), is
formed in hydrochlorination of isomeric 1-phenylbuta-1,3-dienes in AcOH160
(Scheme 6.4). The observation is interpreted by the formation of isomeric allylic
carbocations cis-15 and trans-15. Rapid rotation of cis-15 to trans-15 before
captured by the chloride ion ensures selective formation of 16.
Alkynes Because of their less nucleophilic character, alkynes react less readily
with hydrogen halides than alkenes and often require the use a metal halide
catalyst. Vinyl halides are formed in the reaction with 1 equiv of HX. They may
react further in an excess of the reagent to yield geminal dihalides. High yields of
these compounds can be obtained. The addition of HCl to acetylene was studied
in detail because of the practical importance of the product vinyl chloride (see
Section 6.2.4).
6 Addition Reactions 
Ph
Ph HCl
AcOH,18 °C
Ph
HCl
AcOH,18 °C
Ph Cl− Ph
cis-15
trans-15 16
Cl
+
+
Scheme .
In accordance with the Markovnikov rule, terminal alkynes are converted to
2-halo-1-alkenes. The reagents prepared in the reaction of anhydrous HF with
organic bases and used in hydrofluorination of alkenes can add to the carbon–
carbon triple bond producing Markovnikov products.114–116,118,119 Similar
results were found with the use of DMPU [1,3-dimethyl-3,4,5,6-tetrahydro-
2(1H)-pyrimidinone] an inexpensive, readily available hydrogen bond acceptor
forming a stable complex with HF.161 It can act as a nucleophilic fluorinating
agent and exhibits high activity and selectivity in gold-catalyzed mono- and
difluorination of alkynes to fluoroalkenes and difluoromethylene compounds.
A process induced by [Cp∗Ru(cod)Cl] and PPh3 provides access to vinyl chlo-
rides through formal Markovnikov addition to terminal alkynes at room tem-
perature.162
However, 1-bromo-1-alkenes and 1,2-dibromoalkanes are formed when
hydrobromination is carried out in the presence of peroxides.163,164 Reactions
with reagents or reactants labeled appropriately with deuterium indicate that
the products are formed in nonselective additions.165,166 The mercury(II)-
catalyzed addition of HCl and HBr to propyne takes place with anti stereose-
lectivity.163 Catalytic anti-Markovnikov hydrobromination of terminal alkynes
with high chemo- and stereoselectivity was also accomplished by Lalic and
coworkers with the use of (IPr)CuCl (IPr = 17a), Ph2SiH2, and (BrCl2C)2 in the
presence of ortho-tert-butyl potassium phenoxide.167 The latter serves as the
turnover reagent. The key step is a highly anti-Markovnikov and syn-selective
hydrocupration followed by electrophilic bromination (Scheme 6.5). Gold
bifluoride complexes [{Au(17b)(NEt3)}(HF2)] and [{Au(17c)(NEt3)}(HF2)]
are efficient catalysts in the hydrofluorination of unsymmetrical and
(IPr)Cu−Cl
R
(IPr)Cu−H
Ph2SiH2
(IPr)Cu
R
(BrCl2C)2
Br
R
K 2-(tBu)phenoxide
toluene, 25 °C
Scheme .
 Hydrocarbon Chemistry
symmetrical alkynes, respectively, to provide fluorinated styrene and stil-
bene derivatives (90–99% yield, 3 equiv Et3N∙3 HF, 1.5 equiv NH4BF4, rt,
5 days or 24 h).168
R
R
.. 17a R = iPr, R' = H
17b R = Ph2CH, R' = Me
17c R = (pTol)2CH, R' = Me
R R
R' R'
Dialkyl- and alkylarylacetylenes may react in a stereoselective manner yielding
anti and syn products, respectively.36,165,166,169 Hex-3-yne, for instance, gives
mainly trans-3-chlorohex-3-ene in hydrochlorination through an anti AdE3
transition state (18). In contrast, formation of (E)-1-phenyl-1-chloropropene
19, the syn product in hydrochlorination of 1-phenylpropyne in AcOH
[Eq. (6.23)], involves ion-pair intermediate 22.165 The two mechanisms com-
pete, and reaction conditions can affect selectivities. For example, stereoiso-
meric compound 20 is formed through the anti AdE3 transition state 23 in the
presence of a large amount of Me4NCl. Since the positive charge in this tran-
sition state is not stabilized by the phenyl group as in 22, an increased amount
of the regioisomeric 21 is also formed through transition state 24.
Ph Me
Cl
Ph Me
Cl
Ph
Me
Ph
Me
Cl
+ +
without Me4NCl 80% 12% 0.3%
with 1 M Me4NCl 30% 51% 10%
19 20 21
+ HCl
AcOH, 25 °C
(6.23)
C
Et
Cl
C
Et
HCl−
C
Ph
Cl
C
Me
HCl−
C
Ph
−
ClH
C
Me
Cl
C C
Me
H
Ph
+
Cl−
18 22 23 24
Surface-mediated addition of HCl, HBr, and HI to 1-phenylpropyne in the pres-
ence of silica or alumina yields initially the corresponding E-isomer as a result
of the syn addition.170 Rapid isomerization in excess reagents allows the forma-
tion of the thermodynamically more stable Z-isomers.
Mixtures of HCl and but-2-yne were reacted in the gas phase in a Pyrex IR
cell between 23 and 63 ◦C to yield only (Z)-2-chlorobut-2-ene.171 The pro-
cess is suggested to be initiated and the rate determined by surface-assisted
proton–alkyne interaction. Donation of the proton occurs from within a mul-
tilayer found on the wall, that is, from an HCl molecule not directly attached to
the wall.
Hydrogen halides may add to acetylenes in a similar way to afford alkenyl
halides.172 The use of silica and alumina, in this case, provides a simple means
for facilitating addition of hydrogen halides to alkynes that does not occur read-
ily in solution. 1-Phenylpropyne yields the corresponding syn addition product
6 Addition Reactions 
25, which isomerizes on extended treatment [Eq. (6.24)]. Addition of HBr or HI
to alkylacetylenes, such as oct-4-yne, in turn, affords primarily the anti addition
products. The change in mechanism may be due to the difficulty in forming an
alkyl cation lacking stabilization by the Ph substituent thereby requiring simul-
taneous nucleophilic trapping from the opposite side of the alkyne by an HX
molecule (AdE3-type addition).
(COCl)2, Al2O3
CH2Cl2, rt
Ph
Cl
Me Ph
Cl Me
+
0.3 h 85% 14%
3 h 3% 96%
25
Ph Me
(6.24)
Markovnikov addition products can be synthesized through highly-selective
hydroiodination by combining I2 with Ph2P(O)H or (PhO)2P(O)H and
Ph2P(O)OH.173 A carbon nanocomposite doped with nitrogen via treatment
with ammonia derived from silicon carbide proved to be an active and selec-
tive catalyst in transforming acetylene to vinyl chloride (80% conversion, 98%
selectivity, 200 ◦C).174 Carbon atoms bonded to pyrrolic nitrogen were shown
to be the active sites.
6.2.2 Hypohalous Acids and Hypohalites
Hypohalous acids either preformed or prepared in situ readily add to carbon–
carbon multiple bonds.175–177 The addition is an electrophilic reaction with the
positive halogen attaching itself predominantly to the less substituted carbon.
The Markovnikov rule, therefore, is followed in most cases. The addition of the
elements of hypohalous acids may be carried out by the use of reagents serving
as positive halogen sources in the presence of water. Most of the data published
concern additions to monoolefins, and very little is known about the transfor-
mations of dienes and alkynes. The addition of hypochlorous acid to alkenes
was an important industrial reaction to manufacture chlorohydrins (see Sec-
tion 6.2.4), which were then transformed to oxiranes. The so-called chloro-
hydrination process once accounted for about 50% of the U.S. production of
oxiranes has largely been replaced by direct epoxidation processes.
Limited data are available on hypofluorous acid, which is a very reactive and
an explosive reagent.178 Exceptionally among hypohalous acids, it is polarized
in the sense HOδ+–Fδ−. It converts alkenes into fluoroalkanols with regioselec-
tivities opposite to other hypohalous acids [Eq. (6.25)]. The large amount of HF
present may affect the actual mechanism of addition.
Me
OH
F
Me
HOF
CCl4, −50 °C
90%
(6.25)
 Hydrocarbon Chemistry
Hypochlorous acid and hypobromous acid react with acyclic alkenes to give
Markovnikov products. In striking contrast, exclusive anti-Markovnikov ori-
entation was observed in the transformation of methylenecycloalkanes with
HOBr, and mixtures of chlorohydrins were formed with HOCl179 [Eq. (6.26)].
This was attributed to the fact that the open tertiary carbocation leading to
Markovnikov products are unfavorable in these ring systems. A convenient syn-
thesis of chlorohydrins is based on the use of Chloramine T (TosNClNa) as the
positive chlorine source in water–acetone.180 It adds to a variety of alkenes to
form Markovnikov and anti-Markovnikov products in a ratio of 4:1.
(CH2)n C=CH2
HOX
H2O, below 15 °C
+
n = 3−6 X = Cl 35−67% 32−64% 64−92% yield
X = Br 100% 67−87% yield
(CH2)n
CH2OX
C
OH
CH2OH
C
X
(CH2)n
(6.26)
Since the reaction of I2+H2O with alkenes is an equilibrium process, the
use of oxidizing agents allows one to shift the equilibrium by oxidizing the
I− formed.181,182 Substituted cyclohexenes can be converted to iodohydrins
in regioselective and stereoselective manner with I2 and pyridinium dichro-
mate.182 High yields of iodohydrins may be achieved by reacting alkenes with
iodine in the presence of moist tetramethylene sulfone—CHCl3.183
Alkyl and acyl hypohalites, when adding to carbon–carbon double bond,
afford halohydrin ethers and esters, respectively.184 Regioselective and syn
stereoselective addition of CF3OF, CF3CF2OF, and CF3COOF to stilbenes was
reported.185–187 The stereochemistry was explained to originate from the for-
mation and immediate collapse of the tight ion pair 26, which might exist in
equilibrium with phenonium ion 27 [Eq. (6.27)]; RF stands for perfluoroalkyl
groups].
Ph CH CH
F
Ph
+
−
ORF
F
H H
Ph
+
26 27
−ORF
(6.27)
Other alkyl hypohalites usually add to carbon–carbon multiple bonds in a free-
radical process.188–191 Ionic additions may be promoted by oxygen, BF3, or
B(OMe)3.189–193 While the BF3-catalyzed reaction of alkyl hypochlorites and
hypobromites gives mainly halofluorides,192 haloethers are formed in good
yields but nonstereoselectively under other ionic conditions.189–193 In contrast,
tert-BuOI reacts with alkenes in the presence of a catalytic amount of BF3 to
produce 2-iodoethers.194 Since the addition is stereoselective, this suggests the
participation of a symmetric iodonium ion intermediate without the involve-
ment of carbocationic intermediates.
6 Addition Reactions 
1,2-Halohydrin derivatives may also be formed when the cationic interme-
diates in any electrophilic halogenations are intercepted by appropriate oxygen
nucleophiles.177 In alcohol and carboxylic acid solvents, halohydrin ethers and
esters, respectively, may be formed. Such solvent incorporated products often
observed in halogenations provide valuable mechanistic information.
Halogenation with elemental halides, however, requires appropriate adjust-
ment of reaction conditions to obtain satisfactory yields and selectivities.
Chemoselectivity—the probability of the attack of different nucleophiles
(Br− vs. MeOH) present—was shown to depend on charge distribution
on the two carbon atoms in the cyclic bromonium ion intermediate.195
A study of bromination of acyclic olefins in MeOH revealed that geminal
dialkyl-substituted and trisubstituted alkenes give the best selectivities of the
2-bromomethoxy product.196 Other positive halogen sources, such as tert-
BuOX,177 [I(pyridine)2][BF4],197,198 and N-bromosuccinimide,199 may afford
better selectivities.
6.2.3 Hydrogen Cyanide
Because of its low acidity, hydrogen cyanide seldom adds to nonactivated
multiple bonds. Catalytic processes, however, may be applied to achieve
such additions. Metal catalysts, mainly nickel and palladium complexes, and
[Co(CO)4]2 are used to catalyze the addition of HCN to alkenes known as
hydrocyanation.200–206 Most studies usually utilize nickel triaryl phosphites
with a Lewis acid promoter. The mechanism involves the insertion of the alkene
into the Ni–H bond of a hydrido nickel cyanide complex to form a σ-alkylnickel
complex.205–208 The addition of DCN to deuterium-labeled compound 28
was shown to take place with dominant (>90%) syn addition207 (Scheme 6.6).
σ-Nickel complex 29 is known to be formed in a syn process. The overall
syn addition requires reductive elimination to occur with the retention of
configuration.
H D
tBu H
CN
D
H
tBu
D
H
Ni[P(OPh)3]2
D
H
tBu
D
H
CN
−Ni[P(OPh)3]2
Ni[P(OPh)3]4
ZnCl2, P(OPh)3
MeCN, 60 °C
C
tBu
H
C
D H
Ni
P(OPh)3
P(OPh)3
D
CN
+ DCN
28
29
Scheme .
 Hydrocarbon Chemistry
Hydrocyanation of alkenes usually gives anti-Markovnikov products. Inter-
estingly, however, addition of HCN to styrene yields mostly the branched
(Markovnikov) adduct. This was suggested to result from stabilization of the
branched alkylnickel cyanide intermediate by interaction of nickel with the
aromatic ring.208 Similar branched products could be synthesized with high
enantioselectivity using [Ni(cod)2] and phosphine–phosphite ligand 30 in the
hydrocyanation of vinylarenes with TMS–CN (84–92% ee, THF, rt, 2 h).209
iPr
O
PPh2
O
P
O
O
O
Ar
Ar
Ar Ar
Ar = 3,5-Me2C6H3
30
Hydrocyanation of dienes, a process of industrial importance (see Sec-
tion 6.2.4), yields 1,4-addition products when conjugated dienes are reacted.
The addition involves η3-allyl intermediates (31) [Eq. (6.28)]. The stereochem-
istry of hydrocyanation of cyclohexa-1,3-diene was shown to occur with syn
stereoselectivity, indicating that cis migration of the cyanide anion follows the
formation of the (π-allyl)nickel complex.210
CN
D
NC D
D
Ni[P(OPh)3]4
P(OPh)3, MeCN, 60 °C
+ DCN
Ni[P(OPh)3]2
CN
+
31
1 : 1
(6.28)
Nonconjugated dienes (penta-1,4-diene, hexa-1,5-diene) are transformed
mainly to products originating from conjugated dienes formed by isomeriza-
tion.211 In contrast, octa-1,7-diene in which the double bonds are separated by
four methylene groups preventing isomerization to conjugated dienes, yields
mainly isomeric mononitriles.
HCN adds more readily to alkynes than to alkenes.212 The addition of HCN
to acetylene catalyzed by Cu+ ions was once a major industrial process to man-
ufacture acrylonitrile carried out in the presence of copper(I) chloride, NH4Cl,
and HCl213 (see Section 6.2.4). Zerovalent Ni and Pd complexes are effec-
tive catalysts in hydrocyanation of alkynes as well.201 Diphenylacetylene gives
excellent yields in producing the syn addition product214 [Eq. (6.29)]. Much
lower yields are achieved when terminal alkynes react with HCN. Terminal
nitriles formed due to mainly steric factors are the main products. Regio- and
6 Addition Reactions 
stereoselectivities similar to those in hydrocyanation of alkenes indicate a very
similar mechanism.
Ni[P(OPh)3]4
P(OPh)3
benzene, 120 °C 93%
toluene, ZnCl2, 60 °C 82%
+ HCN
H CN
Ph Ph
Ph Ph
(6.29)
6.2.4 Practical Applications
Ethyl Chloride Hydrochlorination of ethylene with HCl is carried out in either
the vapor or the liquid phase, in the presence of a catalyst.215–217 Ethyl chloride
or 1,2-dichloroethane containing less than 1% AlCl3 is the reaction medium in
the liquid-phase process operating under mild conditions (30–90 ◦C, 3–5 atm).
In new plants, supported AlCl3 or ZnCl2 is used in the vapor phase. Equimo-
lar amounts of the dry reagents are reacted in a fluid- or fixed-bed reactor at
elevated temperature and pressure (250–400 ◦C, 5–15 atm). Both processes
provide ethyl chloride with high (98–99%) selectivity.
A highly economical production of ethyl chloride combines radical ethane
chlorination and ethylene hydrochlorination.218,219 Called the Shell integrated
process, it uses the hydrogen chloride produced in the first reaction to carry out
the second addition step [Eq. (6.30)]. Ethyl chloride was used in the manufac-
ture of the antiknock agent tetraethyllead, which is, however, phased out.
CH3CH3 + Cl2 CH3CH2Cl + HCl CH3CH2Cl
CH2=CH2
(6.30)
Hydrochlorination of Buta-,-diene A historic process for the synthesis
of adiponitrile was the transformation of buta-1,3-diene through 1,4-
dichlorobutene.220 Addition of HCl was carried out in the vapor phase (125–
230 ◦C) in an excess of buta-1,3-diene. A mixture of isomeric dichlorobutenes
(3,4-dichlorobut-1-ene, cis- and trans-1,4-dichlorobut-2-ene) was formed.
They underwent further transformations to form the dicyanides and then,
after hydrogenation, to give adiponitrile.
Vinyl Chloride Vinyl chloride is an important monomer in the manufacture of
polyvinyl chloride and vinyl polymers. Two basic transformations are in com-
mercial use.221–223 The catalytic hydrochlorination of acetylene, once an impor-
tant industrial route is now of limited use. Because of the high-energy require-
ments of acetylene production, this process has been largely replaced by the
ethylene chlorination–oxychlorination reaction (see Section 6.3.4).
The catalytic hydrochlorination of acetylene221–223 demands high-quality
reactants. Acetylene must be free of catalyst poisons (S, P, As), and HCl must
not contain chlorine. Since water reacts with the product vinyl chloride to give
 Hydrocarbon Chemistry
acetaldehyde and HCl, the reactants must be dry. In the more widely used
vapor-phase synthesis, the premixed reactants with a slight excess of HCl are
fed into a multitube fixed-bed reactor kept at about 200 ◦C. The catalyst is
almost invariably the superior mercury(II) chloride supported on active car-
bon. Certain additives (Ce, Th, and Cu chlorides) are used to suppress the loss
of the volatile HgCl2. High conversion (near 100%) and high selectivity (98%)
are achieved. The addition of a second molecule of HCl to vinyl chloride may
produce 1,1-dichloroethane, the only significant by-product.
Ethylene Chlorohydrin Two industrial processes were used in the synthesis of
ethylene chlorohydrin,215,224 which, in turn, was transformed to ethylene oxide.
Since the direct oxidation of ethylene to ethylene oxide is more economical,
these technologies are being abandoned.
Ethylene was reacted with chlorine water, or with a mixture of hydrated lime
and chlorine. In the latter case Ca(OCl)2 formed decomposes to yield HOCl.
The aqueous opening of the intermediate chloronium ion leads to the formation
of the product. Ethylene chlorohydrin was subsequently cyclized to ethylene
oxide by addition of calcium hydroxide.
Propylene Chlorohydrin Propylene chlorohydrin is synthesized with the aim of
producing propylene oxide. Although the latter is manufactured commercially
mainly by the direct oxidation of propylene, the chlorohydrination process is
still in limited use.
In an older version of the synthesis, propylene and chlorine react in an
aqueous solution to form propylene chlorohydrin.225–227 The slightly exother-
mic reaction maintains the 30–40 ◦C reaction temperature to yield isomeric
propylene chlorohydrins (1-chloropropan-2-ol/2-chloropropan-1-ol = 9:1).
The main by-product is 1,2-dichloropropane formed in amounts up to 10%.
The product propylene chlorohydrin then undergoes saponification to propy-
lene oxide with calcium hydroxide or sodium hydroxide.
Because of technological difficulties of this second step (large amount of
wastewater, concentration of the NaCl solution before electrolysis to produce
chlorine) a modified synthesis was developed by Lummus.228 Instead of HOCl,
tert-butyl hypochlorite generated by reacting tert-butyl alcohol and chlorine in
sodium hydroxide solution is used for the chlorohydrination step. An organic
phase containing the reagent reacts with propylene and water to produce
propylene chlorohydrin and tert-butyl alcohol. The latter is recycled to the first
stage to regenerate the reagent.
Adiponitrile Adiponitrile is an important intermediate in polyamide manufac-
ture. Hexamethylene-1,6-diamine formed by the hydrogenation of adiponitrile
is used in the production of nylon-6,6, one of the most important polyamides
in commercial production.
Among other nonaddition processes, adiponitrile may be manufactured
by the direct hydrocyanation of buta-1,3-diene (DuPont process).202,220,229 A
6 Addition Reactions 
CH2=CHCH=CH2
Ni0 HCN
CH3CH=CHCH2 CN
CH2=CHCHCH3
CN
32 33
CH2=CHCH2CH2 CN
HCN
CH2CH2CH2CH2
NC CN
Scheme .
homogeneous Ni(0) complex catalyzes both steps of addition of HCN to the
olefinic bonds (Scheme 6.7). The isomeric monocyanobutenes (32 and 33) are
first formed in a ratio of approximately 1:2. All subsequent steps, the isomeriza-
tion of 32 to the desired 1,4-addition product 33, a further isomerization step
(double-bond migration), and the addition of the second molecule of HCN, are
promoted by Lewis acids (ZnCl2 or SnCl2). The last step without Lewis acids is
much slower than the addition of the first molecule of HCN. Reaction temper-
atures below 150 ◦C are employed.
Acrylonitrile Acrylonitrile an important monomer in numerous polymer-
ization processes is mainly produced from propylene by ammoxidation (see
Section 9.5.3). In the traditional process, the major industrial route in the 1950s
and 1960s, an aqueous solution of copper(I) chloride, NH4Cl and HCl was
reacted with acetylene and hydrogen cyanide213,230 [Eq. (6.31)]. Coordination
of the metal ion activates the carbon–carbon triple bond toward nucleophilic
attack to yield σ-vinyl complex 34, which is a characteristic pathway of
metal-catalyzed additions to the acetylenic bond. Protolysis of 34 gives the end
product.
CH
HC
CuCl, NH4Cl, HCl
H2O, 80−90 °C
1−3 atm
+ HCN CH
HC C
Cu
H
C
CN
H
Cu+
CN−
H+
CH2=CH C N
34
(6.31)
6 Addition Reactions 
References
 M. Liler, Reaction Mechanisms in Sulphuric Acid and Other Strong Acid
Solutions, Academic Press, London, 1971, Chapter 5, p. 167.
 F. Asinger, Mono-Olefins, Chemistry and Technology, Pergamon Press,
Oxford, 1968, Chapter 7, p. 628.
 G.H. Schmid, D.G. Garratt, in Supplement A: The Chemistry of
Double-Bonded Functional Groups, S. Patai, ed., The Chemistry of Functional
Groups, John Wiley & Sons, London, 1977, Chapter 9, p. 725.
 Hydrocarbon Chemistry
 V.J. Nowlan, T.T. Tidwell, Acc. Chem. Res., 10, 252 (1977).
 F.A. Long, M.A. Paul, Chem. Rev., 57, 942 (1957).
 Y. Chiang, A.J. Kresge, J. Am. Chem. Soc., 107, 6363 (1985).
 Y. Inoue, T. Ueoka, T. Kuroda, T. Hakushi, J. Chem. Soc., Perkin Trans. 2, 983
(1983).
 M. Misono, N. Nojiri, Appl. Catal., 64, 1 (1990).
 J. Meuldijk, G.E.H. Joosten, E.J. Stamhuis, J. Mol. Catal., 37, 75 (1986).
 J. Tejero, F. Cunill, M. Iborra, J. Mol. Catal., 42, 257 (1987).
 S. Randriamahefa, R. Gallo, G. Raoult, P. Mulard, J. Mol. Catal., 49, 85
(1988).
 F. Fajula, R. Ibarra, F. Figueras, C. Gueguen, J. Catal., 89, 60 (1984).
 M. Iwamoto, M. Tajima, S. Kagawa, J. Chem. Soc., Chem. Commun., 228
(1985).
 K. Eguchi, T. Tokiai, H. Arai, Appl. Catal., 34, 275 (1987).
 M. Balogh, P. Laszlo, Organic Chemistry Using Clays, Springer, Berlin, 1993,
Chapter 2, p. 37.
 F.J. Waller, ACS Symp. Ser., 308, 42 (1986).
 G.A. Olah, Belg. Patent 889,943 (1982).
 W.R. Cares, U.S. Patent 4,065,512 (1977).
 J. McEwen, K. Yates, J. Am. Chem. Soc., 109, 5800 (1987).
 J.A. Marshall, Acc. Chem. Res., 2, 33 (1969).
 G.J. Kavarnos, N.J. Turro, Chem. Rev., 86, 401 (1986).
 R.A. Neunteufel, D.R. Arnold, J. Am. Chem. Soc., 95, 4080 (1973).
 Y. Shigemitsu, D.R. Arnold, J. Chem. Soc., Chem. Commun., 407 (1975).
 Y. Inoue, T. Okano, N. Yamasaki, A. Tai, J. Chem. Soc., Chem. Commun., 718
(1993).
 K. Mizuno, I. Nakanishi, N. Ichinose, Y. Otsuji, Chem. Lett., 1095 (1989).
 J.M. Adams, J.A. Ballantine, S.H. Graham, R.J. Laub, J.H. Purnell, P.I. Reid,
W.Y.M. Shaman, J.M. Thomas, J. Catal., 58, 238 (1979).
 C.H. Collins, G.S. Hammond, J. Org. Chem., 25, 911 (1960).
 J.K. Stille, R.D. Hughes, J. Org. Chem., 36, 340 (1971).
 T.L. Jacobs, in The Chemistry of the Allenes, Vol. 2: Reactions, S.R. Landor, ed.
Academic Press, London, 1982, Chapter 5.4, p. 417.
 A.V. Fedorova, A.A. Petrov, J. Gen. Chem. USSR (Engl. Transl.), 32, 1740
(1962).
 J.L. Jensen, V. Uaprasert, J. Org. Chem., 41, 649 (1976).
 W.K. Chwang, P. Knittel, K.M. Koshy, T.T. Tidwell, J. Am. Chem. Soc., 99,
3395 (1977).
 G. Dong, P. Teo, Z.K. Wickens, R.H. Grubbs, Science, 333, 1609 (2011).
 B.L. Conley, M.K. Pennington-Boggio, E. Boz, T.J. Williams, Chem. Rev., 110,
2294 (2010).
 K. Takahashi, M. Yamashita, K. Nozaki, J. Am. Chem. Soc., 134, 18746 (2012).
 Y. Yang, J. Guo, H. Ng, Z. Chen, P. Teo, Chem. Commun., 50, 2608 (2014).
6 Addition Reactions 
 G.H. Schmid, in The Chemistry of the Carbon-Carbon Triple Bond, S. Patai,
ed., John Wiley & Sons, Chichester, 1978, Chapter 8, p. 275.
 G.A. Olah, D. Meidar, Synthesis, 671 (1978).
 I.K. Meier, J.A. Marsella, J. Mol. Catal., 78, 31 (1993).
 Y. Fukuda, K. Utimoto, J. Org. Chem., 56, 3729 (1991).
 M.M. Taqui Khan, S.B. Halligudi, S. Shukla, J. Mol. Catal., 58, 299 (1990).
 (a) W. Hiscox, P.W. Jennings, Organometallics, 9, 1997 (1990). (b) J.W.
Hartman, W.C. Hiscox, P.W. Jennings, J. Org. Chem., 58, 7613 (1993).
 N.X. Hu, Y. Aso, T. Otsubo, F. Ogura, Tetrahedron Lett., 27, 6099 (1986).
 T. Tsuchimoto, T. Joya, E. Shirakawa, Y. Kawakami, Synlett, 1777 (2000).
 Z. Nairoukh, D. Avnir, J. Blum, ChemSusChem, 6, 430 (2013).
 S. Liang, G.B. Hammond, B. Xu, Chem. Commun., 51, 903 (2015).
 Y. Chiang, A.J. Kresge, M. Capponi, J. Wirz, Helv. Chim. Acta, 69, 1331 (1986).
 X. Liu, L. Liu, Z. Wang, X. Fu, Chem. Commun., 51, 11896 (2015).
 B.C. Ranu, A. Sarkar, M. Saha, R. Chakraborty, Tetrahedron, 50, 6579 (1994).
 M. Setty-Fichman, Y. Sasson, J. Blum, J. Mol. Catal., A: Chem., 126, 27 (1997).
 T. Suzuki, M. Tokunaga, Y. Wakatsuki, Org. Lett., 3, 735 (2001).
 L. Li, M. Zeng, S.B. Herzon, Angew. Chem., Int. Ed., 53, 7892 (2014).
 M. Zeng, L. Li, S.B. Herzon, J. Am. Chem. Soc., 136, 7058 (2014).
 L. Li, S.B. Herzon, J. Am. Chem. Soc., 134, 17376 (2012).
 J.A. Goodwin, A. Aponick, Chem. Commun., 51, 8730 (2015).
 (a) F. Li, N. Wang, L. Lu, G. Zhu, J. Org. Chem., 80, 3538 (2015). (b) A.K. Das,
S. Park, S. Muthaiah, S.H. Hong, Synlett, 26, 2517 (2015).
 S. Liang, J. Jasinski, G.B. Hammond, B. Xu, Org. Lett., 17, 162 (2015).
 Y. Xu, X. Hu, S. Zhang, X. Xi, Y. Wu, ChemCatChem, 8, 262 (2016).
 Y. Xu, X. Hu, J. Shao, G. Yang, Y. Wu, Z. Zhang, Green Chem., 17, 532 (2015).
 E. Mizushima, K. Sato, T. Hayashi, M. Tanaka, Angew. Chem., Int. Ed., 41,
4563 (2002).
 N. Marion, R.S. Ramón, S.P. Nolan, J. Am. Chem. Soc., 131, 448 (2009).
 M. Gatto, P. Belanzoni, L. Belpassi, L. Biasiolo, A. Del Zotto, F. Tarantelli,
D. Zuccaccia, ACS Catal., 6, 7363 (2016).
 G. Velegraki, M. Stratakis, J. Org. Chem., 78, 8880 (2013).
 W.J. Tapp, Ind. Eng. Chem., 40, 1619 (1948); 42, 1698 (1950); 44, 2020 (1952).
 H.-J. Arpe, Industrial Organic Chemistry, 5th ed., Wiley-VCH, Weinheim,
2010, Chapter 8, p. 198.
 J.C. Fielding, in Propylene and Its Industrial Derivatives, E.G. Hancock, ed.,
John Wiley & Sons, Inc., New York, 1973, Chapter 6, p. 214.
 P.D. Sherman, Jr., P.R. Kavasmaneck, in Kirk-Othmer Encyclopedia of
Chemical Technology, 3rd ed., Vol. 9, M. Grayson, D. Eckroth, eds.
Wiley-Interscience, New York, 1980, p. 338.
 A.E. Sommer, R. Bücker, in Encyclopedia of Chemical Processing and Design,
Vol. 19, J.J. McKetta, W.A. Cunningham, eds. Marcel Dekker, New York,
1983, p. 445.
 Hydrocarbon Chemistry
 M.R. Schoenberg, J.W. Blieszner, C.G. Papadopolulos, in Kirk-Othmer
Encyclopedia of Chemical Technology, 3rd ed., Vol. 19, M. Grayson,
D. Eckroth, eds. Wiley-Interscience, New York, 1982, p. 241.
 Hydrocarbon Process., 56(11), 176 (1977).
 W. Neier, J. Woellner, Hydrocarbon Process., 51(11), 113 (1972); Chemtech, 3,
95 (1973).
 Hydrocarbon Process., 50(11), 172 (1971).
 Y. Onoue, Y. Mizutani, S. Akiyama, Y. Izumi, Chemtech, 8, 432 (1978).
 Petrol. Refiner, 38(11), 272 (1959).
 Hydrocarbon Process Petrol. Refiner, 42(11), 194 (1963).
 C.E. Loeffler, L. Stautzenberger, J.D. Unruh, in Encyclopedia of Chemical
Processing and Design, Vol. 5, J.J. McKetta, W.A. Cunningham, eds., Marcel
Dekker, New York, 1977, p. 358.
 M. Prezelj, W. Koog, M. Dettmer, Hydrocarbon Proc., Int. Ed., 67(11), 75
(1988).
 Hydrocarbon Process., 52(11), 141 (1973).
 G. Yepsen, T. Witoshkin, Oil Gas J., 89(14), 68 (1991).
 G. Parkinson, Chem Eng (N.Y.), 99(4), 35 (1992).
 V.E. Pierce, A.K. Logwinuk, Hydrocarbon Process., Int. Ed., 64(9), 75 (1985).
 M. Prezelj, Hydrocarbon Process., Int. Ed., 66(9), 68 (1987).
 W.J. Piel, R.X. Thomas, Hydrocarbon Process., Int. Ed., 69(7), 68 (1990).
 R.W. Reynolds, J.S. Smith, I. Steinmetz, Oil Gas J., 73(24), 50 (1975).
 R. Csikos, I. Pallay, J. Laky, E.D. Radcsenko, B.A. Englin, J.A. Robert,
Hydrocarbon Process., 55(7), 121 (1976).
 G. Pecci, T. Floris, Hydrocarbon Process., 56(12), 98 (1977).
 L.S. Bitar, E.A. Hazbun, W.J. Piel, in Encyclopedia of Chemical Processing and
Design, Vol. 30, J.J. McKetta, W.A. Cunningham, eds., Marcel Dekker, New
York, 1989, p. 82.
 H.-J. Arpe, Industrial Organic Chemistry, 5th ed., Wiley-VCH, Weinheim,
2010, Chapter 3, p. 71.
 O.C. Abraham, G.F. Prescott, Hydrocarbon Process., Int. Ed., 71(2), 51 (1992).
 G.R. Muddarris, M.J. Pettman, Hydrocarbon Process., Int. Ed., 59(10), 91
(1980).
 L.A. Smith, M.N. Huddleston, Hydrocarbon Process., Int. Ed., 61(3), 121
(1982).
 L.S. Bitar, E.A. Hazbun, W.J. Piel, Hydrocarbon Process., Int. Ed., 63(10), 63
(1984).
 J.D. Chase, B.B. Galvez, Hydrocarbon Process., Int. Ed., 60(3), 89 (1981).
 J. Herwig, B. Schleppinghoff, S. Schulwitz, Hydrocarbon Process., Int. Ed.,
63(6), 86 (1984).
 H.L. Brockwell, P.R. Sarathy, R. Trotta, Hydrocarbon Process., Int. Ed., 70(9),
133 (1991).
 K. Rock, Hydrocarbon Process., Int. Ed., 71(5), 86 (1992).
6 Addition Reactions 
 E. Pescarollo, R. Trotta, P.R. Sarathy, Hydrocarbon Process., Int. Ed., 72(2), 53
(1993).
 P.M. Lange, F. Martinola, S. Oeckl, Hydrocarbon Process., Int. Ed., 64(12), 51
(1985).
 H.A. Wittcoff, Chemtech, 20, 48 (1990).
 V. Fattore, M.M. Mauri, G. Oriani, G. Paret, Hydrocarbon Process., Int. Ed.,
60(8), 101 (1981).
 A. Convers, B. Juguin, B. Trock, Hydrocarbon Process., Int. Ed., 60(3), 95
(1981).
 M. Miranda, Hydrocarbon Process., Int. Ed., 66(8), 51 (1987).
 A. Clementi, G. Oriani, F. Ancillotti, G. Pecci, Hydrocarbon Process., 58(12),
109 (1979).
 K.R. Masters, E.A. Prohaska, Hydrocarbon Process., Int. Ed., 67(8), 48
(1988).
 A. Aguiló, J.D. Penrod, in Encyclopedia of Chemical Processing and Design,
Vol. 1, J.J. McKetta, W.A. Cunningham, eds., Marcel Dekker, New York, 1976,
p. 114.
 M. Eckert, G. Fleischmann, R. Jira, H.M. Bolt, K. Golka, in Ullmann’s
Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012, Vol. 1,
191.
 H.-J. Arpe, Industrial Organic Chemistry, 5th ed., Wiley-VCH, Weinheim,
2010, Chapter 7, p. 168.
 Petrol. Refiner, 40(11), 207 (1961).
 D.F. Othmer, K. Kon, T. Igarashi, Ind. Eng. Chem., 48, 1258 (1956).
 W. Li, J. Zhang, in Comprehensive Organic Synthesis II, P. Knochel, G.A.
Molander, eds. Vol. 4: Addition to and Substitution at C–C π-bonds, S. Ma, J.
Zhang, eds., Elsevier, Amsterdam, 2014, Chapter 4.05, p. 342.
 C.M. Sharts, W.A. Sheppard, Org. React. (N.Y.), 21, 125 (1974).
 R.C. Larock, W.W. Leong, in Comprehensive Organic Synthesis, B.M. Trost,
I. Fleming, eds., Vol. 4: Additions to and Substitutions at C–C π-Bonds,
M.F. Semmelhack, ed., Pergamon Press, Oxford, 1991, Chapter 1.7, p. 269.
 N. Yoneda, Tetrahedron, 47, 5329 (1991).
 G.A. Olah, J.T. Welch, Y.D. Vankar, M. Nojima, I. Kerekes, J.A. Olah, J. Org.
Chem., 44, 3872 (1979).
 G.A. Olah, M. Nojima, I. Kerekes, Synthesis, 779 (1973).
 G.A. Olah, J.G. Shih, G.K.S. Prakash, in Fluorine: The First Hundred Years,
R.E. Banks, D.W.A. Sharp, J.C. Tatlow, eds., Elsevier, Lausanne, 1986,
Chapter 14, p. 377.
 N. Yoneda, T. Abe, T. Fukuhara, A. Suzuki, Chem. Lett., 1135 (1983).
 G.A. Olah, X.-Y. Li, Synlett, 267 (1990).
 G.A. Olah, X.-Y. Li, Q. Wang, G.K.S. Prakash, Synthesis, 693 (1993).
 I. Bucsi, B. Török, A.I. Marco, G. Rasul, G.K.S. Prakash, G.A. Olah, J. Am.
Chem. Soc., 124, 7728 (2002).
 Hydrocarbon Chemistry
 E. Emer, L. Pfeifer, J.M. Brown, V. Gouverneur, Angew. Chem., Int. Ed., 53,
4181 (2014).
 G.B. Sergeev, V.V. Smirnov, T.N. Rostovshchikova, Russ. Chem. Rev. (Engl.
Transl.), 52, 259 (1983).
 M.S. Kharasch, M. Kleiman, J. Am. Chem. Soc., 65, 11 (1943).
 Y. Pocker, K.D. Stevens, J. Am. Chem. Soc., 91, 4205 (1969).
 J.K. Stille, F.M. Sonnenberg, T.H. Kinstle, J. Am. Chem. Soc., 88, 4922 (1966).
 H.C. Brown, K.-T. Liu, J. Am. Chem. Soc., 97, 600 (1975).
 K.B. Becker, C.A. Grob, Synthesis, 789 (1973).
 J.S. Dewar, R.C. Fahey, Angew. Chem., Int. Ed. Engl., 3, 245 (1964).
 R.C. Fahey, C.A. McPherson, J. Am. Chem. Soc., 91, 3865 (1969).
 Y. Pocker, R.F. Buchholz, J. Am. Chem. Soc., 92, 4033 (1970).
 F.R. Mayo, J.J. Katz, J. Am. Chem. Soc., 69, 1339 (1947).
 F.R. Mayo, M.G. Savoy, J. Am. Chem. Soc., 69, 1348 (1947).
 R.C. Fahey, Top. Stereochem., 3, 237 (1968).
 G.S. Hammond, T.D. Nevitt, J. Am. Chem. Soc., 76, 4121 (1954).
 G.S. Hammond, C.H. Collins, J. Am. Chem. Soc., 82, 4323 (1960).
 D.J. Pasto, G.R. Meyer, B. Lepeska, J. Am. Chem. Soc., 96, 1858 (1974).
 R.C. Fahey, M.W. Monahan, J. Am. Chem. Soc., 92, 2816 (1970).
 R.C. Fahey, C.A. McPherson, J. Am. Chem. Soc., 93, 2445 (1971).
 F.R. Mayo, C. Walling, Chem. Rev., 27, 351 (1940).
 F.W. Stacey, J.F. Harris, Jr., Org. React. (N.Y.)., 13, 150 (1963).
 M.S. Kharasch, H. Engelmann, F.R. Mayo, J. Org. Chem., 2, 288 (1937).
 D.H. Hey, W.A. Waters, Chem. Rev., 21, 169 (1937).
 P.I. Abell, in Free Radicals, Vol. 2, J.K. Kochi, ed., Wiley-Interscience, New
York, 1973, Chapter 13, p. 63.
 D.J. Wilger, J.-M.M. Grandjean, T.R. Lammert, D.A. Nicewicz, Nat. Chem., 6,
720 (2014).
 G.B. Sergeev, N.F. Stepanov, I.A. Leenson, V.V. Smirnov, V.I. Pupyshev, L.A.
Tyurina, M.N. Mashyanov, Tetrahedron, 38, 2585 (1982).
 D. Landini, F. Rolla, J. Org. Chem., 45, 3527 (1980).
 P.J. Kropp, K.A. Daus, M.W. Tubergen, K.D. Kepler, V.P. Wilson, S.L. Craig,
M.M. Baillargeon, G.W. Breton, J. Am. Chem. Soc., 115, 3071 (1993).
 R.M. Pagni, G.W. Kabalka, R. Boothe, K. Gaetano, L.J. Stewart, R. Conaway,
C. Dial, D. Gray, S. Larson, T. Luidhardt, J. Org. Chem., 53, 4477 (1988).
 L. Delaude, P. Laszlo, Tetrahedron Lett., 32, 3705 (1991).
 L.J. Sæthre, T.D. Thomas, S. Svensson, J. Chem. Soc., Perkin Trans. 2, 749
(1997).
 P. Boudjouk, B.-K. Kim, B.-H. Han, Synth. Commun., 26, 3479 (1996).
 W. Smadja, Chem. Rev., 83, 263 (1983).
 T. Okuyama, K. Izawa, T. Fueno, J. Am. Chem. Soc., 95, 6749 (1973).
 R.Y. Tien, P.I. Abell, J. Org. Chem., 35, 956 (1970).
6 Addition Reactions 
 A.V. Fedorova, A.A. Petrov, J. Gen. Chem. USSR (Engl. Transl.), 31, 3273
(1961).
 L.M. Mascavage, H. Chi, S. La, D.R. Dalton, J. Org. Chem., 56, 595 (1991).
 L. Schmerling, J.P. West, J. Am. Chem. Soc., 74, 2885 (1952).
 G.S. Hammond, J. Warkentin, J. Am. Chem. Soc., 83, 2554 (1961).
 K. Fukui, Tetrahedron Lett., 2427 (1965).
 K. Izawa, T. Okuyama, T. Sakagami, T. Fueno, J. Am. Chem. Soc., 95, 6752
(1973).
 O.E. Okoromoba, J. Han, G.B. Hammond, B. Xu, J. Am. Chem. Soc., 136,
14381 (2014).
 S. Dérien, H. Klein, C. Bruneau, Angew. Chem., Int. Ed., 54, 12112 (2015).
 H. Hunziker, R. Meyer, Hs.H. Günthard, Helv. Chim. Acta., 49, 497 (1966).
 M.S. Kharasch, J.G. McNab, M.C. McNab, J. Am. Chem. Soc., 57, 2463 (1935).
 R.C. Fahey, M.T. Payne, D.-J. Lee, J. Org. Chem., 39, 1124 (1974).
 F. Marcuzzi, E. Melloni, J. Am. Chem. Soc., 98, 3295 (1976).
 M.R. Uehling, R.P. Rucker, G. Lalic, J. Am. Chem. Soc., 136, 8799 (2014).
 F. Nahra, S.R. Patrick, D. Bello, M. Brill, A. Obled, D.B. Cordes, D.M.Z.
Slawin, D. O’Hagan, S.P. Nolan, ChemCatChem, 7, 240 (2015).
 R.C. Fahey, D.J. Lee, J. Am. Chem. Soc., 88, 5555 (1966); 90, 2124 (1968).
 P.J. Kropp, K.A. Daus, S.D. Crawford, M.W. Tubergen, K.D. Kepler, S.L. Craig,
V.P. Wilson, J. Am. Chem. Soc., 112, 7433 (1990).
 L.M. Mascavage, F. Zhang, D.R. Dalton, J. Org. Chem., 59, 5048 (1994).
 P.J. Kropp, S.D. Crawford, J. Org. Chem., 59, 3102 (1994).
 S. Kawaguchi, H. Masuno, M. Sonoda, A. Nomoto, A. Ogawa, Tetrahedron,
68, 9818 (2012).
 X. Li, X. Pan, L. Yu, P. Ren, X. Wu, L. Sun, F. Jiao, X. Bao, Nat. Commun., 5,
3688 (2014).
 R. Stroh, in Methoden der Organischen Chemie (Houben-Weyl), Vol. 5/3:
Halogenverbindungen, Thieme, Stuttgart, 1962, p. 768.
 A. Roedig, in Methoden der Organischen Chemie (Houben-Weyl), Vol. 5/4:
Halogenverbindungen, Thieme, Stuttgart, 1960, p. 132, p. 540.
 L.S. Boguslavskaya, Russ. Chem. Rev. (Engl. Transl.), 41, 740 (1972).
 K.G. Migliorese, E.H. Appelman, M.N. Tsangaris, J. Org. Chem., 44, 1711
(1979).
 J.G. Traynham, O.S. Pascual, Tetrahedron, 7, 165 (1959).
 B. Damin, J. Garapon, B. Sillion, Synthesis, 362 (1981).
 J.W. Cornforth, D.T. Green, J. Chem. Soc. C, 846 (1970).
 R. Antonioletti, M. D’Auria, A. De Mico, G. Piancatelli, A. Scettri,
Tetrahedron, 39, 1765 (1983).
 R.C. Cambie, W.I. Noall, G.J. Potter, P.S. Rutledge, P.D. Woodgate, J. Chem.
Soc., Perkin Trans. 1, 226 (1977).
 M. Anbar, D. Ginsburg, Chem. Rev., 54, 925 (1954).
 Hydrocarbon Chemistry
 D.H.R. Barton, R.H. Hesse, G.P. Jackman, L. Ogunkoya, M.M. Pechet,
J. Chem. Soc., Perkin Trans. 1, 739 (1974).
 O. Lerman, S. Rozen, J. Org. Chem., 45, 4122 (1980).
 S. Rozen, O. Lerman, J. Org. Chem., 45, 672 (1980).
 C. Walling, L. Heaton, D.D. Tanner, J. Am. Chem. Soc., 87, 1715 (1965).
 V.L. Heasley, C.L. Frye, G.E. Heasley, K.A. Martin, D.A. Redfield, P.S. Wilday,
Tetrahedron Lett., 1573 (1970).
 G.E. Heasley, V.M. McCully, R.T. Wiegman, V.L. Heasley, R.A. Skidgel, J. Org.
Chem., 41, 644 (1976).
 G.E. Heasley, W.E. Emery, III, R. Hinton, D.F. Shellhamer, V.L. Heasley, S.L.
Rodgers, J. Org. Chem., 43, 361 (1978).
 V.L. Heasley, R.K. Gipe, J.L. Martin, H.C. Wiese, M.L. Oakes, D.F.
Shellhamer, G.E. Heasley, B.L. Robinson, J. Org. Chem., 48, 3195 (1983).
 G.E. Heasley, M. Duke, D. Hoyer, J. Hunnicutt, M. Lawrence, M.J. Smolik,
V.L. Heasley, D.F. Shellhamer, Tetrahedron Lett., 23, 1459 (1982).
 V.L. Heasley, B.R. Berry, S.L. Holmes, L.S. Holstein, III, K.A. Milhoan, A.M.
Sauerbrey, B.R. Teegarden, D.F. Shellhamer, G.E. Heasley, J. Org. Chem., 53,
198 (1988).
 J.-E. Dubois, J.R. Chrétien, J. Am. Chem. Soc., 100, 3506 (1978).
 J.R. Chrétien, J.-D. Coudert, M.-F. Ruasse, J. Org. Chem., 58, 1917 (1993).
 J. Barluenga, J.M. González, P.J. Campos, G. Asensio, Angew. Chem., Int. Ed.
Engl., 24, 319 (1985).
 J. Barluenga, J.M. González, P.J. Campos, G. Asensio, Tetrahedron Lett., 27,
1715 (1986).
 R.W. Nagorski, R.S. Brown, J. Am. Chem. Soc., 114, 7773 (1992).
 D.T. Mowry, Chem. Rev., 42, 189 (1948).
 (a) B.R. James, in Comprehensive Organometallic Chemistry, Vol. 8,
G. Wilkinson, F.G.A. Stone, E.W. Abel, eds., Pergamon Press, Oxford, 1982,
Chapter 51, p. 285. (b) A. Spencer, in Comprehensive Coordination
Chemistry, Vol. 6: Applications, G. Wilkinson, R.D. Gillard, J.A. McCleverty,
eds., Pergamon Press, Oxford, 1987, Chapter 61.2, p. 229. (c) L. Bini,
C. Müller, D. Vogt, ChemCatChem, 2, 590 (2010). (d) T.V. RajanBabu, Org.
React. (N.Y), 75, 1 (2011).
 C.A. Tolman, R.J. McKinney, W.C. Seidel, J.D. Druliner, W.R. Stevens, Adv.
Catal., 33, 1 (1985).
 J.P. Collman, L.S. Hegedus, J.R. Norton, R.G. Finke, Principles and
Applications of Organotransition Metal Chemistry, University Science Books,
Mill Valley, 1987, Chapter 10, p. 523.
 R.J. McKinney, in Homogeneous Catalysis, G.W. Parshall, S.D. Ittel, eds.,
Wiley-Interscience, New York, 1993, Chapter 3, p. 42.
 B.W. Taylor, H.E. Swift, J. Catal., 26, 254 (1972).
 E.S. Brown, in Organic Syntheses via Metal Carbonyls, Vol. 2, I. Wender,
P. Pino, eds., Wiley-Interscience, New York, 1977, p. 655.
6 Addition Reactions 
 J.-E. Bäckvall, O.S. Andell, J. Chem. Soc., Chem. Commun., 1098 (1981).
 C.A. Tolman, W.C. Seidel, J.D. Druliner, P.J. Domaille, Organometallics, 3, 33
(1984).
 A. Falk, A.-L. Göderz, H.-G. Schmalz, Angew. Chem., Int. Ed., 52, 1576
(2013).
 J.-E. Bäckvall, O.S. Andell, J. Chem. Soc., Chem. Commun., 260 (1984).
 W. Keim, A. Behr, H.-O. Lühr, J. Weisser, J. Catal., 78, 209 (1982).
 K. Friedrich, K. Wallenfels, in The Chemistry of the Cyano Group, Z.
Rappoport, ed., Interscience, London, 1970, Chapter 2, p. 67.
 J.F. Brazdil, in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley
& Sons, 2010.
 W.R. Jackson, C.G. Lovel, J. Chem. Soc., Chem. Commun., 1231 (1982).
 F. Asinger, Mono-Olefins, Chemistry and Technology, Pergamon Press,
Oxford, 1968, Chapter 6, p. 506.
 R.G. Striling, in Encyclopedia of Chemical Processing and Design, Vol. 20, J.J.
McKetta, W.A. Cunningham, eds., Marcel Dekker, New York, 1984, p. 68.
 H.-J. Arpe, Industrial Organic Chemistry, 5th ed., VCH, Weinheim, 2010,
Chapter 8, p. 201.
 A.W. Fleer, A.J. Johnson, C.R. Nelson, Ind. Eng. Chem., 47, 982 (1955).
 Petrol. Refiner, 38(11), 245 (1959).
 V.D. Luedeke, in Encyclopedia of Chemical Processing and Design, Vol. 2,
J.J. McKetta, W.A. Cunningham, eds., Marcel Dekker, New York, 1977,
p. 146.
 J.S. Naworski, E.S. Velez, in Applied Industrial Catalysis, Vol. 1, B.E. Leach,
ed., Academic Press, New York, 1983, Chapter 9, p. 239.
 M.W. Newman, in Encycylopedia of Polymer Science and Engineering, 2nd
ed., Supplement Volume, J.I. Kroschwitz, ed., John Wiley & Sons, Inc., New
York, 1989, p. 822.
 H.-J. Arpe, Industrial Organic Chemistry, 5th ed., Wiley-VCH, Weinheim,
2010, Chapter 9, p. 221.
 C.E. Rowe, in Encyclopedia of Chemical Processing and Design, Vol. 8, J.J.
McKetta, W.A. Cunningham, eds. Marcel Dekker, New York, 1979, p. 160.
 A.C. Fyvie, Chem. Ind. (London), 384 (1964).
 A.J. Gait, in Propylene and its Industrial Derivatives, E.G. Hancock, ed. John
Wiley & Sons, Inc., New York, 1973, Chapter 7, p. 273.
 H.-J. Arpe, Industrial Organic Chemistry, 5th ed., Wiley-VCH, Weinheim,
2010, Chapter 11, p. 275.
 Hydrocarbon Process., 58(11), 239 (1979).
 G.W. Parshall, J. Mol. Catal., 4, 243 (1978).
 D.J. Hadley, in Propylene and Its Industrial Derivatives, E.G. Hancock, ed.,
John Wiley & Sons, Inc., New York, 1973, Chapter 11, p. 418.
 S.T. Purrington, B.S. Kagen, T.B. Patrick, Chem. Rev., 86, 997 (1986).
 S. Rozen, Acc. Chem. Res., 21, 307 (1988).
 Hydrocarbon Chemistry
 E. Block, A.L. Schwan, in Comprehensive Organic Synthesis, B.M. Trost, I.
Fleming, eds., Vol. 4: Additions to and Substitutions at C–C π-Bonds,
M.F. Semmelhack, ed., Pergamon Press, Oxford, 1991, Chapter 1.8, p. 329.
 R.F. Merritt, F.A. Johnson, J. Org. Chem., 31, 1859 (1966).
 F.R. Merritt, J. Am. Chem. Soc., 89, 609 (1967).
 S. Rozen, M. Brand, J. Org. Chem., 51, 3607 (1986).
 G.A. Olah, J.M. Bollinger, J. Am. Chem. Soc., 89, 4744 (1967); 90, 947 (1968).
 G.A. Olah, Y.K. Mo, Y. Halpern, J. Org. Chem., 37, 1169 (1972).
 G.A. Olah, D.A. Beal, P.W. Westerman, J. Am. Chem. Soc., 95, 3387 (1973).
 R. Filler, Isr. J. Chem., 17, 71 (1978).
 M. Zupan, in Supplement D: The Chemistry of Halides, Pseudo-Halides, and
Azides, S. Patai, Z. Rappoport, eds.,The Chemistry of Functional Groups, John
Wiley & Sons, Ltd., Chichester, 1983, Chapter 15, p. 657.
 J.A. Wilkinson, Chem. Rev., 92, 505 (1992).
 A. Gregorcic, M. Zupan, J. Org. Chem., 44, 4120 (1979).
 T.C. Shieh, E.D. Feit, C.L. Chernick, N.C. Yang, J. Org. Chem., 35, 4020
(1970).
 M. Zupan, A. Pollak, J. Org. Chem., 42, 1559 (1977).
 M.A. Tius, Tetrahedron, 51, 6605 (1995).
 S.A. Lermontov, S.I. Zavorin, I.V. Bakhtin, A.N. Pushin, N.S. Zefirov, P.J.
Stang, J. Fluorine Chem., 87, 75 (1998).
 S. Hara, J. Nakahigashi, K. Ishi-i, M. Sawaguchi, H. Sakai, T. Fukuhara,
N. Yoneda, Synlett, 495 (1998).
 T. Kitamura, K. Muta, J. Oyamada, J. Org. Chem., 80, 10431 (2015).
 K.A. V’yunov, A.I. Ginak, Russ. Chem. Rev. (Engl. Transl.), 50, 151 (1981).
 G.H. Schmid, in Supplement A2: The Chemistry of Double-Bonded Functional
Groups, S. Patai, ed.,The Chemistry of Functional Groups, John Wiley & Sons,
Ltd., Chichester, 1989, Chapter 11, p. 679.
 K. Yates, G.H. Schmid, T.W. Regulski, D.G. Garratt, H.-W. Leung,
R. McDonald, J. Am. Chem. Soc., 95, 160 (1973).
 Yu.A. Serguchev, V.P. Konyushenko, J. Org. Chem. USSR (Engl. Transl.), 11,
1339 (1975).
 M.L. Poutsma, J. Am. Chem. Soc., 87, 4285 (1965).
 G.B. Sergeev, Yu.A. Serguchev, V.V. Smirnov, Russ. Chem. Rev. (Engl. Transl.),
42, 697 (1973).
 G.A. Olah, Halonium Ions, Wiley-Interscience, New York, 1975, Chapter 7,
p. 98.
 K.W. Field, P. Kovacic, Synthesis, 135 (1969).
 J.W. Strand, P. Kovacic, Synth. Commun., 2, 129 (1972).
 S. Uemura, A. Onoe, M. Okano, Bull. Chem. Soc. Jpn., 47, 692 (1974).
 S. Uemura, A. Onoe, M. Okano, Bull. Chem. Soc. Jpn., 47, 3121 (1974).
 W.A. Nugent, Tetrahedron Lett., 3427 (1978).
 T. Koyano, Bull. Chem. Soc. Jpn., 43, 3501 (1970).
6 Addition Reactions 
 H.I. Bloemink, K. Hinds, A.C. Legon, J.C. Thorn, Chem. Commun., 1321
(1994).
 I.E. Markó, P.R. Richardson, M. Bailey, A.R. Maguire, N. Coughlan,
Tetrahedron Lett., 38, 2339 (1997).
 N.B. Barhate, A.S. Gajare, R.D. Wakharkar, A.V. Bedekar, Tetrahedron, 55,
11127 (1999).
 A.J. Cresswell, S.T.-C. Eey, S.E. Denmark, Nat. Chem., 7, 146 (2015).
 S. Fukuzumi, J.K. Kochi, Int. J. Chem. Kinet., 15, 249 (1983).
 J.E. Dubois, F. Garnier, Spectrochim. Acta, Part A, 23, 2279 (1967).
 G. Bellucci, R. Bianchini, R. Ambrosetti, J. Am. Chem. Soc., 107, 2464 (1985).
 R.S. Brown, R. Gedye, H. Slebocka-Tilk, J.M. Buschek, K.R. Kopecky, J. Am.
Chem. Soc., 106, 4515 (1984).
 G. Bellucci, C. Chiappe, F. Marioni, J. Am. Chem. Soc., 109, 515 (1987).
 R.S. Brown, H. Slebocka-Tilk, A.J. Bennet, G. Bellucci, R. Bianchini,
R. Ambrosetti, J. Am. Chem. Soc., 112, 6310 (1990).
 F. Garnier, R.H. Donnay, J.E. Dubois, J. Chem. Soc., Chem. Commun., 829
(1971).
 A. Modro, G.H. Schmid, K. Yates, J. Org. Chem., 44, 4221 (1979).
 I. Roberts, G.E. Kimball, J. Am. Chem. Soc., 59, 947 (1937).
 E. Bienvenue-Goëtz, J.-E. Dubois, Tetrahedron, 34, 2021 (1978).
 B. Galland, E.M. Evleth, M.-F. Ruasse, J. Chem. Soc., Chem. Commun., 898
(1990).
 T.P. Hamilton, H.F. Schaefer, III, J. Am. Chem. Soc., 112, 8260 (1990).
 S. Yamabe, T. Minato, Bull. Chem. Soc. Jpn., 66, 3339 (1993).
 G.A. Olah, A.M. White, J. Am. Chem. Soc., 91, 5801 (1969).
 G.A. Olah, T.R. Hockswender, Jr., J. Am. Chem. Soc., 96, 3574 (1974).
 G.A. Olah, P.W. Westerman, E.G. Melby, Y.K. Mo, J. Am. Chem. Soc., 96, 3565
(1974).
 M.-F. Ruasse, Acc. Chem. Res., 23, 87 (1990).
 F. Freeman, Chem. Rev., 75, 439 (1975).
 M. Eissen, D. Lenoir, Chem. Eur. J., 14, 9830 (2008).
 (a) A. Podgoršek, M. Zupan, J. Iskra, Angew. Chem., Int. Ed., 48, 8424 (2009).
(b) K. Yonehara, K. Kamata, K. Yamaguchi, N. Mizuno, Chem. Commun., 47,
1692 (2011).
 (a) M. Karki, J. Magolan, J. Org. Chem., 80, 3701 (2015). (b) S. Song, X. Li, X.
Sun, Y. Yuan, N. Jiao, Green Chem., 17, 3285 (2015).
 G.E. Heasley, J.M. Bundy, V.L. Heasley, S. Arnold, A. Gipe, D. McKee, R. Orr,
S.L. Rodgers, D.F. Shellhamer, J. Org. Chem., 43, 2793 (1978).
 W.C. Baird, Jr., J.H. Surridge, M. Buza, J. Org. Chem., 36, 3324 (1971).
 K. Smith, K.B. Fry, J. Chem. Soc., Chem. Commun., 187 (1992).
 R. Herges, Angew. Chem., Int. Ed. Engl., 34, 51 (1995).
 S.M. Islam, R.A. Poirier, J. Phys. Chem. A, 111, 13218 (2007); 112, 152 (2008).
 M.-F. Ruasse, Adv. Phys. Org. Chem., 28, 207 (1993).
 Hydrocarbon Chemistry
 L. Forlani, in The Chemistry of Functional Groups, Supplement A3: The
Chemistry of Double Bonded Functional Groups, S. Patai, ed., John Wiley &
Sons, London, 1997, Chapter 8, p. 367.
 G. Bellucci, C. Chiappe, R. Bianchini, D. Lenoir, R. Herges, J. Am. Chem. Soc.,
117, 12001 (1995).
 R. Bianchini, C. Chiappe, D. Lenoir, P. Lemmen, R. Herges, J. Grunenburg,
Angew. Chem., Int. Ed. Engl., 36, 1284 (1997).
 G. Bellucci, R. Bianchini, C. Chiappe, D. Lenoir, A. Attar, J. Am. Chem. Soc.,
117, 6243 (1995).
 H. Hopf, R. Hänel, P.G. Jones, P. Bubenitschek, Angew. Chem., Int. Ed. Engl.,
33, 1369 (1994).
 A. Itoh, Y. Masaki, Synlett, 1450 (1997).
 S. Yano, S. Hara, Synthesis, 47, 2839 (2015).
 M.L. Poutsma, J. Am. Chem. Soc., 85, 3511 (1963).
 M.L. Poutsma, J. Am. Chem. Soc., 87, 2172 (1965).
 R.M. Dessau, J. Am. Chem. Soc., 101, 1344 (1979).
 P.S. Skell, R.R. Pavlis, J. Am. Chem. Soc., 86, 2956 (1964).
 R.L. Ayres, C.J. Michejda, E.P. Rack, J. Am. Chem. Soc., 93, 1389 (1971).
 H.G. Peer, Recl. Trav. Chim. Pays-Bas, 81, 113 (1962).
 W.H. Mueller, P.E. Butler, K. Griesbaum, J. Org. Chem., 32, 2651 (1967).
 M.L. Poutsma, J. Org. Chem., 33, 4080 (1968).
 W.L. Waters, W.S. Linn, M.C. Caserio, J. Am. Chem. Soc., 90, 6741 (1968).
 M.C. Findlay, W.L. Waters, M.C. Caserio, J. Org. Chem., 36, 275 (1971).
 L.R. Byrd, M.C. Caserio, J. Am. Chem. Soc., 93, 5758 (1971).
 T. Okuyama, K. Ohashi, K. Izawa, T. Fueno, J. Org. Chem., 39, 2255 (1974).
 M.L. Poutsma, J. Org. Chem., 31, 4167 (1966).
 V.L. Heasley, G.E. Heasley, R.A. Loghry, M.R. McConnell, J. Org. Chem., 37,
2228 (1972).
 V.L. Heasley, G.E. Heasley, S.K. Taylor, C.L. Frye, J. Org. Chem., 35, 2967
(1970).
 G.E. Heasley, V.L. Heasley, S.L. Manatt, H.A. Day, R.V. Hodges, P.A. Kroon,
D.A. Redfield, T.L. Rold, D.E. Williamson, J. Org. Chem., 38, 4109 (1973).
 G.E. Heasley, D.C. Hayse, G.R. McClung, D.K. Strickland, V.L. Heasley, P.D.
Davis, D.M. Ingle, K.D. Rold, T.S. Ungermann, J. Org. Chem., 41, 334 (1976).
 U. Husstedt, H.J. Schäfer, Synthesis, 966 (1979).
 H.J. Franz, W. Höbold, R. Höhn, G. Müller-Hagen, R. Müller, W. Pritzkow,
H. Schmidt, J. Prakt. Chem., 312, 622 (1970).
 S. Uemura, S. Fukuzawa, A. Toshimitsu, M. Okano, H. Tezuka, S. Sawada,
J. Org. Chem., 48, 270 (1983).
 G. Melloni, G. Modena, U. Tonellato, Acc. Chem. Res., 14, 227 (1981).
 J.A. Pincock, K. Yates, Can. J. Chem., 48, 3332 (1970).
 J. Xiang, R. Yuan, R. Wang, N. Yi, L. Lu, H. Zou, W. He, J. Org. Chem., 79,
11378 (2014).
6 Addition Reactions 
 R. Bianchini, C. Chiappe, G. Lo Moro, D. Lenoir, P. Lemmen, N. Goldberg,
Chem. Eur. J., 5, 1570 (1999).
 R.A. Hollins, M.P.A. Campos, J. Org. Chem., 44, 3931 (1979).
 V.L. Heasley, D.F. Shellhamer, L.E. Heasley, D.B. Yaeger, G.E. Heasley, J. Org.
Chem., 45, 4649 (1980).
 C. Chiappe, D. Capraro, V. Conte, D. Pieraccini, Org. Lett., 3, 1061
(2001).
 R.W. McPherson, C.M. Starks, G.J. Fryar, Hydrocarbon Process., 58(3), 75
(1979).
 (a) J.A. Cowfer, M.B. Gorensek, in Kirk-Othmer Encyclopedia of Chemical
Technology, John Wiley & Sons, 2001. (b) A.C. Dimian, C.S. Bildea, Chemical
Process Design: Computer-Aided Case Studies, Wiley-VCH, Weinheim, 2008,
Chapter 7, p. 201.
 D.P. Keane, R.B. Stobaugh, P.L. Townsend, Hydrocarbon Process., 52(2), 99
(1973).
 L.F. Albright, Chem. Eng. (N.Y.), 74(7), 123 (1967); 74(8), 219 (1967).
 W.E. Wimer, R.E. Feathers, Hydrocarbon Process., 55(3), 81 (1976).
 P. Reich, Hydrocarbon Process., 55(3), 85 (1976).
 R.G. Markeloff, Hydrocarbon Process., Int. Ed., 63(11), 91 (1984).
 C.N. Kenney, Catal. Rev., 11, 197 (1975).
 J. Villadsen, H. Livbjerg, Catal. Rev., 17, 203 (1978).
 E. Cavaterra, Hydrocarbon Process., Int. Ed., 67(12), 63 (1988).
 E.W. Wong, C.P. Ambler, W.J. Baker, J.C. Parks, Jr., Hydrocarbon Process., Int.
Ed., 71(8), 129 (1992).
 Hydrocarbon Process., 54(11), 217 (1975).
 C.E. Hollis, Chem. Ind. (London), 1030 (1969).
 (a) H.N. Sun, J.P. Wristers, Kirk-Othmer Encyclopedia of Chemical
Technology, John Wiley & Sons, 2012, Vol. 4, p. 365. (b) M. Dahlmann,
J. Grub, E. Löser, in Ullmann’s Encyclopedia of Industrial Chemistry,
Wiley-VCH, Weinheim, 2013.
 C.A. Stewart, Jr., T. Takeshita, M.L. Coleman, in Encyclopedia of Polymer
Science and Engineering, 2nd ed., Vol. 3, J.I. Kroschwitz, ed.,
Wiley-Interscience, New York, 1985, p. 441.
 H.-J. Arpe, Industrial Organic Chemistry, 5th ed., Wiley-VCH, Weinheim,
2010, Chapter 10, p. 252.
 (a) A.L. Reznichenko, K.C. Hultzsch, Org. React., 88, 1 (2015). (b) V.I. Isaeva,
L.M. Kustov, Top. Catal., 59, 1196 (2016).
 Y. Takemoto, H. Miyabe, in Comprehensive Organometallic Chemistry III,
R.H. Crabtree, D.M.P. Mingos, eds., Vol. 10: Applications II: Transition Metal
Compounds in Organic Synthesis 1, I. Ojima, ed., Elsevier, Amsterdam, 2007,
Chapter 10.15, p. 695.
 Z. Li, D.D. Capretto, C. He, Modern Gold Catalyzed Synthesis, A.S. Hashmi,
F.D. Toste, eds., Wiley-VCH, Weinheim, 2012, Chapter 12, p. 297, p. 309.
 Hydrocarbon Chemistry
 (a) F. Alonso, I.P. Beletskaya, M. Yus, Chem. Rev., 104, 3079 (2004). (b) G.
Evano, A.-C. Gaumont, C. Alayrac, I.E. Wrona, J.R. Giguere, O. Delacroix,
A. Bayle, K. Jouvin, C. Theunissen, J. Gatignol, A.C. Silvanus, Tetrahedron,
70, 1529 (2014).
 M. Beller, J. Seayad, A. Tillack, H. Jiao, Angew. Chem., Int. Ed., 43, 3368
(2004).
 M.D. Greenhalgh, A.S. Jones, S.P. Thomas, ChemCatChem, 7, 190 (2015).
 (a) J.-J. Brunet, Gazz. Chim. Ital., 127, 111 (1997). (b) R. Taube, in Applied
Homogeneous Catalysis with Organometallic Complexes, B. Cornils, W.A.
Herrmann, eds., VCH, Weinheim, 1996, Chapter 2.7, p. 507. (c) D.M.
Roundhill, Catal. Today, 37, 155 (1997). (d) T.E. Müller, M. Beller, Chem.
Rev., 98, 675 (1998).
 (a) T.E. Müller, K.C. Hultzsch, M. Yus, F. Foubelo, M. Tada, Chem. Rev., 108,
3795 (2008). (b) J. Hannedouche, E. Schulz, Chem. Eur. J., 19, 4972 (2013). (c)
L. Huang, M. Arndt, K. Gooßen, H. Heydt, L.J. Gooßen, Chem. Rev., 115,
2596 (2015). (d) E. Bernoud, C. Lepori, M. Mellah, E. Schulz, J. Hannedouche,
Catal. Sci. Technol., 5, 2017 (2015).
 M.B. Gasc, A. Lattes, J.J. Perie, Tetrahedron, 39, 703 (1983).
 J.-J. Brunet, D. Neibecker, F. Niedercorn, J. Mol. Catal., 49, 235 (1989).
 D.M. Roundhill, Chem. Rev., 92, 1 (1992).
 H. Pines, W.M. Stalick, Base-Catalyzed Reactions of Hydrocarbons and
Related Compounds, Academic Press, New York, 1977, Chapter 10, p. 423.
 B.W. Howk, E.L. Little, S.L. Scott, G.M. Whitman, J. Am. Chem. Soc., 76, 1899
(1954).
 R.D. Closson, J.P. Napolitano, G.G. Ecke, A.J. Kolka, J. Org. Chem., 22, 646
(1957).
 G.P. Pez, J.E. Galle, Pure Appl. Chem., 57, 1917 (1985).
 H. Lehmkuhl, D. Reinehr, J. Organomet. Chem., 55, 215 (1973).
 R.J. Schlott, J.C. Falk, K.W. Narducy, J. Org. Chem., 37, 4243 (1972).
 P. Horrillo-Martı́nez, K.C. Hultzsch, A. Gil, V. Branchadell, Eur. J. Org. Chem.,
3311 (2007).
 M. Deeba, M.E. Ford, T.A. Johnson, J. Chem. Soc., Chem. Commun., 562
(1987).
 M. Deeba, M.E. Ford, T.A. Johnson, in Catalysis, 1987, Studies in Surface
Science and Catalysis, Vol. 38, J.W. Ward, ed., Elsevier, Amsterdam, 1988,
p. 221.
 M. Deeba, M.E. Ford, J. Org. Chem., 53, 4594 (1988).
 M. Tabata, N. Mizuno, M. Iwamoto, Chem. Lett., 1027 (1991).
 N. Mizuno, M. Tabata, T. Uematsu, M. Iwamoto, J. Catal., 146, 249 (1994).
 K.D. Hesp, M. Stradiotto, ChemCatChem, 2, 1192 (2010).
 A.L. Casalnuovo, J.C. Calabrese, D. Milstein, J. Am. Chem. Soc., 110, 6738
(1988).
 M.G. Clerici, F. Maspero, Synthesis, 305 (1980).
6 Addition Reactions 
 H. Schaffrath, W. Keim, J. Mol. Catal. A: Chem., 168, 9 (2001).
 R. Dorta, P. Egli, F. Zürcher, A. Togni, J. Am. Chem. Soc., 119, 10857 (1997).
 I. Nakamura, H. Itagaki, Y. Yamamoto, J. Org. Soc., 63, 6458 (1998).
 M. Kawatsura, J.F. Hartwig, J. Am. Chem. Soc., 122, 9546 (2000).
 Y. Yang, N.I. Wong, P. Teo, Eur. J. Org. Chem., 1207 (2015).
 T.M. Nguyen, N. Manohar, D.A. Nicewicz, Angew. Chem., Int. Ed., 53, 6198
(2014).
 M. Utsunomiya, R. Kuwano, M. Kawatsura, J.F. Hartwig, J. Am. Chem. Soc.,
125, 5608 (2003).
 M. Utsunomiya, J.F. Hartwig, J. Am. Chem. Soc., 126, 2702 (2004).
 J. Takaya, J.F. Hartwig, J. Am. Chem. Soc., 127, 5756 (2005).
 J.C. Timmerman, B.D. Robertson, R.A. Widenhoefer, Angew. Chem., Int. Ed.,
54, 2251 (2015).
 S. Germain, E. Schulz, J. Hannedouche, ChemCatChem, 6, 2065 (2014).
 C.S. Sevov, J. (Steve) Zhou, J.F. Hartwig, J. Am. Chem. Soc., 134, 11960
(2012).
 C.B. Huehls, A. Lin, J. Yang, Org. Lett., 16, 3620 (2014).
 Y. Miki, K. Hirano, T. Satoh, M. Miura, Angew. Chem., Int. Ed., 52, 10830
(2013).
 X. Giner, C. Nájera, Synlett, 321 (2009).
 L. Yang, L.-W. Xu, C.-G. Xia, Synthesis, 1969 (2009).
 J. Gui, C.-M. Pan, Y. Jin, T. Qin, J.C. Lo, B.J. Lee, S.H. Spergel, M.E.
Mertzman, W.J. Pitts, T.E. La Cruz, M.A. Schmidt, N. Darvatkar, S.R.
Natarajan, P.S. Baran, Science, 348, 886 (2015).
 S. Zhu, N. Niljianskul, S.L. Buchwald, J. Am. Chem. Soc., 135, 15746 (2013).
 S. Zhu, S.L. Buchwald, J. Am. Chem. Soc., 136, 15913 (2014).
 Y. Yang, S.-L. Shi, D. Niu, P. Liu, S.L. Buchwald, Science, 349, 62 (2015).
 (a) K.D. Hesp, Angew. Chem., Int. Ed., 53, 2034 (2014). (b) Z. Sorádová,
R. Šebesta, ChemCatChem, 8, 2581 (2016).
 A. Couce-Rios, A. Lledós, G. Ujaque, Chem. Eur. J., 22, 9311 (2016).
 D.I. Hoke, D.L. Surbey, W.R. Oviatt, J. Polym. Sci., Polym. Chem. Ed., 10, 595
(1972).
 T. Fujita, K. Suga, S. Watanabe, Aust. J. Chem., 27, 531 (1974).
 T. Narita, N. Imai, T. Tsuruta, Bull. Chem. Soc. Jpn., 46, 1242 (1973).
 R. Baker, A.H. Cook, D.E. Halliday, T.N. Smith, J. Chem. Soc., Perkin Trans. 2,
1511 (1974).
 R. Baker, D.E. Halliday, Tetrahedron Lett., 2773 (1972).
 K. Takahashi, A. Miyake, G. Hata, Bull. Chem. Soc. Jpn., 45, 1183 (1972).
 H. Trauthwein, A. Tillack, M. Beller, Chem. Commun., 2029 (1999).
 D. Banerjee, K. Junge, M. Beller, Org. Chem. Front., 1, 368 (2014).
 M.J. Goldfogel, C.C. Roberts, S.J. Meek, J. Am. Chem. Soc., 136, 6227 (2014).
 O. Löber, M. Kawatsura, J.F. Hartwig, J. Am. Chem. Soc., 123, 4366 (2001).
 M.L. Cooke, K. Xu, B. Breit, Angew. Chem., Int. Ed., 51, 10876 (2012).
 Hydrocarbon Chemistry
 I.A. Chekulaeva, L.V. Kondrat’eva, Russ. Chem. Rev. (Engl. Transl.), 34, 669
(1965).
 W. Reppe, Justus Liebigs Ann. Chem., 601, 81 (1956).
 C.W. Kruse, R.F. Kleinschmidt, J. Am. Chem. Soc., 83, 213 (1961).
 P.W. Hickmott, Tetrahedron, 38, 1975 (1982).
 M.F. Shostakovskii, G.G. Skvortsova, E.S. Domnina, Russ. Chem. Rev. (Engl.
Transl.), 38, 407 (1969).
 C.W. Kruse, R.F. Kleinschmidt, J. Am. Chem. Soc., 83, 216 (1961).
 J. Barluenga, F. Aznar, R. Liz, R. Rodes, J. Chem. Soc., Perkin Trans. 1, 2732
(1980); 1087 (1983).
 J. Barluenga, F. Aznar, Synthesis, 195 (1977).
 J. Barluenga, F. Aznar, R. Liz, M.-P. Cabal, J. Chem. Soc., Chem. Commun.,
1375 (1985).
 T. Uchimaru, Chem. Commun., 1133 (1999).
 E. Haak, I. Bytschkov, S. Doye, Angew. Chem., Int. Ed. Engl., 38, 3389 (1999).
 M. Tokunaga, M. Eckert, Y. Wakatsuki, Angew. Chem., Int. Ed. Engl., 38, 3223
(1999).
 L.-C. Lee, Y. Zhao, ACS Catal., 4, 688 (2014).
 L.J. Gooßen, M. Blanchot, K.S.M. Salih, K. Gooßen, Synthesis, 2283 (2009).
 L.J. Gooßen, M. Arndt, M. Blanchot, F. Rudolphi, F. Menges,
G. Niedner-Schatteburg, Adv. Synth. Catal., 350, 2701 (2008).
 M. Arndt, K.S.M. Salih, A. Fromm, L.J. Goossen, F. Menges,
G. Niedner-Schatteburg, J. Am. Chem. Soc., 133, 7428 (2011).
 B. Maity, L.J. Goossen, D. Koley, Chem. Sci., 6, 2532 (2015).
 X. Zeng, G.D. Frey, S. Kousar, G. Bertrand, Chem. Eur. J., 15, 3056 (2009).
 A. Tillack, V. Khedkar, M. Beller, Tetrahedron Lett., 45, 8875 (2004).
 S.-L. Shi, S.L. Buchwald, Nat. Chem., 7, 38 (2014).
 Q. Sun, Y. Wang, D. Yuan, Y. Yao, Qi Shen, Chem. Commun., 51, 7633 (2015).
 (a) J.B. Sweeney, Chem. Soc. Rev., 31, 247 (2002). (b) T. Katsuki, in
Comprehensive Coordination Chemistry II, J.A. McCleverty, T.J. Meyer, eds.,
Elsevier, Oxford, San Diego, 2004, Vol. 9, M.D. Ward, ed. Chapter 9.4, p. 207.
 M.A. Mairena, M.M. Dı́az-Requejo, T.R. Belderraı́n, M.C. Nicasio,
S. Trofimenko, P.J. Pérez, Organometallics, 23, 253 (2004).
 A.C. Mayer, A.-F. Salit, C. Bolm, Chem. Commun., 5975 (2008).
 D.M. Jenkins, Synlett, 23, 1267 (2012).
 P. Zardi, A. Pozzoli, F. Ferretti, G. Manca, C. Meallic, E. Gallo, Dalton Trans.,
44, 10479 (2015).
 Y. Liu, C.-M. Che, Chem. Eur. J., 16, 10494 (2010).
 P.P. Chandrachud, H.M. Bass, D.M. Jenkins, Organometallics, 35, 1652 (2016).
 A. Yoshimura, K.R. Middleton, C. Zhu, V.N. Nemykin, V.V. Zhdankin, Angew.
Chem., Int. Ed., 51, 8059 (2012).
 K. Matsuzawa, Y. Nagasawa, E. Yamaguchi, N. Tada, A. Itoh, Synthesis, 48,
2845 (2016).
6 Addition Reactions 
 S.O. Scholz, E.P. Farney, S. Kim, D.M. Bates, T.P. Yoon, Angew. Chem., Int.
Ed., 55, 2239 (2016).
 (a) P. Müller, C. Fruit, Chem. Rev., 103, 2905 (2003). (b) H. Pellissier,
Tetrahedron, 66, 1509 (2010).
 Y. Zhu, Q. Wang, R.G. Cornwall, Y. Shi, Chem. Rev., 114, 8199 (2014).
 J.E. Jones, J.V. Ruppel, G.-Y. Gao, T.M. Moore, X.P. Zhang, J. Org. Chem., 73,
7260 (2008).
 V. Subbarayan, J.V. Ruppel, S. Zhu, J.A. Perman, X.P. Zhang, Chem. Commun.,
4266 (2009).
 C. Kim, T. Uchida, T. Katsuki, Chem. Commun., 48, 7188 (2012).
 (a) J.A. Goodwin, A. Aponick, Chem. Commun., 51, 8730 (2015). (b) V.
Rodriguez-Ruiz, R. Carlino, S. Bezzenine-Lafollé, R. Gil, D. Prim, E. Schulz,
J. Hannedouche, Dalton Trans., 44, 12029 (2015).
 J. Muzart, Tetrahedron, 64, 5815 (2008).
 J.T. Bauer, M.S. Hadfield, A.-L. Lee, Chem. Commun., 6405 (2008).
 M.S. Hadfield, A.-L. Lee, Org. Lett., 12, 484 (2010).
 F. Ke, Z. Li, H. Xiang, X. Zhou, Tetrahedron Lett., 52, 318 (2011).
 R.M.P. Veenboer, S. Dupuy, S.P. Nolan, ACS Catal., 5, 1330 (2015).
 M. Kondo, T. Kochi, F. Kakiuchi, J. Am. Chem. Soc., 133, 32 (2011).
 R.H. Lam, D.B. Walker, M.H. Tucker, M.R.D. Gatus, M. Bhadbhade, B.A.
Messerle, Organometallics, 34, 4312 (2015).
 (a) J. Barluenga, F. Aznar, M. Bayod, Synthesis, 144 (1988). (b) M. Bassetti,
B. Floris, J. Chem. Soc., Perkin Trans. 2, 227 (1988).
 M.A. Savolainen, J. Wu, Org. Lett., 15, 3802 (2013).
 M. Weı̈wer, L. Coulombel, E. Duñach, Chem. Commun., 332 (2006).
 R. Kumar, Saima, A. Shard, N.H. Andhare, Richa, A.K. Sinha, Angew. Chem.,
Int. Ed., 54, 828 (2015).
 S. Chun, J. Chung, J.E. Park, Y.K. Chung, ChemCatChem, 8, 2476 (2016).
 A.B. Pritzius, B. Breit, Angew. Chem., Int. Ed., 54, 3121 (2015).
 H.-L. Yue, M. Klussmann, Synlett, 27, 2505 (2016).
 C.J. Weiss, S.D. Wobser, T.J. Marks, J. Am. Chem. Soc., 131, 2062 (2009).
 Y. Yang, R.M. Rioux, Green Chem., 16, 3916 (2014).
 A. Corma, C. González-Arellano, M. Iglesias, F. Sánchez, Appl. Catal.
A–Gen., 375, 49 (2010).
 A. Di Giuseppe, R. Castarlenas, J.J. Pérez-Torrente, M. Crucianelli, V. Polo,
R. Sancho, F.J. Lahoz, L.A. Oro, J. Am. Chem. Soc., 134, 8171 (2012).
 C.-G. Yang, C. He, J. Am. Chem. Soc., 127, 6966 (2005).
 C.S. Sevov, J.F. Hartwig, J. Am. Chem. Soc., 135, 9303 (2013).
 M.C. Haibach, C. Guan, D.Y. Wang, B. Li, N. Lease, A.M. Steffens,
K. Krogh-Jespersen, A.S. Goldman, J. Am. Chem. Soc., 135, 15062 (2013).
 Y. Oonishi, A. Gómez-Suárez, A.R. Martin, S.P. Nolan, Angew. Chem., Int.
Ed., 52, 9767 (2013).
 M.R. Kuram, M. Bhanuchandra, A.K. Sahoo, J. Org. Chem., 75, 2247 (2010).
 Hydrocarbon Chemistry
 M.V. Moskalev, A.M. Yakub, A.G. Morozov, E.V. Baranov, O.V. Kazarina,
I.L. Fedushkin, Eur. J. Org. Chem., 5781 (2015).
 (a) E.J. Park, J.M. Lee, H. Han, S. Chang, Org. Lett., 8, 4355 (2008). (b) Bin Li,
S. Lee, K. Shin, S. Chang, Org. Lett., 16, 2010 (2014).
 I. Profir, M. Beller, I. Fleischer, Org. Biomol. Chem., 12, 6972 (2014).
 A.J. Perkowski, D.A. Nicewicz, J. Am. Chem. Soc., 135, 10334 (2013).
 U.K. Dash, M. Bhattacharjee, J. Organomet. Chem., 700, 78 (2012).
 J. Tripathy, M. Bhattacharjee, Tetrahedron Lett., 50, 4863 (2009).
 S. Karabulut, B.Ö. Öztürk, Y. İmamoğlu, J. Organomet. Chem., 695, 2161
(2010).
 B.C. Chary, S. Kim, Organometallics, 30, 852 (2011).
 S. Dupuy, D. Gasperini, S.P. Nolan, ACS Catal., 5, 6918 (2015).
 M. Nishiumi, H. Miura, K. Wada, S. Hosokawa, M. Inoue, ACS Catal., 2, 1753
(2012).
 (a) O. Delacroix, A.C. Gaumont, Curr. Org. Chem., 9, 1851 (2005).
(b) D. Julienne, O. Delacroix, A.-C. Gaumont, Curr. Org. Chem., 14, 457
(2010). (c) D. S. Glueck, Top. Organomet. Chem., 31, 65 (2010). (d) V. Koshti,
S. Gaikwad, S.H. Chikkali, Coord. Chem. Rev., 265, 52 (2014).
 L. Rosenberg, ACS Catal., 3, 2845 (2013).
 J. Yuan, H. Hu, C. Cu, Chem. Eur. J., 22, 5778 (2016).
 M.B. Ghebreab, C.A. Bange, R. Waterman, J. Am. Chem. Soc., 136, 9240
(2014).
 C.A. Bange, R. Waterman, ACS Catal., 6, 6413 (2016).
 M. Kamitani, M. Itazaki, C. Tamiya, H. Nakazawa, J. Am. Chem. Soc., 134,
11932 (2012).
 M.A. Kazankova, I.V. Efimova, A.N. Kochetkov, V.V. Afanas’ev, I.P.
Beletskaya, P.H. Dixneuf, Synlett, 497 (2001).
 M. Hayashi, Y. Matsuura, Y. Watanabe, J. Org. Chem., 71, 9248 (2006).
 S. Kawaguchi, S. Nagata, A. Nomoto, M. Sonoda, Akiya Ogawa, J. Org. Chem.,
73, 7928 (2008).
 U.M. Dzhemilev, A.G. Ibragimo, in Modern Reduction Methods, P.G.
Andersson, I.J. Munslow, eds., Wiley-VCH, Wienheim, 2008, Chapter 18,
p. 447.
 Main Group Metals in Organic Synthesis, H. Yamamoto, K. Oshima, eds.,
Wiley-VCH, Weinheim, 2004.
 S. Bhaduri, D. Mukesh, Homogeneous Catalysis: Mechanisms and Industrial
Applications, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2014,
Chapter 5, p. 131.
 G. Zweifel, H.C. Brown, Org. React. (N.Y.), 13, 1 (1963).
 G.M.L. Cragg, Organoboranes in Organic Synthesis, Vol. 1, Marcel Dekker,
New York, 1973.
 M.K. Whittlesey, in Comprehensive Coordination Chemistry II,
J.A. McCleverty, T.J. Meyer, eds. Elsevier, Oxford, San Diego, 2004, Vol. 9,
M.D. Ward, ed., Chapter 9.5, p. 265.
6 Addition Reactions 
 H.C. Brown, G.W. Kramer, A.B. Levy, M.M. Midland, Organic Syntheses via
Boranes, Wiley-Interscience, New York, 1975.
 B.M. Mikhailov, Yu.N. Bubnov, Organoboron Compounds in Organic
Synthesis, Harwood, Chur, 1984.
 D.S. Matteson, in The Chemistry of the Metal-Carbon Bond, Vol. 4, F.R.
Hartley, ed., John Wiley & Sons, Ltd., Chichester, 1987, Chapter 3, p. 307.
 K. Avasthi, D. Devaprabhakara, A. Suzuki, in Organometallic Chemistry
Reviews, Journal of Organometallic Chemistry Library 7, D. Seyferth, A.G.
Davies, E.O. Fischer, J.F. Normant, O.A. Reutov, eds., Elsevier, Amsterdam,
1979, p. 1.
 J. Weill-Raynal, Synthesis, 633 (1976).
 A. Pelter, Chem. Soc. Rev., 11, 191 (1982).
 H.C. Brown, in Comprehensive Organometallic Chemistry, Vol. 7, G.
Wilkinson, F.G.A. Stone, E.W. Abel, eds., Pergamon Press, Oxford, 1982,
Chapter 45.1, p. 111.
 A. Suzuki, R.S. Dhillon, Top. Curr. Chem., 130, 23 (1986).
 H.C. Brown, Hydroboration, Benjamin, New York, 1962.
 (a) A. Pelter, K. Smith, in Comprehensive Organic Chemistry, Vol. 3, D.H.R.
Barton, W.D. Ollis, eds., Pergamon, Oxford, 1979, Chapter 14.2, p. 695. (b) E.
Negishi, Organometallics in Organic Synthesis, Vol. 1, Wiley-Interscience,
New York, 1980, Chapter 5, p. 287. (c) P.J. Guiry, A.G. Coyne, A.-M. Carroll,
in Comprehensive Organometallic Chemistry III, R.H. Crabtree, D.M.P.
Mingos eds., Vol. 10: Applications II: Transition Metal Compounds in
Organic Synthesis 1, I. Ojima, ed., Elsevier, Amsterdam, 2007, Chapter 10.19,
p. 839. (d) E.C. Neeve, S.J. Geier, I.A.I. Mkhalid, S.A. Westcott, T.B. Marder,
Chem. Rev., 116, 9091 (2016).
 M. Zaidlewicz, A. Wolan, M. Budny, in Comprehensive Organic Synthesis II,
P. Knochel, G.A. Molander, eds., Vol. 8: Reduction, J. Clayden, ed., Elsevier,
Amsterdam, 2014, Chapter 8.24, p. 877.
 H.C. Brown, B.C. Subba Rao, J. Am. Chem. Soc., 78, 5694 (1956); J. Org.
Chem., 22, 1136 (1957).
 M. Zaidlewich, in Comprehensive Organometallic Chemistry, Vol. 7,
G. Wilkinson, F.G.A. Stone, E.W. Abel, eds., Pergamon Press, Oxford, 1982,
Chapter 45.3, p. 161.
 L.M. Braun, R.A. Braun, H.R. Crissman, M. Opperman, R.M. Adams, J. Org.
Chem., 36, 2388 (1971).
 H.C. Brown, A.K. Mandal, S.U. Kulkarni, J. Org. Chem., 42, 1392 (1977).
 H.C. Brown, G. Zweifel, J. Am. Chem. Soc., 83, 1241 (1961).
 H.C. Brown, A.W. Moerikofer, J. Am. Chem. Soc., 84, 1478 (1962).
 E. Negishi, H.C. Brown, Synthesis, 77 (1974).
 J.E. Rice, Y. Okamoto, J. Org. Chem., 47, 4189 (1982).
 H.C. Brown, E.F. Knights, C.G. Scouten, J. Am. Chem. Soc., 96, 7765
(1974).
 H.C. Brown, E. Negishi, J.-J. Katz, J. Am. Chem. Soc., 97, 2791 (1975).
 Hydrocarbon Chemistry
 H.C. Brown, J.-J. Katz, C.F. Lane, E. Negishi, J. Am. Chem. Soc., 97, 2799
(1975).
 A. Pelter, D.J. Ryder, J.H. Sheppard, Tetrahedron Lett., 4715 (1978).
 J.A. Sikorski, H.C. Brown, J. Org. Chem., 47, 872 (1982).
 H.C. Brown, G. Zweifel, J. Am. Chem. Soc., 83, 2544 (1961).
 G. Zweifel, H.C. Brown, J. Am. Chem. Soc., 86, 393 (1964).
 G.W. Kabalka, R.J. Newton, Jr., J. Jacobus, J. Org. Chem., 43, 1567 (1978).
 H.C. Brown, J.H. Kawakami, K.-T. Liu, J. Am. Chem. Soc., 95, 2209 (1973).
 H.C. Brown, G. Zweifel, J. Am. Chem. Soc., 82, 4708 (1960).
 H.C. Brown, J. Chandrasekharan, K.K. Wang, Pure Appl. Chem., 55, 1387
(1983).
 R.E. Williams, Inorg. Chem., 1, 971 (1962).
 G.A. Olah, Angew. Chem., Int. Ed. Engl., 12, 173 (1973).
 H.C. Brown, A.W. Moerikofer, J. Am. Chem. Soc., 83, 3417 (1961).
 H.C. Brown, C.G. Scouten, K.K. Wang, J. Org. Chem., 44, 2589 (1979).
 C.F. Lane, G.W. Kabalka, Tetrahedron, 32, 981 (1976).
 D. Männig, H. Nöth, Angew. Chem., Intl. Ed. Engl., 24, 878 (1985).
 K. Burgess, M.J. Ohlmeyer, Chem. Rev., 91, 1179 (1991).
 D.A. Evans, G.C. Fu, A.H. Hoveyda, J. Am. Chem. Soc., 114, 6671 (1992).
 D.A. Evans, G.C. Fu, B.A. Anderson, J. Am. Chem. Soc., 114, 6679 (1992).
 T. Hayashi, Y. Matsumoto, Y. Ito, Tetrahedron: Asymmetry, 2, 601 (1991).
 J.V.B. Kanth, H.C. Brown, Tetrahedron Lett., 41, 9361 (2000).
 J.F. Hartwig, C.N. Muhoro, Organometallics, 19, 30 (2000).
 L. Zhang, Z. Zuo, X. Leng, Z. Huang, Angew. Chem., Int. Ed., 53, 2696
(2014).
 J.V. Obligacion, P.J. Chirik, J. Am. Chem. Soc., 135, 19107 (2013).
 Y. Wen, J. Xie, C. Deng, C. Li, J. Org. Chem., 80, 4142 (2015).
 (a) J.V. Obligacion, P.J. Chirik, Org. Lett., 15, 2680 (2013). (b) M.D.
Greenhalgh, S.P. Thomas, Chem. Commun., 49, 11230 (2013). (c) K.-N.T.
Tseng, J.W. Kampf, N.K. Szymczak, ACS Catal., 5, 411 (2015).
 L. Zhang, Z. Huang, Synlett, 24, 1745 (2013).
 L. Zhang, D. Peng, X. Leng, Z. Huang, Angew. Chem., Int. Ed., 52, 3676 (2013).
 H.C. Brown, P.V. Ramachandran, J. Organomet. Chem., 500, 1 (1995).
 A.M. Segarra, R. Guerrero, C. Claver, E. Fernandez, Chem. Commun., 1808
(2001).
 J. Chen, T. Xi, Z. Lu, Org. Lett., 16, 6452 (2014).
 L. Zhang, Z. Zuo, X. Wan, Z. Huang, J. Am. Chem. Soc., 136, 15501 (2014).
 H. Zhang, Z. Lu, ACS Catal., 6, 6596 (2016).
 A.J. MacNair, C.R.P. Millet, G.S. Nichol, A. Ironmonger, S.P. Thomas, ACS
Catal., 6, 7217 (2016).
 X. Jia, Z. Huang, Nat. Chem., 8, 157 (2016).
 G. Zweifel, K. Nagase, H.C. Brown, J. Am. Chem. Soc., 84, 183 (1962).
 H.C. Brown, E. Negishi, S.K. Gupta, J. Am. Chem. Soc., 92, 2460 (1970).
6 Addition Reactions 
 H.C. Brown, E. Negishi, P.L. Burke, J. Am. Chem. Soc., 93, 3400 (1971).
 H.C. Brown, R. Liotta, G.W. Kramer, J. Org. Chem., 43, 1058 (1978).
 H.C. Brown, E. Negishi, Tetrahedron, 33, 2331 (1977).
 E.F. Knights, H.C. Brown, J. Am. Chem. Soc., 90, 5280 (1968).
 J.A. Soderquist, H.C. Brown, J. Org. Chem., 46, 4599 (1981).
 J.Y. Wu, B. Moreau, T. Ritter, J. Am. Chem. Soc., 131, 12915 (2009).
 Y. Cao, Y. Zhang, L. Zhang, D. Zhang, X. Leng, Z. Huang, Org. Chem. Front.,
1, 1101 (2014).
 R.J. Ely, J.P. Morken, J. Am. Chem. Soc., 132, 2534 (2010).
 K. Semba, M. Shinomiya, T. Fujihara, J. Terao, Y. Tsuji, Chem. Eur. J., 19, 7125
(2013).
 H.C. Brown, G. Zweifel, J. Am. Chem. Soc., 83, 3834 (1961).
 G. Zweifel, H. Arzoumanian, J. Am. Chem. Soc., 89, 291 (1967).
 (a) B.M. Trost, Z.T. Ball, Synthesis, 853 (2005). (b) R. Barbeyron, E. Benedetti,
J. Cossy, J.-J. Vasseur, S. Arseniyadis, M. Smietana, Tetrahedron, 70, 8431
(2014). (c) H. Yoshida, ACS Catal., 6, 1799 (2016).
 G. Zweifel, G.M. Clark, N.L. Polston, J. Am. Chem. Soc., 93, 3395 (1971).
 H.C. Brown, C.G. Scouten, R. Liotta, J. Am. Chem. Soc., 101, 96 (1979).
 H.C. Brown, D. Basavaiah, S.U. Kulkarni, J. Organomet. Chem., 225, 63
(1982).
 J.S. Cha, S.J. Min, J.M. Kim, O.O. Kwon Tetrahedron Lett., 34, 5113 (1993).
 W.G. Woods, P.L. Strong, J. Am. Chem. Soc., 88, 4667 (1966).
 H.C. Brown, S.K. Gupta, J. Am. Chem. Soc., 97, 5249 (1975).
 A. Pelter, S. Singaram, H. Brown, Tetrahedron Lett., 24, 1433 (1983).
 T. Ohmura, Y. Yamamoto, N. Miyaura, J. Am. Chem. Soc., 122, 4990
(2000).
 J.J.J. Juliette, I.T. Horváth, J.A. Gladysz, Angew. Chem., Int. Ed. Engl., 36, 1610
(1997).
 A. Grirrane, A. Corma, H. Garcia, Chem. Eur. J., 17, 2467 (2011).
 C. Gunanathan, M. Hölscher, F. Pan, W. Leitner, J. Am. Chem. Soc., 134,
14349 (2012).
 J.V. Obligacion, J.M. Neely, A.N. Yazdani, I. Pappas, P.J. Chirik, J. Am. Chem.
Soc., 137, 5855 (2015).
 B. Sundararaju, A. Fürstner, Angew. Chem., Int. Ed., 52, 14050 (2013).
 H. Reinheckel, K. Haage, D. Jahnke, Organometal. Chem. Rev., Sect. A., 4, 47
(1969).
 G. Zweifel, J.A. Miller, Org. React. (N.Y.), 32, 375 (1984).
 P.A. Chaloner, in The Chemistry of the Metal-Carbon Bond, Vol. 4, F.R.
Hartley, ed., John Wiley & Sons, Ltd., Chichester, 1987, Chapter 4, p. 411.
 K. Maruoka, H. Yamamoto, Tetrahedron, 44, 5001 (1988).
 (a) U.M. Dzhemilev, O.S. Vostrikova, G.A. Tolstikov, J. Organomet. Chem.,
304, 17 (1986). (b) U.M. Dzhemilev, V.A. D’yakonov, Top. Organomet. Chem.,
41, 215 (2013).
 Hydrocarbon Chemistry
 J.J. Eisch, in Comprehensive Organic Synthesis, B.M. Trost, I. Fleming, eds.,
Vol. 8: Reduction, I. Fleming, ed. Pergamon Press, Oxford, 1991, Chapter 3.11,
p. 733.
 K. Ziegler, H.-G. Gellert, H. Lehmkuhl, W. Pfohl, K. Zosel, Justus Liebigs Ann.
Chem., 629, 1 (1960).
 K. Ziegler, H.-G. Gellert, H. Martin, K. Nagel, Justus Liebigs Ann. Chem., 589,
91 (1954).
 K. Ziegler, Angew. Chem., 64, 323 (1952).
 K. Ziegler, H. Martin, F. Krupp, Justus Liebigs Ann. Chem., 629, 14 (1960).
 G. Natta, P. Pino, G. Mazzanti, P. Longi, F. Bernardini, J. Am. Chem. Soc., 81,
2561 (1959).
 F. Sato, S. Sato, M. Sato, J. Organomet. Chem., 131, C26 (1977).
 G. Wilke, H. Müller, Justus Liebigs Ann. Chem., 618, 267 (1958); 629, 222
(1960).
 J.J. Eisch, W.C. Kaska, J. Am. Chem. Soc., 88, 2213 (1966).
 G. Zweifel, R.B. Steele, J. Am. Chem. Soc., 89, 5085 (1967).
 E.F. Magoon, L.H. Slaugh, Tetrahedron, 23, 4509 (1967).
 E. Negishi, D.Y. Kondakov, Chem. Soc. Rev., 25, 417 (1996).
 U.M. Dzhemilev, A.G. Ibragimov, Russ. Chem. Rev., 69, 121 (2000).
 F. Gao, A.H. Hoveyda, J. Am. Chem. Soc., 132, 10961 (2011).
 (a) R.N. Meals, Pure Appl. Chem., 13, 141 (1966). (b) E. Lukevics, Z.V.
Belyakova, M.G. Pomerantseva, M.G. Voronkov, in Organometallic
Chemistry Reviews, Journal of Organometallic Chemistry Library 5, D.
Seyferth, A.G. Davies, E.O. Fischer, J.F. Normant, O.A. Reutov, eds., Elsevier,
Amsterdam, 1977, p. 1. (c) K.A. Andrianov, J. Soucek, L.M. Khananashvili,
Russ. Chem. Rev. (Engl. Transl.), 48, 657 (1979). (d) E. Negishi,
Organometallics in Organic Synthesis, Vol. 1, Wiley-Interscience, New York,
1980, Chapter 6, p. 394. (e) I. Ojima, in The Chemistry of Organic Silicon
Compounds, S. Patai, Z. Rappoport, eds., John Wiley & Sons, Ltd.,
Chichester, 1989, Chapter 25, p. 1479. (f) Z.T. Ball, in Comprehensive
Organometallic Chemistry III, R.H. Crabtree, D.M.P. Mingos eds., Vol. 10:
Applications II: Transition Metal Compounds in Organic Synthesis 1, I.
Ojima, ed., Elsevier, Amsterdam, 2007, Chapter 10.17, p. 789. (g) P.A. Mayes,
P. Perlmutter, in Modern Reduction Methods, P.G. Andersson, I.J. Munslow,
eds., Wiley-VCH, Wienheim, 2008, Chapter 4, p. 87.
 J.F. Harrod, A.J. Chalk, in Organic Syntheses via Metal Carbonyls, Vol. 2,
I. Wender, P. Pino, eds., Wiley-Interscience, New York, 1977, p. 673.
 J.L. Speier, Adv. Organomet. Chem., 17, 407 (1979).
 F.H. Jardine, in The Chemistry of the Metal-Carbon Bond, Vol. 4, F.R. Hartley,
ed., John Wiley & Sons, Ltd., Chichester, 1987, Chapter 8, p. 784.
 A.P. Dobbs, F.K.I. Chio, in Comprehensive Organic Synthesis II, P. Knochel,
G.A. Molander, eds., Vol. 8: Reduction, J. Clayden, ed., Elsevier, Amsterdam,
2014, Chapter 8.25, p. 964.
6 Addition Reactions 
 P.A. Chaloner, Handbook of Coordination Catalysis in Organic Chemistry,
Butterworths, London, 1986, Chapter 4, p. 307.
 (a) B. Hardman, A. Torkelson, in Encyclopedia of Polymer Science and
Engineering, 2nd ed., Vol. 15, J.I. Kroschwitz, ed., Wiley-Interscience, New
York, 1989, p. 204. (b) D. Troegel, J. Stohrer, Coord. Chem. Rev., 255, 1440
(2011).
 A.J. Chalk, J.F. Harrod, J. Am. Chem. Soc., 87, 16 (1965).
 J.F. Harrod, A.J. Chalk, J. Am. Chem. Soc., 87, 1133 (1965); 88, 3491 (1966).
 L.H. Sommer, J.E. Lyons, H. Fujimoto, J. Am. Chem. Soc., 91, 7051 (1969).
 M.A. Schroeder, M.S. Wrighton, J. Organomet. Chem., 128, 345 (1977).
 A. Millan, M.-J. Fernandez, P. Bentz, P.M. Maitlis, J. Mol. Catal., 26, 89
(1984).
 A. Onopchenko, E.T. Sabourin, D.L. Beach, J. Org. Chem., 48, 5101 (1983).
 M. Bookhart, B.E. Grant, J. Am. Chem. Soc., 115, 2151 (1993).
 M.G. Voronkov, V.B. Pukhnarevich, S.P. Sushchinskaya, L.I. Kopylova, B.A.
Trofimov, J. Gen. Chem. USSR (Engl. Transl.), 41, 2120 (1971).
 R.A. Benkeser, J. Kang, J. Organomet. Chem., 185, C9 (1980).
 A. Onopchenko, E.T. Sabourin, J. Org. Chem., 52, 4118 (1987).
 L.N. Lewis, R.J. Uriarte, Organometallics, 9, 621 (1990).
 L.N. Lewis, J. Am. Chem. Soc., 112, 5998 (1990).
 L.N. Lewis, N. Lewis, J. Am. Chem. Soc., 108, 7228 (1986).
 L.N. Lewis, R.J. Uriarte, N. Lewis, J. Mol. Catal., 66, 105 (1991).
 I. Ojima, K. Yamamoto, M. Kumada, in Aspects of Homogeneous Catalysis,
Vol. 3, R. Ugo, ed., D. Reidel, Dordrecht, 1977, Chapter 3, p. 185.
 J.L. Speier, J.A. Webster, G.H. Barnes, J. Am. Chem. Soc., 79, 974 (1957).
 T.G. Selin, R. West, J. Am. Chem. Soc., 84, 1863 (1962).
 H.M. Bank, J.C. Saam, J.L. Speier, J. Org. Chem., 29, 792 (1964).
 R.A. Benkeser, S. Dunny, G.S. Li, P.G. Nerlekar, S.D. Work, J. Am. Chem. Soc.,
90, 1871 (1968).
 R.N. Haszeldine, R.V. Parish, R.J. Taylor, J. Chem. Soc., Dalton Trans., 2311
(1974).
 T.G. Selin, R. West, J. Am. Chem. Soc., 84, 1860 (1962).
 M. Čapka, P. Svoboda, J. Hetflejš, Coll. Czech. Chem. Commun., 38, 3830
(1973).
 E.W. Bennett, P.J. Orenski, J. Organomet. Chem., 28, 137 (1971).
 K. Oertle, H. Wetter, Tetrahedron Lett., 26, 5511 (1985).
 B. Marciniec, Comprehensive Handbook on Hydrosilylation, Pergamon,
Oxford, 1992, Chapter 2; Coord. Chem. Rev., 249, 2374 (2005).
 M.A. Brook, Silicon in Organic, Organometallic, Polymer Chemistry, John
Wiley & Sons, Inc., New York, 2000, p. 401.
 B. Marciniec, in Applied Homogeneous Catalysis with Organometallic
Complexes, B. Cornils, W.A. Herrmann, eds., VCH, Weinheim, 1996,
Chapter 2.6, p. 487.
Addition_Reactions_2_HX_addition.pdf
Addition_Reactions_2_HX_addition.pdf
Addition_Reactions_2_HX_addition.pdf
Addition_Reactions_2_HX_addition.pdf
Addition_Reactions_2_HX_addition.pdf
Addition_Reactions_2_HX_addition.pdf
Addition_Reactions_2_HX_addition.pdf
Addition_Reactions_2_HX_addition.pdf

More Related Content

Similar to Addition_Reactions_2_HX_addition.pdf

Homogenous catalysis
Homogenous catalysisHomogenous catalysis
Homogenous catalysisKeerthanaD21
 
Homogeneous catalysis 2021
Homogeneous catalysis 2021Homogeneous catalysis 2021
Homogeneous catalysis 2021MadhuraDatar
 
Named reactions in organic synthesis
Named reactions in organic synthesisNamed reactions in organic synthesis
Named reactions in organic synthesisPRUTHVIRAJ K
 
Cycloaddition reactions [2+2]
Cycloaddition reactions [2+2]Cycloaddition reactions [2+2]
Cycloaddition reactions [2+2]Harish Chopra
 
Cycloaddition reactions [2+2]
Cycloaddition reactions [2+2]Cycloaddition reactions [2+2]
Cycloaddition reactions [2+2]Harish Chopra
 
Aromatic Electrophilic Substitution Reactions
Aromatic Electrophilic Substitution ReactionsAromatic Electrophilic Substitution Reactions
Aromatic Electrophilic Substitution ReactionsTamralipta Mahavidyalaya
 
Org.chem_Lecture_5_Haloderivatives.pptx
Org.chem_Lecture_5_Haloderivatives.pptxOrg.chem_Lecture_5_Haloderivatives.pptx
Org.chem_Lecture_5_Haloderivatives.pptxssuser183732
 
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...fer18400
 
alcohols phenols ethers-.pdf
alcohols phenols ethers-.pdfalcohols phenols ethers-.pdf
alcohols phenols ethers-.pdfLUXMIKANTGIRI
 
Module-3_Lectures-2-5.pptx organic chemistry
Module-3_Lectures-2-5.pptx organic chemistryModule-3_Lectures-2-5.pptx organic chemistry
Module-3_Lectures-2-5.pptx organic chemistrypk2003158
 
alcohol phenols ethers class 12 notes pdf
alcohol phenols ethers class 12 notes pdfalcohol phenols ethers class 12 notes pdf
alcohol phenols ethers class 12 notes pdfAchyut42
 
Carbonyl Compounds
Carbonyl CompoundsCarbonyl Compounds
Carbonyl CompoundsKatie B
 

Similar to Addition_Reactions_2_HX_addition.pdf (20)

Homogenous catalysis
Homogenous catalysisHomogenous catalysis
Homogenous catalysis
 
Latha Chemistry ppt.pptx
Latha Chemistry ppt.pptxLatha Chemistry ppt.pptx
Latha Chemistry ppt.pptx
 
ALKENES4.pptx
ALKENES4.pptxALKENES4.pptx
ALKENES4.pptx
 
Homogeneous catalysis 2021
Homogeneous catalysis 2021Homogeneous catalysis 2021
Homogeneous catalysis 2021
 
Solved aldehydes and ketones
Solved aldehydes and ketones Solved aldehydes and ketones
Solved aldehydes and ketones
 
Alcoholsphenolsethers
Alcoholsphenolsethers Alcoholsphenolsethers
Alcoholsphenolsethers
 
Named reactions in organic synthesis
Named reactions in organic synthesisNamed reactions in organic synthesis
Named reactions in organic synthesis
 
Cycloaddition reactions [2+2]
Cycloaddition reactions [2+2]Cycloaddition reactions [2+2]
Cycloaddition reactions [2+2]
 
Cycloaddition reactions [2+2]
Cycloaddition reactions [2+2]Cycloaddition reactions [2+2]
Cycloaddition reactions [2+2]
 
Aromatic Electrophilic Substitution Reactions
Aromatic Electrophilic Substitution ReactionsAromatic Electrophilic Substitution Reactions
Aromatic Electrophilic Substitution Reactions
 
aromatic reactions.pptx
aromatic reactions.pptxaromatic reactions.pptx
aromatic reactions.pptx
 
Org.chem_Lecture_5_Haloderivatives.pptx
Org.chem_Lecture_5_Haloderivatives.pptxOrg.chem_Lecture_5_Haloderivatives.pptx
Org.chem_Lecture_5_Haloderivatives.pptx
 
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
 
Elimnations.ppt
Elimnations.pptElimnations.ppt
Elimnations.ppt
 
alcohols phenols ethers-.pdf
alcohols phenols ethers-.pdfalcohols phenols ethers-.pdf
alcohols phenols ethers-.pdf
 
2018waterauto.pdf
2018waterauto.pdf2018waterauto.pdf
2018waterauto.pdf
 
Module-3_Lectures-2-5.pptx organic chemistry
Module-3_Lectures-2-5.pptx organic chemistryModule-3_Lectures-2-5.pptx organic chemistry
Module-3_Lectures-2-5.pptx organic chemistry
 
alcohol phenols ethers class 12 notes pdf
alcohol phenols ethers class 12 notes pdfalcohol phenols ethers class 12 notes pdf
alcohol phenols ethers class 12 notes pdf
 
Chapter 3 Alkenes
Chapter 3 AlkenesChapter 3 Alkenes
Chapter 3 Alkenes
 
Carbonyl Compounds
Carbonyl CompoundsCarbonyl Compounds
Carbonyl Compounds
 

Recently uploaded

Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxNanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxssusera4ec7b
 
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptxSaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptxPat (JS) Heslop-Harrison
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Ansari Aashif Raza Mohd Imtiyaz
 
PARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th semPARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th semborkhotudu123
 
NuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdfNuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdfpablovgd
 
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...yogeshlabana357357
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...Sérgio Sacani
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationAreesha Ahmad
 
MSC IV_Forensic medicine - Mechanical injuries.pdf
MSC IV_Forensic medicine - Mechanical injuries.pdfMSC IV_Forensic medicine - Mechanical injuries.pdf
MSC IV_Forensic medicine - Mechanical injuries.pdfSuchita Rawat
 
Electricity and Circuits for Grade 9 students
Electricity and Circuits for Grade 9 studentsElectricity and Circuits for Grade 9 students
Electricity and Circuits for Grade 9 studentslevieagacer
 
Factor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary GlandFactor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary GlandRcvets
 
Fun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdfFun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdfhoangquan21999
 
RACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptxRACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptxArunLakshmiMeenakshi
 
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed RahimoonVital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed RahimoonAftabAhmedRahimoon
 
Mining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptxMining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptxKyawThanTint
 
GBSN - Biochemistry (Unit 8) Enzymology
GBSN - Biochemistry (Unit 8) EnzymologyGBSN - Biochemistry (Unit 8) Enzymology
GBSN - Biochemistry (Unit 8) EnzymologyAreesha Ahmad
 
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdfFORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdfSuchita Rawat
 
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...kevin8smith
 
Film Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdfFilm Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdfPharmatech-rx
 

Recently uploaded (20)

Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxNanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
 
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptxSaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
 
PARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th semPARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th sem
 
NuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdfNuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdf
 
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolation
 
MSC IV_Forensic medicine - Mechanical injuries.pdf
MSC IV_Forensic medicine - Mechanical injuries.pdfMSC IV_Forensic medicine - Mechanical injuries.pdf
MSC IV_Forensic medicine - Mechanical injuries.pdf
 
Electricity and Circuits for Grade 9 students
Electricity and Circuits for Grade 9 studentsElectricity and Circuits for Grade 9 students
Electricity and Circuits for Grade 9 students
 
Factor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary GlandFactor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary Gland
 
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
 
Fun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdfFun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdf
 
RACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptxRACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptx
 
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed RahimoonVital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoon
 
Mining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptxMining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptx
 
GBSN - Biochemistry (Unit 8) Enzymology
GBSN - Biochemistry (Unit 8) EnzymologyGBSN - Biochemistry (Unit 8) Enzymology
GBSN - Biochemistry (Unit 8) Enzymology
 
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdfFORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
 
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
 
Film Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdfFilm Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdf
 

Addition_Reactions_2_HX_addition.pdf

  • 1.   Addition Reactions Numerous compounds can add to carbon–carbon multiple bonds by the elec- trophilic addition mechanism. These include halogens, interhalogens, pseu- dohalogens, H–X compounds (water, inorganic and organic acids, alcohols, thiols, ammonia, and amines), halogen–X reagents (hypohalous acids and hypohalites, electrophilic sulfur, selenium and tellurium compounds, inorganic and organic acyl halides), metal hydrides, metal halides, and organometallics. Of these reactions only those having great chemical and practical significance are discussed here. A short discussion about cycloaddition is also included. Other additions, such as addition of (alkylation of alkenes with) alkyl halides and carbonyl compounds, are discussed in Chapter 5, whereas Chapter 7 cov- ers addition reactions involving carbon monoxide and carbon dioxide (hydro- formylation, carboxylations). Electrophilic oxygenation of alkenes (epoxidation by peroxyacids), in turn, is treated in Chapter 9. Hydrogen addition is discussed in Chapter 11. The nucleophilic addition of organometallics to multiple bonds is of great significance in the anionic polymerization of alkenes and dienes and is treated in Chapter 13. Hydrocarbon Chemistry, Third Edition. George A. Olah, Árpád Molnár and G. K. Surya Prakash. © 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
  • 2.  Hydrocarbon Chemistry . HX Addition 6.2.1 Hydrohalogenation Hydrogen halides add to carbon–carbon double and triple bonds to yield halo- genated hydrocarbons. The reactivity of the four hydrogen halides is in the order HI > HBr > HCl > HF. HI and HBr, the two most reactive compounds, add readily at room temperature to unsaturated hydrocarbons. HCl requires heating or a catalyst, whereas HF often exhibits irregular behavior. Most stud- ies of hydrohalogenations have focused on the use of HCl and HBr.110 Alkenes The reaction of hydrogen halides with alkenes is generally an elec- trophilic addition. It occurs by a variety of mechanisms and involves a carboca- tion intermediate in many cases. As a result, rearrangements may be observed, and solvent incorporation may occur. The regioselectivity of the addition to unsymmetrical double bounds is in accord with the Markovnikov rule; specif- ically, the hydrogen adds to the site with the highest electron density. Stereo- chemistry of electrophilic addition of hydrogen halides to alkenes may be syn or anti. Reaction conditions, the nature of the solvent, and the structure of the reacting alkene affect the stereochemical outcome of the reaction. In contrast to HCl and HBr addition, there are no such systematic stud- ies concerning the addition of HF and HI to alkenes. Aqueous HF exhibits rather low reactivity toward alkenes, and anhydrous liquid HF is used instead to effect hydrofluorination.111,112 Because of its low boiling point, high tox- icity, and corrosive nature, alternative reagents were developed. The com- bination of HF with organic bases gives more suitable reagents.113 They react with alkenes in typical Markovnikov-type addition. Of these, pyri- dinium poly(hydrogen fluoride)114–116 (PPHF, so called Olah’s reagent) and melamine–HF solution117 are used most frequently. An effective solid flu- orinating agent, a polymer-supported HF reagent, is prepared from poly- 4-vinylpyridine and anhydrous HF. Easy handling and convenient work-up make polyvinylpyridinium poly(hydrogen fluoride)118,119 (PVPHF) an attrac- tive reagent [Eq. (6.8)]. Olah and coworkers have developed stable dialkyl ether/poly(hydrogen fluoride) complexes with cyclic poly(hydrogen fluoride) bridge structure.120 The dimethyl ether–poly(hydrogen fluoride) complex (DMEPHF) was shown to be a convenient and efficient fluorinating agent. A Pd-catalyzed sequential regiospecific, syn-selective addition of H− and “F+” to styrenes furnishes the corresponding benzyl fluorides in high yields ([Pd(PPh3)]4, Selectfluor, Et3SiH).121 PVPHF CH2Cl2, 0−20 °C, 1−6 h R ( )n ( )n R = H, Me, n = 2, 3, 8 2,3-diMe-but-2-ene, norbornene 60−80% F R (6.8)
  • 3. 6 Addition Reactions  Detailed, wide-ranging studies are available on the addition of HCl and HBr to alkenes.3,112,122 The most useful procedure is to react dry HCl gas and the alkene neat or in an inert organic solvent. Water or acetic acid may also be used. Alkenes yielding tertiary or benzylic alkyl chlorides react most readily. Styrene, however, adds HCl only at −80 ◦C to give α-chloroethylbenzene with- out polymerization.123 At more elevated (room) temperature, polymerization prevails. HBr adds to alkenes in an exothermic process more rapidly than does HCl. Rearrangements may occur during addition indicating the involvement of a carbocation intermediate124 [Eq. (6.9)]. Cl Cl HCl 25 °C neat 50% 50% CH3NO2 17% 83% + (6.9) A similar conclusion can be drawn from the higher reactivity of 1,1- dialkylalkenes compared with 1,2-dialkylalkenes. Norbornene and related bicyclic olefins were shown to react with HCl via the classical norbornyl cations prior to full equilibration.125,126 The stereochemistry of addition may be syn or anti. Product distributions can be strongly affected by the solvent used127 [Eq. (6.10)]. HCl 30 min H Cl H Cl + CH2Cl2, −98 °C 88% 12% Et2O, 0 °C 5% 95% (6.10) Acenaphthylene, indene, and cis- and trans-1-phenylpropene, all possessing the double bond in conjugation with an aromatic system, were found to react with hydrogen halides in nonpolar solvents to give predominantly syn addition prod- ucts.128 This stereochemistry is consistent with an AdE2 mechanism in which the undissociated hydrogen halide reacts with the alkene (Scheme 6.2). First ion pair 7 is formed with the halide ion retained on the same side of the alkene as the hydrogen. Collapse of 7 gives exclusively the syn product. If the ion pair has a long enough lifetime, the halide ion may migrate to the opposite side of the planar carbocation to give the ion pair 8. Collapse of the latter leads to the anti product. A similar ion-pair mechanism is operative in the hydrochlorination of 3,3-dimethylbutene and styrene in acetic acid.129 In contrast, kinetic studies indicate that another mechanism may also be operative. It was found that the rate law for the addition of HCl and HBr to alkenes in nonprotic solvents (hydrocarbons, diethyl ether, nitromethane) is typically overall third order3,122,124,130 or even higher.131,132 It is usually first order in the alkene and second order in the hydrogen halide. A slow irreversible
  • 4.  Hydrocarbon Chemistry C C C C H X− C H C X C C H + C H C X 7 8 + X− HX Scheme . proton transfer from the undissociated molecule to the alkene was shown to be rate determining. The second molecule of HX assists this proton transfer by bonding to the developing halide ion. This is a typical AdE3 mechanism [Eq. (6.11)]. CH=CH2 R + 2HX RCHCH3 + HX2 − + slow fast RCHCH3 X + HX (6.11) A more detailed picture could be obtained from the results of stereochemi- cal studies.3,133 Since 1,2-dimethylcyclohexene, 1,6-dimethylcyclohexene, and 2-methylmethylenecyclohexane give different proportions of cis- and trans- 1,2-dimethylbromocyclohexanes, simultaneous formation of the C–H and the C–Br bonds was suggested.134 A similar conclusion was reached based on the stereoselective, predominantly anti addition of HCl and HBr to 1,2- dimethylcyclopentene in pentane.135 The addition of DBr in AcOD to cyclopentene yields deuterocyclopentyl bro- mide and deuterocyclopentyl acetate, both formed with better than 96% anti stereoselectivity.136 A concerted anti AdE3 transition state (9) is consistent with these and other experimental observations. A similar but syn transition state (10) was evoked to explain the somewhat decreased degree of anti addi- tion (84–85%) in the hydrohalogenation of linear isomeric alkenes.136 The reac- tion of [1,3,3-2H3]-cyclohexene137 and 1,2-dimethylcyclohexene138 with HCl in AcOH was shown to form the corresponding chlorides resulting from both syn and anti additions. In these cases, an AdE2 mechanism competes with a concerted anti AdE3 process. High HCl concentration and addition of chloride salts such as Me4NCl favor the AdE3 mechanism. C H C Nu X E δ− δ+ δ+ C H X δ− δ+ δ+ C Nu E 9 10
  • 5. 6 Addition Reactions  Exceptions to the Markovnikov rule when hydrogen bromide reacts with unsymmetrical alkenes have long been known.139,140 The reaction for this anti- Markovnikov addition was explained as being a chain reaction with the involve- ment of bromine atoms generated by peroxides.141–143 Both added peroxides and peroxides formed by the action of the triplet oxygen (air) on the alkene are effective. The chain reaction is initiated by the interaction of a free radical [formed according to Eq. (6.12)] with hydrogen bromide to form a bromine atom [Eq. (6.13)], which, after reacting with the alkene, yields a bromoalkyl radical [Eq. (6.14)]. The reaction of the latter with HBr yields the alkyl bromide and regenerates the bromine atom [Eq. (6.15)]. RCOOH RO• + HO• (6.12) RO• + HBr ROH + Br• (6.13) CH2=CH2 R + Br• CHCH2 R Br (6.14) CHCH2 R Br + HBr CH2CH2 R Br + Br• (6.15) Anti-Markovnikov free-radical-induced addition of HBr to alkenes can be pre- vented by carrying out the reaction in the presence of small amounts of antiox- idants that inhibit the reaction of oxygen with the alkene to form peroxides. There was a significant notion that no other hydrogen halides add to alkenes, contrary to the Markovnikov rule, even in the presence of free radicals. This appears to be due to the difficulty of producing certain halogen radicals, par- ticularly fluorine and chlorine, by reaction of the hydrogen halides induced by radicals [Eq. (6.16)]. It is only in the case of bromine that the equilibrium in this reaction is in the direction of the formation of the bromine atom. RO• + H X ROH + X• (6.16) Contrary to this statement, direct anti-Markovnikov addition of HF and HCl was accomplished by Nicewicz and coworkers using an efficient organic pho- toredox catalyst system.144 Photoredox catalyst 11a is excited with visible light to form acridine radical 11b, which is quenched by the alkene to form radi- cal cation 12 (Scheme 6.3). Nucleophilic halide addition yields the more stable Ph Me •+ Ph Me Ph Me X • HX (X = F, Cl) PhSH PhS• Ph Me H X 11a 11b 12 13 Scheme .
  • 6.  Hydrocarbon Chemistry benzylic radical 13, and, finally, hydrogen atom transfer from thiol results in the formation of the addition product. N Me Me Me Me −BF4 • + N Me Me Me Me + hν (450 nm) 11a 11b Addition of HBr in nonpolar solvents to terminal alkenes was found to give anti-Markovnikov products even under nonradical conditions.145 Products formed in both the normal and abnormal additions may be obtained in near quantitative yields by changing the temperature and the reagent/reactant ratio [Eq. (6.17)]. On the basis of theoretical calculations and spectroscopic evidence, a molecular mechanism for the formation of HBr–alkene complexes was sug- gested. In a large excess of HBr, a 2:1 HBr–alkene complex is formed giving the product of the normal addition. A 1:2 complex in excess alkene, in contrast, accounts for the anti-Markovnikov product. C6H13CH=CH2 C6H13CHCH3 + C6H13CH2CH2Br HBr hexane, −78 °C HBr/oct-1-ene = 15 98 2 HBr/oct-1-ene = 0.125 100 Br (6.17) Concentrated HI in water or acetic acid is usually utilized in hydroiodination of alkenes. Markovnikov products are exclusively formed, and rearrangements may be observed. Special reagents introduced later allow significant improvements in hydro- halogenation of alkenes. HCl, HBr, and HI in aqueous–organic two-phase sys- tems under phase transfer conditions readily add to alkenes affording halides in nearly quantitative yields.146 Appropriately prepared silica and alumina have been found to mediate the addition of HCl, HBr, and HI to alkenes.147 The method is very convenient since it uses hydrogen halides prepared in situ148 [Eq. (6.18)].147 Competing radical addition in hydrobromination is not observed. It is suggested that surface-bound hydrogen halides with greatly increased acidity through polarization of the hydrogen–halogen bond proto- nate the double bond. A rapid transfer of the halide ion from the surface follows affording predominantly the syn addition products. Highly acidic solid catalysts (K10 montmorillonite, ZF520 zeolite) yield the Markovnikov addition product
  • 7. 6 Addition Reactions  with high selectivity when methylcyclohexene is reacted with SOCl2 as the HCl precursor.149 C6H13CH=CH2 CH2Cl2, 25 °C C6H13CHCH3 X (COCl)2, Al2O3, 1 h, X = Cl 98% HBr, SiO2, 0.7 h, X = Br 96% Me3SiI, SiO2, 1 h, X = I 98% (6.18) A study using core-electron spectroscopy on the addition of HCl to ethylene, propylene, and isobutylene in the gas phase concludes that a significant portion of the difference between Markovnikov and anti-Markovnikov addition is also due to the charge distribution in the initial state and not to different ability of the molecules to delocalize the added charge in the transition state.150 The increase in reactivity with increasing substitution of the double bond is also strongly influenced by the initial-state charge distribution. The Me3SiCl and water system is a convenient reagent for the selec- tive hydrochlorination of alkenes. The anti selective manner of addition was shown to occur by reacting 9(10)-octalin to afford 4α-chloro-trans- decahydronaphthaline exclusively.151 Dienes Reaction of allenes with HCl and HBr was mostly studied.3,112 Depending on the reagent, reaction conditions, and the structure of the react- ing molecule, markedly different product distributions may be obtained.29,152 Monoalkyl-substituted allenes give predominantly the corresponding 2-halo- 2-alkenes. Phenylallene, in contrast, is converted exclusively to cynnamyl chlo- ride153 [Eq. (6.19)]. Mechanistic studies established the formation of carboca- tion intermediate 14 stabilized by the conjugation with the phenyl ring. PhCH=C=CH2 HCl Cl– AcOH, rt, 48 h [PhCH CH CH2] + PhCH CH CH2 Cl 14 95% (6.19) Mixtures of isomeric allylic chlorides are formed when 1,1-disubstituted allenes react with HCl. 1,3-Disubstituted allenes yield products of both central and ter- minal carbon attacks. In contrast, selective transformations occur with HBr. Photocatalytic addition of HBr in the gas phase selectively gives vinylic bro- mides154 [Eq. (6.20)], whereas hydrobromination in the solution phase yields allylic bromides155 [Eq. (6.21)]. C=C=CH2 Me Me HBr Et2O, rt, 5 days C Me Me C Me Br C=CH Me Me CH2Br 97% 80% HBr 900 W mercury lamp (6.20) (6.21)
  • 8.  Hydrocarbon Chemistry Similar differences may be observed in hydrobromination of tetrasubstituted allenes. Ring size and reaction conditions determine the outcome of hydro- bromination of cyclic allenes.112 In gas-phase hydrobromination, where a radi- cal mechanism is operative, the bromine atom always adds to the central carbon atom of the allenic system. As a result, vinylic bromides are formed through the stable allylic radical. In the solution phase under ionic addition conditions, either the vinylic or the allylic cation may be the intermediate resulting in non- selective hydrobromination. Allylic rearrangement or free-radical processes may also affect product distributions. Conjugated dienes may yield mixtures of products of 1,2- or 1,4-addition. Product of 1,4-addition may be the initial product or may actually be formed by 1,2-addition followed by isomerization. In any event, however, formation of the 1,4-product involves isomerization of a carbocation. Addition of HCl to buta-1,3-diene in the gas phase was shown to be a surface- catalyzed reaction occurring at the walls between a multilayer of adsorbed HCl and gaseous or weakly adsorbed buta-1,3-diene.156 The initial proton transfer to the terminal carbon and the chloride attack occur almost simultaneously. Chloride attack at C(2) or C(4) has equal probability thus producing equal amounts of 1,2- and 1,4-addition. The addition of 1 mol of HCl or HBr to isoprene yields the corresponding primary halide produced through the rearrangement of the initially formed tertiary halide112 [Eq. (6.22)]. The addition of a second molecule of hydrogen halide gives the 1,3-dihalo compounds in good yields.157 X X X X HX HX (6.22) Addition of DBr to cyclohexa-1,3-diene occurs by a 1,2-anti and 1,4-syn process,158 a conclusion also predicted by molecular orbital calculations.159 Stereospecific allylic rearrangement of the 1,2-trans product, however, even- tually produces a reaction mixture containing predominantly cis prod- ucts. A single chloro compound, trans-1-phenyl-3-chlorobut-1-ene (16), is formed in hydrochlorination of isomeric 1-phenylbuta-1,3-dienes in AcOH160 (Scheme 6.4). The observation is interpreted by the formation of isomeric allylic carbocations cis-15 and trans-15. Rapid rotation of cis-15 to trans-15 before captured by the chloride ion ensures selective formation of 16. Alkynes Because of their less nucleophilic character, alkynes react less readily with hydrogen halides than alkenes and often require the use a metal halide catalyst. Vinyl halides are formed in the reaction with 1 equiv of HX. They may react further in an excess of the reagent to yield geminal dihalides. High yields of these compounds can be obtained. The addition of HCl to acetylene was studied in detail because of the practical importance of the product vinyl chloride (see Section 6.2.4).
  • 9. 6 Addition Reactions  Ph Ph HCl AcOH,18 °C Ph HCl AcOH,18 °C Ph Cl− Ph cis-15 trans-15 16 Cl + + Scheme . In accordance with the Markovnikov rule, terminal alkynes are converted to 2-halo-1-alkenes. The reagents prepared in the reaction of anhydrous HF with organic bases and used in hydrofluorination of alkenes can add to the carbon– carbon triple bond producing Markovnikov products.114–116,118,119 Similar results were found with the use of DMPU [1,3-dimethyl-3,4,5,6-tetrahydro- 2(1H)-pyrimidinone] an inexpensive, readily available hydrogen bond acceptor forming a stable complex with HF.161 It can act as a nucleophilic fluorinating agent and exhibits high activity and selectivity in gold-catalyzed mono- and difluorination of alkynes to fluoroalkenes and difluoromethylene compounds. A process induced by [Cp∗Ru(cod)Cl] and PPh3 provides access to vinyl chlo- rides through formal Markovnikov addition to terminal alkynes at room tem- perature.162 However, 1-bromo-1-alkenes and 1,2-dibromoalkanes are formed when hydrobromination is carried out in the presence of peroxides.163,164 Reactions with reagents or reactants labeled appropriately with deuterium indicate that the products are formed in nonselective additions.165,166 The mercury(II)- catalyzed addition of HCl and HBr to propyne takes place with anti stereose- lectivity.163 Catalytic anti-Markovnikov hydrobromination of terminal alkynes with high chemo- and stereoselectivity was also accomplished by Lalic and coworkers with the use of (IPr)CuCl (IPr = 17a), Ph2SiH2, and (BrCl2C)2 in the presence of ortho-tert-butyl potassium phenoxide.167 The latter serves as the turnover reagent. The key step is a highly anti-Markovnikov and syn-selective hydrocupration followed by electrophilic bromination (Scheme 6.5). Gold bifluoride complexes [{Au(17b)(NEt3)}(HF2)] and [{Au(17c)(NEt3)}(HF2)] are efficient catalysts in the hydrofluorination of unsymmetrical and (IPr)Cu−Cl R (IPr)Cu−H Ph2SiH2 (IPr)Cu R (BrCl2C)2 Br R K 2-(tBu)phenoxide toluene, 25 °C Scheme .
  • 10.  Hydrocarbon Chemistry symmetrical alkynes, respectively, to provide fluorinated styrene and stil- bene derivatives (90–99% yield, 3 equiv Et3N∙3 HF, 1.5 equiv NH4BF4, rt, 5 days or 24 h).168 R R .. 17a R = iPr, R' = H 17b R = Ph2CH, R' = Me 17c R = (pTol)2CH, R' = Me R R R' R' Dialkyl- and alkylarylacetylenes may react in a stereoselective manner yielding anti and syn products, respectively.36,165,166,169 Hex-3-yne, for instance, gives mainly trans-3-chlorohex-3-ene in hydrochlorination through an anti AdE3 transition state (18). In contrast, formation of (E)-1-phenyl-1-chloropropene 19, the syn product in hydrochlorination of 1-phenylpropyne in AcOH [Eq. (6.23)], involves ion-pair intermediate 22.165 The two mechanisms com- pete, and reaction conditions can affect selectivities. For example, stereoiso- meric compound 20 is formed through the anti AdE3 transition state 23 in the presence of a large amount of Me4NCl. Since the positive charge in this tran- sition state is not stabilized by the phenyl group as in 22, an increased amount of the regioisomeric 21 is also formed through transition state 24. Ph Me Cl Ph Me Cl Ph Me Ph Me Cl + + without Me4NCl 80% 12% 0.3% with 1 M Me4NCl 30% 51% 10% 19 20 21 + HCl AcOH, 25 °C (6.23) C Et Cl C Et HCl− C Ph Cl C Me HCl− C Ph − ClH C Me Cl C C Me H Ph + Cl− 18 22 23 24 Surface-mediated addition of HCl, HBr, and HI to 1-phenylpropyne in the pres- ence of silica or alumina yields initially the corresponding E-isomer as a result of the syn addition.170 Rapid isomerization in excess reagents allows the forma- tion of the thermodynamically more stable Z-isomers. Mixtures of HCl and but-2-yne were reacted in the gas phase in a Pyrex IR cell between 23 and 63 ◦C to yield only (Z)-2-chlorobut-2-ene.171 The pro- cess is suggested to be initiated and the rate determined by surface-assisted proton–alkyne interaction. Donation of the proton occurs from within a mul- tilayer found on the wall, that is, from an HCl molecule not directly attached to the wall. Hydrogen halides may add to acetylenes in a similar way to afford alkenyl halides.172 The use of silica and alumina, in this case, provides a simple means for facilitating addition of hydrogen halides to alkynes that does not occur read- ily in solution. 1-Phenylpropyne yields the corresponding syn addition product
  • 11. 6 Addition Reactions  25, which isomerizes on extended treatment [Eq. (6.24)]. Addition of HBr or HI to alkylacetylenes, such as oct-4-yne, in turn, affords primarily the anti addition products. The change in mechanism may be due to the difficulty in forming an alkyl cation lacking stabilization by the Ph substituent thereby requiring simul- taneous nucleophilic trapping from the opposite side of the alkyne by an HX molecule (AdE3-type addition). (COCl)2, Al2O3 CH2Cl2, rt Ph Cl Me Ph Cl Me + 0.3 h 85% 14% 3 h 3% 96% 25 Ph Me (6.24) Markovnikov addition products can be synthesized through highly-selective hydroiodination by combining I2 with Ph2P(O)H or (PhO)2P(O)H and Ph2P(O)OH.173 A carbon nanocomposite doped with nitrogen via treatment with ammonia derived from silicon carbide proved to be an active and selec- tive catalyst in transforming acetylene to vinyl chloride (80% conversion, 98% selectivity, 200 ◦C).174 Carbon atoms bonded to pyrrolic nitrogen were shown to be the active sites. 6.2.2 Hypohalous Acids and Hypohalites Hypohalous acids either preformed or prepared in situ readily add to carbon– carbon multiple bonds.175–177 The addition is an electrophilic reaction with the positive halogen attaching itself predominantly to the less substituted carbon. The Markovnikov rule, therefore, is followed in most cases. The addition of the elements of hypohalous acids may be carried out by the use of reagents serving as positive halogen sources in the presence of water. Most of the data published concern additions to monoolefins, and very little is known about the transfor- mations of dienes and alkynes. The addition of hypochlorous acid to alkenes was an important industrial reaction to manufacture chlorohydrins (see Sec- tion 6.2.4), which were then transformed to oxiranes. The so-called chloro- hydrination process once accounted for about 50% of the U.S. production of oxiranes has largely been replaced by direct epoxidation processes. Limited data are available on hypofluorous acid, which is a very reactive and an explosive reagent.178 Exceptionally among hypohalous acids, it is polarized in the sense HOδ+–Fδ−. It converts alkenes into fluoroalkanols with regioselec- tivities opposite to other hypohalous acids [Eq. (6.25)]. The large amount of HF present may affect the actual mechanism of addition. Me OH F Me HOF CCl4, −50 °C 90% (6.25)
  • 12.  Hydrocarbon Chemistry Hypochlorous acid and hypobromous acid react with acyclic alkenes to give Markovnikov products. In striking contrast, exclusive anti-Markovnikov ori- entation was observed in the transformation of methylenecycloalkanes with HOBr, and mixtures of chlorohydrins were formed with HOCl179 [Eq. (6.26)]. This was attributed to the fact that the open tertiary carbocation leading to Markovnikov products are unfavorable in these ring systems. A convenient syn- thesis of chlorohydrins is based on the use of Chloramine T (TosNClNa) as the positive chlorine source in water–acetone.180 It adds to a variety of alkenes to form Markovnikov and anti-Markovnikov products in a ratio of 4:1. (CH2)n C=CH2 HOX H2O, below 15 °C + n = 3−6 X = Cl 35−67% 32−64% 64−92% yield X = Br 100% 67−87% yield (CH2)n CH2OX C OH CH2OH C X (CH2)n (6.26) Since the reaction of I2+H2O with alkenes is an equilibrium process, the use of oxidizing agents allows one to shift the equilibrium by oxidizing the I− formed.181,182 Substituted cyclohexenes can be converted to iodohydrins in regioselective and stereoselective manner with I2 and pyridinium dichro- mate.182 High yields of iodohydrins may be achieved by reacting alkenes with iodine in the presence of moist tetramethylene sulfone—CHCl3.183 Alkyl and acyl hypohalites, when adding to carbon–carbon double bond, afford halohydrin ethers and esters, respectively.184 Regioselective and syn stereoselective addition of CF3OF, CF3CF2OF, and CF3COOF to stilbenes was reported.185–187 The stereochemistry was explained to originate from the for- mation and immediate collapse of the tight ion pair 26, which might exist in equilibrium with phenonium ion 27 [Eq. (6.27)]; RF stands for perfluoroalkyl groups]. Ph CH CH F Ph + − ORF F H H Ph + 26 27 −ORF (6.27) Other alkyl hypohalites usually add to carbon–carbon multiple bonds in a free- radical process.188–191 Ionic additions may be promoted by oxygen, BF3, or B(OMe)3.189–193 While the BF3-catalyzed reaction of alkyl hypochlorites and hypobromites gives mainly halofluorides,192 haloethers are formed in good yields but nonstereoselectively under other ionic conditions.189–193 In contrast, tert-BuOI reacts with alkenes in the presence of a catalytic amount of BF3 to produce 2-iodoethers.194 Since the addition is stereoselective, this suggests the participation of a symmetric iodonium ion intermediate without the involve- ment of carbocationic intermediates.
  • 13. 6 Addition Reactions  1,2-Halohydrin derivatives may also be formed when the cationic interme- diates in any electrophilic halogenations are intercepted by appropriate oxygen nucleophiles.177 In alcohol and carboxylic acid solvents, halohydrin ethers and esters, respectively, may be formed. Such solvent incorporated products often observed in halogenations provide valuable mechanistic information. Halogenation with elemental halides, however, requires appropriate adjust- ment of reaction conditions to obtain satisfactory yields and selectivities. Chemoselectivity—the probability of the attack of different nucleophiles (Br− vs. MeOH) present—was shown to depend on charge distribution on the two carbon atoms in the cyclic bromonium ion intermediate.195 A study of bromination of acyclic olefins in MeOH revealed that geminal dialkyl-substituted and trisubstituted alkenes give the best selectivities of the 2-bromomethoxy product.196 Other positive halogen sources, such as tert- BuOX,177 [I(pyridine)2][BF4],197,198 and N-bromosuccinimide,199 may afford better selectivities. 6.2.3 Hydrogen Cyanide Because of its low acidity, hydrogen cyanide seldom adds to nonactivated multiple bonds. Catalytic processes, however, may be applied to achieve such additions. Metal catalysts, mainly nickel and palladium complexes, and [Co(CO)4]2 are used to catalyze the addition of HCN to alkenes known as hydrocyanation.200–206 Most studies usually utilize nickel triaryl phosphites with a Lewis acid promoter. The mechanism involves the insertion of the alkene into the Ni–H bond of a hydrido nickel cyanide complex to form a σ-alkylnickel complex.205–208 The addition of DCN to deuterium-labeled compound 28 was shown to take place with dominant (>90%) syn addition207 (Scheme 6.6). σ-Nickel complex 29 is known to be formed in a syn process. The overall syn addition requires reductive elimination to occur with the retention of configuration. H D tBu H CN D H tBu D H Ni[P(OPh)3]2 D H tBu D H CN −Ni[P(OPh)3]2 Ni[P(OPh)3]4 ZnCl2, P(OPh)3 MeCN, 60 °C C tBu H C D H Ni P(OPh)3 P(OPh)3 D CN + DCN 28 29 Scheme .
  • 14.  Hydrocarbon Chemistry Hydrocyanation of alkenes usually gives anti-Markovnikov products. Inter- estingly, however, addition of HCN to styrene yields mostly the branched (Markovnikov) adduct. This was suggested to result from stabilization of the branched alkylnickel cyanide intermediate by interaction of nickel with the aromatic ring.208 Similar branched products could be synthesized with high enantioselectivity using [Ni(cod)2] and phosphine–phosphite ligand 30 in the hydrocyanation of vinylarenes with TMS–CN (84–92% ee, THF, rt, 2 h).209 iPr O PPh2 O P O O O Ar Ar Ar Ar Ar = 3,5-Me2C6H3 30 Hydrocyanation of dienes, a process of industrial importance (see Sec- tion 6.2.4), yields 1,4-addition products when conjugated dienes are reacted. The addition involves η3-allyl intermediates (31) [Eq. (6.28)]. The stereochem- istry of hydrocyanation of cyclohexa-1,3-diene was shown to occur with syn stereoselectivity, indicating that cis migration of the cyanide anion follows the formation of the (π-allyl)nickel complex.210 CN D NC D D Ni[P(OPh)3]4 P(OPh)3, MeCN, 60 °C + DCN Ni[P(OPh)3]2 CN + 31 1 : 1 (6.28) Nonconjugated dienes (penta-1,4-diene, hexa-1,5-diene) are transformed mainly to products originating from conjugated dienes formed by isomeriza- tion.211 In contrast, octa-1,7-diene in which the double bonds are separated by four methylene groups preventing isomerization to conjugated dienes, yields mainly isomeric mononitriles. HCN adds more readily to alkynes than to alkenes.212 The addition of HCN to acetylene catalyzed by Cu+ ions was once a major industrial process to man- ufacture acrylonitrile carried out in the presence of copper(I) chloride, NH4Cl, and HCl213 (see Section 6.2.4). Zerovalent Ni and Pd complexes are effec- tive catalysts in hydrocyanation of alkynes as well.201 Diphenylacetylene gives excellent yields in producing the syn addition product214 [Eq. (6.29)]. Much lower yields are achieved when terminal alkynes react with HCN. Terminal nitriles formed due to mainly steric factors are the main products. Regio- and
  • 15. 6 Addition Reactions  stereoselectivities similar to those in hydrocyanation of alkenes indicate a very similar mechanism. Ni[P(OPh)3]4 P(OPh)3 benzene, 120 °C 93% toluene, ZnCl2, 60 °C 82% + HCN H CN Ph Ph Ph Ph (6.29) 6.2.4 Practical Applications Ethyl Chloride Hydrochlorination of ethylene with HCl is carried out in either the vapor or the liquid phase, in the presence of a catalyst.215–217 Ethyl chloride or 1,2-dichloroethane containing less than 1% AlCl3 is the reaction medium in the liquid-phase process operating under mild conditions (30–90 ◦C, 3–5 atm). In new plants, supported AlCl3 or ZnCl2 is used in the vapor phase. Equimo- lar amounts of the dry reagents are reacted in a fluid- or fixed-bed reactor at elevated temperature and pressure (250–400 ◦C, 5–15 atm). Both processes provide ethyl chloride with high (98–99%) selectivity. A highly economical production of ethyl chloride combines radical ethane chlorination and ethylene hydrochlorination.218,219 Called the Shell integrated process, it uses the hydrogen chloride produced in the first reaction to carry out the second addition step [Eq. (6.30)]. Ethyl chloride was used in the manufac- ture of the antiknock agent tetraethyllead, which is, however, phased out. CH3CH3 + Cl2 CH3CH2Cl + HCl CH3CH2Cl CH2=CH2 (6.30) Hydrochlorination of Buta-,-diene A historic process for the synthesis of adiponitrile was the transformation of buta-1,3-diene through 1,4- dichlorobutene.220 Addition of HCl was carried out in the vapor phase (125– 230 ◦C) in an excess of buta-1,3-diene. A mixture of isomeric dichlorobutenes (3,4-dichlorobut-1-ene, cis- and trans-1,4-dichlorobut-2-ene) was formed. They underwent further transformations to form the dicyanides and then, after hydrogenation, to give adiponitrile. Vinyl Chloride Vinyl chloride is an important monomer in the manufacture of polyvinyl chloride and vinyl polymers. Two basic transformations are in com- mercial use.221–223 The catalytic hydrochlorination of acetylene, once an impor- tant industrial route is now of limited use. Because of the high-energy require- ments of acetylene production, this process has been largely replaced by the ethylene chlorination–oxychlorination reaction (see Section 6.3.4). The catalytic hydrochlorination of acetylene221–223 demands high-quality reactants. Acetylene must be free of catalyst poisons (S, P, As), and HCl must not contain chlorine. Since water reacts with the product vinyl chloride to give
  • 16.  Hydrocarbon Chemistry acetaldehyde and HCl, the reactants must be dry. In the more widely used vapor-phase synthesis, the premixed reactants with a slight excess of HCl are fed into a multitube fixed-bed reactor kept at about 200 ◦C. The catalyst is almost invariably the superior mercury(II) chloride supported on active car- bon. Certain additives (Ce, Th, and Cu chlorides) are used to suppress the loss of the volatile HgCl2. High conversion (near 100%) and high selectivity (98%) are achieved. The addition of a second molecule of HCl to vinyl chloride may produce 1,1-dichloroethane, the only significant by-product. Ethylene Chlorohydrin Two industrial processes were used in the synthesis of ethylene chlorohydrin,215,224 which, in turn, was transformed to ethylene oxide. Since the direct oxidation of ethylene to ethylene oxide is more economical, these technologies are being abandoned. Ethylene was reacted with chlorine water, or with a mixture of hydrated lime and chlorine. In the latter case Ca(OCl)2 formed decomposes to yield HOCl. The aqueous opening of the intermediate chloronium ion leads to the formation of the product. Ethylene chlorohydrin was subsequently cyclized to ethylene oxide by addition of calcium hydroxide. Propylene Chlorohydrin Propylene chlorohydrin is synthesized with the aim of producing propylene oxide. Although the latter is manufactured commercially mainly by the direct oxidation of propylene, the chlorohydrination process is still in limited use. In an older version of the synthesis, propylene and chlorine react in an aqueous solution to form propylene chlorohydrin.225–227 The slightly exother- mic reaction maintains the 30–40 ◦C reaction temperature to yield isomeric propylene chlorohydrins (1-chloropropan-2-ol/2-chloropropan-1-ol = 9:1). The main by-product is 1,2-dichloropropane formed in amounts up to 10%. The product propylene chlorohydrin then undergoes saponification to propy- lene oxide with calcium hydroxide or sodium hydroxide. Because of technological difficulties of this second step (large amount of wastewater, concentration of the NaCl solution before electrolysis to produce chlorine) a modified synthesis was developed by Lummus.228 Instead of HOCl, tert-butyl hypochlorite generated by reacting tert-butyl alcohol and chlorine in sodium hydroxide solution is used for the chlorohydrination step. An organic phase containing the reagent reacts with propylene and water to produce propylene chlorohydrin and tert-butyl alcohol. The latter is recycled to the first stage to regenerate the reagent. Adiponitrile Adiponitrile is an important intermediate in polyamide manufac- ture. Hexamethylene-1,6-diamine formed by the hydrogenation of adiponitrile is used in the production of nylon-6,6, one of the most important polyamides in commercial production. Among other nonaddition processes, adiponitrile may be manufactured by the direct hydrocyanation of buta-1,3-diene (DuPont process).202,220,229 A
  • 17. 6 Addition Reactions  CH2=CHCH=CH2 Ni0 HCN CH3CH=CHCH2 CN CH2=CHCHCH3 CN 32 33 CH2=CHCH2CH2 CN HCN CH2CH2CH2CH2 NC CN Scheme . homogeneous Ni(0) complex catalyzes both steps of addition of HCN to the olefinic bonds (Scheme 6.7). The isomeric monocyanobutenes (32 and 33) are first formed in a ratio of approximately 1:2. All subsequent steps, the isomeriza- tion of 32 to the desired 1,4-addition product 33, a further isomerization step (double-bond migration), and the addition of the second molecule of HCN, are promoted by Lewis acids (ZnCl2 or SnCl2). The last step without Lewis acids is much slower than the addition of the first molecule of HCN. Reaction temper- atures below 150 ◦C are employed. Acrylonitrile Acrylonitrile an important monomer in numerous polymer- ization processes is mainly produced from propylene by ammoxidation (see Section 9.5.3). In the traditional process, the major industrial route in the 1950s and 1960s, an aqueous solution of copper(I) chloride, NH4Cl and HCl was reacted with acetylene and hydrogen cyanide213,230 [Eq. (6.31)]. Coordination of the metal ion activates the carbon–carbon triple bond toward nucleophilic attack to yield σ-vinyl complex 34, which is a characteristic pathway of metal-catalyzed additions to the acetylenic bond. Protolysis of 34 gives the end product. CH HC CuCl, NH4Cl, HCl H2O, 80−90 °C 1−3 atm + HCN CH HC C Cu H C CN H Cu+ CN− H+ CH2=CH C N 34 (6.31)
  • 18. 6 Addition Reactions  References  M. Liler, Reaction Mechanisms in Sulphuric Acid and Other Strong Acid Solutions, Academic Press, London, 1971, Chapter 5, p. 167.  F. Asinger, Mono-Olefins, Chemistry and Technology, Pergamon Press, Oxford, 1968, Chapter 7, p. 628.  G.H. Schmid, D.G. Garratt, in Supplement A: The Chemistry of Double-Bonded Functional Groups, S. Patai, ed., The Chemistry of Functional Groups, John Wiley & Sons, London, 1977, Chapter 9, p. 725.
  • 19.  Hydrocarbon Chemistry  V.J. Nowlan, T.T. Tidwell, Acc. Chem. Res., 10, 252 (1977).  F.A. Long, M.A. Paul, Chem. Rev., 57, 942 (1957).  Y. Chiang, A.J. Kresge, J. Am. Chem. Soc., 107, 6363 (1985).  Y. Inoue, T. Ueoka, T. Kuroda, T. Hakushi, J. Chem. Soc., Perkin Trans. 2, 983 (1983).  M. Misono, N. Nojiri, Appl. Catal., 64, 1 (1990).  J. Meuldijk, G.E.H. Joosten, E.J. Stamhuis, J. Mol. Catal., 37, 75 (1986).  J. Tejero, F. Cunill, M. Iborra, J. Mol. Catal., 42, 257 (1987).  S. Randriamahefa, R. Gallo, G. Raoult, P. Mulard, J. Mol. Catal., 49, 85 (1988).  F. Fajula, R. Ibarra, F. Figueras, C. Gueguen, J. Catal., 89, 60 (1984).  M. Iwamoto, M. Tajima, S. Kagawa, J. Chem. Soc., Chem. Commun., 228 (1985).  K. Eguchi, T. Tokiai, H. Arai, Appl. Catal., 34, 275 (1987).  M. Balogh, P. Laszlo, Organic Chemistry Using Clays, Springer, Berlin, 1993, Chapter 2, p. 37.  F.J. Waller, ACS Symp. Ser., 308, 42 (1986).  G.A. Olah, Belg. Patent 889,943 (1982).  W.R. Cares, U.S. Patent 4,065,512 (1977).  J. McEwen, K. Yates, J. Am. Chem. Soc., 109, 5800 (1987).  J.A. Marshall, Acc. Chem. Res., 2, 33 (1969).  G.J. Kavarnos, N.J. Turro, Chem. Rev., 86, 401 (1986).  R.A. Neunteufel, D.R. Arnold, J. Am. Chem. Soc., 95, 4080 (1973).  Y. Shigemitsu, D.R. Arnold, J. Chem. Soc., Chem. Commun., 407 (1975).  Y. Inoue, T. Okano, N. Yamasaki, A. Tai, J. Chem. Soc., Chem. Commun., 718 (1993).  K. Mizuno, I. Nakanishi, N. Ichinose, Y. Otsuji, Chem. Lett., 1095 (1989).  J.M. Adams, J.A. Ballantine, S.H. Graham, R.J. Laub, J.H. Purnell, P.I. Reid, W.Y.M. Shaman, J.M. Thomas, J. Catal., 58, 238 (1979).  C.H. Collins, G.S. Hammond, J. Org. Chem., 25, 911 (1960).  J.K. Stille, R.D. Hughes, J. Org. Chem., 36, 340 (1971).  T.L. Jacobs, in The Chemistry of the Allenes, Vol. 2: Reactions, S.R. Landor, ed. Academic Press, London, 1982, Chapter 5.4, p. 417.  A.V. Fedorova, A.A. Petrov, J. Gen. Chem. USSR (Engl. Transl.), 32, 1740 (1962).  J.L. Jensen, V. Uaprasert, J. Org. Chem., 41, 649 (1976).  W.K. Chwang, P. Knittel, K.M. Koshy, T.T. Tidwell, J. Am. Chem. Soc., 99, 3395 (1977).  G. Dong, P. Teo, Z.K. Wickens, R.H. Grubbs, Science, 333, 1609 (2011).  B.L. Conley, M.K. Pennington-Boggio, E. Boz, T.J. Williams, Chem. Rev., 110, 2294 (2010).  K. Takahashi, M. Yamashita, K. Nozaki, J. Am. Chem. Soc., 134, 18746 (2012).  Y. Yang, J. Guo, H. Ng, Z. Chen, P. Teo, Chem. Commun., 50, 2608 (2014).
  • 20. 6 Addition Reactions   G.H. Schmid, in The Chemistry of the Carbon-Carbon Triple Bond, S. Patai, ed., John Wiley & Sons, Chichester, 1978, Chapter 8, p. 275.  G.A. Olah, D. Meidar, Synthesis, 671 (1978).  I.K. Meier, J.A. Marsella, J. Mol. Catal., 78, 31 (1993).  Y. Fukuda, K. Utimoto, J. Org. Chem., 56, 3729 (1991).  M.M. Taqui Khan, S.B. Halligudi, S. Shukla, J. Mol. Catal., 58, 299 (1990).  (a) W. Hiscox, P.W. Jennings, Organometallics, 9, 1997 (1990). (b) J.W. Hartman, W.C. Hiscox, P.W. Jennings, J. Org. Chem., 58, 7613 (1993).  N.X. Hu, Y. Aso, T. Otsubo, F. Ogura, Tetrahedron Lett., 27, 6099 (1986).  T. Tsuchimoto, T. Joya, E. Shirakawa, Y. Kawakami, Synlett, 1777 (2000).  Z. Nairoukh, D. Avnir, J. Blum, ChemSusChem, 6, 430 (2013).  S. Liang, G.B. Hammond, B. Xu, Chem. Commun., 51, 903 (2015).  Y. Chiang, A.J. Kresge, M. Capponi, J. Wirz, Helv. Chim. Acta, 69, 1331 (1986).  X. Liu, L. Liu, Z. Wang, X. Fu, Chem. Commun., 51, 11896 (2015).  B.C. Ranu, A. Sarkar, M. Saha, R. Chakraborty, Tetrahedron, 50, 6579 (1994).  M. Setty-Fichman, Y. Sasson, J. Blum, J. Mol. Catal., A: Chem., 126, 27 (1997).  T. Suzuki, M. Tokunaga, Y. Wakatsuki, Org. Lett., 3, 735 (2001).  L. Li, M. Zeng, S.B. Herzon, Angew. Chem., Int. Ed., 53, 7892 (2014).  M. Zeng, L. Li, S.B. Herzon, J. Am. Chem. Soc., 136, 7058 (2014).  L. Li, S.B. Herzon, J. Am. Chem. Soc., 134, 17376 (2012).  J.A. Goodwin, A. Aponick, Chem. Commun., 51, 8730 (2015).  (a) F. Li, N. Wang, L. Lu, G. Zhu, J. Org. Chem., 80, 3538 (2015). (b) A.K. Das, S. Park, S. Muthaiah, S.H. Hong, Synlett, 26, 2517 (2015).  S. Liang, J. Jasinski, G.B. Hammond, B. Xu, Org. Lett., 17, 162 (2015).  Y. Xu, X. Hu, S. Zhang, X. Xi, Y. Wu, ChemCatChem, 8, 262 (2016).  Y. Xu, X. Hu, J. Shao, G. Yang, Y. Wu, Z. Zhang, Green Chem., 17, 532 (2015).  E. Mizushima, K. Sato, T. Hayashi, M. Tanaka, Angew. Chem., Int. Ed., 41, 4563 (2002).  N. Marion, R.S. Ramón, S.P. Nolan, J. Am. Chem. Soc., 131, 448 (2009).  M. Gatto, P. Belanzoni, L. Belpassi, L. Biasiolo, A. Del Zotto, F. Tarantelli, D. Zuccaccia, ACS Catal., 6, 7363 (2016).  G. Velegraki, M. Stratakis, J. Org. Chem., 78, 8880 (2013).  W.J. Tapp, Ind. Eng. Chem., 40, 1619 (1948); 42, 1698 (1950); 44, 2020 (1952).  H.-J. Arpe, Industrial Organic Chemistry, 5th ed., Wiley-VCH, Weinheim, 2010, Chapter 8, p. 198.  J.C. Fielding, in Propylene and Its Industrial Derivatives, E.G. Hancock, ed., John Wiley & Sons, Inc., New York, 1973, Chapter 6, p. 214.  P.D. Sherman, Jr., P.R. Kavasmaneck, in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., Vol. 9, M. Grayson, D. Eckroth, eds. Wiley-Interscience, New York, 1980, p. 338.  A.E. Sommer, R. Bücker, in Encyclopedia of Chemical Processing and Design, Vol. 19, J.J. McKetta, W.A. Cunningham, eds. Marcel Dekker, New York, 1983, p. 445.
  • 21.  Hydrocarbon Chemistry  M.R. Schoenberg, J.W. Blieszner, C.G. Papadopolulos, in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., Vol. 19, M. Grayson, D. Eckroth, eds. Wiley-Interscience, New York, 1982, p. 241.  Hydrocarbon Process., 56(11), 176 (1977).  W. Neier, J. Woellner, Hydrocarbon Process., 51(11), 113 (1972); Chemtech, 3, 95 (1973).  Hydrocarbon Process., 50(11), 172 (1971).  Y. Onoue, Y. Mizutani, S. Akiyama, Y. Izumi, Chemtech, 8, 432 (1978).  Petrol. Refiner, 38(11), 272 (1959).  Hydrocarbon Process Petrol. Refiner, 42(11), 194 (1963).  C.E. Loeffler, L. Stautzenberger, J.D. Unruh, in Encyclopedia of Chemical Processing and Design, Vol. 5, J.J. McKetta, W.A. Cunningham, eds., Marcel Dekker, New York, 1977, p. 358.  M. Prezelj, W. Koog, M. Dettmer, Hydrocarbon Proc., Int. Ed., 67(11), 75 (1988).  Hydrocarbon Process., 52(11), 141 (1973).  G. Yepsen, T. Witoshkin, Oil Gas J., 89(14), 68 (1991).  G. Parkinson, Chem Eng (N.Y.), 99(4), 35 (1992).  V.E. Pierce, A.K. Logwinuk, Hydrocarbon Process., Int. Ed., 64(9), 75 (1985).  M. Prezelj, Hydrocarbon Process., Int. Ed., 66(9), 68 (1987).  W.J. Piel, R.X. Thomas, Hydrocarbon Process., Int. Ed., 69(7), 68 (1990).  R.W. Reynolds, J.S. Smith, I. Steinmetz, Oil Gas J., 73(24), 50 (1975).  R. Csikos, I. Pallay, J. Laky, E.D. Radcsenko, B.A. Englin, J.A. Robert, Hydrocarbon Process., 55(7), 121 (1976).  G. Pecci, T. Floris, Hydrocarbon Process., 56(12), 98 (1977).  L.S. Bitar, E.A. Hazbun, W.J. Piel, in Encyclopedia of Chemical Processing and Design, Vol. 30, J.J. McKetta, W.A. Cunningham, eds., Marcel Dekker, New York, 1989, p. 82.  H.-J. Arpe, Industrial Organic Chemistry, 5th ed., Wiley-VCH, Weinheim, 2010, Chapter 3, p. 71.  O.C. Abraham, G.F. Prescott, Hydrocarbon Process., Int. Ed., 71(2), 51 (1992).  G.R. Muddarris, M.J. Pettman, Hydrocarbon Process., Int. Ed., 59(10), 91 (1980).  L.A. Smith, M.N. Huddleston, Hydrocarbon Process., Int. Ed., 61(3), 121 (1982).  L.S. Bitar, E.A. Hazbun, W.J. Piel, Hydrocarbon Process., Int. Ed., 63(10), 63 (1984).  J.D. Chase, B.B. Galvez, Hydrocarbon Process., Int. Ed., 60(3), 89 (1981).  J. Herwig, B. Schleppinghoff, S. Schulwitz, Hydrocarbon Process., Int. Ed., 63(6), 86 (1984).  H.L. Brockwell, P.R. Sarathy, R. Trotta, Hydrocarbon Process., Int. Ed., 70(9), 133 (1991).  K. Rock, Hydrocarbon Process., Int. Ed., 71(5), 86 (1992).
  • 22. 6 Addition Reactions   E. Pescarollo, R. Trotta, P.R. Sarathy, Hydrocarbon Process., Int. Ed., 72(2), 53 (1993).  P.M. Lange, F. Martinola, S. Oeckl, Hydrocarbon Process., Int. Ed., 64(12), 51 (1985).  H.A. Wittcoff, Chemtech, 20, 48 (1990).  V. Fattore, M.M. Mauri, G. Oriani, G. Paret, Hydrocarbon Process., Int. Ed., 60(8), 101 (1981).  A. Convers, B. Juguin, B. Trock, Hydrocarbon Process., Int. Ed., 60(3), 95 (1981).  M. Miranda, Hydrocarbon Process., Int. Ed., 66(8), 51 (1987).  A. Clementi, G. Oriani, F. Ancillotti, G. Pecci, Hydrocarbon Process., 58(12), 109 (1979).  K.R. Masters, E.A. Prohaska, Hydrocarbon Process., Int. Ed., 67(8), 48 (1988).  A. Aguiló, J.D. Penrod, in Encyclopedia of Chemical Processing and Design, Vol. 1, J.J. McKetta, W.A. Cunningham, eds., Marcel Dekker, New York, 1976, p. 114.  M. Eckert, G. Fleischmann, R. Jira, H.M. Bolt, K. Golka, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012, Vol. 1, 191.  H.-J. Arpe, Industrial Organic Chemistry, 5th ed., Wiley-VCH, Weinheim, 2010, Chapter 7, p. 168.  Petrol. Refiner, 40(11), 207 (1961).  D.F. Othmer, K. Kon, T. Igarashi, Ind. Eng. Chem., 48, 1258 (1956).  W. Li, J. Zhang, in Comprehensive Organic Synthesis II, P. Knochel, G.A. Molander, eds. Vol. 4: Addition to and Substitution at C–C π-bonds, S. Ma, J. Zhang, eds., Elsevier, Amsterdam, 2014, Chapter 4.05, p. 342.  C.M. Sharts, W.A. Sheppard, Org. React. (N.Y.), 21, 125 (1974).  R.C. Larock, W.W. Leong, in Comprehensive Organic Synthesis, B.M. Trost, I. Fleming, eds., Vol. 4: Additions to and Substitutions at C–C π-Bonds, M.F. Semmelhack, ed., Pergamon Press, Oxford, 1991, Chapter 1.7, p. 269.  N. Yoneda, Tetrahedron, 47, 5329 (1991).  G.A. Olah, J.T. Welch, Y.D. Vankar, M. Nojima, I. Kerekes, J.A. Olah, J. Org. Chem., 44, 3872 (1979).  G.A. Olah, M. Nojima, I. Kerekes, Synthesis, 779 (1973).  G.A. Olah, J.G. Shih, G.K.S. Prakash, in Fluorine: The First Hundred Years, R.E. Banks, D.W.A. Sharp, J.C. Tatlow, eds., Elsevier, Lausanne, 1986, Chapter 14, p. 377.  N. Yoneda, T. Abe, T. Fukuhara, A. Suzuki, Chem. Lett., 1135 (1983).  G.A. Olah, X.-Y. Li, Synlett, 267 (1990).  G.A. Olah, X.-Y. Li, Q. Wang, G.K.S. Prakash, Synthesis, 693 (1993).  I. Bucsi, B. Török, A.I. Marco, G. Rasul, G.K.S. Prakash, G.A. Olah, J. Am. Chem. Soc., 124, 7728 (2002).
  • 23.  Hydrocarbon Chemistry  E. Emer, L. Pfeifer, J.M. Brown, V. Gouverneur, Angew. Chem., Int. Ed., 53, 4181 (2014).  G.B. Sergeev, V.V. Smirnov, T.N. Rostovshchikova, Russ. Chem. Rev. (Engl. Transl.), 52, 259 (1983).  M.S. Kharasch, M. Kleiman, J. Am. Chem. Soc., 65, 11 (1943).  Y. Pocker, K.D. Stevens, J. Am. Chem. Soc., 91, 4205 (1969).  J.K. Stille, F.M. Sonnenberg, T.H. Kinstle, J. Am. Chem. Soc., 88, 4922 (1966).  H.C. Brown, K.-T. Liu, J. Am. Chem. Soc., 97, 600 (1975).  K.B. Becker, C.A. Grob, Synthesis, 789 (1973).  J.S. Dewar, R.C. Fahey, Angew. Chem., Int. Ed. Engl., 3, 245 (1964).  R.C. Fahey, C.A. McPherson, J. Am. Chem. Soc., 91, 3865 (1969).  Y. Pocker, R.F. Buchholz, J. Am. Chem. Soc., 92, 4033 (1970).  F.R. Mayo, J.J. Katz, J. Am. Chem. Soc., 69, 1339 (1947).  F.R. Mayo, M.G. Savoy, J. Am. Chem. Soc., 69, 1348 (1947).  R.C. Fahey, Top. Stereochem., 3, 237 (1968).  G.S. Hammond, T.D. Nevitt, J. Am. Chem. Soc., 76, 4121 (1954).  G.S. Hammond, C.H. Collins, J. Am. Chem. Soc., 82, 4323 (1960).  D.J. Pasto, G.R. Meyer, B. Lepeska, J. Am. Chem. Soc., 96, 1858 (1974).  R.C. Fahey, M.W. Monahan, J. Am. Chem. Soc., 92, 2816 (1970).  R.C. Fahey, C.A. McPherson, J. Am. Chem. Soc., 93, 2445 (1971).  F.R. Mayo, C. Walling, Chem. Rev., 27, 351 (1940).  F.W. Stacey, J.F. Harris, Jr., Org. React. (N.Y.)., 13, 150 (1963).  M.S. Kharasch, H. Engelmann, F.R. Mayo, J. Org. Chem., 2, 288 (1937).  D.H. Hey, W.A. Waters, Chem. Rev., 21, 169 (1937).  P.I. Abell, in Free Radicals, Vol. 2, J.K. Kochi, ed., Wiley-Interscience, New York, 1973, Chapter 13, p. 63.  D.J. Wilger, J.-M.M. Grandjean, T.R. Lammert, D.A. Nicewicz, Nat. Chem., 6, 720 (2014).  G.B. Sergeev, N.F. Stepanov, I.A. Leenson, V.V. Smirnov, V.I. Pupyshev, L.A. Tyurina, M.N. Mashyanov, Tetrahedron, 38, 2585 (1982).  D. Landini, F. Rolla, J. Org. Chem., 45, 3527 (1980).  P.J. Kropp, K.A. Daus, M.W. Tubergen, K.D. Kepler, V.P. Wilson, S.L. Craig, M.M. Baillargeon, G.W. Breton, J. Am. Chem. Soc., 115, 3071 (1993).  R.M. Pagni, G.W. Kabalka, R. Boothe, K. Gaetano, L.J. Stewart, R. Conaway, C. Dial, D. Gray, S. Larson, T. Luidhardt, J. Org. Chem., 53, 4477 (1988).  L. Delaude, P. Laszlo, Tetrahedron Lett., 32, 3705 (1991).  L.J. Sæthre, T.D. Thomas, S. Svensson, J. Chem. Soc., Perkin Trans. 2, 749 (1997).  P. Boudjouk, B.-K. Kim, B.-H. Han, Synth. Commun., 26, 3479 (1996).  W. Smadja, Chem. Rev., 83, 263 (1983).  T. Okuyama, K. Izawa, T. Fueno, J. Am. Chem. Soc., 95, 6749 (1973).  R.Y. Tien, P.I. Abell, J. Org. Chem., 35, 956 (1970).
  • 24. 6 Addition Reactions   A.V. Fedorova, A.A. Petrov, J. Gen. Chem. USSR (Engl. Transl.), 31, 3273 (1961).  L.M. Mascavage, H. Chi, S. La, D.R. Dalton, J. Org. Chem., 56, 595 (1991).  L. Schmerling, J.P. West, J. Am. Chem. Soc., 74, 2885 (1952).  G.S. Hammond, J. Warkentin, J. Am. Chem. Soc., 83, 2554 (1961).  K. Fukui, Tetrahedron Lett., 2427 (1965).  K. Izawa, T. Okuyama, T. Sakagami, T. Fueno, J. Am. Chem. Soc., 95, 6752 (1973).  O.E. Okoromoba, J. Han, G.B. Hammond, B. Xu, J. Am. Chem. Soc., 136, 14381 (2014).  S. Dérien, H. Klein, C. Bruneau, Angew. Chem., Int. Ed., 54, 12112 (2015).  H. Hunziker, R. Meyer, Hs.H. Günthard, Helv. Chim. Acta., 49, 497 (1966).  M.S. Kharasch, J.G. McNab, M.C. McNab, J. Am. Chem. Soc., 57, 2463 (1935).  R.C. Fahey, M.T. Payne, D.-J. Lee, J. Org. Chem., 39, 1124 (1974).  F. Marcuzzi, E. Melloni, J. Am. Chem. Soc., 98, 3295 (1976).  M.R. Uehling, R.P. Rucker, G. Lalic, J. Am. Chem. Soc., 136, 8799 (2014).  F. Nahra, S.R. Patrick, D. Bello, M. Brill, A. Obled, D.B. Cordes, D.M.Z. Slawin, D. O’Hagan, S.P. Nolan, ChemCatChem, 7, 240 (2015).  R.C. Fahey, D.J. Lee, J. Am. Chem. Soc., 88, 5555 (1966); 90, 2124 (1968).  P.J. Kropp, K.A. Daus, S.D. Crawford, M.W. Tubergen, K.D. Kepler, S.L. Craig, V.P. Wilson, J. Am. Chem. Soc., 112, 7433 (1990).  L.M. Mascavage, F. Zhang, D.R. Dalton, J. Org. Chem., 59, 5048 (1994).  P.J. Kropp, S.D. Crawford, J. Org. Chem., 59, 3102 (1994).  S. Kawaguchi, H. Masuno, M. Sonoda, A. Nomoto, A. Ogawa, Tetrahedron, 68, 9818 (2012).  X. Li, X. Pan, L. Yu, P. Ren, X. Wu, L. Sun, F. Jiao, X. Bao, Nat. Commun., 5, 3688 (2014).  R. Stroh, in Methoden der Organischen Chemie (Houben-Weyl), Vol. 5/3: Halogenverbindungen, Thieme, Stuttgart, 1962, p. 768.  A. Roedig, in Methoden der Organischen Chemie (Houben-Weyl), Vol. 5/4: Halogenverbindungen, Thieme, Stuttgart, 1960, p. 132, p. 540.  L.S. Boguslavskaya, Russ. Chem. Rev. (Engl. Transl.), 41, 740 (1972).  K.G. Migliorese, E.H. Appelman, M.N. Tsangaris, J. Org. Chem., 44, 1711 (1979).  J.G. Traynham, O.S. Pascual, Tetrahedron, 7, 165 (1959).  B. Damin, J. Garapon, B. Sillion, Synthesis, 362 (1981).  J.W. Cornforth, D.T. Green, J. Chem. Soc. C, 846 (1970).  R. Antonioletti, M. D’Auria, A. De Mico, G. Piancatelli, A. Scettri, Tetrahedron, 39, 1765 (1983).  R.C. Cambie, W.I. Noall, G.J. Potter, P.S. Rutledge, P.D. Woodgate, J. Chem. Soc., Perkin Trans. 1, 226 (1977).  M. Anbar, D. Ginsburg, Chem. Rev., 54, 925 (1954).
  • 25.  Hydrocarbon Chemistry  D.H.R. Barton, R.H. Hesse, G.P. Jackman, L. Ogunkoya, M.M. Pechet, J. Chem. Soc., Perkin Trans. 1, 739 (1974).  O. Lerman, S. Rozen, J. Org. Chem., 45, 4122 (1980).  S. Rozen, O. Lerman, J. Org. Chem., 45, 672 (1980).  C. Walling, L. Heaton, D.D. Tanner, J. Am. Chem. Soc., 87, 1715 (1965).  V.L. Heasley, C.L. Frye, G.E. Heasley, K.A. Martin, D.A. Redfield, P.S. Wilday, Tetrahedron Lett., 1573 (1970).  G.E. Heasley, V.M. McCully, R.T. Wiegman, V.L. Heasley, R.A. Skidgel, J. Org. Chem., 41, 644 (1976).  G.E. Heasley, W.E. Emery, III, R. Hinton, D.F. Shellhamer, V.L. Heasley, S.L. Rodgers, J. Org. Chem., 43, 361 (1978).  V.L. Heasley, R.K. Gipe, J.L. Martin, H.C. Wiese, M.L. Oakes, D.F. Shellhamer, G.E. Heasley, B.L. Robinson, J. Org. Chem., 48, 3195 (1983).  G.E. Heasley, M. Duke, D. Hoyer, J. Hunnicutt, M. Lawrence, M.J. Smolik, V.L. Heasley, D.F. Shellhamer, Tetrahedron Lett., 23, 1459 (1982).  V.L. Heasley, B.R. Berry, S.L. Holmes, L.S. Holstein, III, K.A. Milhoan, A.M. Sauerbrey, B.R. Teegarden, D.F. Shellhamer, G.E. Heasley, J. Org. Chem., 53, 198 (1988).  J.-E. Dubois, J.R. Chrétien, J. Am. Chem. Soc., 100, 3506 (1978).  J.R. Chrétien, J.-D. Coudert, M.-F. Ruasse, J. Org. Chem., 58, 1917 (1993).  J. Barluenga, J.M. González, P.J. Campos, G. Asensio, Angew. Chem., Int. Ed. Engl., 24, 319 (1985).  J. Barluenga, J.M. González, P.J. Campos, G. Asensio, Tetrahedron Lett., 27, 1715 (1986).  R.W. Nagorski, R.S. Brown, J. Am. Chem. Soc., 114, 7773 (1992).  D.T. Mowry, Chem. Rev., 42, 189 (1948).  (a) B.R. James, in Comprehensive Organometallic Chemistry, Vol. 8, G. Wilkinson, F.G.A. Stone, E.W. Abel, eds., Pergamon Press, Oxford, 1982, Chapter 51, p. 285. (b) A. Spencer, in Comprehensive Coordination Chemistry, Vol. 6: Applications, G. Wilkinson, R.D. Gillard, J.A. McCleverty, eds., Pergamon Press, Oxford, 1987, Chapter 61.2, p. 229. (c) L. Bini, C. Müller, D. Vogt, ChemCatChem, 2, 590 (2010). (d) T.V. RajanBabu, Org. React. (N.Y), 75, 1 (2011).  C.A. Tolman, R.J. McKinney, W.C. Seidel, J.D. Druliner, W.R. Stevens, Adv. Catal., 33, 1 (1985).  J.P. Collman, L.S. Hegedus, J.R. Norton, R.G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, 1987, Chapter 10, p. 523.  R.J. McKinney, in Homogeneous Catalysis, G.W. Parshall, S.D. Ittel, eds., Wiley-Interscience, New York, 1993, Chapter 3, p. 42.  B.W. Taylor, H.E. Swift, J. Catal., 26, 254 (1972).  E.S. Brown, in Organic Syntheses via Metal Carbonyls, Vol. 2, I. Wender, P. Pino, eds., Wiley-Interscience, New York, 1977, p. 655.
  • 26. 6 Addition Reactions   J.-E. Bäckvall, O.S. Andell, J. Chem. Soc., Chem. Commun., 1098 (1981).  C.A. Tolman, W.C. Seidel, J.D. Druliner, P.J. Domaille, Organometallics, 3, 33 (1984).  A. Falk, A.-L. Göderz, H.-G. Schmalz, Angew. Chem., Int. Ed., 52, 1576 (2013).  J.-E. Bäckvall, O.S. Andell, J. Chem. Soc., Chem. Commun., 260 (1984).  W. Keim, A. Behr, H.-O. Lühr, J. Weisser, J. Catal., 78, 209 (1982).  K. Friedrich, K. Wallenfels, in The Chemistry of the Cyano Group, Z. Rappoport, ed., Interscience, London, 1970, Chapter 2, p. 67.  J.F. Brazdil, in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, 2010.  W.R. Jackson, C.G. Lovel, J. Chem. Soc., Chem. Commun., 1231 (1982).  F. Asinger, Mono-Olefins, Chemistry and Technology, Pergamon Press, Oxford, 1968, Chapter 6, p. 506.  R.G. Striling, in Encyclopedia of Chemical Processing and Design, Vol. 20, J.J. McKetta, W.A. Cunningham, eds., Marcel Dekker, New York, 1984, p. 68.  H.-J. Arpe, Industrial Organic Chemistry, 5th ed., VCH, Weinheim, 2010, Chapter 8, p. 201.  A.W. Fleer, A.J. Johnson, C.R. Nelson, Ind. Eng. Chem., 47, 982 (1955).  Petrol. Refiner, 38(11), 245 (1959).  V.D. Luedeke, in Encyclopedia of Chemical Processing and Design, Vol. 2, J.J. McKetta, W.A. Cunningham, eds., Marcel Dekker, New York, 1977, p. 146.  J.S. Naworski, E.S. Velez, in Applied Industrial Catalysis, Vol. 1, B.E. Leach, ed., Academic Press, New York, 1983, Chapter 9, p. 239.  M.W. Newman, in Encycylopedia of Polymer Science and Engineering, 2nd ed., Supplement Volume, J.I. Kroschwitz, ed., John Wiley & Sons, Inc., New York, 1989, p. 822.  H.-J. Arpe, Industrial Organic Chemistry, 5th ed., Wiley-VCH, Weinheim, 2010, Chapter 9, p. 221.  C.E. Rowe, in Encyclopedia of Chemical Processing and Design, Vol. 8, J.J. McKetta, W.A. Cunningham, eds. Marcel Dekker, New York, 1979, p. 160.  A.C. Fyvie, Chem. Ind. (London), 384 (1964).  A.J. Gait, in Propylene and its Industrial Derivatives, E.G. Hancock, ed. John Wiley & Sons, Inc., New York, 1973, Chapter 7, p. 273.  H.-J. Arpe, Industrial Organic Chemistry, 5th ed., Wiley-VCH, Weinheim, 2010, Chapter 11, p. 275.  Hydrocarbon Process., 58(11), 239 (1979).  G.W. Parshall, J. Mol. Catal., 4, 243 (1978).  D.J. Hadley, in Propylene and Its Industrial Derivatives, E.G. Hancock, ed., John Wiley & Sons, Inc., New York, 1973, Chapter 11, p. 418.  S.T. Purrington, B.S. Kagen, T.B. Patrick, Chem. Rev., 86, 997 (1986).  S. Rozen, Acc. Chem. Res., 21, 307 (1988).
  • 27.  Hydrocarbon Chemistry  E. Block, A.L. Schwan, in Comprehensive Organic Synthesis, B.M. Trost, I. Fleming, eds., Vol. 4: Additions to and Substitutions at C–C π-Bonds, M.F. Semmelhack, ed., Pergamon Press, Oxford, 1991, Chapter 1.8, p. 329.  R.F. Merritt, F.A. Johnson, J. Org. Chem., 31, 1859 (1966).  F.R. Merritt, J. Am. Chem. Soc., 89, 609 (1967).  S. Rozen, M. Brand, J. Org. Chem., 51, 3607 (1986).  G.A. Olah, J.M. Bollinger, J. Am. Chem. Soc., 89, 4744 (1967); 90, 947 (1968).  G.A. Olah, Y.K. Mo, Y. Halpern, J. Org. Chem., 37, 1169 (1972).  G.A. Olah, D.A. Beal, P.W. Westerman, J. Am. Chem. Soc., 95, 3387 (1973).  R. Filler, Isr. J. Chem., 17, 71 (1978).  M. Zupan, in Supplement D: The Chemistry of Halides, Pseudo-Halides, and Azides, S. Patai, Z. Rappoport, eds.,The Chemistry of Functional Groups, John Wiley & Sons, Ltd., Chichester, 1983, Chapter 15, p. 657.  J.A. Wilkinson, Chem. Rev., 92, 505 (1992).  A. Gregorcic, M. Zupan, J. Org. Chem., 44, 4120 (1979).  T.C. Shieh, E.D. Feit, C.L. Chernick, N.C. Yang, J. Org. Chem., 35, 4020 (1970).  M. Zupan, A. Pollak, J. Org. Chem., 42, 1559 (1977).  M.A. Tius, Tetrahedron, 51, 6605 (1995).  S.A. Lermontov, S.I. Zavorin, I.V. Bakhtin, A.N. Pushin, N.S. Zefirov, P.J. Stang, J. Fluorine Chem., 87, 75 (1998).  S. Hara, J. Nakahigashi, K. Ishi-i, M. Sawaguchi, H. Sakai, T. Fukuhara, N. Yoneda, Synlett, 495 (1998).  T. Kitamura, K. Muta, J. Oyamada, J. Org. Chem., 80, 10431 (2015).  K.A. V’yunov, A.I. Ginak, Russ. Chem. Rev. (Engl. Transl.), 50, 151 (1981).  G.H. Schmid, in Supplement A2: The Chemistry of Double-Bonded Functional Groups, S. Patai, ed.,The Chemistry of Functional Groups, John Wiley & Sons, Ltd., Chichester, 1989, Chapter 11, p. 679.  K. Yates, G.H. Schmid, T.W. Regulski, D.G. Garratt, H.-W. Leung, R. McDonald, J. Am. Chem. Soc., 95, 160 (1973).  Yu.A. Serguchev, V.P. Konyushenko, J. Org. Chem. USSR (Engl. Transl.), 11, 1339 (1975).  M.L. Poutsma, J. Am. Chem. Soc., 87, 4285 (1965).  G.B. Sergeev, Yu.A. Serguchev, V.V. Smirnov, Russ. Chem. Rev. (Engl. Transl.), 42, 697 (1973).  G.A. Olah, Halonium Ions, Wiley-Interscience, New York, 1975, Chapter 7, p. 98.  K.W. Field, P. Kovacic, Synthesis, 135 (1969).  J.W. Strand, P. Kovacic, Synth. Commun., 2, 129 (1972).  S. Uemura, A. Onoe, M. Okano, Bull. Chem. Soc. Jpn., 47, 692 (1974).  S. Uemura, A. Onoe, M. Okano, Bull. Chem. Soc. Jpn., 47, 3121 (1974).  W.A. Nugent, Tetrahedron Lett., 3427 (1978).  T. Koyano, Bull. Chem. Soc. Jpn., 43, 3501 (1970).
  • 28. 6 Addition Reactions   H.I. Bloemink, K. Hinds, A.C. Legon, J.C. Thorn, Chem. Commun., 1321 (1994).  I.E. Markó, P.R. Richardson, M. Bailey, A.R. Maguire, N. Coughlan, Tetrahedron Lett., 38, 2339 (1997).  N.B. Barhate, A.S. Gajare, R.D. Wakharkar, A.V. Bedekar, Tetrahedron, 55, 11127 (1999).  A.J. Cresswell, S.T.-C. Eey, S.E. Denmark, Nat. Chem., 7, 146 (2015).  S. Fukuzumi, J.K. Kochi, Int. J. Chem. Kinet., 15, 249 (1983).  J.E. Dubois, F. Garnier, Spectrochim. Acta, Part A, 23, 2279 (1967).  G. Bellucci, R. Bianchini, R. Ambrosetti, J. Am. Chem. Soc., 107, 2464 (1985).  R.S. Brown, R. Gedye, H. Slebocka-Tilk, J.M. Buschek, K.R. Kopecky, J. Am. Chem. Soc., 106, 4515 (1984).  G. Bellucci, C. Chiappe, F. Marioni, J. Am. Chem. Soc., 109, 515 (1987).  R.S. Brown, H. Slebocka-Tilk, A.J. Bennet, G. Bellucci, R. Bianchini, R. Ambrosetti, J. Am. Chem. Soc., 112, 6310 (1990).  F. Garnier, R.H. Donnay, J.E. Dubois, J. Chem. Soc., Chem. Commun., 829 (1971).  A. Modro, G.H. Schmid, K. Yates, J. Org. Chem., 44, 4221 (1979).  I. Roberts, G.E. Kimball, J. Am. Chem. Soc., 59, 947 (1937).  E. Bienvenue-Goëtz, J.-E. Dubois, Tetrahedron, 34, 2021 (1978).  B. Galland, E.M. Evleth, M.-F. Ruasse, J. Chem. Soc., Chem. Commun., 898 (1990).  T.P. Hamilton, H.F. Schaefer, III, J. Am. Chem. Soc., 112, 8260 (1990).  S. Yamabe, T. Minato, Bull. Chem. Soc. Jpn., 66, 3339 (1993).  G.A. Olah, A.M. White, J. Am. Chem. Soc., 91, 5801 (1969).  G.A. Olah, T.R. Hockswender, Jr., J. Am. Chem. Soc., 96, 3574 (1974).  G.A. Olah, P.W. Westerman, E.G. Melby, Y.K. Mo, J. Am. Chem. Soc., 96, 3565 (1974).  M.-F. Ruasse, Acc. Chem. Res., 23, 87 (1990).  F. Freeman, Chem. Rev., 75, 439 (1975).  M. Eissen, D. Lenoir, Chem. Eur. J., 14, 9830 (2008).  (a) A. Podgoršek, M. Zupan, J. Iskra, Angew. Chem., Int. Ed., 48, 8424 (2009). (b) K. Yonehara, K. Kamata, K. Yamaguchi, N. Mizuno, Chem. Commun., 47, 1692 (2011).  (a) M. Karki, J. Magolan, J. Org. Chem., 80, 3701 (2015). (b) S. Song, X. Li, X. Sun, Y. Yuan, N. Jiao, Green Chem., 17, 3285 (2015).  G.E. Heasley, J.M. Bundy, V.L. Heasley, S. Arnold, A. Gipe, D. McKee, R. Orr, S.L. Rodgers, D.F. Shellhamer, J. Org. Chem., 43, 2793 (1978).  W.C. Baird, Jr., J.H. Surridge, M. Buza, J. Org. Chem., 36, 3324 (1971).  K. Smith, K.B. Fry, J. Chem. Soc., Chem. Commun., 187 (1992).  R. Herges, Angew. Chem., Int. Ed. Engl., 34, 51 (1995).  S.M. Islam, R.A. Poirier, J. Phys. Chem. A, 111, 13218 (2007); 112, 152 (2008).  M.-F. Ruasse, Adv. Phys. Org. Chem., 28, 207 (1993).
  • 29.  Hydrocarbon Chemistry  L. Forlani, in The Chemistry of Functional Groups, Supplement A3: The Chemistry of Double Bonded Functional Groups, S. Patai, ed., John Wiley & Sons, London, 1997, Chapter 8, p. 367.  G. Bellucci, C. Chiappe, R. Bianchini, D. Lenoir, R. Herges, J. Am. Chem. Soc., 117, 12001 (1995).  R. Bianchini, C. Chiappe, D. Lenoir, P. Lemmen, R. Herges, J. Grunenburg, Angew. Chem., Int. Ed. Engl., 36, 1284 (1997).  G. Bellucci, R. Bianchini, C. Chiappe, D. Lenoir, A. Attar, J. Am. Chem. Soc., 117, 6243 (1995).  H. Hopf, R. Hänel, P.G. Jones, P. Bubenitschek, Angew. Chem., Int. Ed. Engl., 33, 1369 (1994).  A. Itoh, Y. Masaki, Synlett, 1450 (1997).  S. Yano, S. Hara, Synthesis, 47, 2839 (2015).  M.L. Poutsma, J. Am. Chem. Soc., 85, 3511 (1963).  M.L. Poutsma, J. Am. Chem. Soc., 87, 2172 (1965).  R.M. Dessau, J. Am. Chem. Soc., 101, 1344 (1979).  P.S. Skell, R.R. Pavlis, J. Am. Chem. Soc., 86, 2956 (1964).  R.L. Ayres, C.J. Michejda, E.P. Rack, J. Am. Chem. Soc., 93, 1389 (1971).  H.G. Peer, Recl. Trav. Chim. Pays-Bas, 81, 113 (1962).  W.H. Mueller, P.E. Butler, K. Griesbaum, J. Org. Chem., 32, 2651 (1967).  M.L. Poutsma, J. Org. Chem., 33, 4080 (1968).  W.L. Waters, W.S. Linn, M.C. Caserio, J. Am. Chem. Soc., 90, 6741 (1968).  M.C. Findlay, W.L. Waters, M.C. Caserio, J. Org. Chem., 36, 275 (1971).  L.R. Byrd, M.C. Caserio, J. Am. Chem. Soc., 93, 5758 (1971).  T. Okuyama, K. Ohashi, K. Izawa, T. Fueno, J. Org. Chem., 39, 2255 (1974).  M.L. Poutsma, J. Org. Chem., 31, 4167 (1966).  V.L. Heasley, G.E. Heasley, R.A. Loghry, M.R. McConnell, J. Org. Chem., 37, 2228 (1972).  V.L. Heasley, G.E. Heasley, S.K. Taylor, C.L. Frye, J. Org. Chem., 35, 2967 (1970).  G.E. Heasley, V.L. Heasley, S.L. Manatt, H.A. Day, R.V. Hodges, P.A. Kroon, D.A. Redfield, T.L. Rold, D.E. Williamson, J. Org. Chem., 38, 4109 (1973).  G.E. Heasley, D.C. Hayse, G.R. McClung, D.K. Strickland, V.L. Heasley, P.D. Davis, D.M. Ingle, K.D. Rold, T.S. Ungermann, J. Org. Chem., 41, 334 (1976).  U. Husstedt, H.J. Schäfer, Synthesis, 966 (1979).  H.J. Franz, W. Höbold, R. Höhn, G. Müller-Hagen, R. Müller, W. Pritzkow, H. Schmidt, J. Prakt. Chem., 312, 622 (1970).  S. Uemura, S. Fukuzawa, A. Toshimitsu, M. Okano, H. Tezuka, S. Sawada, J. Org. Chem., 48, 270 (1983).  G. Melloni, G. Modena, U. Tonellato, Acc. Chem. Res., 14, 227 (1981).  J.A. Pincock, K. Yates, Can. J. Chem., 48, 3332 (1970).  J. Xiang, R. Yuan, R. Wang, N. Yi, L. Lu, H. Zou, W. He, J. Org. Chem., 79, 11378 (2014).
  • 30. 6 Addition Reactions   R. Bianchini, C. Chiappe, G. Lo Moro, D. Lenoir, P. Lemmen, N. Goldberg, Chem. Eur. J., 5, 1570 (1999).  R.A. Hollins, M.P.A. Campos, J. Org. Chem., 44, 3931 (1979).  V.L. Heasley, D.F. Shellhamer, L.E. Heasley, D.B. Yaeger, G.E. Heasley, J. Org. Chem., 45, 4649 (1980).  C. Chiappe, D. Capraro, V. Conte, D. Pieraccini, Org. Lett., 3, 1061 (2001).  R.W. McPherson, C.M. Starks, G.J. Fryar, Hydrocarbon Process., 58(3), 75 (1979).  (a) J.A. Cowfer, M.B. Gorensek, in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, 2001. (b) A.C. Dimian, C.S. Bildea, Chemical Process Design: Computer-Aided Case Studies, Wiley-VCH, Weinheim, 2008, Chapter 7, p. 201.  D.P. Keane, R.B. Stobaugh, P.L. Townsend, Hydrocarbon Process., 52(2), 99 (1973).  L.F. Albright, Chem. Eng. (N.Y.), 74(7), 123 (1967); 74(8), 219 (1967).  W.E. Wimer, R.E. Feathers, Hydrocarbon Process., 55(3), 81 (1976).  P. Reich, Hydrocarbon Process., 55(3), 85 (1976).  R.G. Markeloff, Hydrocarbon Process., Int. Ed., 63(11), 91 (1984).  C.N. Kenney, Catal. Rev., 11, 197 (1975).  J. Villadsen, H. Livbjerg, Catal. Rev., 17, 203 (1978).  E. Cavaterra, Hydrocarbon Process., Int. Ed., 67(12), 63 (1988).  E.W. Wong, C.P. Ambler, W.J. Baker, J.C. Parks, Jr., Hydrocarbon Process., Int. Ed., 71(8), 129 (1992).  Hydrocarbon Process., 54(11), 217 (1975).  C.E. Hollis, Chem. Ind. (London), 1030 (1969).  (a) H.N. Sun, J.P. Wristers, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, 2012, Vol. 4, p. 365. (b) M. Dahlmann, J. Grub, E. Löser, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2013.  C.A. Stewart, Jr., T. Takeshita, M.L. Coleman, in Encyclopedia of Polymer Science and Engineering, 2nd ed., Vol. 3, J.I. Kroschwitz, ed., Wiley-Interscience, New York, 1985, p. 441.  H.-J. Arpe, Industrial Organic Chemistry, 5th ed., Wiley-VCH, Weinheim, 2010, Chapter 10, p. 252.  (a) A.L. Reznichenko, K.C. Hultzsch, Org. React., 88, 1 (2015). (b) V.I. Isaeva, L.M. Kustov, Top. Catal., 59, 1196 (2016).  Y. Takemoto, H. Miyabe, in Comprehensive Organometallic Chemistry III, R.H. Crabtree, D.M.P. Mingos, eds., Vol. 10: Applications II: Transition Metal Compounds in Organic Synthesis 1, I. Ojima, ed., Elsevier, Amsterdam, 2007, Chapter 10.15, p. 695.  Z. Li, D.D. Capretto, C. He, Modern Gold Catalyzed Synthesis, A.S. Hashmi, F.D. Toste, eds., Wiley-VCH, Weinheim, 2012, Chapter 12, p. 297, p. 309.
  • 31.  Hydrocarbon Chemistry  (a) F. Alonso, I.P. Beletskaya, M. Yus, Chem. Rev., 104, 3079 (2004). (b) G. Evano, A.-C. Gaumont, C. Alayrac, I.E. Wrona, J.R. Giguere, O. Delacroix, A. Bayle, K. Jouvin, C. Theunissen, J. Gatignol, A.C. Silvanus, Tetrahedron, 70, 1529 (2014).  M. Beller, J. Seayad, A. Tillack, H. Jiao, Angew. Chem., Int. Ed., 43, 3368 (2004).  M.D. Greenhalgh, A.S. Jones, S.P. Thomas, ChemCatChem, 7, 190 (2015).  (a) J.-J. Brunet, Gazz. Chim. Ital., 127, 111 (1997). (b) R. Taube, in Applied Homogeneous Catalysis with Organometallic Complexes, B. Cornils, W.A. Herrmann, eds., VCH, Weinheim, 1996, Chapter 2.7, p. 507. (c) D.M. Roundhill, Catal. Today, 37, 155 (1997). (d) T.E. Müller, M. Beller, Chem. Rev., 98, 675 (1998).  (a) T.E. Müller, K.C. Hultzsch, M. Yus, F. Foubelo, M. Tada, Chem. Rev., 108, 3795 (2008). (b) J. Hannedouche, E. Schulz, Chem. Eur. J., 19, 4972 (2013). (c) L. Huang, M. Arndt, K. Gooßen, H. Heydt, L.J. Gooßen, Chem. Rev., 115, 2596 (2015). (d) E. Bernoud, C. Lepori, M. Mellah, E. Schulz, J. Hannedouche, Catal. Sci. Technol., 5, 2017 (2015).  M.B. Gasc, A. Lattes, J.J. Perie, Tetrahedron, 39, 703 (1983).  J.-J. Brunet, D. Neibecker, F. Niedercorn, J. Mol. Catal., 49, 235 (1989).  D.M. Roundhill, Chem. Rev., 92, 1 (1992).  H. Pines, W.M. Stalick, Base-Catalyzed Reactions of Hydrocarbons and Related Compounds, Academic Press, New York, 1977, Chapter 10, p. 423.  B.W. Howk, E.L. Little, S.L. Scott, G.M. Whitman, J. Am. Chem. Soc., 76, 1899 (1954).  R.D. Closson, J.P. Napolitano, G.G. Ecke, A.J. Kolka, J. Org. Chem., 22, 646 (1957).  G.P. Pez, J.E. Galle, Pure Appl. Chem., 57, 1917 (1985).  H. Lehmkuhl, D. Reinehr, J. Organomet. Chem., 55, 215 (1973).  R.J. Schlott, J.C. Falk, K.W. Narducy, J. Org. Chem., 37, 4243 (1972).  P. Horrillo-Martı́nez, K.C. Hultzsch, A. Gil, V. Branchadell, Eur. J. Org. Chem., 3311 (2007).  M. Deeba, M.E. Ford, T.A. Johnson, J. Chem. Soc., Chem. Commun., 562 (1987).  M. Deeba, M.E. Ford, T.A. Johnson, in Catalysis, 1987, Studies in Surface Science and Catalysis, Vol. 38, J.W. Ward, ed., Elsevier, Amsterdam, 1988, p. 221.  M. Deeba, M.E. Ford, J. Org. Chem., 53, 4594 (1988).  M. Tabata, N. Mizuno, M. Iwamoto, Chem. Lett., 1027 (1991).  N. Mizuno, M. Tabata, T. Uematsu, M. Iwamoto, J. Catal., 146, 249 (1994).  K.D. Hesp, M. Stradiotto, ChemCatChem, 2, 1192 (2010).  A.L. Casalnuovo, J.C. Calabrese, D. Milstein, J. Am. Chem. Soc., 110, 6738 (1988).  M.G. Clerici, F. Maspero, Synthesis, 305 (1980).
  • 32. 6 Addition Reactions   H. Schaffrath, W. Keim, J. Mol. Catal. A: Chem., 168, 9 (2001).  R. Dorta, P. Egli, F. Zürcher, A. Togni, J. Am. Chem. Soc., 119, 10857 (1997).  I. Nakamura, H. Itagaki, Y. Yamamoto, J. Org. Soc., 63, 6458 (1998).  M. Kawatsura, J.F. Hartwig, J. Am. Chem. Soc., 122, 9546 (2000).  Y. Yang, N.I. Wong, P. Teo, Eur. J. Org. Chem., 1207 (2015).  T.M. Nguyen, N. Manohar, D.A. Nicewicz, Angew. Chem., Int. Ed., 53, 6198 (2014).  M. Utsunomiya, R. Kuwano, M. Kawatsura, J.F. Hartwig, J. Am. Chem. Soc., 125, 5608 (2003).  M. Utsunomiya, J.F. Hartwig, J. Am. Chem. Soc., 126, 2702 (2004).  J. Takaya, J.F. Hartwig, J. Am. Chem. Soc., 127, 5756 (2005).  J.C. Timmerman, B.D. Robertson, R.A. Widenhoefer, Angew. Chem., Int. Ed., 54, 2251 (2015).  S. Germain, E. Schulz, J. Hannedouche, ChemCatChem, 6, 2065 (2014).  C.S. Sevov, J. (Steve) Zhou, J.F. Hartwig, J. Am. Chem. Soc., 134, 11960 (2012).  C.B. Huehls, A. Lin, J. Yang, Org. Lett., 16, 3620 (2014).  Y. Miki, K. Hirano, T. Satoh, M. Miura, Angew. Chem., Int. Ed., 52, 10830 (2013).  X. Giner, C. Nájera, Synlett, 321 (2009).  L. Yang, L.-W. Xu, C.-G. Xia, Synthesis, 1969 (2009).  J. Gui, C.-M. Pan, Y. Jin, T. Qin, J.C. Lo, B.J. Lee, S.H. Spergel, M.E. Mertzman, W.J. Pitts, T.E. La Cruz, M.A. Schmidt, N. Darvatkar, S.R. Natarajan, P.S. Baran, Science, 348, 886 (2015).  S. Zhu, N. Niljianskul, S.L. Buchwald, J. Am. Chem. Soc., 135, 15746 (2013).  S. Zhu, S.L. Buchwald, J. Am. Chem. Soc., 136, 15913 (2014).  Y. Yang, S.-L. Shi, D. Niu, P. Liu, S.L. Buchwald, Science, 349, 62 (2015).  (a) K.D. Hesp, Angew. Chem., Int. Ed., 53, 2034 (2014). (b) Z. Sorádová, R. Šebesta, ChemCatChem, 8, 2581 (2016).  A. Couce-Rios, A. Lledós, G. Ujaque, Chem. Eur. J., 22, 9311 (2016).  D.I. Hoke, D.L. Surbey, W.R. Oviatt, J. Polym. Sci., Polym. Chem. Ed., 10, 595 (1972).  T. Fujita, K. Suga, S. Watanabe, Aust. J. Chem., 27, 531 (1974).  T. Narita, N. Imai, T. Tsuruta, Bull. Chem. Soc. Jpn., 46, 1242 (1973).  R. Baker, A.H. Cook, D.E. Halliday, T.N. Smith, J. Chem. Soc., Perkin Trans. 2, 1511 (1974).  R. Baker, D.E. Halliday, Tetrahedron Lett., 2773 (1972).  K. Takahashi, A. Miyake, G. Hata, Bull. Chem. Soc. Jpn., 45, 1183 (1972).  H. Trauthwein, A. Tillack, M. Beller, Chem. Commun., 2029 (1999).  D. Banerjee, K. Junge, M. Beller, Org. Chem. Front., 1, 368 (2014).  M.J. Goldfogel, C.C. Roberts, S.J. Meek, J. Am. Chem. Soc., 136, 6227 (2014).  O. Löber, M. Kawatsura, J.F. Hartwig, J. Am. Chem. Soc., 123, 4366 (2001).  M.L. Cooke, K. Xu, B. Breit, Angew. Chem., Int. Ed., 51, 10876 (2012).
  • 33.  Hydrocarbon Chemistry  I.A. Chekulaeva, L.V. Kondrat’eva, Russ. Chem. Rev. (Engl. Transl.), 34, 669 (1965).  W. Reppe, Justus Liebigs Ann. Chem., 601, 81 (1956).  C.W. Kruse, R.F. Kleinschmidt, J. Am. Chem. Soc., 83, 213 (1961).  P.W. Hickmott, Tetrahedron, 38, 1975 (1982).  M.F. Shostakovskii, G.G. Skvortsova, E.S. Domnina, Russ. Chem. Rev. (Engl. Transl.), 38, 407 (1969).  C.W. Kruse, R.F. Kleinschmidt, J. Am. Chem. Soc., 83, 216 (1961).  J. Barluenga, F. Aznar, R. Liz, R. Rodes, J. Chem. Soc., Perkin Trans. 1, 2732 (1980); 1087 (1983).  J. Barluenga, F. Aznar, Synthesis, 195 (1977).  J. Barluenga, F. Aznar, R. Liz, M.-P. Cabal, J. Chem. Soc., Chem. Commun., 1375 (1985).  T. Uchimaru, Chem. Commun., 1133 (1999).  E. Haak, I. Bytschkov, S. Doye, Angew. Chem., Int. Ed. Engl., 38, 3389 (1999).  M. Tokunaga, M. Eckert, Y. Wakatsuki, Angew. Chem., Int. Ed. Engl., 38, 3223 (1999).  L.-C. Lee, Y. Zhao, ACS Catal., 4, 688 (2014).  L.J. Gooßen, M. Blanchot, K.S.M. Salih, K. Gooßen, Synthesis, 2283 (2009).  L.J. Gooßen, M. Arndt, M. Blanchot, F. Rudolphi, F. Menges, G. Niedner-Schatteburg, Adv. Synth. Catal., 350, 2701 (2008).  M. Arndt, K.S.M. Salih, A. Fromm, L.J. Goossen, F. Menges, G. Niedner-Schatteburg, J. Am. Chem. Soc., 133, 7428 (2011).  B. Maity, L.J. Goossen, D. Koley, Chem. Sci., 6, 2532 (2015).  X. Zeng, G.D. Frey, S. Kousar, G. Bertrand, Chem. Eur. J., 15, 3056 (2009).  A. Tillack, V. Khedkar, M. Beller, Tetrahedron Lett., 45, 8875 (2004).  S.-L. Shi, S.L. Buchwald, Nat. Chem., 7, 38 (2014).  Q. Sun, Y. Wang, D. Yuan, Y. Yao, Qi Shen, Chem. Commun., 51, 7633 (2015).  (a) J.B. Sweeney, Chem. Soc. Rev., 31, 247 (2002). (b) T. Katsuki, in Comprehensive Coordination Chemistry II, J.A. McCleverty, T.J. Meyer, eds., Elsevier, Oxford, San Diego, 2004, Vol. 9, M.D. Ward, ed. Chapter 9.4, p. 207.  M.A. Mairena, M.M. Dı́az-Requejo, T.R. Belderraı́n, M.C. Nicasio, S. Trofimenko, P.J. Pérez, Organometallics, 23, 253 (2004).  A.C. Mayer, A.-F. Salit, C. Bolm, Chem. Commun., 5975 (2008).  D.M. Jenkins, Synlett, 23, 1267 (2012).  P. Zardi, A. Pozzoli, F. Ferretti, G. Manca, C. Meallic, E. Gallo, Dalton Trans., 44, 10479 (2015).  Y. Liu, C.-M. Che, Chem. Eur. J., 16, 10494 (2010).  P.P. Chandrachud, H.M. Bass, D.M. Jenkins, Organometallics, 35, 1652 (2016).  A. Yoshimura, K.R. Middleton, C. Zhu, V.N. Nemykin, V.V. Zhdankin, Angew. Chem., Int. Ed., 51, 8059 (2012).  K. Matsuzawa, Y. Nagasawa, E. Yamaguchi, N. Tada, A. Itoh, Synthesis, 48, 2845 (2016).
  • 34. 6 Addition Reactions   S.O. Scholz, E.P. Farney, S. Kim, D.M. Bates, T.P. Yoon, Angew. Chem., Int. Ed., 55, 2239 (2016).  (a) P. Müller, C. Fruit, Chem. Rev., 103, 2905 (2003). (b) H. Pellissier, Tetrahedron, 66, 1509 (2010).  Y. Zhu, Q. Wang, R.G. Cornwall, Y. Shi, Chem. Rev., 114, 8199 (2014).  J.E. Jones, J.V. Ruppel, G.-Y. Gao, T.M. Moore, X.P. Zhang, J. Org. Chem., 73, 7260 (2008).  V. Subbarayan, J.V. Ruppel, S. Zhu, J.A. Perman, X.P. Zhang, Chem. Commun., 4266 (2009).  C. Kim, T. Uchida, T. Katsuki, Chem. Commun., 48, 7188 (2012).  (a) J.A. Goodwin, A. Aponick, Chem. Commun., 51, 8730 (2015). (b) V. Rodriguez-Ruiz, R. Carlino, S. Bezzenine-Lafollé, R. Gil, D. Prim, E. Schulz, J. Hannedouche, Dalton Trans., 44, 12029 (2015).  J. Muzart, Tetrahedron, 64, 5815 (2008).  J.T. Bauer, M.S. Hadfield, A.-L. Lee, Chem. Commun., 6405 (2008).  M.S. Hadfield, A.-L. Lee, Org. Lett., 12, 484 (2010).  F. Ke, Z. Li, H. Xiang, X. Zhou, Tetrahedron Lett., 52, 318 (2011).  R.M.P. Veenboer, S. Dupuy, S.P. Nolan, ACS Catal., 5, 1330 (2015).  M. Kondo, T. Kochi, F. Kakiuchi, J. Am. Chem. Soc., 133, 32 (2011).  R.H. Lam, D.B. Walker, M.H. Tucker, M.R.D. Gatus, M. Bhadbhade, B.A. Messerle, Organometallics, 34, 4312 (2015).  (a) J. Barluenga, F. Aznar, M. Bayod, Synthesis, 144 (1988). (b) M. Bassetti, B. Floris, J. Chem. Soc., Perkin Trans. 2, 227 (1988).  M.A. Savolainen, J. Wu, Org. Lett., 15, 3802 (2013).  M. Weı̈wer, L. Coulombel, E. Duñach, Chem. Commun., 332 (2006).  R. Kumar, Saima, A. Shard, N.H. Andhare, Richa, A.K. Sinha, Angew. Chem., Int. Ed., 54, 828 (2015).  S. Chun, J. Chung, J.E. Park, Y.K. Chung, ChemCatChem, 8, 2476 (2016).  A.B. Pritzius, B. Breit, Angew. Chem., Int. Ed., 54, 3121 (2015).  H.-L. Yue, M. Klussmann, Synlett, 27, 2505 (2016).  C.J. Weiss, S.D. Wobser, T.J. Marks, J. Am. Chem. Soc., 131, 2062 (2009).  Y. Yang, R.M. Rioux, Green Chem., 16, 3916 (2014).  A. Corma, C. González-Arellano, M. Iglesias, F. Sánchez, Appl. Catal. A–Gen., 375, 49 (2010).  A. Di Giuseppe, R. Castarlenas, J.J. Pérez-Torrente, M. Crucianelli, V. Polo, R. Sancho, F.J. Lahoz, L.A. Oro, J. Am. Chem. Soc., 134, 8171 (2012).  C.-G. Yang, C. He, J. Am. Chem. Soc., 127, 6966 (2005).  C.S. Sevov, J.F. Hartwig, J. Am. Chem. Soc., 135, 9303 (2013).  M.C. Haibach, C. Guan, D.Y. Wang, B. Li, N. Lease, A.M. Steffens, K. Krogh-Jespersen, A.S. Goldman, J. Am. Chem. Soc., 135, 15062 (2013).  Y. Oonishi, A. Gómez-Suárez, A.R. Martin, S.P. Nolan, Angew. Chem., Int. Ed., 52, 9767 (2013).  M.R. Kuram, M. Bhanuchandra, A.K. Sahoo, J. Org. Chem., 75, 2247 (2010).
  • 35.  Hydrocarbon Chemistry  M.V. Moskalev, A.M. Yakub, A.G. Morozov, E.V. Baranov, O.V. Kazarina, I.L. Fedushkin, Eur. J. Org. Chem., 5781 (2015).  (a) E.J. Park, J.M. Lee, H. Han, S. Chang, Org. Lett., 8, 4355 (2008). (b) Bin Li, S. Lee, K. Shin, S. Chang, Org. Lett., 16, 2010 (2014).  I. Profir, M. Beller, I. Fleischer, Org. Biomol. Chem., 12, 6972 (2014).  A.J. Perkowski, D.A. Nicewicz, J. Am. Chem. Soc., 135, 10334 (2013).  U.K. Dash, M. Bhattacharjee, J. Organomet. Chem., 700, 78 (2012).  J. Tripathy, M. Bhattacharjee, Tetrahedron Lett., 50, 4863 (2009).  S. Karabulut, B.Ö. Öztürk, Y. İmamoğlu, J. Organomet. Chem., 695, 2161 (2010).  B.C. Chary, S. Kim, Organometallics, 30, 852 (2011).  S. Dupuy, D. Gasperini, S.P. Nolan, ACS Catal., 5, 6918 (2015).  M. Nishiumi, H. Miura, K. Wada, S. Hosokawa, M. Inoue, ACS Catal., 2, 1753 (2012).  (a) O. Delacroix, A.C. Gaumont, Curr. Org. Chem., 9, 1851 (2005). (b) D. Julienne, O. Delacroix, A.-C. Gaumont, Curr. Org. Chem., 14, 457 (2010). (c) D. S. Glueck, Top. Organomet. Chem., 31, 65 (2010). (d) V. Koshti, S. Gaikwad, S.H. Chikkali, Coord. Chem. Rev., 265, 52 (2014).  L. Rosenberg, ACS Catal., 3, 2845 (2013).  J. Yuan, H. Hu, C. Cu, Chem. Eur. J., 22, 5778 (2016).  M.B. Ghebreab, C.A. Bange, R. Waterman, J. Am. Chem. Soc., 136, 9240 (2014).  C.A. Bange, R. Waterman, ACS Catal., 6, 6413 (2016).  M. Kamitani, M. Itazaki, C. Tamiya, H. Nakazawa, J. Am. Chem. Soc., 134, 11932 (2012).  M.A. Kazankova, I.V. Efimova, A.N. Kochetkov, V.V. Afanas’ev, I.P. Beletskaya, P.H. Dixneuf, Synlett, 497 (2001).  M. Hayashi, Y. Matsuura, Y. Watanabe, J. Org. Chem., 71, 9248 (2006).  S. Kawaguchi, S. Nagata, A. Nomoto, M. Sonoda, Akiya Ogawa, J. Org. Chem., 73, 7928 (2008).  U.M. Dzhemilev, A.G. Ibragimo, in Modern Reduction Methods, P.G. Andersson, I.J. Munslow, eds., Wiley-VCH, Wienheim, 2008, Chapter 18, p. 447.  Main Group Metals in Organic Synthesis, H. Yamamoto, K. Oshima, eds., Wiley-VCH, Weinheim, 2004.  S. Bhaduri, D. Mukesh, Homogeneous Catalysis: Mechanisms and Industrial Applications, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2014, Chapter 5, p. 131.  G. Zweifel, H.C. Brown, Org. React. (N.Y.), 13, 1 (1963).  G.M.L. Cragg, Organoboranes in Organic Synthesis, Vol. 1, Marcel Dekker, New York, 1973.  M.K. Whittlesey, in Comprehensive Coordination Chemistry II, J.A. McCleverty, T.J. Meyer, eds. Elsevier, Oxford, San Diego, 2004, Vol. 9, M.D. Ward, ed., Chapter 9.5, p. 265.
  • 36. 6 Addition Reactions   H.C. Brown, G.W. Kramer, A.B. Levy, M.M. Midland, Organic Syntheses via Boranes, Wiley-Interscience, New York, 1975.  B.M. Mikhailov, Yu.N. Bubnov, Organoboron Compounds in Organic Synthesis, Harwood, Chur, 1984.  D.S. Matteson, in The Chemistry of the Metal-Carbon Bond, Vol. 4, F.R. Hartley, ed., John Wiley & Sons, Ltd., Chichester, 1987, Chapter 3, p. 307.  K. Avasthi, D. Devaprabhakara, A. Suzuki, in Organometallic Chemistry Reviews, Journal of Organometallic Chemistry Library 7, D. Seyferth, A.G. Davies, E.O. Fischer, J.F. Normant, O.A. Reutov, eds., Elsevier, Amsterdam, 1979, p. 1.  J. Weill-Raynal, Synthesis, 633 (1976).  A. Pelter, Chem. Soc. Rev., 11, 191 (1982).  H.C. Brown, in Comprehensive Organometallic Chemistry, Vol. 7, G. Wilkinson, F.G.A. Stone, E.W. Abel, eds., Pergamon Press, Oxford, 1982, Chapter 45.1, p. 111.  A. Suzuki, R.S. Dhillon, Top. Curr. Chem., 130, 23 (1986).  H.C. Brown, Hydroboration, Benjamin, New York, 1962.  (a) A. Pelter, K. Smith, in Comprehensive Organic Chemistry, Vol. 3, D.H.R. Barton, W.D. Ollis, eds., Pergamon, Oxford, 1979, Chapter 14.2, p. 695. (b) E. Negishi, Organometallics in Organic Synthesis, Vol. 1, Wiley-Interscience, New York, 1980, Chapter 5, p. 287. (c) P.J. Guiry, A.G. Coyne, A.-M. Carroll, in Comprehensive Organometallic Chemistry III, R.H. Crabtree, D.M.P. Mingos eds., Vol. 10: Applications II: Transition Metal Compounds in Organic Synthesis 1, I. Ojima, ed., Elsevier, Amsterdam, 2007, Chapter 10.19, p. 839. (d) E.C. Neeve, S.J. Geier, I.A.I. Mkhalid, S.A. Westcott, T.B. Marder, Chem. Rev., 116, 9091 (2016).  M. Zaidlewicz, A. Wolan, M. Budny, in Comprehensive Organic Synthesis II, P. Knochel, G.A. Molander, eds., Vol. 8: Reduction, J. Clayden, ed., Elsevier, Amsterdam, 2014, Chapter 8.24, p. 877.  H.C. Brown, B.C. Subba Rao, J. Am. Chem. Soc., 78, 5694 (1956); J. Org. Chem., 22, 1136 (1957).  M. Zaidlewich, in Comprehensive Organometallic Chemistry, Vol. 7, G. Wilkinson, F.G.A. Stone, E.W. Abel, eds., Pergamon Press, Oxford, 1982, Chapter 45.3, p. 161.  L.M. Braun, R.A. Braun, H.R. Crissman, M. Opperman, R.M. Adams, J. Org. Chem., 36, 2388 (1971).  H.C. Brown, A.K. Mandal, S.U. Kulkarni, J. Org. Chem., 42, 1392 (1977).  H.C. Brown, G. Zweifel, J. Am. Chem. Soc., 83, 1241 (1961).  H.C. Brown, A.W. Moerikofer, J. Am. Chem. Soc., 84, 1478 (1962).  E. Negishi, H.C. Brown, Synthesis, 77 (1974).  J.E. Rice, Y. Okamoto, J. Org. Chem., 47, 4189 (1982).  H.C. Brown, E.F. Knights, C.G. Scouten, J. Am. Chem. Soc., 96, 7765 (1974).  H.C. Brown, E. Negishi, J.-J. Katz, J. Am. Chem. Soc., 97, 2791 (1975).
  • 37.  Hydrocarbon Chemistry  H.C. Brown, J.-J. Katz, C.F. Lane, E. Negishi, J. Am. Chem. Soc., 97, 2799 (1975).  A. Pelter, D.J. Ryder, J.H. Sheppard, Tetrahedron Lett., 4715 (1978).  J.A. Sikorski, H.C. Brown, J. Org. Chem., 47, 872 (1982).  H.C. Brown, G. Zweifel, J. Am. Chem. Soc., 83, 2544 (1961).  G. Zweifel, H.C. Brown, J. Am. Chem. Soc., 86, 393 (1964).  G.W. Kabalka, R.J. Newton, Jr., J. Jacobus, J. Org. Chem., 43, 1567 (1978).  H.C. Brown, J.H. Kawakami, K.-T. Liu, J. Am. Chem. Soc., 95, 2209 (1973).  H.C. Brown, G. Zweifel, J. Am. Chem. Soc., 82, 4708 (1960).  H.C. Brown, J. Chandrasekharan, K.K. Wang, Pure Appl. Chem., 55, 1387 (1983).  R.E. Williams, Inorg. Chem., 1, 971 (1962).  G.A. Olah, Angew. Chem., Int. Ed. Engl., 12, 173 (1973).  H.C. Brown, A.W. Moerikofer, J. Am. Chem. Soc., 83, 3417 (1961).  H.C. Brown, C.G. Scouten, K.K. Wang, J. Org. Chem., 44, 2589 (1979).  C.F. Lane, G.W. Kabalka, Tetrahedron, 32, 981 (1976).  D. Männig, H. Nöth, Angew. Chem., Intl. Ed. Engl., 24, 878 (1985).  K. Burgess, M.J. Ohlmeyer, Chem. Rev., 91, 1179 (1991).  D.A. Evans, G.C. Fu, A.H. Hoveyda, J. Am. Chem. Soc., 114, 6671 (1992).  D.A. Evans, G.C. Fu, B.A. Anderson, J. Am. Chem. Soc., 114, 6679 (1992).  T. Hayashi, Y. Matsumoto, Y. Ito, Tetrahedron: Asymmetry, 2, 601 (1991).  J.V.B. Kanth, H.C. Brown, Tetrahedron Lett., 41, 9361 (2000).  J.F. Hartwig, C.N. Muhoro, Organometallics, 19, 30 (2000).  L. Zhang, Z. Zuo, X. Leng, Z. Huang, Angew. Chem., Int. Ed., 53, 2696 (2014).  J.V. Obligacion, P.J. Chirik, J. Am. Chem. Soc., 135, 19107 (2013).  Y. Wen, J. Xie, C. Deng, C. Li, J. Org. Chem., 80, 4142 (2015).  (a) J.V. Obligacion, P.J. Chirik, Org. Lett., 15, 2680 (2013). (b) M.D. Greenhalgh, S.P. Thomas, Chem. Commun., 49, 11230 (2013). (c) K.-N.T. Tseng, J.W. Kampf, N.K. Szymczak, ACS Catal., 5, 411 (2015).  L. Zhang, Z. Huang, Synlett, 24, 1745 (2013).  L. Zhang, D. Peng, X. Leng, Z. Huang, Angew. Chem., Int. Ed., 52, 3676 (2013).  H.C. Brown, P.V. Ramachandran, J. Organomet. Chem., 500, 1 (1995).  A.M. Segarra, R. Guerrero, C. Claver, E. Fernandez, Chem. Commun., 1808 (2001).  J. Chen, T. Xi, Z. Lu, Org. Lett., 16, 6452 (2014).  L. Zhang, Z. Zuo, X. Wan, Z. Huang, J. Am. Chem. Soc., 136, 15501 (2014).  H. Zhang, Z. Lu, ACS Catal., 6, 6596 (2016).  A.J. MacNair, C.R.P. Millet, G.S. Nichol, A. Ironmonger, S.P. Thomas, ACS Catal., 6, 7217 (2016).  X. Jia, Z. Huang, Nat. Chem., 8, 157 (2016).  G. Zweifel, K. Nagase, H.C. Brown, J. Am. Chem. Soc., 84, 183 (1962).  H.C. Brown, E. Negishi, S.K. Gupta, J. Am. Chem. Soc., 92, 2460 (1970).
  • 38. 6 Addition Reactions   H.C. Brown, E. Negishi, P.L. Burke, J. Am. Chem. Soc., 93, 3400 (1971).  H.C. Brown, R. Liotta, G.W. Kramer, J. Org. Chem., 43, 1058 (1978).  H.C. Brown, E. Negishi, Tetrahedron, 33, 2331 (1977).  E.F. Knights, H.C. Brown, J. Am. Chem. Soc., 90, 5280 (1968).  J.A. Soderquist, H.C. Brown, J. Org. Chem., 46, 4599 (1981).  J.Y. Wu, B. Moreau, T. Ritter, J. Am. Chem. Soc., 131, 12915 (2009).  Y. Cao, Y. Zhang, L. Zhang, D. Zhang, X. Leng, Z. Huang, Org. Chem. Front., 1, 1101 (2014).  R.J. Ely, J.P. Morken, J. Am. Chem. Soc., 132, 2534 (2010).  K. Semba, M. Shinomiya, T. Fujihara, J. Terao, Y. Tsuji, Chem. Eur. J., 19, 7125 (2013).  H.C. Brown, G. Zweifel, J. Am. Chem. Soc., 83, 3834 (1961).  G. Zweifel, H. Arzoumanian, J. Am. Chem. Soc., 89, 291 (1967).  (a) B.M. Trost, Z.T. Ball, Synthesis, 853 (2005). (b) R. Barbeyron, E. Benedetti, J. Cossy, J.-J. Vasseur, S. Arseniyadis, M. Smietana, Tetrahedron, 70, 8431 (2014). (c) H. Yoshida, ACS Catal., 6, 1799 (2016).  G. Zweifel, G.M. Clark, N.L. Polston, J. Am. Chem. Soc., 93, 3395 (1971).  H.C. Brown, C.G. Scouten, R. Liotta, J. Am. Chem. Soc., 101, 96 (1979).  H.C. Brown, D. Basavaiah, S.U. Kulkarni, J. Organomet. Chem., 225, 63 (1982).  J.S. Cha, S.J. Min, J.M. Kim, O.O. Kwon Tetrahedron Lett., 34, 5113 (1993).  W.G. Woods, P.L. Strong, J. Am. Chem. Soc., 88, 4667 (1966).  H.C. Brown, S.K. Gupta, J. Am. Chem. Soc., 97, 5249 (1975).  A. Pelter, S. Singaram, H. Brown, Tetrahedron Lett., 24, 1433 (1983).  T. Ohmura, Y. Yamamoto, N. Miyaura, J. Am. Chem. Soc., 122, 4990 (2000).  J.J.J. Juliette, I.T. Horváth, J.A. Gladysz, Angew. Chem., Int. Ed. Engl., 36, 1610 (1997).  A. Grirrane, A. Corma, H. Garcia, Chem. Eur. J., 17, 2467 (2011).  C. Gunanathan, M. Hölscher, F. Pan, W. Leitner, J. Am. Chem. Soc., 134, 14349 (2012).  J.V. Obligacion, J.M. Neely, A.N. Yazdani, I. Pappas, P.J. Chirik, J. Am. Chem. Soc., 137, 5855 (2015).  B. Sundararaju, A. Fürstner, Angew. Chem., Int. Ed., 52, 14050 (2013).  H. Reinheckel, K. Haage, D. Jahnke, Organometal. Chem. Rev., Sect. A., 4, 47 (1969).  G. Zweifel, J.A. Miller, Org. React. (N.Y.), 32, 375 (1984).  P.A. Chaloner, in The Chemistry of the Metal-Carbon Bond, Vol. 4, F.R. Hartley, ed., John Wiley & Sons, Ltd., Chichester, 1987, Chapter 4, p. 411.  K. Maruoka, H. Yamamoto, Tetrahedron, 44, 5001 (1988).  (a) U.M. Dzhemilev, O.S. Vostrikova, G.A. Tolstikov, J. Organomet. Chem., 304, 17 (1986). (b) U.M. Dzhemilev, V.A. D’yakonov, Top. Organomet. Chem., 41, 215 (2013).
  • 39.  Hydrocarbon Chemistry  J.J. Eisch, in Comprehensive Organic Synthesis, B.M. Trost, I. Fleming, eds., Vol. 8: Reduction, I. Fleming, ed. Pergamon Press, Oxford, 1991, Chapter 3.11, p. 733.  K. Ziegler, H.-G. Gellert, H. Lehmkuhl, W. Pfohl, K. Zosel, Justus Liebigs Ann. Chem., 629, 1 (1960).  K. Ziegler, H.-G. Gellert, H. Martin, K. Nagel, Justus Liebigs Ann. Chem., 589, 91 (1954).  K. Ziegler, Angew. Chem., 64, 323 (1952).  K. Ziegler, H. Martin, F. Krupp, Justus Liebigs Ann. Chem., 629, 14 (1960).  G. Natta, P. Pino, G. Mazzanti, P. Longi, F. Bernardini, J. Am. Chem. Soc., 81, 2561 (1959).  F. Sato, S. Sato, M. Sato, J. Organomet. Chem., 131, C26 (1977).  G. Wilke, H. Müller, Justus Liebigs Ann. Chem., 618, 267 (1958); 629, 222 (1960).  J.J. Eisch, W.C. Kaska, J. Am. Chem. Soc., 88, 2213 (1966).  G. Zweifel, R.B. Steele, J. Am. Chem. Soc., 89, 5085 (1967).  E.F. Magoon, L.H. Slaugh, Tetrahedron, 23, 4509 (1967).  E. Negishi, D.Y. Kondakov, Chem. Soc. Rev., 25, 417 (1996).  U.M. Dzhemilev, A.G. Ibragimov, Russ. Chem. Rev., 69, 121 (2000).  F. Gao, A.H. Hoveyda, J. Am. Chem. Soc., 132, 10961 (2011).  (a) R.N. Meals, Pure Appl. Chem., 13, 141 (1966). (b) E. Lukevics, Z.V. Belyakova, M.G. Pomerantseva, M.G. Voronkov, in Organometallic Chemistry Reviews, Journal of Organometallic Chemistry Library 5, D. Seyferth, A.G. Davies, E.O. Fischer, J.F. Normant, O.A. Reutov, eds., Elsevier, Amsterdam, 1977, p. 1. (c) K.A. Andrianov, J. Soucek, L.M. Khananashvili, Russ. Chem. Rev. (Engl. Transl.), 48, 657 (1979). (d) E. Negishi, Organometallics in Organic Synthesis, Vol. 1, Wiley-Interscience, New York, 1980, Chapter 6, p. 394. (e) I. Ojima, in The Chemistry of Organic Silicon Compounds, S. Patai, Z. Rappoport, eds., John Wiley & Sons, Ltd., Chichester, 1989, Chapter 25, p. 1479. (f) Z.T. Ball, in Comprehensive Organometallic Chemistry III, R.H. Crabtree, D.M.P. Mingos eds., Vol. 10: Applications II: Transition Metal Compounds in Organic Synthesis 1, I. Ojima, ed., Elsevier, Amsterdam, 2007, Chapter 10.17, p. 789. (g) P.A. Mayes, P. Perlmutter, in Modern Reduction Methods, P.G. Andersson, I.J. Munslow, eds., Wiley-VCH, Wienheim, 2008, Chapter 4, p. 87.  J.F. Harrod, A.J. Chalk, in Organic Syntheses via Metal Carbonyls, Vol. 2, I. Wender, P. Pino, eds., Wiley-Interscience, New York, 1977, p. 673.  J.L. Speier, Adv. Organomet. Chem., 17, 407 (1979).  F.H. Jardine, in The Chemistry of the Metal-Carbon Bond, Vol. 4, F.R. Hartley, ed., John Wiley & Sons, Ltd., Chichester, 1987, Chapter 8, p. 784.  A.P. Dobbs, F.K.I. Chio, in Comprehensive Organic Synthesis II, P. Knochel, G.A. Molander, eds., Vol. 8: Reduction, J. Clayden, ed., Elsevier, Amsterdam, 2014, Chapter 8.25, p. 964.
  • 40. 6 Addition Reactions   P.A. Chaloner, Handbook of Coordination Catalysis in Organic Chemistry, Butterworths, London, 1986, Chapter 4, p. 307.  (a) B. Hardman, A. Torkelson, in Encyclopedia of Polymer Science and Engineering, 2nd ed., Vol. 15, J.I. Kroschwitz, ed., Wiley-Interscience, New York, 1989, p. 204. (b) D. Troegel, J. Stohrer, Coord. Chem. Rev., 255, 1440 (2011).  A.J. Chalk, J.F. Harrod, J. Am. Chem. Soc., 87, 16 (1965).  J.F. Harrod, A.J. Chalk, J. Am. Chem. Soc., 87, 1133 (1965); 88, 3491 (1966).  L.H. Sommer, J.E. Lyons, H. Fujimoto, J. Am. Chem. Soc., 91, 7051 (1969).  M.A. Schroeder, M.S. Wrighton, J. Organomet. Chem., 128, 345 (1977).  A. Millan, M.-J. Fernandez, P. Bentz, P.M. Maitlis, J. Mol. Catal., 26, 89 (1984).  A. Onopchenko, E.T. Sabourin, D.L. Beach, J. Org. Chem., 48, 5101 (1983).  M. Bookhart, B.E. Grant, J. Am. Chem. Soc., 115, 2151 (1993).  M.G. Voronkov, V.B. Pukhnarevich, S.P. Sushchinskaya, L.I. Kopylova, B.A. Trofimov, J. Gen. Chem. USSR (Engl. Transl.), 41, 2120 (1971).  R.A. Benkeser, J. Kang, J. Organomet. Chem., 185, C9 (1980).  A. Onopchenko, E.T. Sabourin, J. Org. Chem., 52, 4118 (1987).  L.N. Lewis, R.J. Uriarte, Organometallics, 9, 621 (1990).  L.N. Lewis, J. Am. Chem. Soc., 112, 5998 (1990).  L.N. Lewis, N. Lewis, J. Am. Chem. Soc., 108, 7228 (1986).  L.N. Lewis, R.J. Uriarte, N. Lewis, J. Mol. Catal., 66, 105 (1991).  I. Ojima, K. Yamamoto, M. Kumada, in Aspects of Homogeneous Catalysis, Vol. 3, R. Ugo, ed., D. Reidel, Dordrecht, 1977, Chapter 3, p. 185.  J.L. Speier, J.A. Webster, G.H. Barnes, J. Am. Chem. Soc., 79, 974 (1957).  T.G. Selin, R. West, J. Am. Chem. Soc., 84, 1863 (1962).  H.M. Bank, J.C. Saam, J.L. Speier, J. Org. Chem., 29, 792 (1964).  R.A. Benkeser, S. Dunny, G.S. Li, P.G. Nerlekar, S.D. Work, J. Am. Chem. Soc., 90, 1871 (1968).  R.N. Haszeldine, R.V. Parish, R.J. Taylor, J. Chem. Soc., Dalton Trans., 2311 (1974).  T.G. Selin, R. West, J. Am. Chem. Soc., 84, 1860 (1962).  M. Čapka, P. Svoboda, J. Hetflejš, Coll. Czech. Chem. Commun., 38, 3830 (1973).  E.W. Bennett, P.J. Orenski, J. Organomet. Chem., 28, 137 (1971).  K. Oertle, H. Wetter, Tetrahedron Lett., 26, 5511 (1985).  B. Marciniec, Comprehensive Handbook on Hydrosilylation, Pergamon, Oxford, 1992, Chapter 2; Coord. Chem. Rev., 249, 2374 (2005).  M.A. Brook, Silicon in Organic, Organometallic, Polymer Chemistry, John Wiley & Sons, Inc., New York, 2000, p. 401.  B. Marciniec, in Applied Homogeneous Catalysis with Organometallic Complexes, B. Cornils, W.A. Herrmann, eds., VCH, Weinheim, 1996, Chapter 2.6, p. 487.