SlideShare a Scribd company logo
1 of 54
Combinational Logic
Chapter 5
Digital Circuits 2
4.1 Introduction
 Logic circuits for digital systems may be
combinational or sequential.
 A combinational circuit consists of logic gates
whose outputs at any time are determined
from only the present combination of inputs.
Digital Circuits 3
4.2 Combinational Circuits
 Logic circuits for digital system
 Sequential circuits
 contain memory elements
 the outputs are a function of the current inputs and the
state of the memory elements
 the outputs also depend on past inputs
Digital Circuits 4
 A combinational circuits
 2
n
possible combinations of input values
 Specific functions
 Adders, subtractors, comparators, decoders, encoders,
and multiplexers
 MSI circuits or standard cells
Combinational
Logic Circuit
n input
variables
m output
variables
Digital Circuits 5
4-3 Analysis Procedure
 A combinational circuit
 make sure that it is combinational not sequential
 No feedback path
 derive its Boolean functions (truth table)
 design verification
 a verbal explanation of its function
Digital Circuits 6
 A straight-forward procedure
F2 = AB+AC+BC
T1 = A+B+C
T2 = ABC
T3 = F2'T1
F1 = T3+T2
Digital Circuits 7
 F1 = T3+T2 = F2'T1+ABC
= (AB+AC+BC)'(A+B+C)+ABC
= (A'+B')(A'+C')(B'+C')(A+B+C)+ABC
= (A'+B'C')(AB'+AC'+BC'+B'C)+ABC
= A'BC'+A'B'C+AB'C'+ABC
 A full-adder
 F1: the sum
 F2: the carry
Digital Circuits 8
 The truth table
Digital Circuits 9
4-4 Design Procedure
 The design procedure of combinational circuits
 State the problem (system spec.)
 determine the inputs and outputs
 the input and output variables are assigned symbols
 derive the truth table
 derive the simplified Boolean functions
 draw the logic diagram and verify the correctness
Digital Circuits 10
 Functional description
 Boolean function
 Logic minimization
 number of gates
 number of inputs to a gate
 propagation delay
 number of interconnection
 limitations of the driving capabilities
Digital Circuits 11
4-5 Binary Adder-Subtractor
 Half adder
 0 + 0 = 0 ; 0 + 1 = 1 ; 1 + 0 = 1 ; 1 + 1 = 10
 two input variables: x, y
 two output variables: C (carry), S (sum)
 truth table
Digital Circuits 12
 S = x'y+xy'
C = xy
 the flexibility for implementation
 S=xy
 S = (x+y)(x'+y')
 S' = xy+x'y'
S = (C+x'y')'
 C = xy = (x'+y')'
Digital Circuits 13
Digital Circuits
Half Adder using NAND
14
Digital Circuits
Half Adder using NOR
15
Digital Circuits 16
 Full-Adder
 The arithmetic sum of three input bits
 three input bits
 x, y: two significant bits
 z: the carry bit from the previous lower significant bit
 Two output bits: C, S
Digital Circuits
Digital Circuits
Implementation of Full Adder in Sum of
Product
18
Digital Circuits
Implementation of Full Adder with 2 Half
Adder & an OR Gate
Digital Circuits
Full Adder using NAND
20
Digital Circuits
Full Adder using NOR
21
Digital Circuits 22
 Binary adder with Ripple Carry Propagation
Digital Circuits 23
 Look Ahead Carry propagation
 when the correct outputs are available
 the critical path counts (the worst case)
 (A1,B1,C1) > C2 > C3 > C4 > (C5,S4)
 > 8 gate levels
Digital Circuits 24
Look Ahead Carry propagation
 Reduce the carry propagation delay
 employ faster gates
 look-ahead carry (more complex mechanism, yet
faster)
 carry propagate: Pi = AiBi
 carry generate: Gi = AiBi
 sum: Si = PiCi
 carry: Ci+1 = Gi+PiCi
 C1 = G0+P0C0
 C2 = G1+P1C1 = G1+P1(G0+P0C0)
= G1+P1G0+P1P0C0
 C3 = G2+P2C2 = G2+P2G1+P2P1G0+ P2P1P0C0
Digital Circuits 25
 Logic diagram
Digital Circuits 26
 4-bit carry-look ahead adder
 propagation delay
Digital Circuits 27
Binary subtractor Or Adder
 A-B = A+(2’s complement of B)
 4-bit Adder-subtractor
 M=0, A+B; M=1, A+B’+1
Digital Circuits 28
 Overflow
 The storage is limited
 Add two positive numbers and obtain a negative
number
 Add two negative numbers and obtain a positive
number
 V = 0, no overflow; V = 1, overflow
Example:
Digital Circuits
Serial Addition (D Flip-Flop)
 Slower than
parallel
 Low cost
 Share fast
hardware
on
slow data
 Good for
multiplexed
data
Digital Circuits
Serial Addition (D Flip-Flop)
 Only one full
adder
 Reused for each
bit
 Start with low-
order bit addition
 Note that carry
(Q) is saved
 Add multiple
values.
 New values
placed in shift
register B
Digital Circuits
Serial Addition (D Flip-Flop)
 Shift control
used to stop
addition
 Generally not a
good idea to
gate the clock
 Shift register
can be arbitrary
length
 FA can be built
from combin.
logic
Digital Circuits 32
4-6 Decimal Adder
 Add two BCD's
 9 inputs: two BCD's and one carry-in
 5 outputs: one BCD and one carry-out
 Design approaches
 A truth table with 2^9 entries
 use binary full Adders
 the sum <= 9 + 9 + 1 = 19
 binary to BCD
Digital Circuits 33
 BCD Adder: The truth table
Digital Circuits 34
 Modifications are needed if the sum > 9
 C = 1
 K = 1
 Z8Z4 = 1
 Z8Z2 = 1
 modification: (10)d or +6
C = K +Z8Z4 + Z8Z2
Digital Circuits 35
 Block diagram
Digital Circuits 36
Excess-3 Adder
 Excess-3 code = BCD + (3)10
 If carry = 0, we add to excess-3 digit then we have to
subtract (3)10 = (0011)2 from the sum for once.
Because, each of the two digit had excess of 3
values. So during addition, 3 is added twice in the
sum whereas, 3 should be added once.
 If carry =1, then we need to add (0011) with the sum
to get the correct digit
Digital Circuits
37
Design Exercise
2-bits x 2-bits Multiplier
Digital Circuits 38
Terms
2
X 3
--------------
6
Mutiplicand
Multiplier
Product
Digital Circuits 39
Multiplication in binary form?
1. Rewrite the multiplication in binary
form.
1. Sketch the black box view.
1. The multiplier multiplies two __?__
bits numbers.
Digital Circuits 40
2-bits x 2-bits Multiplier Design
 Two techniques:
 Using the standard K-Map
 Using Arrays (cascaded
approach)
Digital Circuits 41
Method A:
Using the K-Map Technique
 Sketch the bLack box.
 Sketch the Truth Table for a 2-bit “multiplier” and 2-
bit “multiplicand”.
 Input (Multiplier) = A1 and A0
 Input (Multiplicand) = B1 and B0
 Output (4-bits) = S3, S2, S1 and S0 or S[3..0]
 Using K-Maps, obtain the boolean expression for
each output.
 Sketch the schematic diagram.
Digital Circuits 42
Method B:
Using the Array (Cascaded) Technique
 Create the 2x2 multiplier using Full ADDERS.
Design “Smart”
Digital Circuits 43
… tHE cONcEpt
A1 A0
B1 B0
x
A1B0 A0B0
A1B1 A0B1
+
S0
S1
S2
S3
C
C
Digital Circuits 44
A 2-Bit by 2-Bit Binary Multiplier
Digital Circuits 45
AND
comput
es A0
B0
Half adder
computes
sum. Will
need FA
for larger
multiplier.
Digital Circuits 46
 4-bit by 3-bit binary multiplier
Fig. 4.16
Four-bit by three-bit binary
multiplier.
Digital Circuits
47
The 4-bits x 4-bits
Multiplier
Using Array 2x2
Digital Circuits 48
Multiplier Product
 The product of m-bit x n-bit numbers
is an (m+n)-bit number.
=> The product of two 4-bit numbers
is an 8-bit number.
Digital Circuits 49
How about this one?
13
X 11
--------------
143
Mutiplicand
Multiplier
Product
Digital Circuits 50
1
1
1
1
(143) Product
1
1
1
0
0
0
1
1
0
1
1
0
0
0
0
1
0
1
1
0
1
1
(11) multiplier
1
0
1
X
(13) multiplicand
0
1
1
Partial products
Digital Circuits 51
S0
S1
S2
S3
S4
S5
S6
S7
A0B3
A1B3
A2B3
A3B3
A0B2
A1B2
A2B2
A3B2
A0B1
A1B1
A2B1
A3B1
A0B0
A1B0
A2B0
A3B0
B0
B1
B2
B3
A0
A1
A2
A3
Digital Circuits 52
 Design a 4-bits x 4-bits multiplier using the Array
(cascaded) technique, by utilizing:
 The 2-bits x 2-bits Multiplier and full adder
designed earlier.
 Hints : Look back at the concept of 2x2 multiplier.
Take the same step.
Digital Circuits
Ripple-Carry Array Multiplier
FA
A2B
1
A0B
0
FA
A3B
1
FA
A1B
2
C
C
S
A2B
1
HA
S
FA
A3B
2
FA
A2B
1
C
C
S
A0B
3
FA
A3B
3
FA
A2B
3
C
C
S
C
HA
A1B
3
C
S
HA
FA
C C
HA
A0B
2
C
S
A2B
1
A2B
1
A2B
1
A2B
1
C
S S S
S
S
S
P0
P7 P6 P5 P4 P3 P2 P1
Digital Circuits 54
Calculation of Multiplication Time


More Related Content

Similar to 5. Arithmaticn combinational Ckt.ppt

Logic System Design KTU Chapter-4.ppt
Logic System Design KTU Chapter-4.pptLogic System Design KTU Chapter-4.ppt
Logic System Design KTU Chapter-4.pptAlbin562191
 
Unit 2a combinational circuits
Unit 2a combinational circuitsUnit 2a combinational circuits
Unit 2a combinational circuitsanshul sharma
 
Binary parallel adder, decimal adder
Binary parallel adder, decimal adderBinary parallel adder, decimal adder
Binary parallel adder, decimal addershahzad ali
 
combinational circuits dispositivos .ppt
combinational circuits dispositivos .pptcombinational circuits dispositivos .ppt
combinational circuits dispositivos .pptFilibertoMoralesGarc
 
1 Unit-1 DEC B.Tech ECE III Sem Syllabus & Intro.pptx
1 Unit-1 DEC B.Tech ECE III Sem Syllabus & Intro.pptx1 Unit-1 DEC B.Tech ECE III Sem Syllabus & Intro.pptx
1 Unit-1 DEC B.Tech ECE III Sem Syllabus & Intro.pptxSatish Chandra
 
Lec 05 - Combinational Logic
Lec 05 - Combinational LogicLec 05 - Combinational Logic
Lec 05 - Combinational LogicVajira Thambawita
 
Unit 3 combinational circuits
Unit 3  combinational circuitsUnit 3  combinational circuits
Unit 3 combinational circuitsAmrutaMehata
 
UNIT - II.pptx
UNIT - II.pptxUNIT - II.pptx
UNIT - II.pptxamudhak10
 
Digital electronics lab
Digital electronics labDigital electronics lab
Digital electronics labswatymanoja
 
Computer Organization And Architecture lab manual
Computer Organization And Architecture lab manualComputer Organization And Architecture lab manual
Computer Organization And Architecture lab manualNitesh Dubey
 
ENG 202 – Digital Electronics 1 - Chapter 4 (1).pptx
ENG 202 – Digital Electronics 1 - Chapter 4 (1).pptxENG 202 – Digital Electronics 1 - Chapter 4 (1).pptx
ENG 202 – Digital Electronics 1 - Chapter 4 (1).pptxAishah928448
 
15CS32 ADE Module 3
15CS32 ADE Module 315CS32 ADE Module 3
15CS32 ADE Module 3RLJIT
 
Digital electronics nandhini kusuma
Digital electronics nandhini kusumaDigital electronics nandhini kusuma
Digital electronics nandhini kusumakusuma11
 
Digital electronics nandhini kusuma
Digital electronics nandhini kusumaDigital electronics nandhini kusuma
Digital electronics nandhini kusumakusuma11
 
Digital electronics nandhini kusuma
Digital electronics nandhini kusumaDigital electronics nandhini kusuma
Digital electronics nandhini kusumakusuma11
 
Chapter 5: Cominational Logic with MSI and LSI
Chapter 5: Cominational Logic with MSI and LSIChapter 5: Cominational Logic with MSI and LSI
Chapter 5: Cominational Logic with MSI and LSIEr. Nawaraj Bhandari
 

Similar to 5. Arithmaticn combinational Ckt.ppt (20)

Logic System Design KTU Chapter-4.ppt
Logic System Design KTU Chapter-4.pptLogic System Design KTU Chapter-4.ppt
Logic System Design KTU Chapter-4.ppt
 
Unit 2a combinational circuits
Unit 2a combinational circuitsUnit 2a combinational circuits
Unit 2a combinational circuits
 
Binary parallel adder, decimal adder
Binary parallel adder, decimal adderBinary parallel adder, decimal adder
Binary parallel adder, decimal adder
 
combinational circuits dispositivos .ppt
combinational circuits dispositivos .pptcombinational circuits dispositivos .ppt
combinational circuits dispositivos .ppt
 
combinational-circuit (1).ppt
combinational-circuit (1).pptcombinational-circuit (1).ppt
combinational-circuit (1).ppt
 
1 Unit-1 DEC B.Tech ECE III Sem Syllabus & Intro.pptx
1 Unit-1 DEC B.Tech ECE III Sem Syllabus & Intro.pptx1 Unit-1 DEC B.Tech ECE III Sem Syllabus & Intro.pptx
1 Unit-1 DEC B.Tech ECE III Sem Syllabus & Intro.pptx
 
Digital Logic Design
Digital Logic Design Digital Logic Design
Digital Logic Design
 
Lec 05 - Combinational Logic
Lec 05 - Combinational LogicLec 05 - Combinational Logic
Lec 05 - Combinational Logic
 
Unit 3 combinational circuits
Unit 3  combinational circuitsUnit 3  combinational circuits
Unit 3 combinational circuits
 
Combinational circuit
Combinational circuitCombinational circuit
Combinational circuit
 
UNIT - II.pptx
UNIT - II.pptxUNIT - II.pptx
UNIT - II.pptx
 
Digital electronics lab
Digital electronics labDigital electronics lab
Digital electronics lab
 
Computer Organization And Architecture lab manual
Computer Organization And Architecture lab manualComputer Organization And Architecture lab manual
Computer Organization And Architecture lab manual
 
ENG 202 – Digital Electronics 1 - Chapter 4 (1).pptx
ENG 202 – Digital Electronics 1 - Chapter 4 (1).pptxENG 202 – Digital Electronics 1 - Chapter 4 (1).pptx
ENG 202 – Digital Electronics 1 - Chapter 4 (1).pptx
 
15CS32 ADE Module 3
15CS32 ADE Module 315CS32 ADE Module 3
15CS32 ADE Module 3
 
Digital electronics nandhini kusuma
Digital electronics nandhini kusumaDigital electronics nandhini kusuma
Digital electronics nandhini kusuma
 
Digital electronics nandhini kusuma
Digital electronics nandhini kusumaDigital electronics nandhini kusuma
Digital electronics nandhini kusuma
 
Digital electronics nandhini kusuma
Digital electronics nandhini kusumaDigital electronics nandhini kusuma
Digital electronics nandhini kusuma
 
Unit-1.pptx
Unit-1.pptxUnit-1.pptx
Unit-1.pptx
 
Chapter 5: Cominational Logic with MSI and LSI
Chapter 5: Cominational Logic with MSI and LSIChapter 5: Cominational Logic with MSI and LSI
Chapter 5: Cominational Logic with MSI and LSI
 

Recently uploaded

How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 

Recently uploaded (20)

OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 

5. Arithmaticn combinational Ckt.ppt

  • 2. Digital Circuits 2 4.1 Introduction  Logic circuits for digital systems may be combinational or sequential.  A combinational circuit consists of logic gates whose outputs at any time are determined from only the present combination of inputs.
  • 3. Digital Circuits 3 4.2 Combinational Circuits  Logic circuits for digital system  Sequential circuits  contain memory elements  the outputs are a function of the current inputs and the state of the memory elements  the outputs also depend on past inputs
  • 4. Digital Circuits 4  A combinational circuits  2 n possible combinations of input values  Specific functions  Adders, subtractors, comparators, decoders, encoders, and multiplexers  MSI circuits or standard cells Combinational Logic Circuit n input variables m output variables
  • 5. Digital Circuits 5 4-3 Analysis Procedure  A combinational circuit  make sure that it is combinational not sequential  No feedback path  derive its Boolean functions (truth table)  design verification  a verbal explanation of its function
  • 6. Digital Circuits 6  A straight-forward procedure F2 = AB+AC+BC T1 = A+B+C T2 = ABC T3 = F2'T1 F1 = T3+T2
  • 7. Digital Circuits 7  F1 = T3+T2 = F2'T1+ABC = (AB+AC+BC)'(A+B+C)+ABC = (A'+B')(A'+C')(B'+C')(A+B+C)+ABC = (A'+B'C')(AB'+AC'+BC'+B'C)+ABC = A'BC'+A'B'C+AB'C'+ABC  A full-adder  F1: the sum  F2: the carry
  • 8. Digital Circuits 8  The truth table
  • 9. Digital Circuits 9 4-4 Design Procedure  The design procedure of combinational circuits  State the problem (system spec.)  determine the inputs and outputs  the input and output variables are assigned symbols  derive the truth table  derive the simplified Boolean functions  draw the logic diagram and verify the correctness
  • 10. Digital Circuits 10  Functional description  Boolean function  Logic minimization  number of gates  number of inputs to a gate  propagation delay  number of interconnection  limitations of the driving capabilities
  • 11. Digital Circuits 11 4-5 Binary Adder-Subtractor  Half adder  0 + 0 = 0 ; 0 + 1 = 1 ; 1 + 0 = 1 ; 1 + 1 = 10  two input variables: x, y  two output variables: C (carry), S (sum)  truth table
  • 12. Digital Circuits 12  S = x'y+xy' C = xy  the flexibility for implementation  S=xy  S = (x+y)(x'+y')  S' = xy+x'y' S = (C+x'y')'  C = xy = (x'+y')'
  • 16. Digital Circuits 16  Full-Adder  The arithmetic sum of three input bits  three input bits  x, y: two significant bits  z: the carry bit from the previous lower significant bit  Two output bits: C, S
  • 18. Digital Circuits Implementation of Full Adder in Sum of Product 18
  • 19. Digital Circuits Implementation of Full Adder with 2 Half Adder & an OR Gate
  • 22. Digital Circuits 22  Binary adder with Ripple Carry Propagation
  • 23. Digital Circuits 23  Look Ahead Carry propagation  when the correct outputs are available  the critical path counts (the worst case)  (A1,B1,C1) > C2 > C3 > C4 > (C5,S4)  > 8 gate levels
  • 24. Digital Circuits 24 Look Ahead Carry propagation  Reduce the carry propagation delay  employ faster gates  look-ahead carry (more complex mechanism, yet faster)  carry propagate: Pi = AiBi  carry generate: Gi = AiBi  sum: Si = PiCi  carry: Ci+1 = Gi+PiCi  C1 = G0+P0C0  C2 = G1+P1C1 = G1+P1(G0+P0C0) = G1+P1G0+P1P0C0  C3 = G2+P2C2 = G2+P2G1+P2P1G0+ P2P1P0C0
  • 25. Digital Circuits 25  Logic diagram
  • 26. Digital Circuits 26  4-bit carry-look ahead adder  propagation delay
  • 27. Digital Circuits 27 Binary subtractor Or Adder  A-B = A+(2’s complement of B)  4-bit Adder-subtractor  M=0, A+B; M=1, A+B’+1
  • 28. Digital Circuits 28  Overflow  The storage is limited  Add two positive numbers and obtain a negative number  Add two negative numbers and obtain a positive number  V = 0, no overflow; V = 1, overflow Example:
  • 29. Digital Circuits Serial Addition (D Flip-Flop)  Slower than parallel  Low cost  Share fast hardware on slow data  Good for multiplexed data
  • 30. Digital Circuits Serial Addition (D Flip-Flop)  Only one full adder  Reused for each bit  Start with low- order bit addition  Note that carry (Q) is saved  Add multiple values.  New values placed in shift register B
  • 31. Digital Circuits Serial Addition (D Flip-Flop)  Shift control used to stop addition  Generally not a good idea to gate the clock  Shift register can be arbitrary length  FA can be built from combin. logic
  • 32. Digital Circuits 32 4-6 Decimal Adder  Add two BCD's  9 inputs: two BCD's and one carry-in  5 outputs: one BCD and one carry-out  Design approaches  A truth table with 2^9 entries  use binary full Adders  the sum <= 9 + 9 + 1 = 19  binary to BCD
  • 33. Digital Circuits 33  BCD Adder: The truth table
  • 34. Digital Circuits 34  Modifications are needed if the sum > 9  C = 1  K = 1  Z8Z4 = 1  Z8Z2 = 1  modification: (10)d or +6 C = K +Z8Z4 + Z8Z2
  • 35. Digital Circuits 35  Block diagram
  • 36. Digital Circuits 36 Excess-3 Adder  Excess-3 code = BCD + (3)10  If carry = 0, we add to excess-3 digit then we have to subtract (3)10 = (0011)2 from the sum for once. Because, each of the two digit had excess of 3 values. So during addition, 3 is added twice in the sum whereas, 3 should be added once.  If carry =1, then we need to add (0011) with the sum to get the correct digit
  • 38. Digital Circuits 38 Terms 2 X 3 -------------- 6 Mutiplicand Multiplier Product
  • 39. Digital Circuits 39 Multiplication in binary form? 1. Rewrite the multiplication in binary form. 1. Sketch the black box view. 1. The multiplier multiplies two __?__ bits numbers.
  • 40. Digital Circuits 40 2-bits x 2-bits Multiplier Design  Two techniques:  Using the standard K-Map  Using Arrays (cascaded approach)
  • 41. Digital Circuits 41 Method A: Using the K-Map Technique  Sketch the bLack box.  Sketch the Truth Table for a 2-bit “multiplier” and 2- bit “multiplicand”.  Input (Multiplier) = A1 and A0  Input (Multiplicand) = B1 and B0  Output (4-bits) = S3, S2, S1 and S0 or S[3..0]  Using K-Maps, obtain the boolean expression for each output.  Sketch the schematic diagram.
  • 42. Digital Circuits 42 Method B: Using the Array (Cascaded) Technique  Create the 2x2 multiplier using Full ADDERS. Design “Smart”
  • 43. Digital Circuits 43 … tHE cONcEpt A1 A0 B1 B0 x A1B0 A0B0 A1B1 A0B1 + S0 S1 S2 S3 C C
  • 44. Digital Circuits 44 A 2-Bit by 2-Bit Binary Multiplier
  • 45. Digital Circuits 45 AND comput es A0 B0 Half adder computes sum. Will need FA for larger multiplier.
  • 46. Digital Circuits 46  4-bit by 3-bit binary multiplier Fig. 4.16 Four-bit by three-bit binary multiplier.
  • 47. Digital Circuits 47 The 4-bits x 4-bits Multiplier Using Array 2x2
  • 48. Digital Circuits 48 Multiplier Product  The product of m-bit x n-bit numbers is an (m+n)-bit number. => The product of two 4-bit numbers is an 8-bit number.
  • 49. Digital Circuits 49 How about this one? 13 X 11 -------------- 143 Mutiplicand Multiplier Product
  • 50. Digital Circuits 50 1 1 1 1 (143) Product 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 1 (11) multiplier 1 0 1 X (13) multiplicand 0 1 1 Partial products
  • 52. Digital Circuits 52  Design a 4-bits x 4-bits multiplier using the Array (cascaded) technique, by utilizing:  The 2-bits x 2-bits Multiplier and full adder designed earlier.  Hints : Look back at the concept of 2x2 multiplier. Take the same step.
  • 53. Digital Circuits Ripple-Carry Array Multiplier FA A2B 1 A0B 0 FA A3B 1 FA A1B 2 C C S A2B 1 HA S FA A3B 2 FA A2B 1 C C S A0B 3 FA A3B 3 FA A2B 3 C C S C HA A1B 3 C S HA FA C C HA A0B 2 C S A2B 1 A2B 1 A2B 1 A2B 1 C S S S S S S P0 P7 P6 P5 P4 P3 P2 P1
  • 54. Digital Circuits 54 Calculation of Multiplication Time 