SlideShare a Scribd company logo
1 of 17
Download to read offline
• Introduction
• A condenser is a type of heat exchanger in which
vapors are transferred into liquid state by removing
the latent heat with the help of a coolant such as
water.
• Condensers may be classified into two main types:
1. Those in which the coolant and condensing vapor
are brought into direct contact.
2. Those in which the coolant and condensate stream
are separated by a solid surface, usually a tube
wall
Different types of the Condenser
1. Double pipe and multiple pipe
2. Plate Condensers
3. Air-Cooled Condensers
4. Compact Condensers
5. Shell & tube type
DESIGN CALCULATIONS FOR CONDENSER
• Inlet temperature of the process stream ‘T1’ = 45 o
C
• Outlet temperature of the process stream ‘T2’ = 45 o
C
• Inlet temperature of the water ‘t1’ = 25 0
C
• Outlet temperature of the water ‘t2’ = 40 o
C
• Mass flow rate of the process stream ‘m’ = 8060 Kg/hr
• Enthalpy of Vapors of Process Stream = 1940 KJ/Kg
Removed ‘λ1’
T2 = 45 o
C
t1= 25 o
C t2 = 40o
C
T1 = 45 o
C
Condenser
Heat Load:
Q = m (λ1)
Q = 4343 KW
Mass flow rate of cooling water
Δt
C
Q
m
p
=
= 68.9 Kg/sec
Log Mean Temperature Difference
LMTD = (∆t2-∆t1)/ log (∆t2/∆t1)
LMTD = 14.4o
C
Cp = 4.2 KJ / Kg.K
Assumed Calculations
Assumed Value of Overall Coefficient ‘UD’ = 1000 W/m 2
C
True Mean Temperature Difference
Dimensionless Temperature Ratios
R
R = (T1-T2) / (t2-t1)
= (45-45) / (40-25)
= 0
S
S = (t2-t1) / (T1-t1)
= (40-25)/ (45-25)
= 0.75
From Literature the value of Ft is 1
∆tm = Ft x LMTD
= 1 x 14.4
= 14.4 o
C
Heat Transfer Area
= 301 m 2
Surface Area of single tube = 3.14 x 19 x 4.88 / 1000
= 0.292 m 2
No. of tubes = 301/.292
= 1030
Pitch ‘Pt’ = 1.25 × 19.05= 23.8 mm
Δt
U
Q
A
D
=
Tube Bundle Diameter
Db = d0 (Nt/K1)1/n1
= 19 (1030/0.158)1/2.263
= 920 mm
No. of tubes in centre row
Nr = Db / Pt
= 920 / 23.8
= 39
Shell Side Calculations
Estimate tube wall temperature Tw
Assume condensing coefficient of 4250 W/m2
C (from literature)
Mean Temperature
Shell side =( 45+45) / 2 = 45 o
C
Tube side = (25+40) / 2 = 32.5 o
C
(45-Tw) x 4250 = (45-25) x 1000
Tw = 40.3 o
C
Physical Properties
Viscosity of the liquid ‘µL’ = 0.8 mNs/m2
Density of liquid ‘ρL’ = 993 Kg/m3
Thermal conductivity ‘kL’ = 0.571 W/m C
Average M. Wt. of Vapors = 42.8
Density of vapor = 29 x 273 x 1/(22.4 x 1 x (273+42))
= 1.12 Kg / m3
Condensate loading on a horizontal tube ’Ѓh’ = m / L x Nt
= 8060 / 3600 x (4.88 x 1030)
= 4.45 x 10-3
Kg/m s
# of tubes in the vertical row ’Nr’ = 2/3 x 39 = 26 mm
Heat transfer coefficient in condensation
‘h0’ = 0.95 x kL ( ρL x (ρL – ρv ) g / (µL x Ѓh)1/3
x Nr-1/6
= 4396.0 W/m2о
C
• As our assumed value is correct so no need to correct the
wall temperature
Tube Side Calculations
Tube cross sectional area = 3.14 / 4 x (19 x 10-3
)2 x
1030 / 4
= 0.073 m2
Density of water at 30 0
C = 993 kg/m3
Tube velocity = m / (ρH2O x At )
= 68.9 / (993 x 0.073)
= 0.95m/s
Film heat transfer coefficient inside a tube
‘hi’ = 4200(1.35+0.02 x t) Vt0.8
/ di
. 0 2
= 4809.67 W/m2 0
C
From Literature take fouling factor as 6000 W/m2 0
C
Thermal Conductivity of the tube wall material
‘Kw’ = 50 W/m0
C
Overall Coefficient
1/U0 = 1/ho + 1/hod + (d0 ln(d0/di))/2kw +d0/di x 1/hid +d0/di x 1/hi
= 0.001
U0 = 1100.29 W/m2 0
C
So assumed value is correct
Shell Side Pressure Drop
For pull through floating head with 45% cut baffles
From literature clearance = 88 mm
Shell internal diameter ‘Ds’ = Db+88
= 1008 mm
Cross flow area ‘As’ = m2
A= 0.205 m2
Mass Velocity
Gt = m / As
= 8060 / (3600 x 0.205)
= 10.92 Kg/s m2
Equivalent diameter ‘de’ = 1.27 (Pt2
-0.785d0
2
) / d0 = 19 mm
Viscosity of vapors ‘µ’ = 0.009 mNs/m2
Reynold’s No.
Re = de Gt / µ
= 19 x 10-3
x 10.92 /0.009 x 10-3
Re = 23053
From literature
jf = 0.029
By neglecting the viscosity correction factor
Where
Ds = dia of shell
L = Length of tubes
lB = baffle spacing
So
= 765 N/m2
= 0.765 Kpa
= 0.109 Psi
Tube side pressure drop
Viscosity of water ‘µ’ = 0.9 x 10-3
Ns/m2
Re = Vt ρ di /µ
= 0.95 x 993 x 16.56 x 10-3
/ 0.6 x 10-3
= 26036
From literature
jf = 0.0039
Where
Np = No. of tube passes
So
∆Pt = 4119.8 N/m2
= 4.119Kpa
= 0.59 psi
Acceptable
hio = hi ×I.D/O.D
hio = 4165.2 W/m2 0
C
Clean Overall Coefficient:
= 2138.7 W/m2 0
C
Design Overall Coefficient Calculated
dirt factor Rd = 0.0005
D
D
U
U
U
U
R
C
C
d
−
=
o
io
o
io
C
h
h
h
h
U
+
=
SPECIFICATION SHEET CONDENSER
Identification: Item condenser
No. Required = 8
Function: Condense vapors by removing the latent heat of vaporization
Operation: Continuous
Type: 1-4 Horizontal Condenser
Shell side condensation
Heat Duty = 4343 KW
Tube Side:
Fluid handled: Cold Water
Flow rate = 68.9 Kg/sec
Pressure = 14.7 psia
Temperature = 25 o
C to 40 o
C
Tubes: 0.75 in. Dia.
1030 tubes each 16 ft long
4 passes
23.8 mm triangular pitch
Pressure Drop = 0.59 psi
Shell Side:
Fluid handled = Steam
Flow rate = 8060 Kg/hr
Pressure = 10 KPa
Temperature = 45 o
C to 45 o
C
Shell: 39 in. dia. 1 passes
Baffles spacing = 3.5 in.
Pressure drop =0.109 psi
Utilities: Cold water
Ud assumed = 1000 W/m 2
C Ud calculated =1100.97 W/m 2
C
Rd = 0.0005
References
• Chemical Engineering Design
Volume 6 by Coulson &v Richardson’s
• Process Heat Transfer
by D.Q. Kern
• Plant Design & Economics for Chemical Engineers
5th
Edition by Max S. Peters, Klaus D. Timmerhaus,
Ronald E. West
• Perry’s Chemical Engineers’ Handbook
by Robert H. Perry, Don. W. Green

More Related Content

What's hot

Diethyl Ether (DEE): Equipments Design
Diethyl Ether (DEE): Equipments DesignDiethyl Ether (DEE): Equipments Design
Diethyl Ether (DEE): Equipments DesignPratik Patel
 
The psychrometric chart theory and application
The psychrometric chart theory and applicationThe psychrometric chart theory and application
The psychrometric chart theory and applicationUsama Khan
 
Diesel Production: Equipments Design
Diesel Production: Equipments DesignDiesel Production: Equipments Design
Diesel Production: Equipments DesignPratik Patel
 
Nucleate Boiling simulation
Nucleate Boiling simulationNucleate Boiling simulation
Nucleate Boiling simulationCPDLR
 
Energy transfer and heat load analysis
Energy transfer and heat load analysisEnergy transfer and heat load analysis
Energy transfer and heat load analysisSatwinder Singh
 
Manufacture of nitrobenzene
Manufacture of nitrobenzeneManufacture of nitrobenzene
Manufacture of nitrobenzeneparthdhurvey
 
A non-Iterative way for preliminary designing Plate & Frame Exchanger
A non-Iterative way for preliminary designing Plate & Frame ExchangerA non-Iterative way for preliminary designing Plate & Frame Exchanger
A non-Iterative way for preliminary designing Plate & Frame ExchangerUsama Khan
 
Latihan soal jawab fentrans
Latihan soal jawab fentransLatihan soal jawab fentrans
Latihan soal jawab fentransWidia Kurnia Adi
 
Refrigeration system 2
Refrigeration system 2Refrigeration system 2
Refrigeration system 2Yuri Melliza
 
Cooling Tower & Dryer Fundamentals
Cooling Tower & Dryer FundamentalsCooling Tower & Dryer Fundamentals
Cooling Tower & Dryer FundamentalsYuri Melliza
 
Problem set 2 4b5
Problem set 2 4b5Problem set 2 4b5
Problem set 2 4b54ChEAB08
 
Condensation on vertical surface
Condensation on vertical surfaceCondensation on vertical surface
Condensation on vertical surfaceMostafa Ghadamyari
 
construction of Psychromtery
construction of Psychromteryconstruction of Psychromtery
construction of PsychromteryKulwinder Verma
 

What's hot (19)

Diethyl Ether (DEE): Equipments Design
Diethyl Ether (DEE): Equipments DesignDiethyl Ether (DEE): Equipments Design
Diethyl Ether (DEE): Equipments Design
 
The psychrometric chart theory and application
The psychrometric chart theory and applicationThe psychrometric chart theory and application
The psychrometric chart theory and application
 
Diesel Production: Equipments Design
Diesel Production: Equipments DesignDiesel Production: Equipments Design
Diesel Production: Equipments Design
 
Nucleate Boiling simulation
Nucleate Boiling simulationNucleate Boiling simulation
Nucleate Boiling simulation
 
Energy transfer and heat load analysis
Energy transfer and heat load analysisEnergy transfer and heat load analysis
Energy transfer and heat load analysis
 
CRS General (Rev 3)
CRS General (Rev 3)CRS General (Rev 3)
CRS General (Rev 3)
 
Thermalexpansion
ThermalexpansionThermalexpansion
Thermalexpansion
 
LinkedIn
LinkedInLinkedIn
LinkedIn
 
Manufacture of nitrobenzene
Manufacture of nitrobenzeneManufacture of nitrobenzene
Manufacture of nitrobenzene
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
final press-rev-Linkedin
final press-rev-Linkedinfinal press-rev-Linkedin
final press-rev-Linkedin
 
A non-Iterative way for preliminary designing Plate & Frame Exchanger
A non-Iterative way for preliminary designing Plate & Frame ExchangerA non-Iterative way for preliminary designing Plate & Frame Exchanger
A non-Iterative way for preliminary designing Plate & Frame Exchanger
 
Latihan soal jawab fentrans
Latihan soal jawab fentransLatihan soal jawab fentrans
Latihan soal jawab fentrans
 
Refrigeration system 2
Refrigeration system 2Refrigeration system 2
Refrigeration system 2
 
Cooling Tower & Dryer Fundamentals
Cooling Tower & Dryer FundamentalsCooling Tower & Dryer Fundamentals
Cooling Tower & Dryer Fundamentals
 
Problem set 2 4b5
Problem set 2 4b5Problem set 2 4b5
Problem set 2 4b5
 
Condensation on vertical surface
Condensation on vertical surfaceCondensation on vertical surface
Condensation on vertical surface
 
construction of Psychromtery
construction of Psychromteryconstruction of Psychromtery
construction of Psychromtery
 
Dryers
DryersDryers
Dryers
 

Similar to Designofcondenser 130801223803-phpapp02

Design of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxDesign of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxAathiraS10
 
Shell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptxShell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptxsandeepsharma432939
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERGopi Chand
 
Design of heat exchanger
Design of heat exchangerDesign of heat exchanger
Design of heat exchangerRana Abdul Rauf
 
مبدل های حرارتی
مبدل های حرارتیمبدل های حرارتی
مبدل های حرارتیObeid Aghaei
 
Probs5,11,17
Probs5,11,17Probs5,11,17
Probs5,11,17Lark Inc.
 
Process equipment numericals problems
Process equipment numericals problemsProcess equipment numericals problems
Process equipment numericals problemsAnand Upadhyay
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERGopi Chand
 
Convective Heat Transfer - Part 3.pdf
Convective Heat Transfer - Part 3.pdfConvective Heat Transfer - Part 3.pdf
Convective Heat Transfer - Part 3.pdfXuanNguyen277499
 
Group 7 4ChE A
Group 7 4ChE AGroup 7 4ChE A
Group 7 4ChE A4ChEAB08
 
Latihan soal jawab fentrans
Latihan soal jawab fentransLatihan soal jawab fentrans
Latihan soal jawab fentransWidia Kurnia Adi
 
Kettle reboilers
Kettle reboilersKettle reboilers
Kettle reboilersAtif Khan
 
Cryogenic air separation plant design
Cryogenic air separation plant designCryogenic air separation plant design
Cryogenic air separation plant designRahul Ghalme
 

Similar to Designofcondenser 130801223803-phpapp02 (20)

Design of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxDesign of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptx
 
Shell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptxShell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptx
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZER
 
Design of heat exchanger
Design of heat exchangerDesign of heat exchanger
Design of heat exchanger
 
project ppt
project pptproject ppt
project ppt
 
مبدل های حرارتی
مبدل های حرارتیمبدل های حرارتی
مبدل های حرارتی
 
تصمم.pptx
تصمم.pptxتصمم.pptx
تصمم.pptx
 
Condenser design
Condenser designCondenser design
Condenser design
 
DESIGN AND FABRICATION OF1 EDITED
DESIGN AND FABRICATION OF1 EDITEDDESIGN AND FABRICATION OF1 EDITED
DESIGN AND FABRICATION OF1 EDITED
 
Probs5,11,17
Probs5,11,17Probs5,11,17
Probs5,11,17
 
Process equipment numericals problems
Process equipment numericals problemsProcess equipment numericals problems
Process equipment numericals problems
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZER
 
Convective Heat Transfer - Part 3.pdf
Convective Heat Transfer - Part 3.pdfConvective Heat Transfer - Part 3.pdf
Convective Heat Transfer - Part 3.pdf
 
Thermal conductivity admiral
Thermal conductivity admiralThermal conductivity admiral
Thermal conductivity admiral
 
Group 7 4ChE A
Group 7 4ChE AGroup 7 4ChE A
Group 7 4ChE A
 
PLATE FREEZER
PLATE FREEZERPLATE FREEZER
PLATE FREEZER
 
Latihan soal jawab fentrans
Latihan soal jawab fentransLatihan soal jawab fentrans
Latihan soal jawab fentrans
 
Kettle reboilers
Kettle reboilersKettle reboilers
Kettle reboilers
 
Cryogenic air separation plant design
Cryogenic air separation plant designCryogenic air separation plant design
Cryogenic air separation plant design
 
HMT UNIT-II.pptx
HMT UNIT-II.pptxHMT UNIT-II.pptx
HMT UNIT-II.pptx
 

Recently uploaded

(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 

Recently uploaded (20)

(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 

Designofcondenser 130801223803-phpapp02

  • 1. • Introduction • A condenser is a type of heat exchanger in which vapors are transferred into liquid state by removing the latent heat with the help of a coolant such as water. • Condensers may be classified into two main types: 1. Those in which the coolant and condensing vapor are brought into direct contact. 2. Those in which the coolant and condensate stream are separated by a solid surface, usually a tube wall
  • 2. Different types of the Condenser 1. Double pipe and multiple pipe 2. Plate Condensers 3. Air-Cooled Condensers 4. Compact Condensers 5. Shell & tube type
  • 3.
  • 4. DESIGN CALCULATIONS FOR CONDENSER • Inlet temperature of the process stream ‘T1’ = 45 o C • Outlet temperature of the process stream ‘T2’ = 45 o C • Inlet temperature of the water ‘t1’ = 25 0 C • Outlet temperature of the water ‘t2’ = 40 o C • Mass flow rate of the process stream ‘m’ = 8060 Kg/hr • Enthalpy of Vapors of Process Stream = 1940 KJ/Kg Removed ‘λ1’ T2 = 45 o C t1= 25 o C t2 = 40o C T1 = 45 o C Condenser
  • 5. Heat Load: Q = m (λ1) Q = 4343 KW Mass flow rate of cooling water Δt C Q m p = = 68.9 Kg/sec Log Mean Temperature Difference LMTD = (∆t2-∆t1)/ log (∆t2/∆t1) LMTD = 14.4o C Cp = 4.2 KJ / Kg.K
  • 6. Assumed Calculations Assumed Value of Overall Coefficient ‘UD’ = 1000 W/m 2 C True Mean Temperature Difference Dimensionless Temperature Ratios R R = (T1-T2) / (t2-t1) = (45-45) / (40-25) = 0 S S = (t2-t1) / (T1-t1) = (40-25)/ (45-25) = 0.75
  • 7. From Literature the value of Ft is 1 ∆tm = Ft x LMTD = 1 x 14.4 = 14.4 o C Heat Transfer Area = 301 m 2 Surface Area of single tube = 3.14 x 19 x 4.88 / 1000 = 0.292 m 2 No. of tubes = 301/.292 = 1030 Pitch ‘Pt’ = 1.25 × 19.05= 23.8 mm Δt U Q A D =
  • 8. Tube Bundle Diameter Db = d0 (Nt/K1)1/n1 = 19 (1030/0.158)1/2.263 = 920 mm No. of tubes in centre row Nr = Db / Pt = 920 / 23.8 = 39 Shell Side Calculations Estimate tube wall temperature Tw Assume condensing coefficient of 4250 W/m2 C (from literature) Mean Temperature Shell side =( 45+45) / 2 = 45 o C Tube side = (25+40) / 2 = 32.5 o C (45-Tw) x 4250 = (45-25) x 1000 Tw = 40.3 o C
  • 9. Physical Properties Viscosity of the liquid ‘µL’ = 0.8 mNs/m2 Density of liquid ‘ρL’ = 993 Kg/m3 Thermal conductivity ‘kL’ = 0.571 W/m C Average M. Wt. of Vapors = 42.8 Density of vapor = 29 x 273 x 1/(22.4 x 1 x (273+42)) = 1.12 Kg / m3 Condensate loading on a horizontal tube ’Ѓh’ = m / L x Nt = 8060 / 3600 x (4.88 x 1030) = 4.45 x 10-3 Kg/m s # of tubes in the vertical row ’Nr’ = 2/3 x 39 = 26 mm Heat transfer coefficient in condensation ‘h0’ = 0.95 x kL ( ρL x (ρL – ρv ) g / (µL x Ѓh)1/3 x Nr-1/6 = 4396.0 W/m2о C • As our assumed value is correct so no need to correct the wall temperature
  • 10. Tube Side Calculations Tube cross sectional area = 3.14 / 4 x (19 x 10-3 )2 x 1030 / 4 = 0.073 m2 Density of water at 30 0 C = 993 kg/m3 Tube velocity = m / (ρH2O x At ) = 68.9 / (993 x 0.073) = 0.95m/s Film heat transfer coefficient inside a tube ‘hi’ = 4200(1.35+0.02 x t) Vt0.8 / di . 0 2 = 4809.67 W/m2 0 C From Literature take fouling factor as 6000 W/m2 0 C Thermal Conductivity of the tube wall material ‘Kw’ = 50 W/m0 C
  • 11. Overall Coefficient 1/U0 = 1/ho + 1/hod + (d0 ln(d0/di))/2kw +d0/di x 1/hid +d0/di x 1/hi = 0.001 U0 = 1100.29 W/m2 0 C So assumed value is correct
  • 12. Shell Side Pressure Drop For pull through floating head with 45% cut baffles From literature clearance = 88 mm Shell internal diameter ‘Ds’ = Db+88 = 1008 mm Cross flow area ‘As’ = m2 A= 0.205 m2 Mass Velocity Gt = m / As = 8060 / (3600 x 0.205) = 10.92 Kg/s m2 Equivalent diameter ‘de’ = 1.27 (Pt2 -0.785d0 2 ) / d0 = 19 mm Viscosity of vapors ‘µ’ = 0.009 mNs/m2 Reynold’s No. Re = de Gt / µ = 19 x 10-3 x 10.92 /0.009 x 10-3 Re = 23053
  • 13. From literature jf = 0.029 By neglecting the viscosity correction factor Where Ds = dia of shell L = Length of tubes lB = baffle spacing So = 765 N/m2 = 0.765 Kpa = 0.109 Psi
  • 14. Tube side pressure drop Viscosity of water ‘µ’ = 0.9 x 10-3 Ns/m2 Re = Vt ρ di /µ = 0.95 x 993 x 16.56 x 10-3 / 0.6 x 10-3 = 26036 From literature jf = 0.0039 Where Np = No. of tube passes So ∆Pt = 4119.8 N/m2 = 4.119Kpa = 0.59 psi Acceptable
  • 15. hio = hi ×I.D/O.D hio = 4165.2 W/m2 0 C Clean Overall Coefficient: = 2138.7 W/m2 0 C Design Overall Coefficient Calculated dirt factor Rd = 0.0005 D D U U U U R C C d − = o io o io C h h h h U + =
  • 16. SPECIFICATION SHEET CONDENSER Identification: Item condenser No. Required = 8 Function: Condense vapors by removing the latent heat of vaporization Operation: Continuous Type: 1-4 Horizontal Condenser Shell side condensation Heat Duty = 4343 KW Tube Side: Fluid handled: Cold Water Flow rate = 68.9 Kg/sec Pressure = 14.7 psia Temperature = 25 o C to 40 o C Tubes: 0.75 in. Dia. 1030 tubes each 16 ft long 4 passes 23.8 mm triangular pitch Pressure Drop = 0.59 psi Shell Side: Fluid handled = Steam Flow rate = 8060 Kg/hr Pressure = 10 KPa Temperature = 45 o C to 45 o C Shell: 39 in. dia. 1 passes Baffles spacing = 3.5 in. Pressure drop =0.109 psi Utilities: Cold water Ud assumed = 1000 W/m 2 C Ud calculated =1100.97 W/m 2 C Rd = 0.0005
  • 17. References • Chemical Engineering Design Volume 6 by Coulson &v Richardson’s • Process Heat Transfer by D.Q. Kern • Plant Design & Economics for Chemical Engineers 5th Edition by Max S. Peters, Klaus D. Timmerhaus, Ronald E. West • Perry’s Chemical Engineers’ Handbook by Robert H. Perry, Don. W. Green