SlideShare a Scribd company logo
1 of 26
P.E.N.G.U.I.N.S
Promoting Emulsion Nullification
Greenly Using Innovative Nucleation
Surfaces
The Problem of Emulsions
• Oil spills are environmental catastrophes
• The oil spill mixes with the surrounding
seawater to form an oil spill emulsion that is
very difficult to remove from the ocean
• This oil spill emulsion is the most
dangerous part of the oil spill, because it is
responsible for the longevity and most of
the ecological harm of the emulsion
• When this emulsion separates, the oil can be
cleaned up through traditional methods
• The emulsion separates on its own over
time, but this separation may take years. By
separating that emulsion more efficiently,
the oil spill itself can be cleaned more
efficiently
Oil spill emulsions are
particularly dangerous
because, as shown above,
they float under the spilled
oil within the feeding areas
of many marine animals
Spilled Oil
Ocean
Emulsion
ApproximatePenguin
FeedingGround
Using Plastics to Separate Emulsions
• Photos show an observation of
emulsion separation when stored
in PP, PMP and glass containers
• Clearly, the emulsion in the PMP
container separates faster
• As seen, for PMP, the separation is
driven at the interface between the
emulsion and the plastic
• For glass and PP, the separation is
only in the center
Polypropylene Poly-methyl-pentene Glas
s
Last year, based on these observations, I decided to test the effects of various
plastics on emulsion stability. I quantified the effects of these different plastics,
and using correlation analysis, determined the factors that most strongly affected
each plastics’ effects on emulsion stability.
Plastics Testing Overview
The effects of plastic exposure on
emulsion stability was tested in three
ways, with a fourth test of
environmental sustainability.
Phase 1: ‘Chaos’ Test: This is the
most traditional test, where the rod is
inserted into a tube of emulsion and
the rate of separation is measured.
Phase 2: ADELIE Test: I developed
this test last year to efficiently predict
emulsion stability. 4 drops of
emulsion are placed onto each plate
and the rate of growth, as a proxy for
stability, is measured.
R
O
D
PLATE
FILM
WATER
QUALITY
TEST
PLASTIC
Phase 3: Microscopic Analysis:Using films
of different plastics as coverslips, I recorded
the change over time in the emulsion makeup
for a qualitative measure of internal processes.
Phase 4: Bioassay: Using water stored in
proximity to the best-performing plastics, I
germinated lettuce to ensure the plastics will
not contaminate the water they are added to.
Emulsion Creation
• Seawater: 3.6 grams of Instant Ocean (a
commercial salt used in aquariums) and
100 mL of distilled water
• Blue, water-soluble food dye was used as a
stain
• I mixed the simulated seawater with
canola oil
• Based on preliminary testing, 1:1 oil to
water ratio.
• In natural conditions, the shearing action
of waves produces the mixing force;
however, in my home “laboratory,” I used
a household immersion blender (RPM
14000).
• Total mixing time: 150 seconds
To test the effects of plastic on
emulsion separation, a large
amount of emulsion was created
using a non-hazardous substitute
for crude oil: canola oil
Plastic Testing Results
Exposure to different plastics has a statistically significant
effect on the stability of an oil/water emulsion. To the right are
a list of the tested plastics placed in order of their effect. The
ones that decreased the stability the most are listed at the top,
while the ones that stabilized the emulsions are listed at the
bottom in red.
Plastics that help destabilize emulsions are considered
desirable for the purpose of this experiment because they
could increase the rate of cleanup of oil spills. Conversely,
plastics that increase emulsion stability should be avoided in
an oil spill situation.
All three emulsion-based tests produced the same general
results: PMP, Nylon 6-6, and ABS all increase the rate of
destabilization of the emulsions they come in contact with.
Moisture resistant nylon and high-density polyethylene both
consistently decrease the rate of destabilization in emulsions
they come in contact with.
The plastics that decreased emulsion stability were also tested
for environmental impact. There was no statistically
significant difference between plants grown in plastic-exposed
water and those grown in pure water.
Master List of Plastics:
Colored backing determined
through combining the data
of the first three tests
Poly-methyl-pentene
Nylon 6-6
Acrylonitrile Butadiene
Styrene
Acetal
Glass (control)
Acrylic
Polycarbonate
Polystyrene
PTFE
Low-Density Polyethylene
Moisture Resistant Nylon
High-Density Polyethylene
Correlation Analysis for Plastics
Based on these results, I found that the two plastic properties that had the greatest
effect on emulsion stability were the polarity of the plastics, and the branching of
the plastics (R²=0.90). This polarity effect was really an extremity of polarity
effect, in which both highly polar and highly non-polar polymers led to
destabilization (as polar polymers “draw out” the water, and non-polar the oil).
These results informed my design choices and tests for this current engineering
project.
Design Process – Based off Plastics Results
Design Goal: Reduce Emulsion Separation time by at least 20%
Polarity and Branching Results from Prior Experiments
Polarity Confirmation
Spacing Effects Tests
Surface Effects Test
Materials Choices Effects Choices
Prototypes 1, 2, and 3
Prototypes 4, 5, and 6
Polarity Test
Polyethylene Acetal
Non-Polar Polar
To further confirm the results of my earlier polarity testing, I ran a visual test
where I placed a drop of emulsion onto two plates, one polar and one non-polar.
As you can see, the different behavior on each plate (which did not occur in the
control) indicates a polarity effect on emulsion stability.
Surface Effects Test
• Based on the idea that if monomer branching can
affect emulsion stability, so should surface texture
• I modified 6 ABS rods using sanding and ABS
paint. I created ABS paint from a mixture of ABS
printing filament and acetone
• I created 6 samples: sanded w/60 grit paper, rod
partially dissolved in acetone and etched, painted
w/smooth brush, painted w/rough brush, wrapped
in ABS filament, sanded w/200 grit paper, and
unmodified control
Using a stand I built and a cellphone interval
camera, I conducted an industry “bottle test,”
taking pictures every 10 minutes of the
separation over time to quantify the effects of
each of these modifications.
Surface Effects Image Analysis
50
60
70
80
90
100
110
0 20 40 60 80 100 120
Percent“oil+emulsion”
Picture Number (Every 10 Minutes)
Sample Logistic Curve
My
code in
ImageJ
I took each of those interval camera images, and using code I wrote in ImageJ,
converted each into a b/w image indicating “water” and “emulsion + oil” regions.
I then graphed the amount of
“emulsion + oil” over time (found
using ImageJ batch processing),
which follows a logistic
regression, and found the time to
reach only 65% emulsion + oil and
found the % decrease in separation
time as compared to the control.
Surface Effects Results
0
2
4
6
8
10
12
14
16
18
20
Rough Painted
Rod
Twisted Rod Sanding 60 Grit
Rod
Dissolved Rod Smooth Painted
Rod
Sanding 220 Grit
Rod
%DecreaseinEmulsionSeparationTime
Percent Decrease in Separation Time by Surface Effect
ANOVA Alpha = 0.05
F value 4.60
F Critical 2.85
This graph suggests the most effective surface
effects are roughly painting the surface, adding extra
filament, and sanding the surface with 60 grit
sandpaper. Based on ANOVA analysis, these results
are statistically significant.
Spacing Effects Test
• Using a 3-D pen, I created “jail cells” of
varying widths to test the effect of
spacing on emulsion stability
• I created both a “control” set (ABS pen
on ABS plastic), and a “polarity” set
(PLA pen on PMP plastic), as the
polarities of PLA and PMP differ greatly
• I used my previously developed ADELiE test to
measure emulsion separation over time
• In ADELiE, the rate of spread of a drop of
emulsion is correlated with its rate of
destabilization
• I took pictures of the setup shown to the right every
10-20 minutes, and then graphed the width at three
different points over time
Spacing Effects Analysis
Calibration
LeftWidth
MidWidth
RightWidth
y = 0.0209x + 14.974
y = 0.0235x + 14.513
y = 0.0239x + 18.057
10
12
14
16
18
20
22
0 20 40 60 80 100
Widthinmm
Time in Minutes
ADELIE: Growth Rates of Emulsion
Blobs
• Using ImageJ, I calculated the widths across the “blob”
• Using ImageJ, I was able to exactly portion the measurements to
measure the same point on the emulsion each time
• I then graphed each measurement over time to find the slope, which I used
as the ADELIE measurement. A representative graph is shown above
Spacing Effects Results
0
0.02
0.04
0.06
0.08
0.1
0.12
Control W1 Control W2 Control W3 Polarity W1 Polarity W2 Polarity W3
ADELIEResult:Growthinmm/min
ADELIE Growth Rates by Plastic and Width
ANOVA Alpha = 0.05
F value 172
F Critical 3.11
As you can see, the “polarity” tests outperformed
the “control” tests at all three values. The optimal
spacing appears to be between 2 and 3 filament
widths. These results are statistically significant.
Prototype 1: “Spikey Ball”
This prototype was printed on the Richland Public Library’s STEAMspace 3-D
printer. I expected this to be one of the lowest performing prototypes because I did
not add surfaces of differing polarities, and its existence serves as a control for the
“Mod Spikey Ball.”
The entire ball was
printed out of ABS
plastic, which is
moderately polar
The design was
inspired by the
roughly-painted ABS
rod, which I believe
was effective due to its
many points
Its shape is based off
the Stellated
Dodecahedron
In emulsion
Prototype 2: “Mod Spikey Ball”
The design was
inspired by the
roughly-painted ABS
rod, and the filament-
wrapped rod
I used a spacing of 2.5
filament widths
because of the results
of the Spacing Test
While the base is still
ABS, the added
material is PLA,
which is significantly
more polar
The base was printed at the Richland Public Library, and I added the PLA
filament using a 3-D pen. I expected this prototype to perform significantly better
than the original “Spikey Ball” due to the added polar material.
In emulsion
Prototype 3 “Jellyfish”
The other main design
category was the
“jellyfish,” which was
primarily inspired by
the prospect of mixing
polar and non-polar
materials
The “tentacles” of the
jellyfish alternate
between non-polar
PMP and polar ABS,
chosen for their
branching and
differences in polarity
This is a standard
jellyfish, with no
modifications to the
tentacles
To build the jellyfish, I used 25Âľm-thick ABS and PMP sheets, and strung them
together on a wire with glass beads. I expected this to be the lowest performing of
the jellyfish, but note the separation with water (in the overhead shot) occurring
on every-other tentacle. This is a polarity-based effect with the ABS.
In emulsion
Prototype 4: “Flat Jellyfish”
This jellyfish was
inspired by the
original jellyfish,
which was effective,
but the tentacle layout
appeared to be
inhibiting the
agglomeration of
separated oil/water As you can see in the
image, all the oil and
water can move freely,
uninhibited by
different “sections”
The same overall area
of ABS and PMP was
used to create this
To build the jellyfish, I again used 25Âľm-thick ABS and PMP sheets, glass beads,
and wire. I expected this to jellyfish prototype to slightly outperform the original
because it allows for better agglomeration.
In emulsion
Prototype 5: “Braided Jellyfish”
All the prototypes from the second round are jellyfish because of their greater
effectiveness over the Spikey Balls. I thought this prototype would significantly
outperform the original jellyfish, because of the added nucleation sites.
This jellyfish is the
same as the original
jellyfish, with an added
twist braid of 5Âľm-
thick ABS and PMP
This “braid” has many
sharp points which can
serve as nucleation
points—regions where
oil or water can begin
to agglomerate
This was primarily
inspired by the high-
performer “Filament-
Wrapped ABS” from
the Surface Effects
Test
In emulsion
Prototype 6: “Sanded Jellyfish”
This improvement on
Prototype 3 was
primarily inspired by
the 3rd-place finisher
in the Surface Effects
Test, rod sanded with
60 grit paper
This was chosen over
the 1st-place winner
because of the
difficulty of creating
ABS paint, and a need
for a PMP surface
texture
Other than sanding,
no changes to the
original model were
made
Because of the efficacy of the sanding in the Surface Effects Test, I thought this
sanded model would be the most effective of all the models overall.
In emulsion
Overall Separation Time Decrease
0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
Spikey Ball Mod Spikey
Ball
Flat Jellyfish Jellyfish Sanded
Jellyfish
Braided
Jellyfish
%DecreaseinTotalSeparationTimebyControl
Percent Decrease of Total Separation Time by Prototype
I met my design goal! The most effective model was actually the Braided
Jellyfish, which decreased the total separation time by 25%, well over my goal
of 20%. These results are statistically significant.
ANOVA Alpha = 0.05
F value 5.16
F Critical 2.85
Logistic Analysis
• When graphing the separation over time for both the control and the affected
emulsions, I noticed a stark difference in separation times
• This graph demonstrates that difference
• While the control emulsion takes longer to begin to separate visibly, once it
begins to separate, it finishes quite quickly
• Overall, the affected emulsions still separate far faster on average
-10
0
10
20
30
40
50
60
70
80
90
0 500 1000 1500 2000 2500
mLofEmulsionRemaining
Time in Minutes
Comparison of Emulsion Remaining over Time: Control/Braided Jellyfish Samples
Control Braided Jellyfish
Braided Jellyfish
Sample Begins
Separating
Control Sample
Begins
Separating
Braided Jellyfish
Sample Finishes
Separating
Control Sample
Finishes
Separating
Decrease in Time to Begin Separating
0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00
Spikey Ball Mod Spikey Ball Flat Jellyfish Jellyfish Sanded Jellyfish Braided Jellyfish
%DecreaseinTimetoStartSeparating
• This prompted me to graph the decrease in the time for the emulsion to begin
separating for each prototype
• They were roughly proportional to the overall separation time decreases for each
prototype
• The most drastic effect was from the Braided Jellyfish, with a Start Time
Decrease of 86.4%
ANOVA Alpha = 0.05
F value 5.71
F Critical 3.11
Discussion of Correlation
R² = 0.7617
0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00
0.00 10.00 20.00 30.00
Average%DecreaseofStartTime
Average % Decrease of End Time
Correlation Graph
0
1
2
3
4
5
6
7
Spikey Ball Mod Spikey
Ball
Flat Jellyfish Jellyfish Sanded
Jellyfish
Braided
Jellyfish
%DecreaseStartTime/%
DecreaseStartTime
Ratios Test
• This proportionality that I noted inspired me to
conduct a correlation analysis
• I found a strong correlation between the start time
and overall time decreases
• When graphing the ratios of start and end time
decreases, there was no statistically significant
difference between the prototypes (f value =
0.334, f crit. = 5.99)
Conclusions and Future Work
• I exceeded my design goal! Three Jellyfish designs (original, sanded, and
braided) all decreased total emulsion separation time by over 20%
• Primarily, these effects were the result of a decrease in the time the emulsion
took to start visually separating
• I believe this works because my prototypes create multiple nucleation sites
for emulsion separation throughout the sample. By contrast, in my controls,
only the few nucleation sites that naturally occurred allowed for
destabilization
• The most effective prototypes were mixtures of oleophilic and hydrophilic
polymers, with rough surfaces and points to allow for multiple oil and water
nucleation sites
• In the future, I plan to improve on these prototypes:
• Because of the success of the braided and sanded jellyfish, I plan to
combine them into one braided/sanded jellyfish
• I plan to explore bioplastics because of their higher polarity
• I’d like to test a design composed solely of intertwined braids

More Related Content

What's hot

Impression materials
Impression materials Impression materials
Impression materials Sumanvijyanta
 
impression-materials-techniques-procedures-for-complete-dentures-prostho
 impression-materials-techniques-procedures-for-complete-dentures-prostho impression-materials-techniques-procedures-for-complete-dentures-prostho
impression-materials-techniques-procedures-for-complete-dentures-prosthoAtiya Khan
 
Dissolution Models and Methods, Factors and Kinetics.
Dissolution Models and Methods, Factors and Kinetics.Dissolution Models and Methods, Factors and Kinetics.
Dissolution Models and Methods, Factors and Kinetics.Siddharth Kumar Sahu
 
Usp dissolution studies
Usp dissolution studiesUsp dissolution studies
Usp dissolution studies9993664147
 
Sink or float: A Study on Plastic Density
Sink or float: A Study on Plastic DensitySink or float: A Study on Plastic Density
Sink or float: A Study on Plastic Densitybrahmsbaby12
 
Qc tets for tablets final
Qc tets for tablets finalQc tets for tablets final
Qc tets for tablets finalChowdaryPavani
 
Dissolution
DissolutionDissolution
Dissolutionkarimbscdu
 
Q.C. tests of tablet dosage form as per the Indian Pharmacopoeia
Q.C. tests of tablet dosage form as per the Indian PharmacopoeiaQ.C. tests of tablet dosage form as per the Indian Pharmacopoeia
Q.C. tests of tablet dosage form as per the Indian PharmacopoeiaShital Trivedi nee Shah
 
Impression material & procedures
Impression material & proceduresImpression material & procedures
Impression material & proceduresFalak Arain
 
Ipqc tests for tablet
Ipqc tests for tabletIpqc tests for tablet
Ipqc tests for tabletMalay Jivani
 
Dissolution apparatus
Dissolution apparatusDissolution apparatus
Dissolution apparatusYasser Sedik
 
An orientation lecture For M.Pharm
An orientation lecture For M.Pharm    An orientation lecture For M.Pharm
An orientation lecture For M.Pharm Mcpl Moshi
 

What's hot (13)

Impression materials
Impression materials Impression materials
Impression materials
 
impression-materials-techniques-procedures-for-complete-dentures-prostho
 impression-materials-techniques-procedures-for-complete-dentures-prostho impression-materials-techniques-procedures-for-complete-dentures-prostho
impression-materials-techniques-procedures-for-complete-dentures-prostho
 
Unit i 09-09-20
Unit i 09-09-20Unit i 09-09-20
Unit i 09-09-20
 
Dissolution Models and Methods, Factors and Kinetics.
Dissolution Models and Methods, Factors and Kinetics.Dissolution Models and Methods, Factors and Kinetics.
Dissolution Models and Methods, Factors and Kinetics.
 
Usp dissolution studies
Usp dissolution studiesUsp dissolution studies
Usp dissolution studies
 
Sink or float: A Study on Plastic Density
Sink or float: A Study on Plastic DensitySink or float: A Study on Plastic Density
Sink or float: A Study on Plastic Density
 
Qc tets for tablets final
Qc tets for tablets finalQc tets for tablets final
Qc tets for tablets final
 
Dissolution
DissolutionDissolution
Dissolution
 
Q.C. tests of tablet dosage form as per the Indian Pharmacopoeia
Q.C. tests of tablet dosage form as per the Indian PharmacopoeiaQ.C. tests of tablet dosage form as per the Indian Pharmacopoeia
Q.C. tests of tablet dosage form as per the Indian Pharmacopoeia
 
Impression material & procedures
Impression material & proceduresImpression material & procedures
Impression material & procedures
 
Ipqc tests for tablet
Ipqc tests for tabletIpqc tests for tablet
Ipqc tests for tablet
 
Dissolution apparatus
Dissolution apparatusDissolution apparatus
Dissolution apparatus
 
An orientation lecture For M.Pharm
An orientation lecture For M.Pharm    An orientation lecture For M.Pharm
An orientation lecture For M.Pharm
 

Similar to P.E.N.G.U.I.N.S. Technical Presentation Complete

Development of Biodegradable Plastics from Sago and Bario Rice Blends
Development of Biodegradable Plastics from Sago and Bario Rice BlendsDevelopment of Biodegradable Plastics from Sago and Bario Rice Blends
Development of Biodegradable Plastics from Sago and Bario Rice BlendsSyed Mohammed Sajl
 
Polymer Identification.pdf
Polymer Identification.pdfPolymer Identification.pdf
Polymer Identification.pdfSTAY CURIOUS
 
Column chromatography
Column chromatographyColumn chromatography
Column chromatographyshaisejacob
 
rompedores de emulsion teoria.pptx
rompedores de emulsion teoria.pptxrompedores de emulsion teoria.pptx
rompedores de emulsion teoria.pptxFEMF1
 
Silica Gel | Aluminium Oxide Column chroamtography
Silica Gel | Aluminium Oxide Column chroamtographySilica Gel | Aluminium Oxide Column chroamtography
Silica Gel | Aluminium Oxide Column chroamtographySORBEAD INDIA
 
Membrane emulsification in food industry
Membrane emulsification in food industryMembrane emulsification in food industry
Membrane emulsification in food industrygeethuvavachi
 
Thin layer chromatography
Thin layer chromatographyThin layer chromatography
Thin layer chromatographySubhasmithPradhan
 
Development and pharmaceutical evaluation of oral fast dissolving thin film o...
Development and pharmaceutical evaluation of oral fast dissolving thin film o...Development and pharmaceutical evaluation of oral fast dissolving thin film o...
Development and pharmaceutical evaluation of oral fast dissolving thin film o...Madiha Mushtaque
 
An introduction to emulsion technology.ppt
An introduction to emulsion technology.pptAn introduction to emulsion technology.ppt
An introduction to emulsion technology.pptjorgealbertosanchez14
 
Pull off adhesion-testing_of_coatings
Pull off adhesion-testing_of_coatingsPull off adhesion-testing_of_coatings
Pull off adhesion-testing_of_coatingssololee42
 
NCloeter Final Presentation ENMA499 Final
NCloeter Final Presentation ENMA499 FinalNCloeter Final Presentation ENMA499 Final
NCloeter Final Presentation ENMA499 FinalNathan Cloeter
 
Polyacrylamide gel electrophoresis
Polyacrylamide gel electrophoresisPolyacrylamide gel electrophoresis
Polyacrylamide gel electrophoresisUniversity of Mumbai
 
Column chromatography
Column chromatographyColumn chromatography
Column chromatographyAishwarya T
 
Bettersizer Practical Case in Pesticide Industry.pdf
Bettersizer Practical Case in Pesticide Industry.pdfBettersizer Practical Case in Pesticide Industry.pdf
Bettersizer Practical Case in Pesticide Industry.pdfBettersize Instruments
 
Study of denim fabric
Study of denim fabricStudy of denim fabric
Study of denim fabricRahul Kumar
 
Development Of A Particle Sampling Roller
Development Of A Particle Sampling RollerDevelopment Of A Particle Sampling Roller
Development Of A Particle Sampling RollerJerryErnst
 

Similar to P.E.N.G.U.I.N.S. Technical Presentation Complete (20)

Development of Biodegradable Plastics from Sago and Bario Rice Blends
Development of Biodegradable Plastics from Sago and Bario Rice BlendsDevelopment of Biodegradable Plastics from Sago and Bario Rice Blends
Development of Biodegradable Plastics from Sago and Bario Rice Blends
 
Polymer Identification.pdf
Polymer Identification.pdfPolymer Identification.pdf
Polymer Identification.pdf
 
Column chromatography
Column chromatographyColumn chromatography
Column chromatography
 
rompedores de emulsion teoria.pptx
rompedores de emulsion teoria.pptxrompedores de emulsion teoria.pptx
rompedores de emulsion teoria.pptx
 
Silica Gel | Aluminium Oxide Column chroamtography
Silica Gel | Aluminium Oxide Column chroamtographySilica Gel | Aluminium Oxide Column chroamtography
Silica Gel | Aluminium Oxide Column chroamtography
 
Membrane emulsification in food industry
Membrane emulsification in food industryMembrane emulsification in food industry
Membrane emulsification in food industry
 
Thin layer chromatography
Thin layer chromatographyThin layer chromatography
Thin layer chromatography
 
Development and pharmaceutical evaluation of oral fast dissolving thin film o...
Development and pharmaceutical evaluation of oral fast dissolving thin film o...Development and pharmaceutical evaluation of oral fast dissolving thin film o...
Development and pharmaceutical evaluation of oral fast dissolving thin film o...
 
TLC
TLCTLC
TLC
 
Column chromatography ganesh
Column chromatography ganeshColumn chromatography ganesh
Column chromatography ganesh
 
An introduction to emulsion technology.ppt
An introduction to emulsion technology.pptAn introduction to emulsion technology.ppt
An introduction to emulsion technology.ppt
 
Pull off adhesion-testing_of_coatings
Pull off adhesion-testing_of_coatingsPull off adhesion-testing_of_coatings
Pull off adhesion-testing_of_coatings
 
NCloeter Final Presentation ENMA499 Final
NCloeter Final Presentation ENMA499 FinalNCloeter Final Presentation ENMA499 Final
NCloeter Final Presentation ENMA499 Final
 
Colrfastness to washing
Colrfastness to washingColrfastness to washing
Colrfastness to washing
 
Polyacrylamide gel electrophoresis
Polyacrylamide gel electrophoresisPolyacrylamide gel electrophoresis
Polyacrylamide gel electrophoresis
 
Column chromatography
Column chromatographyColumn chromatography
Column chromatography
 
Bettersizer Practical Case in Pesticide Industry.pdf
Bettersizer Practical Case in Pesticide Industry.pdfBettersizer Practical Case in Pesticide Industry.pdf
Bettersizer Practical Case in Pesticide Industry.pdf
 
Study of denim fabric
Study of denim fabricStudy of denim fabric
Study of denim fabric
 
Development Of A Particle Sampling Roller
Development Of A Particle Sampling RollerDevelopment Of A Particle Sampling Roller
Development Of A Particle Sampling Roller
 
Pretreatment
PretreatmentPretreatment
Pretreatment
 

Recently uploaded

Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...SĂŠrgio Sacani
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptxkhadijarafiq2012
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionPriyansha Singh
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...SĂŠrgio Sacani
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 

Recently uploaded (20)

The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptx
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorption
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 

P.E.N.G.U.I.N.S. Technical Presentation Complete

  • 1. P.E.N.G.U.I.N.S Promoting Emulsion Nullification Greenly Using Innovative Nucleation Surfaces
  • 2. The Problem of Emulsions • Oil spills are environmental catastrophes • The oil spill mixes with the surrounding seawater to form an oil spill emulsion that is very difficult to remove from the ocean • This oil spill emulsion is the most dangerous part of the oil spill, because it is responsible for the longevity and most of the ecological harm of the emulsion • When this emulsion separates, the oil can be cleaned up through traditional methods • The emulsion separates on its own over time, but this separation may take years. By separating that emulsion more efficiently, the oil spill itself can be cleaned more efficiently Oil spill emulsions are particularly dangerous because, as shown above, they float under the spilled oil within the feeding areas of many marine animals Spilled Oil Ocean Emulsion ApproximatePenguin FeedingGround
  • 3. Using Plastics to Separate Emulsions • Photos show an observation of emulsion separation when stored in PP, PMP and glass containers • Clearly, the emulsion in the PMP container separates faster • As seen, for PMP, the separation is driven at the interface between the emulsion and the plastic • For glass and PP, the separation is only in the center Polypropylene Poly-methyl-pentene Glas s Last year, based on these observations, I decided to test the effects of various plastics on emulsion stability. I quantified the effects of these different plastics, and using correlation analysis, determined the factors that most strongly affected each plastics’ effects on emulsion stability.
  • 4. Plastics Testing Overview The effects of plastic exposure on emulsion stability was tested in three ways, with a fourth test of environmental sustainability. Phase 1: ‘Chaos’ Test: This is the most traditional test, where the rod is inserted into a tube of emulsion and the rate of separation is measured. Phase 2: ADELIE Test: I developed this test last year to efficiently predict emulsion stability. 4 drops of emulsion are placed onto each plate and the rate of growth, as a proxy for stability, is measured. R O D PLATE FILM WATER QUALITY TEST PLASTIC Phase 3: Microscopic Analysis:Using films of different plastics as coverslips, I recorded the change over time in the emulsion makeup for a qualitative measure of internal processes. Phase 4: Bioassay: Using water stored in proximity to the best-performing plastics, I germinated lettuce to ensure the plastics will not contaminate the water they are added to.
  • 5. Emulsion Creation • Seawater: 3.6 grams of Instant Ocean (a commercial salt used in aquariums) and 100 mL of distilled water • Blue, water-soluble food dye was used as a stain • I mixed the simulated seawater with canola oil • Based on preliminary testing, 1:1 oil to water ratio. • In natural conditions, the shearing action of waves produces the mixing force; however, in my home “laboratory,” I used a household immersion blender (RPM 14000). • Total mixing time: 150 seconds To test the effects of plastic on emulsion separation, a large amount of emulsion was created using a non-hazardous substitute for crude oil: canola oil
  • 6. Plastic Testing Results Exposure to different plastics has a statistically significant effect on the stability of an oil/water emulsion. To the right are a list of the tested plastics placed in order of their effect. The ones that decreased the stability the most are listed at the top, while the ones that stabilized the emulsions are listed at the bottom in red. Plastics that help destabilize emulsions are considered desirable for the purpose of this experiment because they could increase the rate of cleanup of oil spills. Conversely, plastics that increase emulsion stability should be avoided in an oil spill situation. All three emulsion-based tests produced the same general results: PMP, Nylon 6-6, and ABS all increase the rate of destabilization of the emulsions they come in contact with. Moisture resistant nylon and high-density polyethylene both consistently decrease the rate of destabilization in emulsions they come in contact with. The plastics that decreased emulsion stability were also tested for environmental impact. There was no statistically significant difference between plants grown in plastic-exposed water and those grown in pure water. Master List of Plastics: Colored backing determined through combining the data of the first three tests Poly-methyl-pentene Nylon 6-6 Acrylonitrile Butadiene Styrene Acetal Glass (control) Acrylic Polycarbonate Polystyrene PTFE Low-Density Polyethylene Moisture Resistant Nylon High-Density Polyethylene
  • 7. Correlation Analysis for Plastics Based on these results, I found that the two plastic properties that had the greatest effect on emulsion stability were the polarity of the plastics, and the branching of the plastics (R²=0.90). This polarity effect was really an extremity of polarity effect, in which both highly polar and highly non-polar polymers led to destabilization (as polar polymers “draw out” the water, and non-polar the oil). These results informed my design choices and tests for this current engineering project.
  • 8. Design Process – Based off Plastics Results Design Goal: Reduce Emulsion Separation time by at least 20% Polarity and Branching Results from Prior Experiments Polarity Confirmation Spacing Effects Tests Surface Effects Test Materials Choices Effects Choices Prototypes 1, 2, and 3 Prototypes 4, 5, and 6
  • 9. Polarity Test Polyethylene Acetal Non-Polar Polar To further confirm the results of my earlier polarity testing, I ran a visual test where I placed a drop of emulsion onto two plates, one polar and one non-polar. As you can see, the different behavior on each plate (which did not occur in the control) indicates a polarity effect on emulsion stability.
  • 10. Surface Effects Test • Based on the idea that if monomer branching can affect emulsion stability, so should surface texture • I modified 6 ABS rods using sanding and ABS paint. I created ABS paint from a mixture of ABS printing filament and acetone • I created 6 samples: sanded w/60 grit paper, rod partially dissolved in acetone and etched, painted w/smooth brush, painted w/rough brush, wrapped in ABS filament, sanded w/200 grit paper, and unmodified control Using a stand I built and a cellphone interval camera, I conducted an industry “bottle test,” taking pictures every 10 minutes of the separation over time to quantify the effects of each of these modifications.
  • 11. Surface Effects Image Analysis 50 60 70 80 90 100 110 0 20 40 60 80 100 120 Percent“oil+emulsion” Picture Number (Every 10 Minutes) Sample Logistic Curve My code in ImageJ I took each of those interval camera images, and using code I wrote in ImageJ, converted each into a b/w image indicating “water” and “emulsion + oil” regions. I then graphed the amount of “emulsion + oil” over time (found using ImageJ batch processing), which follows a logistic regression, and found the time to reach only 65% emulsion + oil and found the % decrease in separation time as compared to the control.
  • 12. Surface Effects Results 0 2 4 6 8 10 12 14 16 18 20 Rough Painted Rod Twisted Rod Sanding 60 Grit Rod Dissolved Rod Smooth Painted Rod Sanding 220 Grit Rod %DecreaseinEmulsionSeparationTime Percent Decrease in Separation Time by Surface Effect ANOVA Alpha = 0.05 F value 4.60 F Critical 2.85 This graph suggests the most effective surface effects are roughly painting the surface, adding extra filament, and sanding the surface with 60 grit sandpaper. Based on ANOVA analysis, these results are statistically significant.
  • 13. Spacing Effects Test • Using a 3-D pen, I created “jail cells” of varying widths to test the effect of spacing on emulsion stability • I created both a “control” set (ABS pen on ABS plastic), and a “polarity” set (PLA pen on PMP plastic), as the polarities of PLA and PMP differ greatly • I used my previously developed ADELiE test to measure emulsion separation over time • In ADELiE, the rate of spread of a drop of emulsion is correlated with its rate of destabilization • I took pictures of the setup shown to the right every 10-20 minutes, and then graphed the width at three different points over time
  • 14. Spacing Effects Analysis Calibration LeftWidth MidWidth RightWidth y = 0.0209x + 14.974 y = 0.0235x + 14.513 y = 0.0239x + 18.057 10 12 14 16 18 20 22 0 20 40 60 80 100 Widthinmm Time in Minutes ADELIE: Growth Rates of Emulsion Blobs • Using ImageJ, I calculated the widths across the “blob” • Using ImageJ, I was able to exactly portion the measurements to measure the same point on the emulsion each time • I then graphed each measurement over time to find the slope, which I used as the ADELIE measurement. A representative graph is shown above
  • 15. Spacing Effects Results 0 0.02 0.04 0.06 0.08 0.1 0.12 Control W1 Control W2 Control W3 Polarity W1 Polarity W2 Polarity W3 ADELIEResult:Growthinmm/min ADELIE Growth Rates by Plastic and Width ANOVA Alpha = 0.05 F value 172 F Critical 3.11 As you can see, the “polarity” tests outperformed the “control” tests at all three values. The optimal spacing appears to be between 2 and 3 filament widths. These results are statistically significant.
  • 16. Prototype 1: “Spikey Ball” This prototype was printed on the Richland Public Library’s STEAMspace 3-D printer. I expected this to be one of the lowest performing prototypes because I did not add surfaces of differing polarities, and its existence serves as a control for the “Mod Spikey Ball.” The entire ball was printed out of ABS plastic, which is moderately polar The design was inspired by the roughly-painted ABS rod, which I believe was effective due to its many points Its shape is based off the Stellated Dodecahedron In emulsion
  • 17. Prototype 2: “Mod Spikey Ball” The design was inspired by the roughly-painted ABS rod, and the filament- wrapped rod I used a spacing of 2.5 filament widths because of the results of the Spacing Test While the base is still ABS, the added material is PLA, which is significantly more polar The base was printed at the Richland Public Library, and I added the PLA filament using a 3-D pen. I expected this prototype to perform significantly better than the original “Spikey Ball” due to the added polar material. In emulsion
  • 18. Prototype 3 “Jellyfish” The other main design category was the “jellyfish,” which was primarily inspired by the prospect of mixing polar and non-polar materials The “tentacles” of the jellyfish alternate between non-polar PMP and polar ABS, chosen for their branching and differences in polarity This is a standard jellyfish, with no modifications to the tentacles To build the jellyfish, I used 25Âľm-thick ABS and PMP sheets, and strung them together on a wire with glass beads. I expected this to be the lowest performing of the jellyfish, but note the separation with water (in the overhead shot) occurring on every-other tentacle. This is a polarity-based effect with the ABS. In emulsion
  • 19. Prototype 4: “Flat Jellyfish” This jellyfish was inspired by the original jellyfish, which was effective, but the tentacle layout appeared to be inhibiting the agglomeration of separated oil/water As you can see in the image, all the oil and water can move freely, uninhibited by different “sections” The same overall area of ABS and PMP was used to create this To build the jellyfish, I again used 25Âľm-thick ABS and PMP sheets, glass beads, and wire. I expected this to jellyfish prototype to slightly outperform the original because it allows for better agglomeration. In emulsion
  • 20. Prototype 5: “Braided Jellyfish” All the prototypes from the second round are jellyfish because of their greater effectiveness over the Spikey Balls. I thought this prototype would significantly outperform the original jellyfish, because of the added nucleation sites. This jellyfish is the same as the original jellyfish, with an added twist braid of 5Âľm- thick ABS and PMP This “braid” has many sharp points which can serve as nucleation points—regions where oil or water can begin to agglomerate This was primarily inspired by the high- performer “Filament- Wrapped ABS” from the Surface Effects Test In emulsion
  • 21. Prototype 6: “Sanded Jellyfish” This improvement on Prototype 3 was primarily inspired by the 3rd-place finisher in the Surface Effects Test, rod sanded with 60 grit paper This was chosen over the 1st-place winner because of the difficulty of creating ABS paint, and a need for a PMP surface texture Other than sanding, no changes to the original model were made Because of the efficacy of the sanding in the Surface Effects Test, I thought this sanded model would be the most effective of all the models overall. In emulsion
  • 22. Overall Separation Time Decrease 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 Spikey Ball Mod Spikey Ball Flat Jellyfish Jellyfish Sanded Jellyfish Braided Jellyfish %DecreaseinTotalSeparationTimebyControl Percent Decrease of Total Separation Time by Prototype I met my design goal! The most effective model was actually the Braided Jellyfish, which decreased the total separation time by 25%, well over my goal of 20%. These results are statistically significant. ANOVA Alpha = 0.05 F value 5.16 F Critical 2.85
  • 23. Logistic Analysis • When graphing the separation over time for both the control and the affected emulsions, I noticed a stark difference in separation times • This graph demonstrates that difference • While the control emulsion takes longer to begin to separate visibly, once it begins to separate, it finishes quite quickly • Overall, the affected emulsions still separate far faster on average -10 0 10 20 30 40 50 60 70 80 90 0 500 1000 1500 2000 2500 mLofEmulsionRemaining Time in Minutes Comparison of Emulsion Remaining over Time: Control/Braided Jellyfish Samples Control Braided Jellyfish Braided Jellyfish Sample Begins Separating Control Sample Begins Separating Braided Jellyfish Sample Finishes Separating Control Sample Finishes Separating
  • 24. Decrease in Time to Begin Separating 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 Spikey Ball Mod Spikey Ball Flat Jellyfish Jellyfish Sanded Jellyfish Braided Jellyfish %DecreaseinTimetoStartSeparating • This prompted me to graph the decrease in the time for the emulsion to begin separating for each prototype • They were roughly proportional to the overall separation time decreases for each prototype • The most drastic effect was from the Braided Jellyfish, with a Start Time Decrease of 86.4% ANOVA Alpha = 0.05 F value 5.71 F Critical 3.11
  • 25. Discussion of Correlation R² = 0.7617 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 0.00 10.00 20.00 30.00 Average%DecreaseofStartTime Average % Decrease of End Time Correlation Graph 0 1 2 3 4 5 6 7 Spikey Ball Mod Spikey Ball Flat Jellyfish Jellyfish Sanded Jellyfish Braided Jellyfish %DecreaseStartTime/% DecreaseStartTime Ratios Test • This proportionality that I noted inspired me to conduct a correlation analysis • I found a strong correlation between the start time and overall time decreases • When graphing the ratios of start and end time decreases, there was no statistically significant difference between the prototypes (f value = 0.334, f crit. = 5.99)
  • 26. Conclusions and Future Work • I exceeded my design goal! Three Jellyfish designs (original, sanded, and braided) all decreased total emulsion separation time by over 20% • Primarily, these effects were the result of a decrease in the time the emulsion took to start visually separating • I believe this works because my prototypes create multiple nucleation sites for emulsion separation throughout the sample. By contrast, in my controls, only the few nucleation sites that naturally occurred allowed for destabilization • The most effective prototypes were mixtures of oleophilic and hydrophilic polymers, with rough surfaces and points to allow for multiple oil and water nucleation sites • In the future, I plan to improve on these prototypes: • Because of the success of the braided and sanded jellyfish, I plan to combine them into one braided/sanded jellyfish • I plan to explore bioplastics because of their higher polarity • I’d like to test a design composed solely of intertwined braids