SlideShare a Scribd company logo
1 of 6
Dependent Current Sources -- G Elements
Voltage Controlled Current Source (VCCS)
The syntax is:
Linear
Gxxx n+ n- <VCCS> in+ in- transconductance <MAX=val> <MIN=val>
+ <SCALE=val> <M=val> <TC1=val> <TC2=val> <ABS=1> <IC=val>
Polynomial
Gxxx n+ n- <VCCS> POLY(ndim) in1+ in1- ... <inndim+ inndim-> MAX=val>
+ <MIN=val> <SCALE=val> <M=val> <TC1=val> <TC2=val> <ABS=1> p0
+ <p1...> <IC=vals>
Piecewise Linear
Gxxx n+ n- <VCCS> PWL(1) in+ in- <DELTA=val><SCALE=val><M=val>
+ <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val>
Gxxx n+ n- <VCCS> NPWL(1) in+ in- <DELTA=val> <SCALE=val> <M=val>
+ <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val>
Gxxx n+ n- <VCCS> PPWL(1) in+ in- <DELTA=val> <SCALE=val><M=val>
+ <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val>
Multi-Input Gates
Gxxx n+ n- <VCCS> gatetype(k) in1+ in1- ... ink+ ink- <DELTA=val> <TC1=val>
+ <TC2=val> <SCALE=val><M=val> x1,y1 ... x100,y100<IC=val>
Delay Element
Gxxx n+ n- <VCCS> DELAY in+ in- TD=val <SCALE=val> <TC1=val> <TC2=val>
+ NPDELAY=val
Behavioral Current Source
The syntax is:
Gxxx n+ n- CUR='equation' <MAX>=val> <MIN=val>
Voltage Controlled Resistor (VCR)
The syntax is:
Linear
Gxxx n+ n- VCR in+ in- transfactor <MAX=val> <MIN=val> <SCALE=val>
+ <M=val> <TC1=val> <TC2=val> <IC=val>
Polynomial
Gxxx n+ n- VCR POLY(ndim) in1+ in1- ... <inndim+ inndim-> <MAX=val>
+ <MIN=val> <SCALE=val> <M=val> <TC1=val> <TC2=val> p0 <p1...>
+ <IC=vals>
Piecewise Linear
Gxxx n+ n- VCR PWL(1) in+ in- <DELTA=val> <SCALE=val> <M=val>
+ <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val>
Gxxx n+ n- VCR NPWL(1) in+ in- <DELTA=val> <SCALE=val> <M=val>
+ <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val>
Gxxx n+ n- VCR PPWL(1) in+ in- <DELTA=val><SCALE=val><M=val>
+ <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val>
Multi-Input Gates
Gxxx n+ n- VCR gatetype(k) in1+ in1- ... ink+ ink- <DELTA=val>
+ <TC1=val> <TC2=val> <SCALE=val> <M=val> x1,y1 ... x100,y100 <IC=val>
Voltage Controlled Capacitor (VCCAP)
The syntax is:
Gxxx n+ n- VCCAP PWL(1) in+ in- <DELTA=val> <SCALE=val> <M=val>
+ <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val >
+ <SMOOTH=val>
The two functions NPWL and PPWL allow the interchange of the `n+' and `n-' nodes
while keeping the same transfer function. This action can be summarized as follows:
NPWL Function
For node `in-' connected to `n-';
If v(n+,n-) > 0, then the controlling voltage would be v(in+,in-). Otherwise, the
controlling voltage is v(in+,n+)
For node `in-'connected to `n+';
If v(n+,n-) < 0, then the controlling voltage would be v(in+,in-). Otherwise, the
controlling voltage is v(in+,n+)
PPWL Function
For node `in-'connected to `n-';
If v(n+,n-) < 0, then the controlling voltage would be v(in+,in1-). Otherwise, the
controlling voltage is v(in+,n+)
For node `in-'connected to `n+';
If v(n+,n-) > 0, then the controlling voltage would be v(in+,in-). Otherwise, the
controlling voltage is v(in+,n+)
G Element Parameters
ABS Output is absolute value if ABS=1.
CUR=equation Current output which flows from n+ to n-. The "equation", which is
defined by the user, can be a function of node voltages, branch currents, TIME,
temperature (TEMPER), and frequency (HERTZ).
DELAY Keyword for the delay element. The delay element is the same as voltage
controlled current source except it is associated by a propagation delay TD. This
element facilitates the adjustment of propagation delay in the subcircuit model
process. DELAY is a Star-Hspice keyword and should not be used as a node name.
DELTA Used to control the curvature of the piecewise linear corners. Defaults to 1/4
of the smallest of the distances between breakpoints. The maximum is 1/2 of the
smallest of the distances between breakpoints.
Gxxx Voltage controlled element name. Must begin with "G", which may be followed
by up to 15 alphanumeric characters.
gatetype(k) May be AND, NAND, OR, or NOR. The value of k is the number of inputs
of the gate. The x and y terms represent the piecewise linear variation of output as
a function of input. In the multi-input gates only one input determines the state of
the output.
IC Initial condition. The initial estimate of the value(s) of the controlling voltage(s).
If IC is not specified, Default=0.0.
in +/- Positive or negative controlling nodes. Specify one pair for each dimension.
M Number of replications of the element in parallel
MAX Maximum current or resistance value. The default is undefined, and sets no
maximum value.
MIN Minimum current or resistance value. The default is undefined, and sets no
minimum value.
n+/- Positive or negative node of controlled element
NPDELAY Sets the number of data points to be used in delay simulations. The
default value is the larger of 10 or the smaller of TD/tstep and tstop/tstep. That is,
The values of tstep and tstop are specified in the .TRAN statement.
NPWL Models the symmetrical bidirectional switch or transfer gate, NMOS
p0, p1 ... Polynomial coefficients. When one coefficient is specified, Star-Hspice
assumes it to be p1, with p0=0.0, and the element is linear. When more than one
polynomial coefficient is specified by p0, p1, p2, ..., the element is nonlinear. See
Polynomial Functions.
POLY Polynomial dimension. If POLY(ndim) is not specified, a one-dimensional
polynomial is assumed. Ndim must be a positive number.
PWL Piecewise linear function keyword
PPWL Models the symmetrical bidirectional switch or transfer gate, PMOS
SCALE Element value multiplier
SMOOTH For piecewise linear dependent source elements, SMOOTH selects the
curve smoothing method.
A curve smoothing method simulates exact data points you provide. This method
can be used to make Star-Hspice simulate specific data points that correspond to
measured data or data sheets.
Choices for SMOOTH are 1 or 2. Specifying 1 selects the smoothing method prior to
Release H93A. Specifying 2 selects the smoothing method that uses data points you
provide. This is the default method starting with release H93A.
TC1,TC2 First- and second-order temperature coefficients. The SCALE is updated by
temperature:
TD Time delay keyword
transconductance Voltage to current conversion factor
transfacto r Voltage to resistance conversion factor
VCCAP Keyword for voltage controlled capacitance element. VCCAP is a Star-Hspice
keyword and should not be used as a node name.
VCCS Keyword for voltage controlled current source. VCCS is a Star-Hspice keyword
and should not be used as a node name.
VCR Keyword for voltage controlled resistor element. VCR is a Star-Hspice keyword
and should not be used as a node name.
x1,... Controlling voltage across nodes in+ and in-. The x values must be in
increasing order.
y1,... Corresponding element values of x
Example
Switch
A voltage controlled resistor represents a basic switch characteristic. The resistance
between nodes 2 and 0 varies linearly from 10meg to 1m ohms when voltage across
nodes 1 and 0 varies between 0 and 1 volt. Beyond the voltage limits, the resistance
remains at 10meg and 1m ohms respectively.
Gswitch 2 0 VCR PWL(1) 1 0 0v,10meg 1v,1m
Switch-level MOSFET
A switch level n-channel MOSFET can be modelled by the N-piecewise linear
resistance switch. The resistance value does not change when the node d and s
positions are switched.
Gnmos d s VCR NPWL(1) g s LEVEL=1 0.4v,150g 1v,10meg 2v,50k
+ 3v,4k 5v,2k
Voltage Controlled Capacitor
The capacitance value across nodes (out,0) varies linearly from 1p to 5p when
voltage across nodes (ctrl,0) varies between 2v and 2.5v. Beyond the voltage limits,
the capacitance value remains constant at 1 picofarad and 5 picofarads respectively.
Gcap out 0 VCCAP PWL(1) ctrl 0 2v,1p 2.5v,5p
Zero Delay Gate
A two-input AND gate can be implemented using an expression and a piecewise
linear table. The inputs are voltages at nodes a and b, and the output is the current
flow from node out to 0. The current is multiplied by the SCALE value, which, in this
example, is specified as the inverse of the load resistance connected across the
nodes (out,0).
Gand out 0 AND(2) a 0 b 0 SCALE='1/rload' 0v,0a 1v,.5a
+ 4v,4.5a 5v,5a
Delay Element
A delay is a low-pass filter type delay similar to that of an opamp. A transmission
line, on the other hand, has an infinite frequency response. A glitch input to a G
delay is attenuated similarly to a buffer circuit. In this example, the output of the
delay element is the current flow from node out to node 1 with a value equal to the
voltage across nodes ( in , 0 ) multiplied by SCALE value and delayed by TD value.
Gdel out 0 DELAY in 0 TD=5ns SCALE=2 NPDELAY=25
Diode Equation
A forward bias diode characteristic from node 5 to ground can be modelled with a
run time expression. The saturation current is 1e-14 amp, and the thermal voltage is
0.025v.
Gdio 5 0 CUR='1e-14*(EXP(V(5)/0.025)-1.0)'
Diode Breakdown
Diode breakdown region to forward region can be modelled. When voltage across
diode goes beyond the piecewise linear limit values (-2.2v, 2v), the diode current
remains at the corresponding limit values (-1a, 1.2a).
Gdiode 1 0 PWL(1) 1 0 -2.2v,-1a -2v,-1pa .3v,.15pa .6v,10ua
+ 1v,1a 2v,1.2a
Triodes
Both the following voltage controlled current sources implement a basic triode. The
first uses the poly(2) operator to multiply the anode and grid voltages together and
scale by .02. The next example uses the explicit behavioral algebraic description.
gt i_anode cathode poly(2) anode,cathode grid,cathode 0 0
0 0 .02 gt i_anode cathode cur='20m*v(anode,cathode)
*v(grid,cathode)'

More Related Content

What's hot

Chapter 10
Chapter 10Chapter 10
Chapter 10Tha Mike
 
Ee6378 bandgap reference
Ee6378 bandgap referenceEe6378 bandgap reference
Ee6378 bandgap referencessuser2038c9
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)Claudia Sin
 
Chapter 14
Chapter 14Chapter 14
Chapter 14Tha Mike
 
Chapter 05
Chapter 05Chapter 05
Chapter 05Tha Mike
 
Chapter 04a
Chapter 04aChapter 04a
Chapter 04aTha Mike
 
Chp1 Transmission line theory with examples-part2
Chp1 Transmission line theory with examples-part2Chp1 Transmission line theory with examples-part2
Chp1 Transmission line theory with examples-part2anwar jubba
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)Claudia Sin
 
Chapter 09
Chapter 09Chapter 09
Chapter 09Tha Mike
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)Claudia Sin
 
Journal On LDO From IJEETC
Journal On LDO From IJEETCJournal On LDO From IJEETC
Journal On LDO From IJEETCSadanand Patil
 
Chapter 01
Chapter 01Chapter 01
Chapter 01Tha Mike
 
Solved problems to_chapter_09
Solved problems to_chapter_09Solved problems to_chapter_09
Solved problems to_chapter_09Shah Zaib
 
Chapter 18
Chapter 18Chapter 18
Chapter 18Tha Mike
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineeringmanish katara
 

What's hot (20)

Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Ee6378 bandgap reference
Ee6378 bandgap referenceEe6378 bandgap reference
Ee6378 bandgap reference
 
Electricmotor4
Electricmotor4Electricmotor4
Electricmotor4
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Chapter 05
Chapter 05Chapter 05
Chapter 05
 
Chapter 04a
Chapter 04aChapter 04a
Chapter 04a
 
Transformer
TransformerTransformer
Transformer
 
Chp1 Transmission line theory with examples-part2
Chp1 Transmission line theory with examples-part2Chp1 Transmission line theory with examples-part2
Chp1 Transmission line theory with examples-part2
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
 
Journal On LDO From IJEETC
Journal On LDO From IJEETCJournal On LDO From IJEETC
Journal On LDO From IJEETC
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Solved problems to_chapter_09
Solved problems to_chapter_09Solved problems to_chapter_09
Solved problems to_chapter_09
 
ECNG 3013 C
ECNG 3013 CECNG 3013 C
ECNG 3013 C
 
Chapter 18
Chapter 18Chapter 18
Chapter 18
 
Emfbook
EmfbookEmfbook
Emfbook
 
Dsp manual
Dsp manualDsp manual
Dsp manual
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
 

Similar to Dependent Current Sources and G Elements Guide

Hardware combinational
Hardware combinationalHardware combinational
Hardware combinationalDefri Tan
 
Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Aya Mahmoud
 
Calculating the efficiency and regulation of transformer using matlab
Calculating the efficiency and regulation of transformer using matlabCalculating the efficiency and regulation of transformer using matlab
Calculating the efficiency and regulation of transformer using matlabMafaz Ahmed
 
Lecture Notes: EEEC6440315 Communication Systems - Analogue Modulation
Lecture Notes:  EEEC6440315 Communication Systems - Analogue ModulationLecture Notes:  EEEC6440315 Communication Systems - Analogue Modulation
Lecture Notes: EEEC6440315 Communication Systems - Analogue ModulationAIMST University
 
Electronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptElectronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptmuhammadzaid733820
 
CAPACITIVE SENSORS ELECTRICAL WAFER SORT
CAPACITIVE SENSORS ELECTRICAL WAFER SORTCAPACITIVE SENSORS ELECTRICAL WAFER SORT
CAPACITIVE SENSORS ELECTRICAL WAFER SORTMassimo Garavaglia
 
Design, Modeling and control of modular multilevel converters (MMC) based hvd...
Design, Modeling and control of modular multilevel converters (MMC) based hvd...Design, Modeling and control of modular multilevel converters (MMC) based hvd...
Design, Modeling and control of modular multilevel converters (MMC) based hvd...Ghazal Falahi
 
Amvdd Data Converter Fundamentals
Amvdd Data Converter FundamentalsAmvdd Data Converter Fundamentals
Amvdd Data Converter FundamentalsNiket Chandrashekar
 
Chap 3. signal processing elemnt part three
Chap 3. signal processing elemnt part threeChap 3. signal processing elemnt part three
Chap 3. signal processing elemnt part threeYemaneBayray
 
Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Editor IJARCET
 
Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Editor IJARCET
 
The iot academy_embeddedsystems_training_circuitdesignpart3
The iot academy_embeddedsystems_training_circuitdesignpart3The iot academy_embeddedsystems_training_circuitdesignpart3
The iot academy_embeddedsystems_training_circuitdesignpart3The IOT Academy
 

Similar to Dependent Current Sources and G Elements Guide (20)

Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinational
 
Analysis
AnalysisAnalysis
Analysis
 
Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"
 
PSpice Tutorial
PSpice TutorialPSpice Tutorial
PSpice Tutorial
 
ADC & DAC
ADC & DAC ADC & DAC
ADC & DAC
 
Calculating the efficiency and regulation of transformer using matlab
Calculating the efficiency and regulation of transformer using matlabCalculating the efficiency and regulation of transformer using matlab
Calculating the efficiency and regulation of transformer using matlab
 
Report_AKbar_PDF
Report_AKbar_PDFReport_AKbar_PDF
Report_AKbar_PDF
 
Lecture Notes: EEEC6440315 Communication Systems - Analogue Modulation
Lecture Notes:  EEEC6440315 Communication Systems - Analogue ModulationLecture Notes:  EEEC6440315 Communication Systems - Analogue Modulation
Lecture Notes: EEEC6440315 Communication Systems - Analogue Modulation
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
powerflowproblem.ppt
powerflowproblem.pptpowerflowproblem.ppt
powerflowproblem.ppt
 
Electronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptElectronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.ppt
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
CAPACITIVE SENSORS ELECTRICAL WAFER SORT
CAPACITIVE SENSORS ELECTRICAL WAFER SORTCAPACITIVE SENSORS ELECTRICAL WAFER SORT
CAPACITIVE SENSORS ELECTRICAL WAFER SORT
 
Design, Modeling and control of modular multilevel converters (MMC) based hvd...
Design, Modeling and control of modular multilevel converters (MMC) based hvd...Design, Modeling and control of modular multilevel converters (MMC) based hvd...
Design, Modeling and control of modular multilevel converters (MMC) based hvd...
 
Amvdd Data Converter Fundamentals
Amvdd Data Converter FundamentalsAmvdd Data Converter Fundamentals
Amvdd Data Converter Fundamentals
 
Chap 3. signal processing elemnt part three
Chap 3. signal processing elemnt part threeChap 3. signal processing elemnt part three
Chap 3. signal processing elemnt part three
 
Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383
 
Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383
 
The iot academy_embeddedsystems_training_circuitdesignpart3
The iot academy_embeddedsystems_training_circuitdesignpart3The iot academy_embeddedsystems_training_circuitdesignpart3
The iot academy_embeddedsystems_training_circuitdesignpart3
 

More from Tsuyoshi Horigome

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 

Recently uploaded

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 

Recently uploaded (20)

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 

Dependent Current Sources and G Elements Guide

  • 1. Dependent Current Sources -- G Elements Voltage Controlled Current Source (VCCS) The syntax is: Linear Gxxx n+ n- <VCCS> in+ in- transconductance <MAX=val> <MIN=val> + <SCALE=val> <M=val> <TC1=val> <TC2=val> <ABS=1> <IC=val> Polynomial Gxxx n+ n- <VCCS> POLY(ndim) in1+ in1- ... <inndim+ inndim-> MAX=val> + <MIN=val> <SCALE=val> <M=val> <TC1=val> <TC2=val> <ABS=1> p0 + <p1...> <IC=vals> Piecewise Linear Gxxx n+ n- <VCCS> PWL(1) in+ in- <DELTA=val><SCALE=val><M=val> + <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val> Gxxx n+ n- <VCCS> NPWL(1) in+ in- <DELTA=val> <SCALE=val> <M=val> + <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val> Gxxx n+ n- <VCCS> PPWL(1) in+ in- <DELTA=val> <SCALE=val><M=val> + <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val> Multi-Input Gates Gxxx n+ n- <VCCS> gatetype(k) in1+ in1- ... ink+ ink- <DELTA=val> <TC1=val> + <TC2=val> <SCALE=val><M=val> x1,y1 ... x100,y100<IC=val> Delay Element Gxxx n+ n- <VCCS> DELAY in+ in- TD=val <SCALE=val> <TC1=val> <TC2=val> + NPDELAY=val Behavioral Current Source The syntax is: Gxxx n+ n- CUR='equation' <MAX>=val> <MIN=val> Voltage Controlled Resistor (VCR) The syntax is: Linear Gxxx n+ n- VCR in+ in- transfactor <MAX=val> <MIN=val> <SCALE=val> + <M=val> <TC1=val> <TC2=val> <IC=val> Polynomial Gxxx n+ n- VCR POLY(ndim) in1+ in1- ... <inndim+ inndim-> <MAX=val> + <MIN=val> <SCALE=val> <M=val> <TC1=val> <TC2=val> p0 <p1...> + <IC=vals> Piecewise Linear Gxxx n+ n- VCR PWL(1) in+ in- <DELTA=val> <SCALE=val> <M=val> + <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val>
  • 2. Gxxx n+ n- VCR NPWL(1) in+ in- <DELTA=val> <SCALE=val> <M=val> + <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val> Gxxx n+ n- VCR PPWL(1) in+ in- <DELTA=val><SCALE=val><M=val> + <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val> <SMOOTH=val> Multi-Input Gates Gxxx n+ n- VCR gatetype(k) in1+ in1- ... ink+ ink- <DELTA=val> + <TC1=val> <TC2=val> <SCALE=val> <M=val> x1,y1 ... x100,y100 <IC=val> Voltage Controlled Capacitor (VCCAP) The syntax is: Gxxx n+ n- VCCAP PWL(1) in+ in- <DELTA=val> <SCALE=val> <M=val> + <TC1=val> <TC2=val> x1,y1 x2,y2 ... x100,y100 <IC=val > + <SMOOTH=val> The two functions NPWL and PPWL allow the interchange of the `n+' and `n-' nodes while keeping the same transfer function. This action can be summarized as follows: NPWL Function For node `in-' connected to `n-'; If v(n+,n-) > 0, then the controlling voltage would be v(in+,in-). Otherwise, the controlling voltage is v(in+,n+) For node `in-'connected to `n+'; If v(n+,n-) < 0, then the controlling voltage would be v(in+,in-). Otherwise, the controlling voltage is v(in+,n+) PPWL Function For node `in-'connected to `n-'; If v(n+,n-) < 0, then the controlling voltage would be v(in+,in1-). Otherwise, the controlling voltage is v(in+,n+) For node `in-'connected to `n+'; If v(n+,n-) > 0, then the controlling voltage would be v(in+,in-). Otherwise, the controlling voltage is v(in+,n+) G Element Parameters ABS Output is absolute value if ABS=1.
  • 3. CUR=equation Current output which flows from n+ to n-. The "equation", which is defined by the user, can be a function of node voltages, branch currents, TIME, temperature (TEMPER), and frequency (HERTZ). DELAY Keyword for the delay element. The delay element is the same as voltage controlled current source except it is associated by a propagation delay TD. This element facilitates the adjustment of propagation delay in the subcircuit model process. DELAY is a Star-Hspice keyword and should not be used as a node name. DELTA Used to control the curvature of the piecewise linear corners. Defaults to 1/4 of the smallest of the distances between breakpoints. The maximum is 1/2 of the smallest of the distances between breakpoints. Gxxx Voltage controlled element name. Must begin with "G", which may be followed by up to 15 alphanumeric characters. gatetype(k) May be AND, NAND, OR, or NOR. The value of k is the number of inputs of the gate. The x and y terms represent the piecewise linear variation of output as a function of input. In the multi-input gates only one input determines the state of the output. IC Initial condition. The initial estimate of the value(s) of the controlling voltage(s). If IC is not specified, Default=0.0. in +/- Positive or negative controlling nodes. Specify one pair for each dimension. M Number of replications of the element in parallel MAX Maximum current or resistance value. The default is undefined, and sets no maximum value. MIN Minimum current or resistance value. The default is undefined, and sets no minimum value. n+/- Positive or negative node of controlled element NPDELAY Sets the number of data points to be used in delay simulations. The default value is the larger of 10 or the smaller of TD/tstep and tstop/tstep. That is, The values of tstep and tstop are specified in the .TRAN statement. NPWL Models the symmetrical bidirectional switch or transfer gate, NMOS
  • 4. p0, p1 ... Polynomial coefficients. When one coefficient is specified, Star-Hspice assumes it to be p1, with p0=0.0, and the element is linear. When more than one polynomial coefficient is specified by p0, p1, p2, ..., the element is nonlinear. See Polynomial Functions. POLY Polynomial dimension. If POLY(ndim) is not specified, a one-dimensional polynomial is assumed. Ndim must be a positive number. PWL Piecewise linear function keyword PPWL Models the symmetrical bidirectional switch or transfer gate, PMOS SCALE Element value multiplier SMOOTH For piecewise linear dependent source elements, SMOOTH selects the curve smoothing method. A curve smoothing method simulates exact data points you provide. This method can be used to make Star-Hspice simulate specific data points that correspond to measured data or data sheets. Choices for SMOOTH are 1 or 2. Specifying 1 selects the smoothing method prior to Release H93A. Specifying 2 selects the smoothing method that uses data points you provide. This is the default method starting with release H93A. TC1,TC2 First- and second-order temperature coefficients. The SCALE is updated by temperature: TD Time delay keyword transconductance Voltage to current conversion factor transfacto r Voltage to resistance conversion factor VCCAP Keyword for voltage controlled capacitance element. VCCAP is a Star-Hspice keyword and should not be used as a node name. VCCS Keyword for voltage controlled current source. VCCS is a Star-Hspice keyword and should not be used as a node name. VCR Keyword for voltage controlled resistor element. VCR is a Star-Hspice keyword and should not be used as a node name. x1,... Controlling voltage across nodes in+ and in-. The x values must be in increasing order.
  • 5. y1,... Corresponding element values of x Example Switch A voltage controlled resistor represents a basic switch characteristic. The resistance between nodes 2 and 0 varies linearly from 10meg to 1m ohms when voltage across nodes 1 and 0 varies between 0 and 1 volt. Beyond the voltage limits, the resistance remains at 10meg and 1m ohms respectively. Gswitch 2 0 VCR PWL(1) 1 0 0v,10meg 1v,1m Switch-level MOSFET A switch level n-channel MOSFET can be modelled by the N-piecewise linear resistance switch. The resistance value does not change when the node d and s positions are switched. Gnmos d s VCR NPWL(1) g s LEVEL=1 0.4v,150g 1v,10meg 2v,50k + 3v,4k 5v,2k Voltage Controlled Capacitor The capacitance value across nodes (out,0) varies linearly from 1p to 5p when voltage across nodes (ctrl,0) varies between 2v and 2.5v. Beyond the voltage limits, the capacitance value remains constant at 1 picofarad and 5 picofarads respectively. Gcap out 0 VCCAP PWL(1) ctrl 0 2v,1p 2.5v,5p Zero Delay Gate A two-input AND gate can be implemented using an expression and a piecewise linear table. The inputs are voltages at nodes a and b, and the output is the current flow from node out to 0. The current is multiplied by the SCALE value, which, in this example, is specified as the inverse of the load resistance connected across the nodes (out,0). Gand out 0 AND(2) a 0 b 0 SCALE='1/rload' 0v,0a 1v,.5a + 4v,4.5a 5v,5a Delay Element A delay is a low-pass filter type delay similar to that of an opamp. A transmission line, on the other hand, has an infinite frequency response. A glitch input to a G delay is attenuated similarly to a buffer circuit. In this example, the output of the delay element is the current flow from node out to node 1 with a value equal to the voltage across nodes ( in , 0 ) multiplied by SCALE value and delayed by TD value.
  • 6. Gdel out 0 DELAY in 0 TD=5ns SCALE=2 NPDELAY=25 Diode Equation A forward bias diode characteristic from node 5 to ground can be modelled with a run time expression. The saturation current is 1e-14 amp, and the thermal voltage is 0.025v. Gdio 5 0 CUR='1e-14*(EXP(V(5)/0.025)-1.0)' Diode Breakdown Diode breakdown region to forward region can be modelled. When voltage across diode goes beyond the piecewise linear limit values (-2.2v, 2v), the diode current remains at the corresponding limit values (-1a, 1.2a). Gdiode 1 0 PWL(1) 1 0 -2.2v,-1a -2v,-1pa .3v,.15pa .6v,10ua + 1v,1a 2v,1.2a Triodes Both the following voltage controlled current sources implement a basic triode. The first uses the poly(2) operator to multiply the anode and grid voltages together and scale by .02. The next example uses the explicit behavioral algebraic description. gt i_anode cathode poly(2) anode,cathode grid,cathode 0 0 0 0 .02 gt i_anode cathode cur='20m*v(anode,cathode) *v(grid,cathode)'