SlideShare a Scribd company logo
1 of 29
Download to read offline
1
Fire modeling Performance based technical approach
Author: Prakash Bahadur Thapa
FIRE
MODELLING
THERMAL
ANALYSIS
STRUCTURAL
ANALYSIS
The performance based approach involves the assessment of three basic
components comprising the likely fire behaviour, heat transfer to the structure and
the structural response. The overall complexity of the design depends on the
assumptions and methods adopted to predict each of the three design components.
In the following, the three design components are discussed.
 Fire Modelling
 Thermal Analysis
 Structural Analysis
1.0.0 Fire Modelling
Figure 1 Options for fire modelling in compartments
Fire model Norminal Time Compartment fires Zone Models CFD / field models
2
fires equivalences Parametric Localised One-zone Two-zone
Complexity Simple Intermediate Advanced
Fire
Behaviour
Post-flashover fires
Pre-
flashover
fires
Post-
flashover
fires
Pre-
flashover /
localised
fires
Complete
temperature-time
relationships
Temperature
distribution
Uniform in whole compartment
Non-
uniform
along
plume
Uniform
Uniform in
each layer
Time and space
dependent
Input
parameters
Fire type
No physical
parameters
Fire load
Ventilation conditions
Thermal properties of
boundary
Compartment size
Fire load &
size
Height of
ceiling
Fire load
Ventilation conditions
Thermal properties of
boundary
Compartment size
Detailed input for heat
& mass balance of the
system
Detailed input for
solving the
fundamental
equations of the
fluid flow
Design tools
BSEN1991-1-2 COMPF2
OZone
SFIRE-4
CCFM
CFAST
OZone
FDS
SMARTFIRE
SOFIEPD7974-1 PD7974-1
Simple equations for hand
calculations
Spreadsheet
Simple
equations
Computer models
Generally, the factors influencing the severity of a compartment fire can be
summarised as follows:
 Fire load type, density and distribution
 Combustion behaviour of fire load
 Compartment size and geometry
 Ventilation conditions of compartment
 Thermal properties of compartment boundary
The occurrence of flashover in a compartment fire imposes a transition to the fire
development. Therefore, many fire models are classified under pre- or post-
flashover, except for the computational fluid dynamic (CFD) models, which cover
both phases.
There are a number of options available to calculate the fire severity as follows:
 Standard/Nominal Fire Models – standard, external and hydrocarbon fires
 Time Equivalences – relate standard fires to real fires
 Parametric Fire Models – for post-flashover fires
 Localised fires – for pre-flashover fires
 External window fires – for fires through openings of fire compartment
 Zone Models – one-zone models for pre-flashover fires – two-zone models for
post-flashover fires
 CFD or Field Models – for general fire and smoke modelling
3
The level of complexity increases from simple fire models to field models as shown
in Figure 1. Basically, the first four fire models can be considered as simple models,
whereas the zone and CFD models are advanced models. The input parameters for
each of these models are quite different with the advanced models requiring very
detailed input data and simple models requiring little input.
In the simple fire models, the gas temperature of a compartment is taken as uniform
and represented by a temperature-time relationship. The smoke movement and fire
spread cannot be considered. They are more suitable for modelling post-flashover
fires.
The advanced fire models are normally theoretical computer models that simulate
the heat and mass transfer process associated with a compartment fire. They can
predict compartment gas temperatures in much more detail. The smoke movement
and fire spread may be taken into account. As reflected in their names, a zone model
may present the gas temperature into single or different zones, whereas a CFD
model provides a space/field dependent gas temperatures distribution.
Each of the fire models will be discussed in the section.
1.2.0 Fire Behaviour
PD7974-1 (2003) provides the basics of initiation and development of compartment
fires. Basically, an enclosure fire may include some or all of the following phases of
development, which are also illustrated in Figure 2.
Incipient
phase
Growth
phase
Fully developed
phase
Decay
phase
Extinction
Time
Temperature
Flashover
Ignition
Figure 2 Phases of development of the fire
Incipient
phase
Heating of potential fuel is taking place through a variety of
combustion processes such as smouldering, flaming or radiant.
Growth phase Ignition is the beginning of fire development. At the initial growth
4
(pre-
flashover)
phase, the fire will be normally small and localized in a compartment.
An accumulation of smoke and combustion products (pyrolysis) in a
layer beneath the ceiling will gradually form a hotter upper layer in
the compartment, with a relatively cooler and cleaner layer at the
bottom.
With sufficient supplies of fuel and oxygen and without the
interruption of fire fighting, the fire will grow larger and release more
hot gases and pyrolysis to the smoke layer. The smoke layer will
descend as it becomes thicker.
Flashover In case of fire developing into flashover, the radiation from the
burning flame and the hot smoke layer may lead to an instant ignition
of unburned combustible materials in the compartment. The whole
compartment will be engulfed in fire and smoke.
Fully
developed
phase
(post-
flashover)
After the flashover, the fire enters a fully developed stage with the
rate of heat release reaching the maximum and the burning rate
remaining substantially steady.
The fire may be ventilation or fuel controlled. Normally, this is the
most critical stage that structural damage and fire spread may occur.
Decay phase After a period of sustained burning, the rate of burning decreases as
the combustible materials is consumed and the fire now enters the
decay phase.
Extinction The fire will eventually cease when all combustible materials have
been consumed and there is no more energy being released.
1.3.0 Nominal Fires
The nominal or standard fire curves are the simplest way to represent a fire by pre-
defining some arbitrary temperature-time relationships, which are independent on
ventilation and boundary conditions. Historically, they were developed for fire
resistance furnace tests of building materials and elements for their classification and
verification. The main disadvantages and limitations of standard fires include:
1. The standard fires do not represent real natural fire. The differences in the
heating rate, fire intensity and duration between the standard and real fires
can result in different structural behaviour. For example, a short duration high
temperature fire can result in spalling of concrete exposing steel
reinforcement due to the thermal shock. Whereas a long duration low
temperature fire can result in a higher average temperature in the concrete
members resulting in a greater reduction in concrete strength.
2. The standard fires do not always represent the most severe fire conditions.
Structural members having been designed to standard fires may fail to survive
in real fires. For example, the modern offices tend to contain large quantities
of hydrocarbon fuels in decoration, furniture, computers and electric devices,
in forms of polymers, plastics, artificial leathers and laminates etc.
Consequently, the fire becomes more severe than the conventional standard
fire.
5
Although there are disadvantages and limitations of assuming the nominal fire
curves and member design, the simplest and most common performance-based
approaches have been developed based on the results and observations from
standard fire resistance tests.
Considering, in a simplistic form, different fuel types and ventilation conditions,
EN1991-1-2: 2002 and PD7974-1: 2003 provides the following nominal temperature-
time curves:
Code Fire type Application
EN1991-1-2
External Fire
For the outside of external walls which can be
exposed to fire from different parts of the facade
EN1991-1-2
PD7974-1
Standard Fire
Defined in EN1363-1 for representing a fully
developed compartment fire
EN1991-1-2
PD7974-1
Hydrocarbon
Representing a fire with hydrocarbon or liquid
type fuel
PD7974-1
Smouldering fire*
Representing slowly growing fire for products that
are reactive under the influence of fire
* Note: This fire curve was developed so that materials such as intumescent
coatings which rely upon chemical reactions could be subject to a test that
addressed possible concerns regarding their intumescing behaviour. It was not
meant to represent a design fire scenario (PD7974-3: 2003).
EN1991-1-2 provides three nominal fire curves as follows:
a) For standard fire,
 18log34520 10  tg (1)
b) For external fire,
  20313.0687.01660 8.332.0
  tt
g ee (2)
c) For hydrocarbon fire,
  20675.0325.011080 5.2167.0
  tt
g ee (3)
where
g is the gas temperature in the fire compartment or near the member
[°C];
t is the time [min].
PD7974-1 adopts the same equations for the standard and hydrocarbon fires.
However, the code provides alternative fire curve for large pool hydrocarbon fire, as
well as a slow growing fire, as follows:
a) For large pool hydrocarbon fire,
6
  20471.0204.0325.011100 833.15417.1167.0
  ttt
g eee (4)
b) For smouldering fire,
  






min21tfor201208log345
min21t0for20154
10
25.0
t
t
g (5)
Figure 3 shows the various nominal fire curves for comparison. It can be seen that,
over a period of 2 hours, the hydrocarbon fire is the most severe followed by the
standard fire, with the external fire being the least severe fire although the slow
heating fire represents the lowest temperature up to 30 minutes. It is noteworthy that
for standard and smouldering fires, the temperature continuously increases with
increasing time.
For the external fire, the temperature remains constant at 680°C after approximate
22 minutes. Whereas for the hydrocarbon fires, the temperatures remain constant at
1100°C and 1120°C after approximate 40 minutes.
Nominal Fires
0
200
400
600
800
1000
1200
0 15 30 45 60 75 90 105 120
Time [min]
Temperature[C]
Hydrocarbon fire
Large pool
hydrocarbon fire
Standard fire
External fire
Slow heating fire
Figure 3 Nominal Fire curves
According to the nominal fire curves, the Eurocodes provide some heat transfer
parameters for thermal analysis to structural members such as convection factor,
emissivity of fire and surface emissivity of members. The structural response of the
members in fire can be calculated.
7
This „simple‟ performance-based approach will generally allow more economical
buildings to be designed and constructed compared to those designed using the
prescriptive approach.
convection factor : Convective heat flux to the member related to the difference
between the bulk temperature of gas bordering the relevant surface of the member
and the temperature of that surface.
emissivity of fire: The amount of radiative heat the fire emits relative to the radiative
heat emitted by a perfect black body at the same temperature
surface emissivity: The ratio between the radiative heat absorbed by a given surface
and that of a black body surface. Equal to heat absorptive ability of a surface.
1.4.0 Time Equivalence
The concept of time-equivalence is used to relate the severity of real fires to the
time-temperature relationship in a standard fire test. Figure 4 illustrates the concept
of time-equivalence, relating the actual maximum temperature of a structural
member from an anticipated fire severity, to the time taken for the same member to
attain the same temperature when subjected to the standard fire.
Figure 4: Concept of time-equivalence
There are a number of time-equivalence methods which take into account the
amount of fuel load, compartment size, thermal characteristics of the compartment
boundaries and ventilation conditions, including:
 Law (1971)
 Pettersson (1976)
 CIB W14 (1986)
8
 Harmathy (1987)
 BSEN1991-1-2 (2002)
Generally, time-equivalence can either be determined by using a simple equation or
taken from experimental data from natural and standard fire tests. Although simple to
use, the time-equivalence is a crude approximate method of modelling real fire
behaviour and bears little relationship with real fire behaviour.
In addition, the limitations of the method should be clearly understood. The main
limitation is that the method is only applicable to the types of members used in the
derivation of the adopted formulae.
In the following, the time-equivalence method given in EN1991-1-2 and the
background research will be discussed.
1.5.0 Time Equivalence - EN1991-1-2
The time-equivalence method present in Annex F (informative) of EN1991-1-2 is only
valid for the members of:
 reinforced concrete
 protected steel
 unprotected steel
The equivalent time of exposure te, d [min] is given by:
  cfbdfde kwkqt  ,, (6)
where
kb is a conversion factor related to the thermal inertia of the enclosure
[min·m2
/MJ];
kc is a correction factor of the member material as given in Table 1[-];
qf, d is the design fire load density [MJ/m2
];
wf is a ventilation factor as given in Eq. (7) [-].
Table 1 Correction factor kc for various materials according to EN1991-1-2
Cross-section
material
kc [-]
Reinforced concrete 1.0
Protected steel 1.0
Unprotected steel 13.7xO*
9
The conversion factor kb is related to the thermal inertia b of the enclosure as given
in Table 2. It is noteworthy that the values assigned to kb in BSEN1991-1-2 may be
replaced nationally by the values given PD7974-3 (2003) for use in UK, which have
been validated by a test programme of natural fires in large compartments by British
Steel (now Corus) and the Building Research Establishment (Kirby et al. 1994).
The calculations of the thermal inertia b for various compartment boundary
conditions are given in Eqs (12) to (13) (Heating Phase in Parametric Fire Curves).
Table 3 shows the values of thermal inertia b for some typical compartment lining
materials. For compartments bounded with typical building surfaces, e.g. masonry
and gypsum plaster, kb has a value of 0.07 according to PD7974-3. For
compartments with high levels of insulation, e.g. proprietary wall insulation systems
with mineral wools, kb has a value of 0.09.
The ventilation factor wf for a compartment with openings as shown in Figure 4 is
given by:
  5.0
1
4.090
62.0
0.6
43.0


















hv
v
f
ab
a
H
w (7)
with
αh = Ah / Af
αv = Av / Af but 0.025 ≤ αv ≤ 0.25
bv = 12.5 (1 + 10αv - αv
2
≥ 10.0
where
Af is the floor area of the compartment [m2
];
Ah is the area of horizontal openings in the roof [m2
];
Av is the area of vertical openings in the facade [m2
];
H is the height of the fire compartment [m].
For a small fire compartment, with a floor area Af < 100m2
and without openings in
the roof, the ventilation factor wf can be calculated as:
t
f
f
A
A
Ow 2/1
 (8)
where
O is the opening factor as given in Eq. (11) (Heating Phase in Parametric
Fire Curves).
At is the total area of enclosure (walls, ceiling and floor, including
openings) [m2
].
10
Table 2 Values of conversion factor kb
Thermal inertia b
[J/m2
s1/2
K]
kb in EN1991-1-2
[min∙m2
/MJ]
kb in PD7974-3
[min∙m2
/MJ]
> 2500 0.04 0.05
720 ≤ b ≤ 2500 0.055 0.07
< 720 or No detailed
assessment
0.07 0.09
Table 3 Thermal inertia b for typical compartment lining materials (A.2 of
PD7974-3)
Boundary material
b
[J/m2
s1/2
K]
Aerated concrete 386
Wool (pine) 426
Mineral wool 426
Vermiculit plaster 650
Gypsum plaster 761
Clay brick 961
Glass 1312
Fireclay brick 1432
Ordinary concrete 1650
Stone 2423
Steel 12747
Figure 5: A fire compartment with horizontal and vertical openings
1.6.0 Time Equivalence - Background Research
In 1993, British Steel (now Corus), in collaboration with the Building Research
Establishment (BRE), carried out a test programme of nine natural fire simulations in
large scale compartments to validate the time-equivalence method of Eurocode 1
(Kirby et al. 1994).
11
The tests were conducted in a compartment 23m long × 6m wide × 3m high
constructed within the BRE ex-airship hanger testing facility at Cardington in
Bedfordshire, UK. The test programme examined the effects of fire loads and
ventilation on fire severity, and involved growing fires and simultaneous ignition,
changes in lining material and compartment geometry.
The evaluation of the test results showed that the time-equivalence formula given in
Eurocode 1 can be safely applied by using a value of conversion factor kb = 0.09 for
compartments with realistic insulating materials. In fact, this value has been given in
the CIB W14 report (1986). Consequently, it was recommended to adopt the values
of kb = 0.07 and 0.05 for compartments with lower insulating performance. This
recommendation has been adopted in the UK National Application Document (NAD)
to ENV1991-2-2 (1996).
It was argued that the values of (0.04, 0.055 and 0.07) given in ENV1991-2-2 as well
as BSEN1991-1-2 (2002) might give unsafe assessments.
Table 4 summaries the comparison of the measured time-equivalences from the fire
tests and the calculated values based on BSEN1991-1-2 with kb = 0.09 and 0.07
respectively. Obviously, the calculated time-equivalences based on kb = 0.09 are
closer to the test results, with the ratios of test result to calculation varying from 0.71
to 1.11 and achieving a mean of 0.92. On the other hand, provided kb = 0.07, the
ratios of test result to calculation fluctuate from 0.55 to 0.86 and give a mean of 0.72
which is too conservative.
Table 4 Comparison of test and calculated time-equivalences (Kirby et al. 1994)
1.7.0 Parametric Fire Curves
The concept of parametric fires provides a rather simple design method to
approximate post-flashover compartment fire. It is assumed that the temperature is
uniform within the fire compartment.
12
A parametric fire curve takes into account the compartment size, fuel load,
ventilation conditions and the thermal properties of compartment walls and ceilings.
Parametric fires will give more realistic estimates of the fire severity, for a given
compartment, compared to the standard fires.
Annex A (informative) of EN1991-1-2 provides the most validated approach for
determining parametric fires of compartments which will be described as follows.
 EN1991-1-2 Approach
 Other Parametric Models
 Background Research
1.7.1 Parametric Fire Curves - EN1991-1-2
Figure 5 shows a typical parametric fire curve in accordance with EN1991-1-2. A
complete fire curve comprises a heating phase represented by an exponential curve
until a maximum temperature Θmax , followed by a linearly decreasing cooling phase
until a residual temperature which is usually the ambient temperature.
The fire intensity (Θmax) and fire duration (t*
max) are two primary factors affecting the
behaviour of a structure in fire. Consequently, they are adopted as the governing
parameters in the design formulae for the parametric fires.
Figure 6: A typical parametric fire curve
Basically, the design formulae for parametric fire curves are simple to use with the
aid of simple spreadsheets. However, attentions should be put on the limitations of
the application as summarised below:
 maximum compartment floor area of 500m2
;
 maximum compartment height of 4m;
13
 roof without openings;
 compartments with mainly cellulosic type fire loads;
 compartment linings with thermal inertia between 100 and 2200 J/m2
s1/2
K.
Note that these may change in the National Annex.
These limitations are established according to test data of the „Swedish‟ fire curves
and a database of more than 100 fire tests which have been used to calibrate the
design formulae. The details can be found in BACKGROUND RESEARCH.
1.7.2 Parametric Fire Curves - EN1991-1-2 - Heating Phase
In the heating phase, it is assumed that the gas temperature will rise with increase in
time, which is independent on fire load. The parametric fire curve is given by:
 ***
197.12.0
472.0204.0324.01132520 ttt
g eee 
 (9)
where
Θg is the gas temperature in the fire compartment [°C];
t* is the parametric time to incorporate the ventilation conditions and
compartment boundary conditions as given in Eq. (10) [hr].
The parametric time t*
[hr] is given by:
 tt*
(10)
with
22
04.0
1160













b
O
where
b is the thermal inertia of linings as given in Eq. (12) to [J/m2
s1/2
K];
O is the opening factor as given in Eq. (11) [m1/2
];
t is the time [hr].
It is worth noting that when = 1, Eq.(9) approximates the standard fire curve as
shown in Figure 6.
14
Figure 7 Parametric fire curves with  = 1
The opening factor O is given by:
t
eqv
A
hA
O  but 0.02 ≤ O ≤ 0.20 [m1/2
] (11)
where
At is the total area of enclosure (walls, ceiling and floor, including
openings) [m2
];
Av is the total area of vertical openings on all walls [m2
];
heq height of vertical openings [m].
The thermal inertia b of an enclosure is determined by considering the combined
effect of different thermal inertia in walls, ceiling and floor as follows:
 
vt
jj
AA
Ab
b


 (12)
where
Aj is the area of enclosure surface j (walls, ceiling and floor), excluding
openings [m2
];
bj is the thermal inertia of enclosure surface j (walls, ceiling and floor) as
given in Eq.(12) and Figure 7) [J/m2
s1/2
K].
For an enclosure surface with single layer of material, its thermal inertia b is given
by:
  cb but 100 ≤ b ≤ 2200 [J/m2
s1/2
K] (13)
where
15
c is the specific heat capacity of boundary of enclosure at ambient
temperature [J/kg L];
ρ is the density of boundary of enclosure at ambient temperature [kg/m3
];
λ is the thermal conductivity of boundary of enclosure at ambient
temperature [W/m K].
The values of thermal inertia b of some typical lining materials are given in Table 3
(Time Equvalence: EN1991-1-2 (2002) Approach).
For an enclosure surface with different layers of material, the thermal inertia b is
determined according to Figure 7.
Figure 8 Enclosure surface with different layers of material
1.7.3 Parametric Fire Curves - EN1991-1-2 - Heating Duration & Maximum
1.8.0 Temperature
16
The duration of heating phase when t*
= t*
max, depending on the fire load density and
the ventilation conditions, is given by:
 max
*
max tt (14)
with








lim
,4
max
102
max
t
O
q
t
dt






rategrowthfirefastformin15
rategrowthfiremediumformin20
rategrowthfireslowformin25
limt
t
f
dfdt
A
A
qq  ,, but 50 ≤ qt,d ≤ 1000 [MJ/m2
]
where
qf,d is the fire load density related to the surface area Af of the floor [MJ/m2
].
qt,d is the fire load density related to the total surface area At of the enclosure
[MJ/m2
].
In case of tmax = tlim, the fire is fuel controlled. Otherwise, the fire is ventilation
controlled. Figure 8 compares the heat release rates for fires with different fire
growth rate.
The categories of slow, medium, fast and ultra-fast fire growth rates basically depend
on the types of occupancy.
Figure 9 Fire growth rate and rate of heat release for different occupancies
However, there are further limits on the maximum time tmax. The Code states that
when tmax = tlim, the parametric t* in the main equation is replaced by:
17
lim
*
 tt (15)
with
 
 2
2
lim
lim
116004.0
bO

lim
,
4
lim
104.1
t
q
O dt



where tlim is given in Eq. (10).
In case of (O > 0.04 and qt,d < 75 and b < 1160), lim in Eq. (10) has to be multiplied
by factor k given by:





 





 





 

1160
1160
75
75
04.0
04.0
1 , bqO
k dt
(16)
1.8.1 Parametric Fire Curves - EN1991-1-2 - Cooling Phase
EN1991-1-2 defines linear temperature-time curves for the cooling phase after the
heating phase of parametric fire curves. Depending on the value of tmax
*
, three
different linear curves for gas temperature Θg are defined as follows:
 
  
 









2for250
20.5for3250
5.0for625
*
max
*
max
*
max
*
max
*
max
**
maxmax
*
max
*
max
*
max
txtt
txttt
txtt
g



 (17)
with







limmax
*
maxlim
limmax
for
for1
tttt
tt
x
1.8.2 Parametric Fire Curves -Other Parametric Models
The concepts of post-flashover compartment fires and the predictions of their
temperatures have long been studied by many researchers. Thus, a wide variety of
parametric fire models exist.
The majority of the models have been developed by curve-fitting against either
model predictions or fire test results. This section will review some of the models.
 Lie's Model (1974)
 Ma & Mäkeläinen's Model
18
1.8.3 Parametric Fire Curves -Other Parametric Models - Lie's Model (1974)
Lie (1974) proposed a model comprising a nonlinear heating phase up to the
maximum temperature reached during the fire, followed by a linear cooling phase.
The parametric fire curve in the heating phase was given by:
       Oceee
O
t
O
ttt
O
g 











 
60014113exp
10
250 1236.0
2
10
3.0
 (18)
where
Θg is the gas temperature in the fire compartment [°C];
C =0 for heavy weight compartment boundary materials with density ρ ≥
166 kg/m3
;
=1 for lightweight materials with ρ < 1600 kg/m3
;
O is the opening factor [m1/2
];
t ≤ (4.8O+60) is the time [min].
The duration of heating phase t*
max [min] was given by:
5.5
,*
max
Oq
t dt
 (19)
where qt,d is the fire load density related to the total surface area At of the enclosure
[MJ/m2
].
In the cooling phase, gas temperature Θg was given by:
201600 *
max
max 








t
t
g  (20)
where
Θmax is the maximum gas temperature reached at t*
max [°C].
1.8.4 Parametric Fire Curves -Other Parametric Models - Mäkeläinen's Model
(2000)
Ma & Mäkeläinen (2000) proposed a parametric fire curve for small and medium
compartment fires. In their study, a total of 25 complete gas temperature-time curves
from different laboratories around the world had been considered. The main
parameters of the fire curves include:
 Floor area: < 100 m2
 Compartment height: ≤ 4.5 m
19
 Fire load density 10-40 kg/m2
 Ventilation factor: 5-16 m5/2
 Boundary thermal inertia: 555-1800 J/m2
s1/2
K
These fire curves were first non-dimensionalised by the maximum gas temperature
and the time to reach the maximum temperature, as shown in Figure 10. It can be
seen that these fire curves display similar shape.
By curve-fitting against the test data, the authors derived a non-dimensional
expression as follows:


















mmgm
g
t
t
t
t
TT
TT
1exp
0
0
(21)
where
Tg is the gas temperature [°C];
Tgm is the maximum gas temperature [°C];
T0 is the room temperature [°C];
t is the time [min];
tm is the time corresponding to the maximum gas temperature [min];
δ is the shape constant of the curve, which has different values for the
heating and cooling phases. The value for the heating phase is twice
that for the cooling phase.
The authors reported that the shape constants δ = (0.8, 1.6) had the best fit with the
test data, whereas δ = (0.5, 1.0) formed the upper envelope, as shown in Figure 9.
Figure 10 Non-dimensionalized fire curves (Source: Ma & Mäkeläinen (2000))
The maximum temperature Tgm [°C] was given by:
20



 

firecontrolledfuelfor
firecontrollednventilatiofor111240
cr gmcr
gm
T
T


(22)
with
hAA wt
 qkcr  34.14
where
At is the total surface area of compartment boundaries (openings
included) [m2
];
Aw is the area of openings [m2
];
h is the height of the openings [m];
η is the inverse of opening factor [m-½
;];
ηcr is the inverse of the opening factor in the critical region [m-½
;];
φ is the surface area ratio of fuel [m2
/kg];
κ is the ratio of floor area Af to the total surface area At in a fire
compartment [-];
q is the fire load density per unit floor area [kg of wood/m2
];
Tgmcr is the maximum temperature in the critical region, which can be
obtained by substituting Ηcr into Eq.(22) [°C].
Assuming a constant burning rate R during the entire period of primary burning, the
fire duration τ was given by:
RG0 (23)
with
 



 


firecontrolledfuelfor372.0
firecontrollednventilatiofor18.10
0
036.0
G
DhWAe
R w


where
D is the depth of the fire compartment [m];
G0 is the total fire load of equivalent woods [kg];
R is the burning rate [kg of wood/min]
W is the width of the wall which contains opening [m].
The time to reach the maximum temperature tm was approximated by:
63.0mt (24)
1.9.0 Parametric Fire Curves -Background Research - Wickström's Model
21
The background theory of the parametric fire model of BSEN1991-1-2 was
developed by Wickström (1981/82). Based on the heat balance for a fire
compartment as shown in Figure 1, he suggested that the compartment fire
depended entirely on the ratio of the opening factor to the thermal inertia of the
compartment boundary.
He used the test data of the „Swedish‟ fire curves (Magnusson & Thelandersson
1970) to validate his theoretical assumptions. Figure 2 shows a set of Swedish fire
curves for different fuel loads with an opening factor of 0.04 m½
. By curve-fitting,
Wickström expressed the compartment fire in a single power formula for the heating
phase, in which the standard fire curve could be attained by assigning a ventilation
factor of 0.04 m½
and a thermal inertia of 1165 J/m2
s½
K.
Figure 1 Heat balance of a fire compartment
Figure 2 Temperature-time curves for different fuel loads (MJ/m2
of total
surface area) (Source: Drysdale 1999)
The cooling phase of a natural fire is a complex process due to the depletion of the
fuel or the active intervention of the fire fighting activities or sprinkler systems. The
fire duration depends on the combustion rate which is related to the fuel type, fuel
22
distribution and ventilation conditions. For the sake of simplicity, Wickström defined
linear temperature-time curves for the cooling phase of the fire.
Due to the experimental characteristics of the „Swedish‟ fire curves, the original
application of Wickström‟s parametric fire curves had extensive limitations. For
example, in the pre-standard ENV1991-2-2, it stated that the design equations were
only valid for compartments with floor areas up to 100 m2
.
The compartment linings were also restricted to thermal inertia between 1000 and
2200 J/m2
s½
K, which meant the highly insulated materials could not be taken into
account.
1.9.1 Parametric Fire Curves -Background Research - ECSC Research Project
The validity of the background theory, as well as the application assumptions and
limitations, for the parametric fire curves of Eurocode 1, the ENV1991-2-2:1996
version, have been investigated in an extensive research programme “Natural Fire
Safety Concept” supported by the European Coal and Steel Community (ECSC) in
between 1994 and 1998. It has been undertaken by 11 European partners.
A database of more than 100 natural fire tests made in Australia, France, the
Netherlands and UK in between 1973 and 1997 had been compiled (Schleich &
Cajot 1999). In 1999 and 2000, more full-scale large compartment fires were carried
out by Building Research Establishment (BRE) at Cardington in UK to further
supplement the database (Lennon & Moore 2003).
The first phase of the programme included one study focusing on the theoretical
developments (Cadorin 2003), leading to the improvements in BSEN1991-1-2 on the
following aspects:
 the method for incorporating enclosure surfaces with different layers of
material
 the consideration of fuel controlled fires
 some modifications in the cooling phase
A total of 48 experimental tests from the database had been used in the comparison
study. The BRE tests in 1999 and 2000 were not included because the tests were
performed after this study. The main characteristics of these tests are listed in Table
5.
23
Table 5 Main parameters of natural fire tests for verifying parametric fire
curves of Eurocode 1
Figure 1 shows the plots of the test maximum temperature versus the predictions for
each test by using the design models of ENV1991-2-2 and BSEN1991-1-2. For the
tests, the maximum temperatures were the average value of several measurements
made by different thermocouples located in the compartments.
The regression analysis showed that there was a poor correlation between the test
results and the predictions by ENV1991-2-2, with the coefficient of correlation of 0.19
only. Relatively, the improvements proposed for BSEN1991-1-2 led to a much better
correlation between the model and the test results.
Figure 1 Comparison of maximum temperatures from test results and
predictions by Eurocode 1 (Source: Schleich & Cajot 1999)
The second phase of the ESCS research programme was to provide high-quality test
data on the behaviour of post-flashover fires in realistic compartments for validating
the design approach. A series of eight full-scale fire tests in a 12×12m compartment
was carried out by BRE at Cardington in the UK in 1999 and 2000 (Lennon & Moore
2003).
The main characteristics of these tests are given in Table 5.
The findings of the tests lead to a number of significant changes in BSEN1991-1-2,
including:
 the scope of application of the design method
24
 the method of determining the effect of compartment boundaries
 the calculation of time to maximum temperature
1.9.2 Localised Fires
A compartment fire should be taken as localised or pre-flashover fire when flashover
is unlikely to occur. Depending on the size of the fire and the compartment, a
localised fire may or may not impinge on the ceiling of the compartment.
The temperature in the fire flame and plume and the surrounding gas are not
uniform, and need to be determined separately. This is the main difference from a
post-flashover fire where the temperature assumed to be uniform within the fire
compartment.
Annex C (informative) of BSEN1991-1-2 provides a simple calculation approach for
determining localised fires of compartments which will be described as follows.
 EN1991-1-2 (2002) Approach
 Background Research - Ceiling Jet Temperature
1.9.3 Localised Fires - EN1991-1-2 (2002) Approach
EN1991-1-2 provides the simple approach for determining the thermal action of
localised fires in Annex C (informative). Depending on the height of the fire flame
relative to the ceiling of the compartment, a localised fire can be defined as either a
small fire or a big flame.
For a small fire, a design formula has been given to calculate the temperature in the
plume at heights along the vertical flame axis. For a big fire, some simple steps have
been developed to give the heat flux received by the fire exposed surfaces at the
level of the ceiling.
The limitations of the approach include:
 The diameter of fire D ≤ 10 m
 The rate of heat release or the fire Q ≤ 50 MW
However, the approach can be applied to the cases of several localised fires.
 Smaller Fires or Open-Air Fires
 Larger Fires Impacting Ceiling
25
 Multiple Fires
1.9.4 Localised Fires - EN1991-1-2 - Small Fires
In a localised fire as shown in Figure 1, the highest temperature is at the vertical
flame axis (or plume centreline), decreasing toward the edge of the plume. The
flame axis temperature Θ(z) changes with height.
It is roughly constant in the continuous flame region and represents the mean flame
temperature. The temperature decreases sharply above the flames as an increasing
amount of ambient air is entrained into the plume (Karlsson & Quintiere 1999).
EN1991-1-2 provides a design formula to calculate the temperature in the plume of a
small localised fire, based on the fire flume model developed by Heskestad (1995). It
can be applied to open-air fires as well.
Considering a localised fire as shown in Figure 1, the flame height Lf of the fire is
given by:
52
0148.002.1 QDLf  (25)
where
D is the diameter of the fire [m];
Q is the rate of heat release of the fire [W].
H is the distance between the fire source and the ceiling [m];
In case of fire do not impinge on the ceiling of the compartment when Lf < H, or fire
in open fire, the temperature Θ(z) in the plume along the symmetric vertical flame axis
is given by:
    90025.020
35
0
32


zzQcz (26)
with
523
0 1024.502.1 QDz 

where
Qc is the convective part of the rate of heat release [W], with Qc = 0.8 Q by
default;
z is the height along the flame axis [m];
z0 is the virtual origin of the axis [m].
The virtual origin z0 depends on the diameter of the fire D and the rate of heat
release Q. This empirical equation has been derived from experimental data.
26
The value of z0 may be negative and locate beneath the fuel source, indicating that
the area of the fuel source is large compared to the energy being released over that
area (see Figure 1). For fire sources where the fuel releases high energy over a
small area, z0 may be positive and locate above the fuel source.
Figure 1 Schematic diagram for small localised fires
1.9.5 Localised Fires - BSEN1991-1-2 - Larger Fires Impacting Ceiling
When a localised fire becomes large enough with Lf ≥ H, the fire flame will impinge
on the ceiling of the compartment. The ceiling surface will cause the flame to turn
and move horizontally beneath the ceiling. Figure 1 shows a schematic diagram of a
localised fire impacting on the ceiling with the ceiling jet flowing beneath an
unconfined ceiling.
As the ceiling jet moves radially outward, it loses heat to the cooler ambient air being
entrained into the flow, as well as the heat transfer to the ceiling. Generally, the
maximum temperature occurs relatively close to the ceiling (Karlsson & Quintiere
1999).
Figure 1 Localised fires impacting on ceiling of compartment
EN1991-1-2 only provides design formulae to determine the heat flux received by the
surface area at the ceiling level, but not for calculating the ceiling jet temperatures.
The simple approaches for determining the ceiling jet temperatures will be briefly
discussed in
27
1.10.0 Background Research – Ceiling Jet Temperatures
Considering a localised fire impacting the ceiling of the compartment as shown in
Figure 1 (Lf ≥ H), the horizontal flame length Lh is given by:
   HQHL Hh 
33.0*
9.2 (27)
with
5.26
*
1011.1 H
Q
QH


where
Lh is the horizontal flame length as given by Eq.(1) [m];
H is the distance between the fire source and the ceiling [m];
QH
*
is a non-dimensional rate of heat release [-];
Q is the rate of heat release of the fire [W].
The heat flux h [W/m2
] received by the fire exposed unit surface area at the ceiling
level at the distance r from the flame axis is given by:










1.0for000,15
1.00.30for000,121300,136
0.30for000,100
7.3
yy
yyto
y
h (28)
with
zHL
zHr
y
h



where
r is the horizontal distance from the vertical flame axis to the point along
the ceiling where the thermal flux is calculated [m];
z' is the vertical position of the virtual heat source as given by Eq.(3) [m];
D is the diameter of the fire [m];
The vertical position of the virtual heat source z' is given by:
 
 






1.0for0.14.2
1.0for4.2
52*
32*52*
*
DD
*
DDD
QQD
QQQD
z (29)
with
5.26
1011.1 D
Q
Q*
D


The net heat flux neth received by the fire exposed unit surface at the level of the
ceiling is given by:
28
      44
29327320  mfmmcnet hh  (30)
where
αc is the coefficient of heat transfer by convection as given in Table
[W/m2
K];
εf is the emissivity of the fire;
εm is the surface emissivity of the member;
Φ is the configuration factor;
Θm is the surface temperature of the member [°C].
ζ is the Stephan Boltzmann constant (= 5.67×10-8
W/m2
K4
);
is the heat flux received by the fire exposed unit surface area at the
level of the ceiling as given by Eq.(2).
1.10.1 Localised Fires - EN1991-1-2 - Multiple Fires
In the case of several localised fires, the individual heat fluxes  ,, 21 hh received by
the fire exposed unit surface area at the ceiling level should be first calculated. The
total heat flux [W/m2
] is then taken as the summation of the contribution of all
localised fires as follows:
000,10021   hhhhot (31)
1.10.1 Localised Fires - Background Research - Ceiling Jet Temperatures
Alpert (1972) has developed empirical equations for determining the maximum
temperature and velocity in a ceiling jet flow produced by a steady fire. The empirical
equations are based on experimental data collected for fuels such as wood and
plastic pallets, cardboard boxes, plastic products in cardboard boxes, and liquids
with heat release rates ranging from 668 kW to 98 MW under ceiling heights from 4.6
to 15.5 m (Evans 1995). The maximum temperature T [°C] of a ceiling jet as shown
in Figure is given by:
 








 
18.0Hfor
38.5
18.0Hfor
9.16
32
35
32
r
H
rQ
r
H
Q
TT (32)
see notation for equations below.
29
Heskestad and Delichatsios (1978) have developed different empirical equations for
maximum ceiling jet temperature rises and velocities, based on testing subsequent
to Alpert‟s study (Evans 1995). The temperature rise ΔT of a ceiling jet is given by:
    

 TQHrT
32*
0
34
313.0188.0 (33)
with
5.26
1011.1 D
Q
Q*
D


see notation for equations below.
Notation for equations
H is the ceiling height [m];
Q is the rate of heat release of the fire [kW];
r is the radial position from the flame axis [m];
T∞ is the ambient gas temperature [=293K];
ρ∞ is the ambient gas density [=1.2 kg/m3
];
cp is the heat capacity at constant pressure [kJ/kg K];
g is the gravitational acceleration [=9.81 m/s2
]
Beyler (1986) has conducted a comprehensive review on the empirical models for
ceiling jet temperature rise and velocity.

More Related Content

What's hot

Demonstrate types of fire extinguishers
Demonstrate types of fire extinguishersDemonstrate types of fire extinguishers
Demonstrate types of fire extinguishersSiddharth Amipara
 
Control of particulate contaminants
Control of particulate contaminantsControl of particulate contaminants
Control of particulate contaminantsASuhasini
 
Fire Prevention & Protection or Fire Fighting.ppt
Fire Prevention & Protection or Fire Fighting.pptFire Prevention & Protection or Fire Fighting.ppt
Fire Prevention & Protection or Fire Fighting.pptBenounaFert
 
CHA & LBA Addressing
CHA & LBA Addressing  CHA & LBA Addressing
CHA & LBA Addressing DINESH KAMBLE
 
Fire water netowrk presentation
Fire water netowrk presentationFire water netowrk presentation
Fire water netowrk presentationakbar_ali
 
adulteration in fuels
adulteration in fuelsadulteration in fuels
adulteration in fuelsYukti24
 
Internal ballistics
Internal ballisticsInternal ballistics
Internal ballisticsKetan Patil
 
Utkarsh (Video Spectral Comparator).pptx
Utkarsh (Video Spectral Comparator).pptxUtkarsh (Video Spectral Comparator).pptx
Utkarsh (Video Spectral Comparator).pptxUtkarshGupta845769
 
OFFSHC gets briefed on IEDs
OFFSHC gets briefed on IEDsOFFSHC gets briefed on IEDs
OFFSHC gets briefed on IEDsOFFSHC
 
UNIT 12 FIRE PROTECTIVE CLOTHING.pptx
UNIT 12  FIRE PROTECTIVE CLOTHING.pptxUNIT 12  FIRE PROTECTIVE CLOTHING.pptx
UNIT 12 FIRE PROTECTIVE CLOTHING.pptxshyleshkumar15
 
FIRE PROTECTION AND FIRE SAFETY REQUIREMENTS by Dr.Mahboob ali khan Phd
FIRE PROTECTION AND FIRE SAFETY REQUIREMENTS by Dr.Mahboob ali khan Phd FIRE PROTECTION AND FIRE SAFETY REQUIREMENTS by Dr.Mahboob ali khan Phd
FIRE PROTECTION AND FIRE SAFETY REQUIREMENTS by Dr.Mahboob ali khan Phd Healthcare consultant
 
Everything About Fire Extinguishers
Everything About Fire ExtinguishersEverything About Fire Extinguishers
Everything About Fire Extinguisherspetercarl9x
 
Fire resistant material
Fire resistant materialFire resistant material
Fire resistant materialSejal Khandare
 

What's hot (20)

Demonstrate types of fire extinguishers
Demonstrate types of fire extinguishersDemonstrate types of fire extinguishers
Demonstrate types of fire extinguishers
 
Cement
CementCement
Cement
 
Explosives
ExplosivesExplosives
Explosives
 
Control of particulate contaminants
Control of particulate contaminantsControl of particulate contaminants
Control of particulate contaminants
 
Fire Prevention & Protection or Fire Fighting.ppt
Fire Prevention & Protection or Fire Fighting.pptFire Prevention & Protection or Fire Fighting.ppt
Fire Prevention & Protection or Fire Fighting.ppt
 
CHA & LBA Addressing
CHA & LBA Addressing  CHA & LBA Addressing
CHA & LBA Addressing
 
Fire water netowrk presentation
Fire water netowrk presentationFire water netowrk presentation
Fire water netowrk presentation
 
adulteration in fuels
adulteration in fuelsadulteration in fuels
adulteration in fuels
 
Internal ballistics
Internal ballisticsInternal ballistics
Internal ballistics
 
1 Fire safety design principles
1  Fire safety design principles1  Fire safety design principles
1 Fire safety design principles
 
Explosives
ExplosivesExplosives
Explosives
 
Utkarsh (Video Spectral Comparator).pptx
Utkarsh (Video Spectral Comparator).pptxUtkarsh (Video Spectral Comparator).pptx
Utkarsh (Video Spectral Comparator).pptx
 
OFFSHC gets briefed on IEDs
OFFSHC gets briefed on IEDsOFFSHC gets briefed on IEDs
OFFSHC gets briefed on IEDs
 
UNIT 12 FIRE PROTECTIVE CLOTHING.pptx
UNIT 12  FIRE PROTECTIVE CLOTHING.pptxUNIT 12  FIRE PROTECTIVE CLOTHING.pptx
UNIT 12 FIRE PROTECTIVE CLOTHING.pptx
 
jamia polytechnique delhi
jamia polytechnique delhijamia polytechnique delhi
jamia polytechnique delhi
 
Cyber evidence at crime scene
Cyber evidence at crime sceneCyber evidence at crime scene
Cyber evidence at crime scene
 
FIRE PROTECTION AND FIRE SAFETY REQUIREMENTS by Dr.Mahboob ali khan Phd
FIRE PROTECTION AND FIRE SAFETY REQUIREMENTS by Dr.Mahboob ali khan Phd FIRE PROTECTION AND FIRE SAFETY REQUIREMENTS by Dr.Mahboob ali khan Phd
FIRE PROTECTION AND FIRE SAFETY REQUIREMENTS by Dr.Mahboob ali khan Phd
 
Everything About Fire Extinguishers
Everything About Fire ExtinguishersEverything About Fire Extinguishers
Everything About Fire Extinguishers
 
Fire proof finish
Fire proof finishFire proof finish
Fire proof finish
 
Fire resistant material
Fire resistant materialFire resistant material
Fire resistant material
 

Viewers also liked

Quantitative risk assessment in chemical process
Quantitative risk assessment in chemical processQuantitative risk assessment in chemical process
Quantitative risk assessment in chemical processThapa Prakash (TA-1)
 
Understanding fire and gas mapping software
Understanding fire and gas mapping softwareUnderstanding fire and gas mapping software
Understanding fire and gas mapping softwareKenexis
 
Optimizing Fire3 and Gas System Design Using the ISA Technical Report ISA TR8...
Optimizing Fire3 and Gas System Design Using the ISA Technical Report ISA TR8...Optimizing Fire3 and Gas System Design Using the ISA Technical Report ISA TR8...
Optimizing Fire3 and Gas System Design Using the ISA Technical Report ISA TR8...Kenexis
 
Performance based gas detection for hydrocarbon storage
Performance based gas detection for hydrocarbon storagePerformance based gas detection for hydrocarbon storage
Performance based gas detection for hydrocarbon storageKenexis
 

Viewers also liked (6)

Quantitative risk assessment in chemical process
Quantitative risk assessment in chemical processQuantitative risk assessment in chemical process
Quantitative risk assessment in chemical process
 
Risk Management Methodology - Copy
Risk Management Methodology - CopyRisk Management Methodology - Copy
Risk Management Methodology - Copy
 
Understanding fire and gas mapping software
Understanding fire and gas mapping softwareUnderstanding fire and gas mapping software
Understanding fire and gas mapping software
 
Optimizing Fire3 and Gas System Design Using the ISA Technical Report ISA TR8...
Optimizing Fire3 and Gas System Design Using the ISA Technical Report ISA TR8...Optimizing Fire3 and Gas System Design Using the ISA Technical Report ISA TR8...
Optimizing Fire3 and Gas System Design Using the ISA Technical Report ISA TR8...
 
LAYER OF PROTECTION ANALYSIS
LAYER OF PROTECTION ANALYSISLAYER OF PROTECTION ANALYSIS
LAYER OF PROTECTION ANALYSIS
 
Performance based gas detection for hydrocarbon storage
Performance based gas detection for hydrocarbon storagePerformance based gas detection for hydrocarbon storage
Performance based gas detection for hydrocarbon storage
 

Similar to Fire modeling: A technical performance-based approach

Fire Safety Needs for Mass Timber Buildings _Arup_UoE
Fire Safety Needs for Mass Timber Buildings _Arup_UoEFire Safety Needs for Mass Timber Buildings _Arup_UoE
Fire Safety Needs for Mass Timber Buildings _Arup_UoESusan Deeny
 
Effects of Combustible Stacking in Large Compartments
Effects of Combustible Stacking in Large CompartmentsEffects of Combustible Stacking in Large Compartments
Effects of Combustible Stacking in Large CompartmentsFranco Bontempi
 
IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...
IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...
IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...IRJET Journal
 
Fire safety Principles for building spaces
Fire safety Principles for building spacesFire safety Principles for building spaces
Fire safety Principles for building spacesAPSanyal1
 
ABS Fire Protection.pdf
ABS Fire Protection.pdfABS Fire Protection.pdf
ABS Fire Protection.pdfveertasingh1
 
Fire Resistance of Materials & Structures - Assessment of Structural in a Fur...
Fire Resistance of Materials & Structures - Assessment of Structural in a Fur...Fire Resistance of Materials & Structures - Assessment of Structural in a Fur...
Fire Resistance of Materials & Structures - Assessment of Structural in a Fur...Arshia Mousavi
 
Chapter 03-Combustion Processes
Chapter 03-Combustion ProcessesChapter 03-Combustion Processes
Chapter 03-Combustion Processessnoshoesam
 
Gentili, F. (2013) ‘Advanced numerical analyses for the assessment of steel ...
Gentili, F. (2013)  ‘Advanced numerical analyses for the assessment of steel ...Gentili, F. (2013)  ‘Advanced numerical analyses for the assessment of steel ...
Gentili, F. (2013) ‘Advanced numerical analyses for the assessment of steel ...Franco Bontempi
 
Experimental Heat Transfer Analysis of Different PCM Material used in Concret...
Experimental Heat Transfer Analysis of Different PCM Material used in Concret...Experimental Heat Transfer Analysis of Different PCM Material used in Concret...
Experimental Heat Transfer Analysis of Different PCM Material used in Concret...Swapnil Shahade
 
Volunteer Fire Brigade Training Module 2 general fire subjects
Volunteer Fire Brigade Training Module 2 general fire subjectsVolunteer Fire Brigade Training Module 2 general fire subjects
Volunteer Fire Brigade Training Module 2 general fire subjectsRonaldo Pioquinto
 
Fire extinguishers Ecaro-25 as explosion suppression
Fire extinguishers Ecaro-25 as explosion suppression Fire extinguishers Ecaro-25 as explosion suppression
Fire extinguishers Ecaro-25 as explosion suppression Kamran Hassan
 
2007 AFRC-JFRC Flare Tip Analysis Using CFD
2007 AFRC-JFRC Flare Tip Analysis Using CFD2007 AFRC-JFRC Flare Tip Analysis Using CFD
2007 AFRC-JFRC Flare Tip Analysis Using CFDJoseph Smith
 
2007 AFRC-JFRC Flare AnalysisPaper
2007 AFRC-JFRC Flare AnalysisPaper2007 AFRC-JFRC Flare AnalysisPaper
2007 AFRC-JFRC Flare AnalysisPaperJoseph Smith
 
ICR OFT April
ICR OFT AprilICR OFT April
ICR OFT AprilTom Lowes
 
CDI-108-Main-Topic-4- Arson - Investigation
CDI-108-Main-Topic-4- Arson - InvestigationCDI-108-Main-Topic-4- Arson - Investigation
CDI-108-Main-Topic-4- Arson - Investigationmaulionaronbok
 
A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...
A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...
A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...ijsrd.com
 

Similar to Fire modeling: A technical performance-based approach (20)

Fire Safety Needs for Mass Timber Buildings _Arup_UoE
Fire Safety Needs for Mass Timber Buildings _Arup_UoEFire Safety Needs for Mass Timber Buildings _Arup_UoE
Fire Safety Needs for Mass Timber Buildings _Arup_UoE
 
Effects of Combustible Stacking in Large Compartments
Effects of Combustible Stacking in Large CompartmentsEffects of Combustible Stacking in Large Compartments
Effects of Combustible Stacking in Large Compartments
 
Tez
TezTez
Tez
 
IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...
IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...
IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...
 
Fire safety Principles for building spaces
Fire safety Principles for building spacesFire safety Principles for building spaces
Fire safety Principles for building spaces
 
ABS Fire Protection.pdf
ABS Fire Protection.pdfABS Fire Protection.pdf
ABS Fire Protection.pdf
 
Fire Resistance of Materials & Structures - Assessment of Structural in a Fur...
Fire Resistance of Materials & Structures - Assessment of Structural in a Fur...Fire Resistance of Materials & Structures - Assessment of Structural in a Fur...
Fire Resistance of Materials & Structures - Assessment of Structural in a Fur...
 
Flame Stability
Flame StabilityFlame Stability
Flame Stability
 
Bs bab 2
Bs bab 2Bs bab 2
Bs bab 2
 
Chapter 03-Combustion Processes
Chapter 03-Combustion ProcessesChapter 03-Combustion Processes
Chapter 03-Combustion Processes
 
Gentili, F. (2013) ‘Advanced numerical analyses for the assessment of steel ...
Gentili, F. (2013)  ‘Advanced numerical analyses for the assessment of steel ...Gentili, F. (2013)  ‘Advanced numerical analyses for the assessment of steel ...
Gentili, F. (2013) ‘Advanced numerical analyses for the assessment of steel ...
 
Experimental Heat Transfer Analysis of Different PCM Material used in Concret...
Experimental Heat Transfer Analysis of Different PCM Material used in Concret...Experimental Heat Transfer Analysis of Different PCM Material used in Concret...
Experimental Heat Transfer Analysis of Different PCM Material used in Concret...
 
Volunteer Fire Brigade Training Module 2 general fire subjects
Volunteer Fire Brigade Training Module 2 general fire subjectsVolunteer Fire Brigade Training Module 2 general fire subjects
Volunteer Fire Brigade Training Module 2 general fire subjects
 
Fire extinguishers Ecaro-25 as explosion suppression
Fire extinguishers Ecaro-25 as explosion suppression Fire extinguishers Ecaro-25 as explosion suppression
Fire extinguishers Ecaro-25 as explosion suppression
 
2007 AFRC-JFRC Flare Tip Analysis Using CFD
2007 AFRC-JFRC Flare Tip Analysis Using CFD2007 AFRC-JFRC Flare Tip Analysis Using CFD
2007 AFRC-JFRC Flare Tip Analysis Using CFD
 
2007 AFRC-JFRC Flare AnalysisPaper
2007 AFRC-JFRC Flare AnalysisPaper2007 AFRC-JFRC Flare AnalysisPaper
2007 AFRC-JFRC Flare AnalysisPaper
 
Fire safety manual
Fire safety manualFire safety manual
Fire safety manual
 
ICR OFT April
ICR OFT AprilICR OFT April
ICR OFT April
 
CDI-108-Main-Topic-4- Arson - Investigation
CDI-108-Main-Topic-4- Arson - InvestigationCDI-108-Main-Topic-4- Arson - Investigation
CDI-108-Main-Topic-4- Arson - Investigation
 
A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...
A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...
A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...
 

Recently uploaded

Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 

Recently uploaded (20)

Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 

Fire modeling: A technical performance-based approach

  • 1. 1 Fire modeling Performance based technical approach Author: Prakash Bahadur Thapa FIRE MODELLING THERMAL ANALYSIS STRUCTURAL ANALYSIS The performance based approach involves the assessment of three basic components comprising the likely fire behaviour, heat transfer to the structure and the structural response. The overall complexity of the design depends on the assumptions and methods adopted to predict each of the three design components. In the following, the three design components are discussed.  Fire Modelling  Thermal Analysis  Structural Analysis 1.0.0 Fire Modelling Figure 1 Options for fire modelling in compartments Fire model Norminal Time Compartment fires Zone Models CFD / field models
  • 2. 2 fires equivalences Parametric Localised One-zone Two-zone Complexity Simple Intermediate Advanced Fire Behaviour Post-flashover fires Pre- flashover fires Post- flashover fires Pre- flashover / localised fires Complete temperature-time relationships Temperature distribution Uniform in whole compartment Non- uniform along plume Uniform Uniform in each layer Time and space dependent Input parameters Fire type No physical parameters Fire load Ventilation conditions Thermal properties of boundary Compartment size Fire load & size Height of ceiling Fire load Ventilation conditions Thermal properties of boundary Compartment size Detailed input for heat & mass balance of the system Detailed input for solving the fundamental equations of the fluid flow Design tools BSEN1991-1-2 COMPF2 OZone SFIRE-4 CCFM CFAST OZone FDS SMARTFIRE SOFIEPD7974-1 PD7974-1 Simple equations for hand calculations Spreadsheet Simple equations Computer models Generally, the factors influencing the severity of a compartment fire can be summarised as follows:  Fire load type, density and distribution  Combustion behaviour of fire load  Compartment size and geometry  Ventilation conditions of compartment  Thermal properties of compartment boundary The occurrence of flashover in a compartment fire imposes a transition to the fire development. Therefore, many fire models are classified under pre- or post- flashover, except for the computational fluid dynamic (CFD) models, which cover both phases. There are a number of options available to calculate the fire severity as follows:  Standard/Nominal Fire Models – standard, external and hydrocarbon fires  Time Equivalences – relate standard fires to real fires  Parametric Fire Models – for post-flashover fires  Localised fires – for pre-flashover fires  External window fires – for fires through openings of fire compartment  Zone Models – one-zone models for pre-flashover fires – two-zone models for post-flashover fires  CFD or Field Models – for general fire and smoke modelling
  • 3. 3 The level of complexity increases from simple fire models to field models as shown in Figure 1. Basically, the first four fire models can be considered as simple models, whereas the zone and CFD models are advanced models. The input parameters for each of these models are quite different with the advanced models requiring very detailed input data and simple models requiring little input. In the simple fire models, the gas temperature of a compartment is taken as uniform and represented by a temperature-time relationship. The smoke movement and fire spread cannot be considered. They are more suitable for modelling post-flashover fires. The advanced fire models are normally theoretical computer models that simulate the heat and mass transfer process associated with a compartment fire. They can predict compartment gas temperatures in much more detail. The smoke movement and fire spread may be taken into account. As reflected in their names, a zone model may present the gas temperature into single or different zones, whereas a CFD model provides a space/field dependent gas temperatures distribution. Each of the fire models will be discussed in the section. 1.2.0 Fire Behaviour PD7974-1 (2003) provides the basics of initiation and development of compartment fires. Basically, an enclosure fire may include some or all of the following phases of development, which are also illustrated in Figure 2. Incipient phase Growth phase Fully developed phase Decay phase Extinction Time Temperature Flashover Ignition Figure 2 Phases of development of the fire Incipient phase Heating of potential fuel is taking place through a variety of combustion processes such as smouldering, flaming or radiant. Growth phase Ignition is the beginning of fire development. At the initial growth
  • 4. 4 (pre- flashover) phase, the fire will be normally small and localized in a compartment. An accumulation of smoke and combustion products (pyrolysis) in a layer beneath the ceiling will gradually form a hotter upper layer in the compartment, with a relatively cooler and cleaner layer at the bottom. With sufficient supplies of fuel and oxygen and without the interruption of fire fighting, the fire will grow larger and release more hot gases and pyrolysis to the smoke layer. The smoke layer will descend as it becomes thicker. Flashover In case of fire developing into flashover, the radiation from the burning flame and the hot smoke layer may lead to an instant ignition of unburned combustible materials in the compartment. The whole compartment will be engulfed in fire and smoke. Fully developed phase (post- flashover) After the flashover, the fire enters a fully developed stage with the rate of heat release reaching the maximum and the burning rate remaining substantially steady. The fire may be ventilation or fuel controlled. Normally, this is the most critical stage that structural damage and fire spread may occur. Decay phase After a period of sustained burning, the rate of burning decreases as the combustible materials is consumed and the fire now enters the decay phase. Extinction The fire will eventually cease when all combustible materials have been consumed and there is no more energy being released. 1.3.0 Nominal Fires The nominal or standard fire curves are the simplest way to represent a fire by pre- defining some arbitrary temperature-time relationships, which are independent on ventilation and boundary conditions. Historically, they were developed for fire resistance furnace tests of building materials and elements for their classification and verification. The main disadvantages and limitations of standard fires include: 1. The standard fires do not represent real natural fire. The differences in the heating rate, fire intensity and duration between the standard and real fires can result in different structural behaviour. For example, a short duration high temperature fire can result in spalling of concrete exposing steel reinforcement due to the thermal shock. Whereas a long duration low temperature fire can result in a higher average temperature in the concrete members resulting in a greater reduction in concrete strength. 2. The standard fires do not always represent the most severe fire conditions. Structural members having been designed to standard fires may fail to survive in real fires. For example, the modern offices tend to contain large quantities of hydrocarbon fuels in decoration, furniture, computers and electric devices, in forms of polymers, plastics, artificial leathers and laminates etc. Consequently, the fire becomes more severe than the conventional standard fire.
  • 5. 5 Although there are disadvantages and limitations of assuming the nominal fire curves and member design, the simplest and most common performance-based approaches have been developed based on the results and observations from standard fire resistance tests. Considering, in a simplistic form, different fuel types and ventilation conditions, EN1991-1-2: 2002 and PD7974-1: 2003 provides the following nominal temperature- time curves: Code Fire type Application EN1991-1-2 External Fire For the outside of external walls which can be exposed to fire from different parts of the facade EN1991-1-2 PD7974-1 Standard Fire Defined in EN1363-1 for representing a fully developed compartment fire EN1991-1-2 PD7974-1 Hydrocarbon Representing a fire with hydrocarbon or liquid type fuel PD7974-1 Smouldering fire* Representing slowly growing fire for products that are reactive under the influence of fire * Note: This fire curve was developed so that materials such as intumescent coatings which rely upon chemical reactions could be subject to a test that addressed possible concerns regarding their intumescing behaviour. It was not meant to represent a design fire scenario (PD7974-3: 2003). EN1991-1-2 provides three nominal fire curves as follows: a) For standard fire,  18log34520 10  tg (1) b) For external fire,   20313.0687.01660 8.332.0   tt g ee (2) c) For hydrocarbon fire,   20675.0325.011080 5.2167.0   tt g ee (3) where g is the gas temperature in the fire compartment or near the member [°C]; t is the time [min]. PD7974-1 adopts the same equations for the standard and hydrocarbon fires. However, the code provides alternative fire curve for large pool hydrocarbon fire, as well as a slow growing fire, as follows: a) For large pool hydrocarbon fire,
  • 6. 6   20471.0204.0325.011100 833.15417.1167.0   ttt g eee (4) b) For smouldering fire,          min21tfor201208log345 min21t0for20154 10 25.0 t t g (5) Figure 3 shows the various nominal fire curves for comparison. It can be seen that, over a period of 2 hours, the hydrocarbon fire is the most severe followed by the standard fire, with the external fire being the least severe fire although the slow heating fire represents the lowest temperature up to 30 minutes. It is noteworthy that for standard and smouldering fires, the temperature continuously increases with increasing time. For the external fire, the temperature remains constant at 680°C after approximate 22 minutes. Whereas for the hydrocarbon fires, the temperatures remain constant at 1100°C and 1120°C after approximate 40 minutes. Nominal Fires 0 200 400 600 800 1000 1200 0 15 30 45 60 75 90 105 120 Time [min] Temperature[C] Hydrocarbon fire Large pool hydrocarbon fire Standard fire External fire Slow heating fire Figure 3 Nominal Fire curves According to the nominal fire curves, the Eurocodes provide some heat transfer parameters for thermal analysis to structural members such as convection factor, emissivity of fire and surface emissivity of members. The structural response of the members in fire can be calculated.
  • 7. 7 This „simple‟ performance-based approach will generally allow more economical buildings to be designed and constructed compared to those designed using the prescriptive approach. convection factor : Convective heat flux to the member related to the difference between the bulk temperature of gas bordering the relevant surface of the member and the temperature of that surface. emissivity of fire: The amount of radiative heat the fire emits relative to the radiative heat emitted by a perfect black body at the same temperature surface emissivity: The ratio between the radiative heat absorbed by a given surface and that of a black body surface. Equal to heat absorptive ability of a surface. 1.4.0 Time Equivalence The concept of time-equivalence is used to relate the severity of real fires to the time-temperature relationship in a standard fire test. Figure 4 illustrates the concept of time-equivalence, relating the actual maximum temperature of a structural member from an anticipated fire severity, to the time taken for the same member to attain the same temperature when subjected to the standard fire. Figure 4: Concept of time-equivalence There are a number of time-equivalence methods which take into account the amount of fuel load, compartment size, thermal characteristics of the compartment boundaries and ventilation conditions, including:  Law (1971)  Pettersson (1976)  CIB W14 (1986)
  • 8. 8  Harmathy (1987)  BSEN1991-1-2 (2002) Generally, time-equivalence can either be determined by using a simple equation or taken from experimental data from natural and standard fire tests. Although simple to use, the time-equivalence is a crude approximate method of modelling real fire behaviour and bears little relationship with real fire behaviour. In addition, the limitations of the method should be clearly understood. The main limitation is that the method is only applicable to the types of members used in the derivation of the adopted formulae. In the following, the time-equivalence method given in EN1991-1-2 and the background research will be discussed. 1.5.0 Time Equivalence - EN1991-1-2 The time-equivalence method present in Annex F (informative) of EN1991-1-2 is only valid for the members of:  reinforced concrete  protected steel  unprotected steel The equivalent time of exposure te, d [min] is given by:   cfbdfde kwkqt  ,, (6) where kb is a conversion factor related to the thermal inertia of the enclosure [min·m2 /MJ]; kc is a correction factor of the member material as given in Table 1[-]; qf, d is the design fire load density [MJ/m2 ]; wf is a ventilation factor as given in Eq. (7) [-]. Table 1 Correction factor kc for various materials according to EN1991-1-2 Cross-section material kc [-] Reinforced concrete 1.0 Protected steel 1.0 Unprotected steel 13.7xO*
  • 9. 9 The conversion factor kb is related to the thermal inertia b of the enclosure as given in Table 2. It is noteworthy that the values assigned to kb in BSEN1991-1-2 may be replaced nationally by the values given PD7974-3 (2003) for use in UK, which have been validated by a test programme of natural fires in large compartments by British Steel (now Corus) and the Building Research Establishment (Kirby et al. 1994). The calculations of the thermal inertia b for various compartment boundary conditions are given in Eqs (12) to (13) (Heating Phase in Parametric Fire Curves). Table 3 shows the values of thermal inertia b for some typical compartment lining materials. For compartments bounded with typical building surfaces, e.g. masonry and gypsum plaster, kb has a value of 0.07 according to PD7974-3. For compartments with high levels of insulation, e.g. proprietary wall insulation systems with mineral wools, kb has a value of 0.09. The ventilation factor wf for a compartment with openings as shown in Figure 4 is given by:   5.0 1 4.090 62.0 0.6 43.0                   hv v f ab a H w (7) with αh = Ah / Af αv = Av / Af but 0.025 ≤ αv ≤ 0.25 bv = 12.5 (1 + 10αv - αv 2 ≥ 10.0 where Af is the floor area of the compartment [m2 ]; Ah is the area of horizontal openings in the roof [m2 ]; Av is the area of vertical openings in the facade [m2 ]; H is the height of the fire compartment [m]. For a small fire compartment, with a floor area Af < 100m2 and without openings in the roof, the ventilation factor wf can be calculated as: t f f A A Ow 2/1  (8) where O is the opening factor as given in Eq. (11) (Heating Phase in Parametric Fire Curves). At is the total area of enclosure (walls, ceiling and floor, including openings) [m2 ].
  • 10. 10 Table 2 Values of conversion factor kb Thermal inertia b [J/m2 s1/2 K] kb in EN1991-1-2 [min∙m2 /MJ] kb in PD7974-3 [min∙m2 /MJ] > 2500 0.04 0.05 720 ≤ b ≤ 2500 0.055 0.07 < 720 or No detailed assessment 0.07 0.09 Table 3 Thermal inertia b for typical compartment lining materials (A.2 of PD7974-3) Boundary material b [J/m2 s1/2 K] Aerated concrete 386 Wool (pine) 426 Mineral wool 426 Vermiculit plaster 650 Gypsum plaster 761 Clay brick 961 Glass 1312 Fireclay brick 1432 Ordinary concrete 1650 Stone 2423 Steel 12747 Figure 5: A fire compartment with horizontal and vertical openings 1.6.0 Time Equivalence - Background Research In 1993, British Steel (now Corus), in collaboration with the Building Research Establishment (BRE), carried out a test programme of nine natural fire simulations in large scale compartments to validate the time-equivalence method of Eurocode 1 (Kirby et al. 1994).
  • 11. 11 The tests were conducted in a compartment 23m long × 6m wide × 3m high constructed within the BRE ex-airship hanger testing facility at Cardington in Bedfordshire, UK. The test programme examined the effects of fire loads and ventilation on fire severity, and involved growing fires and simultaneous ignition, changes in lining material and compartment geometry. The evaluation of the test results showed that the time-equivalence formula given in Eurocode 1 can be safely applied by using a value of conversion factor kb = 0.09 for compartments with realistic insulating materials. In fact, this value has been given in the CIB W14 report (1986). Consequently, it was recommended to adopt the values of kb = 0.07 and 0.05 for compartments with lower insulating performance. This recommendation has been adopted in the UK National Application Document (NAD) to ENV1991-2-2 (1996). It was argued that the values of (0.04, 0.055 and 0.07) given in ENV1991-2-2 as well as BSEN1991-1-2 (2002) might give unsafe assessments. Table 4 summaries the comparison of the measured time-equivalences from the fire tests and the calculated values based on BSEN1991-1-2 with kb = 0.09 and 0.07 respectively. Obviously, the calculated time-equivalences based on kb = 0.09 are closer to the test results, with the ratios of test result to calculation varying from 0.71 to 1.11 and achieving a mean of 0.92. On the other hand, provided kb = 0.07, the ratios of test result to calculation fluctuate from 0.55 to 0.86 and give a mean of 0.72 which is too conservative. Table 4 Comparison of test and calculated time-equivalences (Kirby et al. 1994) 1.7.0 Parametric Fire Curves The concept of parametric fires provides a rather simple design method to approximate post-flashover compartment fire. It is assumed that the temperature is uniform within the fire compartment.
  • 12. 12 A parametric fire curve takes into account the compartment size, fuel load, ventilation conditions and the thermal properties of compartment walls and ceilings. Parametric fires will give more realistic estimates of the fire severity, for a given compartment, compared to the standard fires. Annex A (informative) of EN1991-1-2 provides the most validated approach for determining parametric fires of compartments which will be described as follows.  EN1991-1-2 Approach  Other Parametric Models  Background Research 1.7.1 Parametric Fire Curves - EN1991-1-2 Figure 5 shows a typical parametric fire curve in accordance with EN1991-1-2. A complete fire curve comprises a heating phase represented by an exponential curve until a maximum temperature Θmax , followed by a linearly decreasing cooling phase until a residual temperature which is usually the ambient temperature. The fire intensity (Θmax) and fire duration (t* max) are two primary factors affecting the behaviour of a structure in fire. Consequently, they are adopted as the governing parameters in the design formulae for the parametric fires. Figure 6: A typical parametric fire curve Basically, the design formulae for parametric fire curves are simple to use with the aid of simple spreadsheets. However, attentions should be put on the limitations of the application as summarised below:  maximum compartment floor area of 500m2 ;  maximum compartment height of 4m;
  • 13. 13  roof without openings;  compartments with mainly cellulosic type fire loads;  compartment linings with thermal inertia between 100 and 2200 J/m2 s1/2 K. Note that these may change in the National Annex. These limitations are established according to test data of the „Swedish‟ fire curves and a database of more than 100 fire tests which have been used to calibrate the design formulae. The details can be found in BACKGROUND RESEARCH. 1.7.2 Parametric Fire Curves - EN1991-1-2 - Heating Phase In the heating phase, it is assumed that the gas temperature will rise with increase in time, which is independent on fire load. The parametric fire curve is given by:  *** 197.12.0 472.0204.0324.01132520 ttt g eee   (9) where Θg is the gas temperature in the fire compartment [°C]; t* is the parametric time to incorporate the ventilation conditions and compartment boundary conditions as given in Eq. (10) [hr]. The parametric time t* [hr] is given by:  tt* (10) with 22 04.0 1160              b O where b is the thermal inertia of linings as given in Eq. (12) to [J/m2 s1/2 K]; O is the opening factor as given in Eq. (11) [m1/2 ]; t is the time [hr]. It is worth noting that when = 1, Eq.(9) approximates the standard fire curve as shown in Figure 6.
  • 14. 14 Figure 7 Parametric fire curves with  = 1 The opening factor O is given by: t eqv A hA O  but 0.02 ≤ O ≤ 0.20 [m1/2 ] (11) where At is the total area of enclosure (walls, ceiling and floor, including openings) [m2 ]; Av is the total area of vertical openings on all walls [m2 ]; heq height of vertical openings [m]. The thermal inertia b of an enclosure is determined by considering the combined effect of different thermal inertia in walls, ceiling and floor as follows:   vt jj AA Ab b    (12) where Aj is the area of enclosure surface j (walls, ceiling and floor), excluding openings [m2 ]; bj is the thermal inertia of enclosure surface j (walls, ceiling and floor) as given in Eq.(12) and Figure 7) [J/m2 s1/2 K]. For an enclosure surface with single layer of material, its thermal inertia b is given by:   cb but 100 ≤ b ≤ 2200 [J/m2 s1/2 K] (13) where
  • 15. 15 c is the specific heat capacity of boundary of enclosure at ambient temperature [J/kg L]; ρ is the density of boundary of enclosure at ambient temperature [kg/m3 ]; λ is the thermal conductivity of boundary of enclosure at ambient temperature [W/m K]. The values of thermal inertia b of some typical lining materials are given in Table 3 (Time Equvalence: EN1991-1-2 (2002) Approach). For an enclosure surface with different layers of material, the thermal inertia b is determined according to Figure 7. Figure 8 Enclosure surface with different layers of material 1.7.3 Parametric Fire Curves - EN1991-1-2 - Heating Duration & Maximum 1.8.0 Temperature
  • 16. 16 The duration of heating phase when t* = t* max, depending on the fire load density and the ventilation conditions, is given by:  max * max tt (14) with         lim ,4 max 102 max t O q t dt       rategrowthfirefastformin15 rategrowthfiremediumformin20 rategrowthfireslowformin25 limt t f dfdt A A qq  ,, but 50 ≤ qt,d ≤ 1000 [MJ/m2 ] where qf,d is the fire load density related to the surface area Af of the floor [MJ/m2 ]. qt,d is the fire load density related to the total surface area At of the enclosure [MJ/m2 ]. In case of tmax = tlim, the fire is fuel controlled. Otherwise, the fire is ventilation controlled. Figure 8 compares the heat release rates for fires with different fire growth rate. The categories of slow, medium, fast and ultra-fast fire growth rates basically depend on the types of occupancy. Figure 9 Fire growth rate and rate of heat release for different occupancies However, there are further limits on the maximum time tmax. The Code states that when tmax = tlim, the parametric t* in the main equation is replaced by:
  • 17. 17 lim *  tt (15) with    2 2 lim lim 116004.0 bO  lim , 4 lim 104.1 t q O dt    where tlim is given in Eq. (10). In case of (O > 0.04 and qt,d < 75 and b < 1160), lim in Eq. (10) has to be multiplied by factor k given by:                       1160 1160 75 75 04.0 04.0 1 , bqO k dt (16) 1.8.1 Parametric Fire Curves - EN1991-1-2 - Cooling Phase EN1991-1-2 defines linear temperature-time curves for the cooling phase after the heating phase of parametric fire curves. Depending on the value of tmax * , three different linear curves for gas temperature Θg are defined as follows:                 2for250 20.5for3250 5.0for625 * max * max * max * max * max ** maxmax * max * max * max txtt txttt txtt g     (17) with        limmax * maxlim limmax for for1 tttt tt x 1.8.2 Parametric Fire Curves -Other Parametric Models The concepts of post-flashover compartment fires and the predictions of their temperatures have long been studied by many researchers. Thus, a wide variety of parametric fire models exist. The majority of the models have been developed by curve-fitting against either model predictions or fire test results. This section will review some of the models.  Lie's Model (1974)  Ma & Mäkeläinen's Model
  • 18. 18 1.8.3 Parametric Fire Curves -Other Parametric Models - Lie's Model (1974) Lie (1974) proposed a model comprising a nonlinear heating phase up to the maximum temperature reached during the fire, followed by a linear cooling phase. The parametric fire curve in the heating phase was given by:        Oceee O t O ttt O g               60014113exp 10 250 1236.0 2 10 3.0  (18) where Θg is the gas temperature in the fire compartment [°C]; C =0 for heavy weight compartment boundary materials with density ρ ≥ 166 kg/m3 ; =1 for lightweight materials with ρ < 1600 kg/m3 ; O is the opening factor [m1/2 ]; t ≤ (4.8O+60) is the time [min]. The duration of heating phase t* max [min] was given by: 5.5 ,* max Oq t dt  (19) where qt,d is the fire load density related to the total surface area At of the enclosure [MJ/m2 ]. In the cooling phase, gas temperature Θg was given by: 201600 * max max          t t g  (20) where Θmax is the maximum gas temperature reached at t* max [°C]. 1.8.4 Parametric Fire Curves -Other Parametric Models - Mäkeläinen's Model (2000) Ma & Mäkeläinen (2000) proposed a parametric fire curve for small and medium compartment fires. In their study, a total of 25 complete gas temperature-time curves from different laboratories around the world had been considered. The main parameters of the fire curves include:  Floor area: < 100 m2  Compartment height: ≤ 4.5 m
  • 19. 19  Fire load density 10-40 kg/m2  Ventilation factor: 5-16 m5/2  Boundary thermal inertia: 555-1800 J/m2 s1/2 K These fire curves were first non-dimensionalised by the maximum gas temperature and the time to reach the maximum temperature, as shown in Figure 10. It can be seen that these fire curves display similar shape. By curve-fitting against the test data, the authors derived a non-dimensional expression as follows:                   mmgm g t t t t TT TT 1exp 0 0 (21) where Tg is the gas temperature [°C]; Tgm is the maximum gas temperature [°C]; T0 is the room temperature [°C]; t is the time [min]; tm is the time corresponding to the maximum gas temperature [min]; δ is the shape constant of the curve, which has different values for the heating and cooling phases. The value for the heating phase is twice that for the cooling phase. The authors reported that the shape constants δ = (0.8, 1.6) had the best fit with the test data, whereas δ = (0.5, 1.0) formed the upper envelope, as shown in Figure 9. Figure 10 Non-dimensionalized fire curves (Source: Ma & Mäkeläinen (2000)) The maximum temperature Tgm [°C] was given by:
  • 20. 20       firecontrolledfuelfor firecontrollednventilatiofor111240 cr gmcr gm T T   (22) with hAA wt  qkcr  34.14 where At is the total surface area of compartment boundaries (openings included) [m2 ]; Aw is the area of openings [m2 ]; h is the height of the openings [m]; η is the inverse of opening factor [m-½ ;]; ηcr is the inverse of the opening factor in the critical region [m-½ ;]; φ is the surface area ratio of fuel [m2 /kg]; κ is the ratio of floor area Af to the total surface area At in a fire compartment [-]; q is the fire load density per unit floor area [kg of wood/m2 ]; Tgmcr is the maximum temperature in the critical region, which can be obtained by substituting Ηcr into Eq.(22) [°C]. Assuming a constant burning rate R during the entire period of primary burning, the fire duration τ was given by: RG0 (23) with          firecontrolledfuelfor372.0 firecontrollednventilatiofor18.10 0 036.0 G DhWAe R w   where D is the depth of the fire compartment [m]; G0 is the total fire load of equivalent woods [kg]; R is the burning rate [kg of wood/min] W is the width of the wall which contains opening [m]. The time to reach the maximum temperature tm was approximated by: 63.0mt (24) 1.9.0 Parametric Fire Curves -Background Research - Wickström's Model
  • 21. 21 The background theory of the parametric fire model of BSEN1991-1-2 was developed by Wickström (1981/82). Based on the heat balance for a fire compartment as shown in Figure 1, he suggested that the compartment fire depended entirely on the ratio of the opening factor to the thermal inertia of the compartment boundary. He used the test data of the „Swedish‟ fire curves (Magnusson & Thelandersson 1970) to validate his theoretical assumptions. Figure 2 shows a set of Swedish fire curves for different fuel loads with an opening factor of 0.04 m½ . By curve-fitting, Wickström expressed the compartment fire in a single power formula for the heating phase, in which the standard fire curve could be attained by assigning a ventilation factor of 0.04 m½ and a thermal inertia of 1165 J/m2 s½ K. Figure 1 Heat balance of a fire compartment Figure 2 Temperature-time curves for different fuel loads (MJ/m2 of total surface area) (Source: Drysdale 1999) The cooling phase of a natural fire is a complex process due to the depletion of the fuel or the active intervention of the fire fighting activities or sprinkler systems. The fire duration depends on the combustion rate which is related to the fuel type, fuel
  • 22. 22 distribution and ventilation conditions. For the sake of simplicity, Wickström defined linear temperature-time curves for the cooling phase of the fire. Due to the experimental characteristics of the „Swedish‟ fire curves, the original application of Wickström‟s parametric fire curves had extensive limitations. For example, in the pre-standard ENV1991-2-2, it stated that the design equations were only valid for compartments with floor areas up to 100 m2 . The compartment linings were also restricted to thermal inertia between 1000 and 2200 J/m2 s½ K, which meant the highly insulated materials could not be taken into account. 1.9.1 Parametric Fire Curves -Background Research - ECSC Research Project The validity of the background theory, as well as the application assumptions and limitations, for the parametric fire curves of Eurocode 1, the ENV1991-2-2:1996 version, have been investigated in an extensive research programme “Natural Fire Safety Concept” supported by the European Coal and Steel Community (ECSC) in between 1994 and 1998. It has been undertaken by 11 European partners. A database of more than 100 natural fire tests made in Australia, France, the Netherlands and UK in between 1973 and 1997 had been compiled (Schleich & Cajot 1999). In 1999 and 2000, more full-scale large compartment fires were carried out by Building Research Establishment (BRE) at Cardington in UK to further supplement the database (Lennon & Moore 2003). The first phase of the programme included one study focusing on the theoretical developments (Cadorin 2003), leading to the improvements in BSEN1991-1-2 on the following aspects:  the method for incorporating enclosure surfaces with different layers of material  the consideration of fuel controlled fires  some modifications in the cooling phase A total of 48 experimental tests from the database had been used in the comparison study. The BRE tests in 1999 and 2000 were not included because the tests were performed after this study. The main characteristics of these tests are listed in Table 5.
  • 23. 23 Table 5 Main parameters of natural fire tests for verifying parametric fire curves of Eurocode 1 Figure 1 shows the plots of the test maximum temperature versus the predictions for each test by using the design models of ENV1991-2-2 and BSEN1991-1-2. For the tests, the maximum temperatures were the average value of several measurements made by different thermocouples located in the compartments. The regression analysis showed that there was a poor correlation between the test results and the predictions by ENV1991-2-2, with the coefficient of correlation of 0.19 only. Relatively, the improvements proposed for BSEN1991-1-2 led to a much better correlation between the model and the test results. Figure 1 Comparison of maximum temperatures from test results and predictions by Eurocode 1 (Source: Schleich & Cajot 1999) The second phase of the ESCS research programme was to provide high-quality test data on the behaviour of post-flashover fires in realistic compartments for validating the design approach. A series of eight full-scale fire tests in a 12×12m compartment was carried out by BRE at Cardington in the UK in 1999 and 2000 (Lennon & Moore 2003). The main characteristics of these tests are given in Table 5. The findings of the tests lead to a number of significant changes in BSEN1991-1-2, including:  the scope of application of the design method
  • 24. 24  the method of determining the effect of compartment boundaries  the calculation of time to maximum temperature 1.9.2 Localised Fires A compartment fire should be taken as localised or pre-flashover fire when flashover is unlikely to occur. Depending on the size of the fire and the compartment, a localised fire may or may not impinge on the ceiling of the compartment. The temperature in the fire flame and plume and the surrounding gas are not uniform, and need to be determined separately. This is the main difference from a post-flashover fire where the temperature assumed to be uniform within the fire compartment. Annex C (informative) of BSEN1991-1-2 provides a simple calculation approach for determining localised fires of compartments which will be described as follows.  EN1991-1-2 (2002) Approach  Background Research - Ceiling Jet Temperature 1.9.3 Localised Fires - EN1991-1-2 (2002) Approach EN1991-1-2 provides the simple approach for determining the thermal action of localised fires in Annex C (informative). Depending on the height of the fire flame relative to the ceiling of the compartment, a localised fire can be defined as either a small fire or a big flame. For a small fire, a design formula has been given to calculate the temperature in the plume at heights along the vertical flame axis. For a big fire, some simple steps have been developed to give the heat flux received by the fire exposed surfaces at the level of the ceiling. The limitations of the approach include:  The diameter of fire D ≤ 10 m  The rate of heat release or the fire Q ≤ 50 MW However, the approach can be applied to the cases of several localised fires.  Smaller Fires or Open-Air Fires  Larger Fires Impacting Ceiling
  • 25. 25  Multiple Fires 1.9.4 Localised Fires - EN1991-1-2 - Small Fires In a localised fire as shown in Figure 1, the highest temperature is at the vertical flame axis (or plume centreline), decreasing toward the edge of the plume. The flame axis temperature Θ(z) changes with height. It is roughly constant in the continuous flame region and represents the mean flame temperature. The temperature decreases sharply above the flames as an increasing amount of ambient air is entrained into the plume (Karlsson & Quintiere 1999). EN1991-1-2 provides a design formula to calculate the temperature in the plume of a small localised fire, based on the fire flume model developed by Heskestad (1995). It can be applied to open-air fires as well. Considering a localised fire as shown in Figure 1, the flame height Lf of the fire is given by: 52 0148.002.1 QDLf  (25) where D is the diameter of the fire [m]; Q is the rate of heat release of the fire [W]. H is the distance between the fire source and the ceiling [m]; In case of fire do not impinge on the ceiling of the compartment when Lf < H, or fire in open fire, the temperature Θ(z) in the plume along the symmetric vertical flame axis is given by:     90025.020 35 0 32   zzQcz (26) with 523 0 1024.502.1 QDz   where Qc is the convective part of the rate of heat release [W], with Qc = 0.8 Q by default; z is the height along the flame axis [m]; z0 is the virtual origin of the axis [m]. The virtual origin z0 depends on the diameter of the fire D and the rate of heat release Q. This empirical equation has been derived from experimental data.
  • 26. 26 The value of z0 may be negative and locate beneath the fuel source, indicating that the area of the fuel source is large compared to the energy being released over that area (see Figure 1). For fire sources where the fuel releases high energy over a small area, z0 may be positive and locate above the fuel source. Figure 1 Schematic diagram for small localised fires 1.9.5 Localised Fires - BSEN1991-1-2 - Larger Fires Impacting Ceiling When a localised fire becomes large enough with Lf ≥ H, the fire flame will impinge on the ceiling of the compartment. The ceiling surface will cause the flame to turn and move horizontally beneath the ceiling. Figure 1 shows a schematic diagram of a localised fire impacting on the ceiling with the ceiling jet flowing beneath an unconfined ceiling. As the ceiling jet moves radially outward, it loses heat to the cooler ambient air being entrained into the flow, as well as the heat transfer to the ceiling. Generally, the maximum temperature occurs relatively close to the ceiling (Karlsson & Quintiere 1999). Figure 1 Localised fires impacting on ceiling of compartment EN1991-1-2 only provides design formulae to determine the heat flux received by the surface area at the ceiling level, but not for calculating the ceiling jet temperatures. The simple approaches for determining the ceiling jet temperatures will be briefly discussed in
  • 27. 27 1.10.0 Background Research – Ceiling Jet Temperatures Considering a localised fire impacting the ceiling of the compartment as shown in Figure 1 (Lf ≥ H), the horizontal flame length Lh is given by:    HQHL Hh  33.0* 9.2 (27) with 5.26 * 1011.1 H Q QH   where Lh is the horizontal flame length as given by Eq.(1) [m]; H is the distance between the fire source and the ceiling [m]; QH * is a non-dimensional rate of heat release [-]; Q is the rate of heat release of the fire [W]. The heat flux h [W/m2 ] received by the fire exposed unit surface area at the ceiling level at the distance r from the flame axis is given by:           1.0for000,15 1.00.30for000,121300,136 0.30for000,100 7.3 yy yyto y h (28) with zHL zHr y h    where r is the horizontal distance from the vertical flame axis to the point along the ceiling where the thermal flux is calculated [m]; z' is the vertical position of the virtual heat source as given by Eq.(3) [m]; D is the diameter of the fire [m]; The vertical position of the virtual heat source z' is given by:           1.0for0.14.2 1.0for4.2 52* 32*52* * DD * DDD QQD QQQD z (29) with 5.26 1011.1 D Q Q* D   The net heat flux neth received by the fire exposed unit surface at the level of the ceiling is given by:
  • 28. 28       44 29327320  mfmmcnet hh  (30) where αc is the coefficient of heat transfer by convection as given in Table [W/m2 K]; εf is the emissivity of the fire; εm is the surface emissivity of the member; Φ is the configuration factor; Θm is the surface temperature of the member [°C]. ζ is the Stephan Boltzmann constant (= 5.67×10-8 W/m2 K4 ); is the heat flux received by the fire exposed unit surface area at the level of the ceiling as given by Eq.(2). 1.10.1 Localised Fires - EN1991-1-2 - Multiple Fires In the case of several localised fires, the individual heat fluxes  ,, 21 hh received by the fire exposed unit surface area at the ceiling level should be first calculated. The total heat flux [W/m2 ] is then taken as the summation of the contribution of all localised fires as follows: 000,10021   hhhhot (31) 1.10.1 Localised Fires - Background Research - Ceiling Jet Temperatures Alpert (1972) has developed empirical equations for determining the maximum temperature and velocity in a ceiling jet flow produced by a steady fire. The empirical equations are based on experimental data collected for fuels such as wood and plastic pallets, cardboard boxes, plastic products in cardboard boxes, and liquids with heat release rates ranging from 668 kW to 98 MW under ceiling heights from 4.6 to 15.5 m (Evans 1995). The maximum temperature T [°C] of a ceiling jet as shown in Figure is given by:             18.0Hfor 38.5 18.0Hfor 9.16 32 35 32 r H rQ r H Q TT (32) see notation for equations below.
  • 29. 29 Heskestad and Delichatsios (1978) have developed different empirical equations for maximum ceiling jet temperature rises and velocities, based on testing subsequent to Alpert‟s study (Evans 1995). The temperature rise ΔT of a ceiling jet is given by:        TQHrT 32* 0 34 313.0188.0 (33) with 5.26 1011.1 D Q Q* D   see notation for equations below. Notation for equations H is the ceiling height [m]; Q is the rate of heat release of the fire [kW]; r is the radial position from the flame axis [m]; T∞ is the ambient gas temperature [=293K]; ρ∞ is the ambient gas density [=1.2 kg/m3 ]; cp is the heat capacity at constant pressure [kJ/kg K]; g is the gravitational acceleration [=9.81 m/s2 ] Beyler (1986) has conducted a comprehensive review on the empirical models for ceiling jet temperature rise and velocity.