SlideShare a Scribd company logo
1 of 8
Download to read offline
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 18, No. 2, April 2020, pp. 661~668
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v18i2.14877  661
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
Patterns of sidemount four-bay FM antenna system
Gerino Mappatao
Department of Electronics and Communications Engineering, De La Salle University, Philippines
Article Info ABSTRACT
Article history:
Received Aug 14, 2019
Revised Jan 9, 2020
Accepted Feb 8, 2020
This paper presents the radiation characteristics of a 4-bay collinear FM
antenna system, both in free-space and with the presence of a metallic tower
where the bays are mounted, with the use of powerful computers and
accurate antenna simulation software. The radiation characteristics of
the array are presented and discussed, such as the total gain, polarization
components, circularity, beamwidth and minor lobe of the array. This is to
determine the conformity of the array performance with existing standards.
The possible effects of the metallic tower and the downward radiation from
the minor lobe are emphasized. Being aware with these radiation
characteristics, broadcast practitioners can optimize the use of this popular
array. Results of numerical analyses show that the array is basically
a vertically polarized radiator, the beamwidth is quite small which makes it
disadvantageous for high-elevated antenna systems, the metallic tower
affects the circularity of the azimuth pattern, and the downward radiation
from the minor lobes can cause adverse effects. Adjustments on the basic
elements and bay placements are recommended.
Keywords:
Collinear array
FM antenna
FM broadcast standard
Pattern null
Polarization
This is an open access article under the CC BY-SA license.
Corresponding Author:
Gerino Mappatao,
Department of Electronics and Communications Engineering,
De La Salle University,
2401 Taft Avenue, Malate, Manila 0922, Philippines.
Email: gerino.mappatao@dlsu.edu.ph
1. INTRODUCTION
Most FM antenna systems are composed of several identical bays that are stacked vertically forming
a collinear array. This is done to attain higher gains. In the Philippines, the United States and other countries,
these bays are required to exibit circular patterns on the azimuth and bidirectional on the vertical plane and
the bandwidth must be at least 0.2 MHz. They must be basically horizontally polarized (H-pol) but circular
polarization (C-pol) is also allowed so long as the vertically polarized (V-pol) component is not in anyway
greater than the H-pol component. In the past years, several bays of this kind were developed, the patented
circularly polarized antenna (CPA) being the more common and is illustrated in Figure 1. Its dimensions and
other specifications are shown in Table 1. Figure 2 (a) shows the polar plot of the CPA total far-field gain on
the horizontal and vertical planes in free-space. The pattern on the vertical plane is attained with the cutting
plane on the y-z plane. The bay has a maximum power gain of 1.561 (1.934 dBi), and a pattern circularity on
the azimuth is ±0.237 dB which is within the required circularity of ±2 dB. The bandwidth of the CPA is
6.4 MHz, which is much greater than the required minimum bandwidth [1]. However, the V-pol is greater
than the H-pol on the azimuth, making the CPA basically a V-pol antenna.
Figure 2 (b) shows the azimuth far-field gain pattern of the same antenna illustrated in Figure 1 but
with the presence of a 4-inch metallic tower, 0.375 wavelength away from the bay center. Due to the tower,
the patterns were altered and deviated from the pattern in Figure 2 (a). The circularity of the gain pattern with
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 661 - 668
662
the conditions described above and at 97.488 MHz (center of the FM band) is ±2.02 [2]. In the figure and
with the tower at 2700
, maximum gains occur at 250
and 1550
. Note that all gains in this paper are referred to
the gain of the isotropic antenna. Also, the V-pol component is more affected by the presence of the tower
than the H-pol. Previous papers [1-4] dealing with the characterization of the CPA show that it has some
limitations on conformance to some broadcast standards and requirements, but still remains to be a popular
basic element in FM broadcasting.
(a) (b) (c)
Figure 1. The circularly polarized antenna, (a) Isometric, (b) top, (c) front views
Table 1. CPA dimension and specifications
Dimension/Physical Specification Value
Boom Length ¼ λ
Boom and Arm Diameter 2 inches
Arm Length ¼ λ
α1 (Arm Offset Angle 1) 900
α2 (Arm Offset Angle 2) 900
β (Skew angle) 22.50
(a) (b)
Figure 2. Radiation patterns on the vertical and horizontal planes of the CPA in
(a) free-space, and (b) with tower
Engineers and technicians usually stack several bays forming a collinear array to attain higher gains
in FM antenna systems [2, 3], without any knowledge and consideration of the overall radiation
characteristics of the resulting array. Stacking identical bays this way produce minor lobes that create
downward radiation at high depression angles [3]. Depending on the gain and location, minor lobes can
produce undesirable effects. FM broadcast stations in the Philippines, especially in the provinces, four-bay
collinear array is the most common antenna system. This paper presents and discusses the radiation patterns
of a four sidemounted CPA element collinear array on a metallic tower. Specifically, the paper tackles on
the total gain patterns, polarization components, circularity, beamwidth and the details of the minor lobe of
the array. The conformance of the array to broadcast standards are determined through the first three items
enumerated above. Determining the beamwidth of the main lobe of the elevation pattern is important
for this determines the ability of the antenna system to radiate towards and below the horizon. Practically,
TELKOMNIKA Telecommun Comput El Control 
Patterns of sidemount four-bay FM antenna system (Gerino Mappatao)
663
the antenna system of an FM station is serving its listeners with that part of the elevation pattern from
the horizon (00
) to within an angle of depression (below the horizon) of 100
[4-6]. With a small beamwidth
and a high antenna height, the station might miss serving the listeners in the vicinity of the antenna system.
Since beamwidth decreases with increased gain, good balance between the two must be observed.
The downward radiation from the minor lobes can produce RF energy that leads to blanketing in FM
receivers and expose the environment to excessive RF field around the vicinity of the tower [7-12].
Blanketing is a condition when there is excessive RF signal enough to overload the front-end of radio
receivers making the demodulaton of the transmitted information difficult. The downward radiation can
expose the environment, especially to animals and human beings, to excessive RF field. Every country adopts
some sort of safety standards in working in RF fields [13].
A thorough understanding of the radiation characteristics of this popular array of CPA leads to
an improved over-all performance of the antenna system in providing signal quality within the service area of
the station as well as avoiding the adverse effects of excessive radiation. At the very least, with the proper
knowledge of these characteristics, engineers and technicians would optimise (to do the best possible) the use
of the antenna system under consideration.
2. RESEARCH METHOD
The set-up of the four-bay collinear array is shown in Figure 3. The bays are vertically spaced one
wavelength apart and are fed in-phase. The radiation characteristics of the array are determined using Feko,
an advance antenna simulation software that uses diverse computation and optimization processes [3, 14, 15].
In the simulation, the center frequency of the FM band is used if a single frequency is desired, otherwise,
the whole FM band (88-108 MHz) is used. Two of the more common tower distance values (referred to bay
center) are cosidered: 0.375 and 0.625 wavelength. Tower diameter is either 4 inches or 10 inches. Each bay
in the array has dimensions and specifications shown in Table 1. In this study, the radiation patterns of
the collinear array are simulated and presented with the following conditions: no tower; with 4-inch diameter
tower, 0.375 and 0.625 wavelengths away from the bay center; and with 10-inch diameter tower, 0.375 and
0.625 wavelength away from the bay center. In each condition, the polar plots of the total gain on the azimuth
(horizontal plane) and elevation (vertical plane) are presented and discussed. Again, all gain values in this
paper are referred to an isotropic antenna. The beamwidth and minor lobe details are determined from
the elevation pattern. Also, polar plots of the H-pol and V-pol components of the total gain are presented to
determine the superiority of the H-pol over the V-pol. The gain of the array over the entire FM band is
plotted in cartesian to determine the bandwidth of the array.
Figure 3. The four-bay collinear array sidemounted to a metallic tower
Aside from the broadcast standards to be observed, the national association of broadcasters (NAB)
of the United States maintains the value of 115 dBu (dB referred to 1 uV/m) of electric field to be
the minimum value that causes blanketing in FM receivers and the power density value of 0.01 w/cm2
to be
the limit for a safe day-to-day exposure to RF fields. Other standards, however, are adopted in different
countries and territories. Also, the regulatory bodies of the Philippines, the United States and of other
countries accept characterization results from antenna simulation (computation) as proof-of-performance of
broadcast antennas.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 661 - 668
664
3. RESULTS AND ANALYSIS
In the presentation of results, especially involving polar plots, the horizontal plane is referred to
the x-y plane in cartesian coordinates. In spherical coordinates, the angle Φ is varied from 00
to 3600
and
the value of θ is fixed at 900
. Also, most of the vertical plane patterns presented in the paper are taken from
the x-z plane. This is the same plane as Φ = 00
, and θ ranging from 0 to 1800
in spherical coordinates. Lastly,
the tower is located at the back of the array, Φ = 1800
; the front of the array is at Φ = 00
and θ = 900
.
The radiation patterns of a four-element collinear array in free-space, i.e. without the tower, is
illustrated in Figure 4. Referring to Figure 4(a), the array has a maximum power gain of 6.802 (8.326 dBi) at
700
on the horizontal plane; the circularity is ±0.031 dB, which is better than the circularity of a bay.
As discussed in [16-22], all collinear arrays have minor lobes in the radiation pattern. The elevation pattern
shown in Figure 4 (b) is produced with the cutting plane passing through the x-z plane. In the figure,
the radiation pattern has downward radiation due to the minor lobe occurring at 650
below the horizon, with
a power gain ranging from 0.752 to 1.096 (-1.238 to 0.398 dBi). The beamwidth between half-power points
of the elevation pattern is about 13.40. Figure 4(c) shows the H-pol and the V-pol components of the total
gain of the array on the azimuth. As shown, the V-pol component is much higher than the H-pol component.
The array, therefore, does not conform to the requirement on polarization. Figure 4(d) shows the plot of
the antenna gain infront of the array versus the frequencies in the FM broadcast band. In the figure, the array
gain does not vary too much within the entire FM band. The gain variation within the 88-108 MHz band is no
greater than 0.620 dB from the gain at the center frequency; the bandwidth between half-power points is
more than 20 MHz.
(a) (b) (c)
(d)
Figure 4. Radiation pattern of the total gain of the four-bay collinear array in free-space at 97.488 MHz:
(a) azimuth pattern, (b) elevation pattern, (c) H-pol and V-pol components;
(d) gain infront of the array over the FM band
3.1. Four-inch tower
The patterns are significantly altered, when the array is mounted to a metallic tower with a diameter
of 4 inches, and 0.375 wavelength away from the bay center. Figure 5 (a) shows the total power gain pattern
of the array on the horizontal plane. The maximum gain shown in the azimuth pattern is 9.284 (9.677dBi) at
700
, minimum gain is 4.146 (6.176 dBi) in the direction of the tower; and the gain infront of the array is
6.719 (8.273 dBi). The circularity is altered and is reduced to ±1.751 dB.
The pattern on the vertical plane is illustrated in Figure 5 (b) and is taken with the cutting plane
passing through the x-z plane. The beamwidth between half-power points of the main lobe is 13.0590
.
TELKOMNIKA Telecommun Comput El Control 
Patterns of sidemount four-bay FM antenna system (Gerino Mappatao)
665
The minor lobe has a maximum power gain of 1.050 (0.213 dBi) and a minimum of 0.569 (-2.447 dBi) at 650
below the horizon. Figure 5 (c) shows the H-pol and V-pol components of the radiation pattern on
the azimuth. The V-pol component is greater than the H-pol component, which makes the array basically
a V-pol antenna. This is against the standard that FM antenna systems should be basically H-pol. Further,
the H-pol component is less affected with the presence of the tower than the V-pol. Figure 5 (d) shows
the plot of the gain infront of the array over the entire FM broadcast band. The gain variation within the band
is no greater than 1.355 dB from the gain at the center frequency; the bandwidth between half-power points is
more than 20 MHz.
(a) (b) (c)
(d)
Figure 5. Radiation pattern of the total gain of the four-bay collinear array with a 4-inch diameter tower,
0.375 wavength away from the bay center at 97.488 MHz: (a) azimuth pattern, (b) elevation pattern,
(c) H-pol and V-pol components; (d) gain infront of the array over the FM band
The maximum power gain of the sidelobe transmitted downward is quite small compared to
the main lobe. However, since this downward radiation occurs at a relatively large angle of depression, i.e.
650
, it may pose adverse effects. Consider the condition of an FM broadcast station with a transmitter power
of 1000 watts (this is the minimum power of a commercial station in the Philippines and is classified as Class
B station) and having a typical tower height of 30 meters. A four-element collinear array would be
transmitting a maximum effective radiated power of about 1050 watts at a point 14 meters from the base of
the tower, producing a power density of 0.076 w/m2
and a field intensity of about 135 dBu. With these
values, the RF field is above the limit and may not be safe for day-to-day exposure, and the signal level is
large enough to create blanketing in receivers.
Increasing the distance of the tower to the bay center by one-fourth of a wavelength improves
the circularity of the total power gain to ±1.254 dB, a maximum gain of 9.151 is observed and is located
nearer and toward the tower (at 1000
and 2600
). Also, the gain infront (at 00
) and at the back (at 1800
) of
the array is increased to 7.1840 and 5.138, respectively. However, the V-pol component of the radiation
pattern remains to be more dominant than the H-pol. In the elevation pattern (x-z plane), the beamwidth is
slightly increased to 13.5060
and the minor lobe has a downward gain of anywhere between 0.725 and 1.189
at 650
around the antenna system. Also, the bandwidth is way above the required value.
3.2. Ten-inch tower
Figure 6 illustrates the patterns derived when the tower diameter is increased to 10 inches,
0.375 wavelength away from the bay center. Figure 6(a) shows the total power gain pattern of the array on
the horizontal plane. Relatively, the front and back radiations, and side radiations (900
and 2700
) are more
balanced compared to the radiation pattern of the array with 4 inches diameter tower. There is an observed
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 661 - 668
666
improvement on the backward radiation and a reduction in the forward radiation compared to the radiation
when the tower diameter is smaller. The maximum gain shown in the azimuth pattern is increased to
9.638 located at 900
and 2700
. The minimum value is infront of the array (at 00
) with 4.952; the gain in
the direction of the tower is 4.978. The circularity of the pattern is ±1.446 dB, also compromised compared to
the circularity of the array in free-space but is better than the array with a smaller diameter tower.
The pattern on the vertical plane is illustrated in Figure 6 (b) and is taken with the cutting plane
passing through the x-z plane. The beamwidth between half-power points of the main lobe is 13.3240
, closer
in value to that of the array in free-space. However, the minor lobe has a power gain that falls between
0.705 and 1.193 at a depression angle of 650
below the horizon around the antenna. Figure 6 (c) shows
the H-pol and V-pol components of the radiation pattern on the azimuth. The V-pol component is still much
greater than the H-pol component making the array still basically a V-pol antenna and therefore, unable to
comply with existing broadcast standards. Figure 6 (d) is the gain infront of the array plotted within the FM
band. Within the band, the gain changes only within a maximum value of 0.487 dB from the gain at
the center frequency; the array has a bandwidth that covers the entire band.
When the tower distance is increased by one-fourth of a wavelength while maintaining the tower
diameter of 10 inches, the maximum gain became 8.375, a decrease from the previous condition. However,
an increased gain is introduced in the forward radiation with a value of 8.330 from the previous value of
about 5. The increase in gain comes with the improvement in the circularity of the pattern to ±1.133 dB, i.e.
an improvement from the previous condition of ±1.446 dB. The backward radiation is, however, decreased to
4.970. The V-pol component of the radiation pattern remains to be more dominant than the H-pol.
In the elevation pattern (x-z plane), the beamwidth increased to 13.4670
and the minor lobe has a gain of
0.692 and 1.097 at 650
below the horizon and around the antenna. The array has a bandwidth that covers
the entire FM band whose gain varies no more than 0.743 dB from the gain at center frequency.
In summary, all the array conditions presented conform to the circularity and bandwidth
requirements. The gain is increased commensurate to the number of bays. However, the arrays fail to perform
as a basic H-pol radiator. Further, the sidelobes of the array produce downward radiation that can pose
adverse effects near the base of the tower. Lastly, the beamwidth of the array is quite small that can introduce
coverage issue, especially for high elevation antennas. Wireless systems requiring high antenna gains using
the proposed array, such as the ones discussed in [23-25], should consider such limitations.
(a) (b) (c)
(d)
Figure 6. Radiation pattern of the total gain of the four-bay collinear array with a 10-inch diameter tower,
0.375 wavength away from the bay center at 97.488 MHz: (a) azimuth pattern, (b) elevation pattern,
(c) H-pol and V-pol components; (d) Front gain of the array over the FM band
TELKOMNIKA Telecommun Comput El Control 
Patterns of sidemount four-bay FM antenna system (Gerino Mappatao)
667
4. CONCLUSION
This paper presented and discussed the radiation characteristics of a sidemounted four-element CPA
collinear array. Three things can be construed from the presentation: the presence of significant downward
radiation at high depression angles, the low beamwidth of the mainlobe towards the horizon and the array is
basically a V-pol antenna. In all conditions that were considered in the paper, the maximum gain of
the sidelobe causing the downward radiation has a maximum gain that does not go below 0 dBi, with or
without the tower, irrespective of the tower diameter and tower distance. Even with Class B FM broadcast
stations, the occurrence of blanketing near the base of the antenna is inevitable. Also, depending on
the standard, the environment maybe exposed to excessive radiation. Some methods must be adopted to
reduce, if not completely remove, the sidelobe. Typically, the service area of an FM broadcast station is
served by that part of the elevation pattern from an angle of depression of 00
to 100
. With the beamwidth of
the array of about 130
, the service area of any FM station utilizing a 4-bay collinear array is just served by
the elevation pattern within the range of 00
to about 6.50
of depression angle. Therefore, there is a reduction
in the effective coverage area near the antenna tower base. To emphasize on this, if the tower height is 30
meters, the coverage area of the station starts at about 170 meters away from the tower base at a depression
angle of 100
. At 6.50
angle, the coverage area starts farther away at about 260 meters. If there is a large
volume of target listeners around the vicinity of the station, a high-elevation antenna system is not
recommended. Lastly, to correct the polarization issue of the array, the bay must be first converted to become
an H-pol antenna. Previous papers show that adjusting the skew angle of the bay can solve this problem.
Because of the effect of the tower, the radiation pattern somewhat becomes directional.
Particularly, it becomes bidirectional when the tower distance is 0.375 wavelength from the bay center.
To do the best possible or optimize the use of the array, this set-up is best recommended when, in the service
area, greater gain is needed towards the 900
and 2700
directions on the azimuth. When the tower distance is
0.625 wavelength from the bay center, the higher gains are not just observed at 900
and 2700
, but also infront
(00
) of the tower. The pattern is recommended for applications where the target area is all around the antenna,
except towards the tower direction (1800
). For future directive, the array needs improvement in H-pol and
V-pol ratio, sidelobe reduction and other characteristics.
ACKNOWLEDGEMENTS
The author would like to thank the University Research Coordination Office of De La Salle
University (DLSU) and DLSU Science foundation for the realization of this paper.
REFERENCES
[1] G. Mappatao, “Compliance to broadcast standards of patented broadcast antennas: The circularly polarized
Antenna,” International Journal on Communications Antenna and Propagation, vol. 7, no. 2, pp. 154-161, 2017.
[2] G. Mappatao, “The compliance to broadcast standards of a side-mounted circularly polarized antenna,”
International Journal on Communications Antenna and Propagation, vol. 8, no. 3, pp. 240-247, 2018.
[3] G. Mappatao, “Reducing the downward radiation of slanted dipole array,” ISIEA 2010 - 2010 IEEE Symposium
on Industrial Electronics and Applications, pp. 290-294, 2010.
[4] G. Mappatao, “Radiation characteristics of patterns derived from shunt-fed slanted dipole linear arrays,”
International Journal on Communications Antenna and Propagation, vol. 6, no. 3, pp. 138-145, 2016.
[5] G. Mappatao, “Reducing FM broadcast energy consumption using directional radiation pattern,” ARPN Journal
of Engineering and Applied Sciences, vol. 10, no. 15, pp. 6484-6490, 2015.
[6] F. Caluyo and G. Mappatao, “Optimizing FM broadcast coverage using hybrid optimizations,” International
Journal on Communications Antenna and Propagation, vol. 1, no. 5, pp. 439-445, 2011.
[7] M. Khuzairi, et al, “Radio frequency radiation measurement for base tower station safety compliances:
a case study in Pulau Pinang Malaysia,” Bulletin of Electrical Engineering and Informatics, vol. 8, no. 1,
pp. 150-157, 2019.
[8] A. Elgayar, et al., “Power transmission lines electromagnetic pollution with consideration of soil resistivity,”
TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 17, no. 4, pp. 1985-1991, 2019.
[9] I.M. Bautista, M. Orsos, M. Ribo, L. Castillo, G. Mappatao, “Development of a remote tending system for analog
broadcast transmitters,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 15, no. 3,
pp. 1474-1484, 2019.
[10] I.M. Bautista, M. Orsos, M. Ribo, L. Castillo, G. Mappatao, “Remote Tending of Modern Broadcast
Transmitters,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 15, no. 3,
pp. 1491-1500, 2019.
[11] I. Fayed, “Electromagnetic Radiation and its effects on human beings: Survey and Environmental
Recommendations,” 15th Sci. Symp. Hajj, Umr. Madinah, pp. 35-47, 2015.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 661 - 668
668
[12] I. Fayed and E. El-Din, “Safety Distance Calculations for Macrocell Mobile Base Station and on-Site Radiation
Measurements,” Eur. Conf. Electr. Eng. Comput. Sci., pp. 449–453, 2017.
[13] A. Mumin, et al, “Assessment of Electromagnetic Absorption towards Human Head Using Specific Absorption
Rate,” Bulletin of Electrical Engineering and Informatics, vol. 7, no. 4, pp. 657-664, 2018.
[14] F. Caluyo and G. Mappatao, “Azimuth radiation pattern shaping and control for FM broadcast,” International
Journal on Communications Antenna and Propagation. Vol. 1, no. 3, pp. 284-289, 2011.
[15] G. P. Mappatao, “Radiation pattern shaping for FM broadcast-optimizing coverage,” ISIEA 2010-2010 IEEE
Symposium on Industrial Electronics and Applications, pp. 222-225, 2010
[16] N. Mukit, et al., “Designing large-scale antenna array using sub-array,” Bulletin of Electrical Engineering and
Informatics, vol. 8, no. 3, pp. 906-915, 2019.
[17] A. Taybi, et al., “A new configuration of patch antenna array for rectenna array applications,” TELKOMNIKA
Telecommunication Computing Electronics and Control, vol. 17, no. 5, pp. 2186-2193, 2019.
[18] R. Nibir, et al., “Multiband antenna using stacked series array for Ka-Band application,” Bulletin of Electrical
Engineering and Informatics, vol. 8, no. 3, pp. 1004-1013, 2019.
[19] N. Malek, et al., “Beam Steering using the Active Element Pattern of Antenna Array,” TELKOMNIKA
Telecommunication Computing Electronics and Control. vol. 16, no. 4, pp. 1542-1550, 2018.
[20] T. Purnamirza, et al., “A design of radial line slot array antennas (RLSA) using the specification of
panel antennas,” TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 17, no. 6,
pp. 3066-3072, 2019.
[21] F. Shaikh, et al., “Design and parametric evaluation of UWB antenna for array arrangement,” Bulletin of
Electrical Engineering and Informatics, vol. 8, no. 2, pp. 644-652, 2019.
[22] I. Ali, et al., “Wideband and high gain dielectric resonator antenna for 5G applications,” Bulletin of Electrical
Engineering and Informatics, vol. 8, no. 3, pp. 1047-1052, 2019.
[23] C. Aragones, P. Elpa, D. Pangan, Q. Santos, G. Mappatao, “Scalable remote water monitoring system using radio
frequency links,” Lecture Notes in Electrical Engineering, vol. 379, no. 1, pp. 13-23, 2016.
[24] T. Siriborvornratanakul, “An Automatic Road Distress Visual Inspection System Using an Onboard
In-Car Camera,” Advances in Multimedia, vol. 2018, pp. 1-10, 2018.
[25] C. Kerdvibulvech, “Hand tracking by extending distance transform and hand model in real-time,” Pattern
Recognition and Image Analysis, vol. 25, no. 3, pp. 437-441, 2015.
BIOGRAPHY OF AUTHOR
Gerino P. Mappatao was born in Tuao, Cagayan, Philippines. He received the B.S. degree in
electronics and communications engineering (ECE) from Saint Louis University, Baguio City,
Philippines in 1989, the M.S. and PhD degrees in ECE from De La Salle University-Manila,
Philippines in 1998 and 2012, respectively. He is currently an Associate Professor of Electronics
and Communications Engineering at De La Salle University-Manila. He authored and
co-authored papers in conference proceedings and journals on antennas, broadcast engineering,
wireless communications and image processing.

More Related Content

What's hot

Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulationRumah Belajar
 
Trunking Theory
 Trunking Theory Trunking Theory
Trunking Theorypirh khan
 
electromagnetic-wave-propagation
electromagnetic-wave-propagationelectromagnetic-wave-propagation
electromagnetic-wave-propagationATTO RATHORE
 
Cellular Mobile Communication Concept and GSM Frequency Band
Cellular Mobile Communication Concept and GSM Frequency BandCellular Mobile Communication Concept and GSM Frequency Band
Cellular Mobile Communication Concept and GSM Frequency BandShuvo Chakraborty
 
Chap 4 (large scale propagation)
Chap 4 (large scale propagation)Chap 4 (large scale propagation)
Chap 4 (large scale propagation)asadkhan1327
 
Optical Communication Unit 1 - Part 2
Optical Communication Unit 1 - Part 2Optical Communication Unit 1 - Part 2
Optical Communication Unit 1 - Part 2KannanKrishnana
 
variable entered map digital electronics
variable entered map digital electronicsvariable entered map digital electronics
variable entered map digital electronicsDhananjaysinh Jhala
 
Antennas and wave propagation
 Antennas and wave propagation Antennas and wave propagation
Antennas and wave propagationJupira Silva
 
Exp amplitude modulation (4)
Exp amplitude modulation (4)Exp amplitude modulation (4)
Exp amplitude modulation (4)Sarah Krystelle
 
Unit 8 Space Wave Propagation.pptx
Unit 8 Space Wave Propagation.pptxUnit 8 Space Wave Propagation.pptx
Unit 8 Space Wave Propagation.pptxSanthosh703730
 
Electro magnetic waves
Electro magnetic wavesElectro magnetic waves
Electro magnetic wavesbgriesmer
 
Fundamentals of EM Waves
Fundamentals of EM WavesFundamentals of EM Waves
Fundamentals of EM WavesAjab Tanwar
 

What's hot (20)

Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
 
Trunking Theory
 Trunking Theory Trunking Theory
Trunking Theory
 
Antennas
Antennas Antennas
Antennas
 
Fading & Doppler Effect
Fading & Doppler EffectFading & Doppler Effect
Fading & Doppler Effect
 
electromagnetic-wave-propagation
electromagnetic-wave-propagationelectromagnetic-wave-propagation
electromagnetic-wave-propagation
 
radio propagation
radio propagationradio propagation
radio propagation
 
Unit 1
Unit 1Unit 1
Unit 1
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
 
Radio Wave Propagation - Antenna Fundamentals
Radio Wave Propagation - Antenna FundamentalsRadio Wave Propagation - Antenna Fundamentals
Radio Wave Propagation - Antenna Fundamentals
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
 
Cellular Mobile Communication Concept and GSM Frequency Band
Cellular Mobile Communication Concept and GSM Frequency BandCellular Mobile Communication Concept and GSM Frequency Band
Cellular Mobile Communication Concept and GSM Frequency Band
 
Chap 4 (large scale propagation)
Chap 4 (large scale propagation)Chap 4 (large scale propagation)
Chap 4 (large scale propagation)
 
Optical Communication Unit 1 - Part 2
Optical Communication Unit 1 - Part 2Optical Communication Unit 1 - Part 2
Optical Communication Unit 1 - Part 2
 
variable entered map digital electronics
variable entered map digital electronicsvariable entered map digital electronics
variable entered map digital electronics
 
Antennas and wave propagation
 Antennas and wave propagation Antennas and wave propagation
Antennas and wave propagation
 
Exp amplitude modulation (4)
Exp amplitude modulation (4)Exp amplitude modulation (4)
Exp amplitude modulation (4)
 
Unit 8 Space Wave Propagation.pptx
Unit 8 Space Wave Propagation.pptxUnit 8 Space Wave Propagation.pptx
Unit 8 Space Wave Propagation.pptx
 
Unguided media
Unguided mediaUnguided media
Unguided media
 
Electro magnetic waves
Electro magnetic wavesElectro magnetic waves
Electro magnetic waves
 
Fundamentals of EM Waves
Fundamentals of EM WavesFundamentals of EM Waves
Fundamentals of EM Waves
 

Similar to Patterns of sidemount four-bay FM antenna system

A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...
A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...
A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...IRJET Journal
 
DUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICA
DUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICADUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICA
DUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICAijwmn
 
Circularly polarized antenna array based on hybrid couplers for 5G devices
Circularly polarized antenna array based on hybrid couplers for 5G devicesCircularly polarized antenna array based on hybrid couplers for 5G devices
Circularly polarized antenna array based on hybrid couplers for 5G devicesjournalBEEI
 
STUDY OF ARRAY BI-CONICAL ANTENNA FOR DME APPLICATIONS
STUDY OF ARRAY BI-CONICAL ANTENNA FOR DME APPLICATIONSSTUDY OF ARRAY BI-CONICAL ANTENNA FOR DME APPLICATIONS
STUDY OF ARRAY BI-CONICAL ANTENNA FOR DME APPLICATIONSijwmn
 
Folded Shorted Patch Antenna with Slots for RF Energy Harvesting in Wireless ...
Folded Shorted Patch Antenna with Slots for RF Energy Harvesting in Wireless ...Folded Shorted Patch Antenna with Slots for RF Energy Harvesting in Wireless ...
Folded Shorted Patch Antenna with Slots for RF Energy Harvesting in Wireless ...ijtsrd
 
Planar Internal Antenna Design for Cellular Applications & SAR Analysis
Planar Internal Antenna Design for Cellular Applications & SAR AnalysisPlanar Internal Antenna Design for Cellular Applications & SAR Analysis
Planar Internal Antenna Design for Cellular Applications & SAR AnalysisIJERD Editor
 
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...IRJET Journal
 
Dm3211501156
Dm3211501156Dm3211501156
Dm3211501156IJMER
 
Wide to multiband elliptical monopole reconfigurable antenna for multimode sy...
Wide to multiband elliptical monopole reconfigurable antenna for multimode sy...Wide to multiband elliptical monopole reconfigurable antenna for multimode sy...
Wide to multiband elliptical monopole reconfigurable antenna for multimode sy...TELKOMNIKA JOURNAL
 
Pentagon and circular ring slot loaded rectangular microstrip monopole
Pentagon and circular ring slot loaded rectangular microstrip monopolePentagon and circular ring slot loaded rectangular microstrip monopole
Pentagon and circular ring slot loaded rectangular microstrip monopoleIAEME Publication
 
A low cost fractal CPW fed antenna for UWB applications with a circular radia...
A low cost fractal CPW fed antenna for UWB applications with a circular radia...A low cost fractal CPW fed antenna for UWB applications with a circular radia...
A low cost fractal CPW fed antenna for UWB applications with a circular radia...TELKOMNIKA JOURNAL
 
Octagon shaped slot loaded rectangular microstrip monopole antennas for
Octagon shaped slot loaded rectangular microstrip monopole antennas forOctagon shaped slot loaded rectangular microstrip monopole antennas for
Octagon shaped slot loaded rectangular microstrip monopole antennas forIAEME Publication
 

Similar to Patterns of sidemount four-bay FM antenna system (20)

A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...
A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...
A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...
 
Paper 1 (2019)
Paper 1 (2019)Paper 1 (2019)
Paper 1 (2019)
 
antenna book.pdf
antenna book.pdfantenna book.pdf
antenna book.pdf
 
DUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICA
DUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICADUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICA
DUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICA
 
Circularly polarized antenna array based on hybrid couplers for 5G devices
Circularly polarized antenna array based on hybrid couplers for 5G devicesCircularly polarized antenna array based on hybrid couplers for 5G devices
Circularly polarized antenna array based on hybrid couplers for 5G devices
 
STUDY OF ARRAY BI-CONICAL ANTENNA FOR DME APPLICATIONS
STUDY OF ARRAY BI-CONICAL ANTENNA FOR DME APPLICATIONSSTUDY OF ARRAY BI-CONICAL ANTENNA FOR DME APPLICATIONS
STUDY OF ARRAY BI-CONICAL ANTENNA FOR DME APPLICATIONS
 
Satellite antennas
Satellite antennasSatellite antennas
Satellite antennas
 
Folded Shorted Patch Antenna with Slots for RF Energy Harvesting in Wireless ...
Folded Shorted Patch Antenna with Slots for RF Energy Harvesting in Wireless ...Folded Shorted Patch Antenna with Slots for RF Energy Harvesting in Wireless ...
Folded Shorted Patch Antenna with Slots for RF Energy Harvesting in Wireless ...
 
Planar Internal Antenna Design for Cellular Applications & SAR Analysis
Planar Internal Antenna Design for Cellular Applications & SAR AnalysisPlanar Internal Antenna Design for Cellular Applications & SAR Analysis
Planar Internal Antenna Design for Cellular Applications & SAR Analysis
 
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
 
Dm3211501156
Dm3211501156Dm3211501156
Dm3211501156
 
Wide to multiband elliptical monopole reconfigurable antenna for multimode sy...
Wide to multiband elliptical monopole reconfigurable antenna for multimode sy...Wide to multiband elliptical monopole reconfigurable antenna for multimode sy...
Wide to multiband elliptical monopole reconfigurable antenna for multimode sy...
 
Basic antenna
Basic antennaBasic antenna
Basic antenna
 
C1103031822
C1103031822C1103031822
C1103031822
 
iWAT2017
iWAT2017iWAT2017
iWAT2017
 
Pentagon and circular ring slot loaded rectangular microstrip monopole
Pentagon and circular ring slot loaded rectangular microstrip monopolePentagon and circular ring slot loaded rectangular microstrip monopole
Pentagon and circular ring slot loaded rectangular microstrip monopole
 
A low cost fractal CPW fed antenna for UWB applications with a circular radia...
A low cost fractal CPW fed antenna for UWB applications with a circular radia...A low cost fractal CPW fed antenna for UWB applications with a circular radia...
A low cost fractal CPW fed antenna for UWB applications with a circular radia...
 
Octagon shaped slot loaded rectangular microstrip monopole antennas for
Octagon shaped slot loaded rectangular microstrip monopole antennas forOctagon shaped slot loaded rectangular microstrip monopole antennas for
Octagon shaped slot loaded rectangular microstrip monopole antennas for
 
6. 23761.pdf
6. 23761.pdf6. 23761.pdf
6. 23761.pdf
 
E010432630
E010432630E010432630
E010432630
 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...TELKOMNIKA JOURNAL
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...TELKOMNIKA JOURNAL
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...TELKOMNIKA JOURNAL
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...TELKOMNIKA JOURNAL
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...TELKOMNIKA JOURNAL
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaTELKOMNIKA JOURNAL
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireTELKOMNIKA JOURNAL
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkTELKOMNIKA JOURNAL
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsTELKOMNIKA JOURNAL
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...TELKOMNIKA JOURNAL
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesTELKOMNIKA JOURNAL
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...TELKOMNIKA JOURNAL
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemTELKOMNIKA JOURNAL
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...TELKOMNIKA JOURNAL
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorTELKOMNIKA JOURNAL
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...TELKOMNIKA JOURNAL
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...TELKOMNIKA JOURNAL
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksTELKOMNIKA JOURNAL
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingTELKOMNIKA JOURNAL
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...TELKOMNIKA JOURNAL
 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
 

Recently uploaded

Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacingjaychoudhary37
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 

Recently uploaded (20)

Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacing
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 

Patterns of sidemount four-bay FM antenna system

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 18, No. 2, April 2020, pp. 661~668 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v18i2.14877  661 Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA Patterns of sidemount four-bay FM antenna system Gerino Mappatao Department of Electronics and Communications Engineering, De La Salle University, Philippines Article Info ABSTRACT Article history: Received Aug 14, 2019 Revised Jan 9, 2020 Accepted Feb 8, 2020 This paper presents the radiation characteristics of a 4-bay collinear FM antenna system, both in free-space and with the presence of a metallic tower where the bays are mounted, with the use of powerful computers and accurate antenna simulation software. The radiation characteristics of the array are presented and discussed, such as the total gain, polarization components, circularity, beamwidth and minor lobe of the array. This is to determine the conformity of the array performance with existing standards. The possible effects of the metallic tower and the downward radiation from the minor lobe are emphasized. Being aware with these radiation characteristics, broadcast practitioners can optimize the use of this popular array. Results of numerical analyses show that the array is basically a vertically polarized radiator, the beamwidth is quite small which makes it disadvantageous for high-elevated antenna systems, the metallic tower affects the circularity of the azimuth pattern, and the downward radiation from the minor lobes can cause adverse effects. Adjustments on the basic elements and bay placements are recommended. Keywords: Collinear array FM antenna FM broadcast standard Pattern null Polarization This is an open access article under the CC BY-SA license. Corresponding Author: Gerino Mappatao, Department of Electronics and Communications Engineering, De La Salle University, 2401 Taft Avenue, Malate, Manila 0922, Philippines. Email: gerino.mappatao@dlsu.edu.ph 1. INTRODUCTION Most FM antenna systems are composed of several identical bays that are stacked vertically forming a collinear array. This is done to attain higher gains. In the Philippines, the United States and other countries, these bays are required to exibit circular patterns on the azimuth and bidirectional on the vertical plane and the bandwidth must be at least 0.2 MHz. They must be basically horizontally polarized (H-pol) but circular polarization (C-pol) is also allowed so long as the vertically polarized (V-pol) component is not in anyway greater than the H-pol component. In the past years, several bays of this kind were developed, the patented circularly polarized antenna (CPA) being the more common and is illustrated in Figure 1. Its dimensions and other specifications are shown in Table 1. Figure 2 (a) shows the polar plot of the CPA total far-field gain on the horizontal and vertical planes in free-space. The pattern on the vertical plane is attained with the cutting plane on the y-z plane. The bay has a maximum power gain of 1.561 (1.934 dBi), and a pattern circularity on the azimuth is ±0.237 dB which is within the required circularity of ±2 dB. The bandwidth of the CPA is 6.4 MHz, which is much greater than the required minimum bandwidth [1]. However, the V-pol is greater than the H-pol on the azimuth, making the CPA basically a V-pol antenna. Figure 2 (b) shows the azimuth far-field gain pattern of the same antenna illustrated in Figure 1 but with the presence of a 4-inch metallic tower, 0.375 wavelength away from the bay center. Due to the tower, the patterns were altered and deviated from the pattern in Figure 2 (a). The circularity of the gain pattern with
  • 2.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 661 - 668 662 the conditions described above and at 97.488 MHz (center of the FM band) is ±2.02 [2]. In the figure and with the tower at 2700 , maximum gains occur at 250 and 1550 . Note that all gains in this paper are referred to the gain of the isotropic antenna. Also, the V-pol component is more affected by the presence of the tower than the H-pol. Previous papers [1-4] dealing with the characterization of the CPA show that it has some limitations on conformance to some broadcast standards and requirements, but still remains to be a popular basic element in FM broadcasting. (a) (b) (c) Figure 1. The circularly polarized antenna, (a) Isometric, (b) top, (c) front views Table 1. CPA dimension and specifications Dimension/Physical Specification Value Boom Length ¼ λ Boom and Arm Diameter 2 inches Arm Length ¼ λ α1 (Arm Offset Angle 1) 900 α2 (Arm Offset Angle 2) 900 β (Skew angle) 22.50 (a) (b) Figure 2. Radiation patterns on the vertical and horizontal planes of the CPA in (a) free-space, and (b) with tower Engineers and technicians usually stack several bays forming a collinear array to attain higher gains in FM antenna systems [2, 3], without any knowledge and consideration of the overall radiation characteristics of the resulting array. Stacking identical bays this way produce minor lobes that create downward radiation at high depression angles [3]. Depending on the gain and location, minor lobes can produce undesirable effects. FM broadcast stations in the Philippines, especially in the provinces, four-bay collinear array is the most common antenna system. This paper presents and discusses the radiation patterns of a four sidemounted CPA element collinear array on a metallic tower. Specifically, the paper tackles on the total gain patterns, polarization components, circularity, beamwidth and the details of the minor lobe of the array. The conformance of the array to broadcast standards are determined through the first three items enumerated above. Determining the beamwidth of the main lobe of the elevation pattern is important for this determines the ability of the antenna system to radiate towards and below the horizon. Practically,
  • 3. TELKOMNIKA Telecommun Comput El Control  Patterns of sidemount four-bay FM antenna system (Gerino Mappatao) 663 the antenna system of an FM station is serving its listeners with that part of the elevation pattern from the horizon (00 ) to within an angle of depression (below the horizon) of 100 [4-6]. With a small beamwidth and a high antenna height, the station might miss serving the listeners in the vicinity of the antenna system. Since beamwidth decreases with increased gain, good balance between the two must be observed. The downward radiation from the minor lobes can produce RF energy that leads to blanketing in FM receivers and expose the environment to excessive RF field around the vicinity of the tower [7-12]. Blanketing is a condition when there is excessive RF signal enough to overload the front-end of radio receivers making the demodulaton of the transmitted information difficult. The downward radiation can expose the environment, especially to animals and human beings, to excessive RF field. Every country adopts some sort of safety standards in working in RF fields [13]. A thorough understanding of the radiation characteristics of this popular array of CPA leads to an improved over-all performance of the antenna system in providing signal quality within the service area of the station as well as avoiding the adverse effects of excessive radiation. At the very least, with the proper knowledge of these characteristics, engineers and technicians would optimise (to do the best possible) the use of the antenna system under consideration. 2. RESEARCH METHOD The set-up of the four-bay collinear array is shown in Figure 3. The bays are vertically spaced one wavelength apart and are fed in-phase. The radiation characteristics of the array are determined using Feko, an advance antenna simulation software that uses diverse computation and optimization processes [3, 14, 15]. In the simulation, the center frequency of the FM band is used if a single frequency is desired, otherwise, the whole FM band (88-108 MHz) is used. Two of the more common tower distance values (referred to bay center) are cosidered: 0.375 and 0.625 wavelength. Tower diameter is either 4 inches or 10 inches. Each bay in the array has dimensions and specifications shown in Table 1. In this study, the radiation patterns of the collinear array are simulated and presented with the following conditions: no tower; with 4-inch diameter tower, 0.375 and 0.625 wavelengths away from the bay center; and with 10-inch diameter tower, 0.375 and 0.625 wavelength away from the bay center. In each condition, the polar plots of the total gain on the azimuth (horizontal plane) and elevation (vertical plane) are presented and discussed. Again, all gain values in this paper are referred to an isotropic antenna. The beamwidth and minor lobe details are determined from the elevation pattern. Also, polar plots of the H-pol and V-pol components of the total gain are presented to determine the superiority of the H-pol over the V-pol. The gain of the array over the entire FM band is plotted in cartesian to determine the bandwidth of the array. Figure 3. The four-bay collinear array sidemounted to a metallic tower Aside from the broadcast standards to be observed, the national association of broadcasters (NAB) of the United States maintains the value of 115 dBu (dB referred to 1 uV/m) of electric field to be the minimum value that causes blanketing in FM receivers and the power density value of 0.01 w/cm2 to be the limit for a safe day-to-day exposure to RF fields. Other standards, however, are adopted in different countries and territories. Also, the regulatory bodies of the Philippines, the United States and of other countries accept characterization results from antenna simulation (computation) as proof-of-performance of broadcast antennas.
  • 4.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 661 - 668 664 3. RESULTS AND ANALYSIS In the presentation of results, especially involving polar plots, the horizontal plane is referred to the x-y plane in cartesian coordinates. In spherical coordinates, the angle Φ is varied from 00 to 3600 and the value of θ is fixed at 900 . Also, most of the vertical plane patterns presented in the paper are taken from the x-z plane. This is the same plane as Φ = 00 , and θ ranging from 0 to 1800 in spherical coordinates. Lastly, the tower is located at the back of the array, Φ = 1800 ; the front of the array is at Φ = 00 and θ = 900 . The radiation patterns of a four-element collinear array in free-space, i.e. without the tower, is illustrated in Figure 4. Referring to Figure 4(a), the array has a maximum power gain of 6.802 (8.326 dBi) at 700 on the horizontal plane; the circularity is ±0.031 dB, which is better than the circularity of a bay. As discussed in [16-22], all collinear arrays have minor lobes in the radiation pattern. The elevation pattern shown in Figure 4 (b) is produced with the cutting plane passing through the x-z plane. In the figure, the radiation pattern has downward radiation due to the minor lobe occurring at 650 below the horizon, with a power gain ranging from 0.752 to 1.096 (-1.238 to 0.398 dBi). The beamwidth between half-power points of the elevation pattern is about 13.40. Figure 4(c) shows the H-pol and the V-pol components of the total gain of the array on the azimuth. As shown, the V-pol component is much higher than the H-pol component. The array, therefore, does not conform to the requirement on polarization. Figure 4(d) shows the plot of the antenna gain infront of the array versus the frequencies in the FM broadcast band. In the figure, the array gain does not vary too much within the entire FM band. The gain variation within the 88-108 MHz band is no greater than 0.620 dB from the gain at the center frequency; the bandwidth between half-power points is more than 20 MHz. (a) (b) (c) (d) Figure 4. Radiation pattern of the total gain of the four-bay collinear array in free-space at 97.488 MHz: (a) azimuth pattern, (b) elevation pattern, (c) H-pol and V-pol components; (d) gain infront of the array over the FM band 3.1. Four-inch tower The patterns are significantly altered, when the array is mounted to a metallic tower with a diameter of 4 inches, and 0.375 wavelength away from the bay center. Figure 5 (a) shows the total power gain pattern of the array on the horizontal plane. The maximum gain shown in the azimuth pattern is 9.284 (9.677dBi) at 700 , minimum gain is 4.146 (6.176 dBi) in the direction of the tower; and the gain infront of the array is 6.719 (8.273 dBi). The circularity is altered and is reduced to ±1.751 dB. The pattern on the vertical plane is illustrated in Figure 5 (b) and is taken with the cutting plane passing through the x-z plane. The beamwidth between half-power points of the main lobe is 13.0590 .
  • 5. TELKOMNIKA Telecommun Comput El Control  Patterns of sidemount four-bay FM antenna system (Gerino Mappatao) 665 The minor lobe has a maximum power gain of 1.050 (0.213 dBi) and a minimum of 0.569 (-2.447 dBi) at 650 below the horizon. Figure 5 (c) shows the H-pol and V-pol components of the radiation pattern on the azimuth. The V-pol component is greater than the H-pol component, which makes the array basically a V-pol antenna. This is against the standard that FM antenna systems should be basically H-pol. Further, the H-pol component is less affected with the presence of the tower than the V-pol. Figure 5 (d) shows the plot of the gain infront of the array over the entire FM broadcast band. The gain variation within the band is no greater than 1.355 dB from the gain at the center frequency; the bandwidth between half-power points is more than 20 MHz. (a) (b) (c) (d) Figure 5. Radiation pattern of the total gain of the four-bay collinear array with a 4-inch diameter tower, 0.375 wavength away from the bay center at 97.488 MHz: (a) azimuth pattern, (b) elevation pattern, (c) H-pol and V-pol components; (d) gain infront of the array over the FM band The maximum power gain of the sidelobe transmitted downward is quite small compared to the main lobe. However, since this downward radiation occurs at a relatively large angle of depression, i.e. 650 , it may pose adverse effects. Consider the condition of an FM broadcast station with a transmitter power of 1000 watts (this is the minimum power of a commercial station in the Philippines and is classified as Class B station) and having a typical tower height of 30 meters. A four-element collinear array would be transmitting a maximum effective radiated power of about 1050 watts at a point 14 meters from the base of the tower, producing a power density of 0.076 w/m2 and a field intensity of about 135 dBu. With these values, the RF field is above the limit and may not be safe for day-to-day exposure, and the signal level is large enough to create blanketing in receivers. Increasing the distance of the tower to the bay center by one-fourth of a wavelength improves the circularity of the total power gain to ±1.254 dB, a maximum gain of 9.151 is observed and is located nearer and toward the tower (at 1000 and 2600 ). Also, the gain infront (at 00 ) and at the back (at 1800 ) of the array is increased to 7.1840 and 5.138, respectively. However, the V-pol component of the radiation pattern remains to be more dominant than the H-pol. In the elevation pattern (x-z plane), the beamwidth is slightly increased to 13.5060 and the minor lobe has a downward gain of anywhere between 0.725 and 1.189 at 650 around the antenna system. Also, the bandwidth is way above the required value. 3.2. Ten-inch tower Figure 6 illustrates the patterns derived when the tower diameter is increased to 10 inches, 0.375 wavelength away from the bay center. Figure 6(a) shows the total power gain pattern of the array on the horizontal plane. Relatively, the front and back radiations, and side radiations (900 and 2700 ) are more balanced compared to the radiation pattern of the array with 4 inches diameter tower. There is an observed
  • 6.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 661 - 668 666 improvement on the backward radiation and a reduction in the forward radiation compared to the radiation when the tower diameter is smaller. The maximum gain shown in the azimuth pattern is increased to 9.638 located at 900 and 2700 . The minimum value is infront of the array (at 00 ) with 4.952; the gain in the direction of the tower is 4.978. The circularity of the pattern is ±1.446 dB, also compromised compared to the circularity of the array in free-space but is better than the array with a smaller diameter tower. The pattern on the vertical plane is illustrated in Figure 6 (b) and is taken with the cutting plane passing through the x-z plane. The beamwidth between half-power points of the main lobe is 13.3240 , closer in value to that of the array in free-space. However, the minor lobe has a power gain that falls between 0.705 and 1.193 at a depression angle of 650 below the horizon around the antenna. Figure 6 (c) shows the H-pol and V-pol components of the radiation pattern on the azimuth. The V-pol component is still much greater than the H-pol component making the array still basically a V-pol antenna and therefore, unable to comply with existing broadcast standards. Figure 6 (d) is the gain infront of the array plotted within the FM band. Within the band, the gain changes only within a maximum value of 0.487 dB from the gain at the center frequency; the array has a bandwidth that covers the entire band. When the tower distance is increased by one-fourth of a wavelength while maintaining the tower diameter of 10 inches, the maximum gain became 8.375, a decrease from the previous condition. However, an increased gain is introduced in the forward radiation with a value of 8.330 from the previous value of about 5. The increase in gain comes with the improvement in the circularity of the pattern to ±1.133 dB, i.e. an improvement from the previous condition of ±1.446 dB. The backward radiation is, however, decreased to 4.970. The V-pol component of the radiation pattern remains to be more dominant than the H-pol. In the elevation pattern (x-z plane), the beamwidth increased to 13.4670 and the minor lobe has a gain of 0.692 and 1.097 at 650 below the horizon and around the antenna. The array has a bandwidth that covers the entire FM band whose gain varies no more than 0.743 dB from the gain at center frequency. In summary, all the array conditions presented conform to the circularity and bandwidth requirements. The gain is increased commensurate to the number of bays. However, the arrays fail to perform as a basic H-pol radiator. Further, the sidelobes of the array produce downward radiation that can pose adverse effects near the base of the tower. Lastly, the beamwidth of the array is quite small that can introduce coverage issue, especially for high elevation antennas. Wireless systems requiring high antenna gains using the proposed array, such as the ones discussed in [23-25], should consider such limitations. (a) (b) (c) (d) Figure 6. Radiation pattern of the total gain of the four-bay collinear array with a 10-inch diameter tower, 0.375 wavength away from the bay center at 97.488 MHz: (a) azimuth pattern, (b) elevation pattern, (c) H-pol and V-pol components; (d) Front gain of the array over the FM band
  • 7. TELKOMNIKA Telecommun Comput El Control  Patterns of sidemount four-bay FM antenna system (Gerino Mappatao) 667 4. CONCLUSION This paper presented and discussed the radiation characteristics of a sidemounted four-element CPA collinear array. Three things can be construed from the presentation: the presence of significant downward radiation at high depression angles, the low beamwidth of the mainlobe towards the horizon and the array is basically a V-pol antenna. In all conditions that were considered in the paper, the maximum gain of the sidelobe causing the downward radiation has a maximum gain that does not go below 0 dBi, with or without the tower, irrespective of the tower diameter and tower distance. Even with Class B FM broadcast stations, the occurrence of blanketing near the base of the antenna is inevitable. Also, depending on the standard, the environment maybe exposed to excessive radiation. Some methods must be adopted to reduce, if not completely remove, the sidelobe. Typically, the service area of an FM broadcast station is served by that part of the elevation pattern from an angle of depression of 00 to 100 . With the beamwidth of the array of about 130 , the service area of any FM station utilizing a 4-bay collinear array is just served by the elevation pattern within the range of 00 to about 6.50 of depression angle. Therefore, there is a reduction in the effective coverage area near the antenna tower base. To emphasize on this, if the tower height is 30 meters, the coverage area of the station starts at about 170 meters away from the tower base at a depression angle of 100 . At 6.50 angle, the coverage area starts farther away at about 260 meters. If there is a large volume of target listeners around the vicinity of the station, a high-elevation antenna system is not recommended. Lastly, to correct the polarization issue of the array, the bay must be first converted to become an H-pol antenna. Previous papers show that adjusting the skew angle of the bay can solve this problem. Because of the effect of the tower, the radiation pattern somewhat becomes directional. Particularly, it becomes bidirectional when the tower distance is 0.375 wavelength from the bay center. To do the best possible or optimize the use of the array, this set-up is best recommended when, in the service area, greater gain is needed towards the 900 and 2700 directions on the azimuth. When the tower distance is 0.625 wavelength from the bay center, the higher gains are not just observed at 900 and 2700 , but also infront (00 ) of the tower. The pattern is recommended for applications where the target area is all around the antenna, except towards the tower direction (1800 ). For future directive, the array needs improvement in H-pol and V-pol ratio, sidelobe reduction and other characteristics. ACKNOWLEDGEMENTS The author would like to thank the University Research Coordination Office of De La Salle University (DLSU) and DLSU Science foundation for the realization of this paper. REFERENCES [1] G. Mappatao, “Compliance to broadcast standards of patented broadcast antennas: The circularly polarized Antenna,” International Journal on Communications Antenna and Propagation, vol. 7, no. 2, pp. 154-161, 2017. [2] G. Mappatao, “The compliance to broadcast standards of a side-mounted circularly polarized antenna,” International Journal on Communications Antenna and Propagation, vol. 8, no. 3, pp. 240-247, 2018. [3] G. Mappatao, “Reducing the downward radiation of slanted dipole array,” ISIEA 2010 - 2010 IEEE Symposium on Industrial Electronics and Applications, pp. 290-294, 2010. [4] G. Mappatao, “Radiation characteristics of patterns derived from shunt-fed slanted dipole linear arrays,” International Journal on Communications Antenna and Propagation, vol. 6, no. 3, pp. 138-145, 2016. [5] G. Mappatao, “Reducing FM broadcast energy consumption using directional radiation pattern,” ARPN Journal of Engineering and Applied Sciences, vol. 10, no. 15, pp. 6484-6490, 2015. [6] F. Caluyo and G. Mappatao, “Optimizing FM broadcast coverage using hybrid optimizations,” International Journal on Communications Antenna and Propagation, vol. 1, no. 5, pp. 439-445, 2011. [7] M. Khuzairi, et al, “Radio frequency radiation measurement for base tower station safety compliances: a case study in Pulau Pinang Malaysia,” Bulletin of Electrical Engineering and Informatics, vol. 8, no. 1, pp. 150-157, 2019. [8] A. Elgayar, et al., “Power transmission lines electromagnetic pollution with consideration of soil resistivity,” TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 17, no. 4, pp. 1985-1991, 2019. [9] I.M. Bautista, M. Orsos, M. Ribo, L. Castillo, G. Mappatao, “Development of a remote tending system for analog broadcast transmitters,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 15, no. 3, pp. 1474-1484, 2019. [10] I.M. Bautista, M. Orsos, M. Ribo, L. Castillo, G. Mappatao, “Remote Tending of Modern Broadcast Transmitters,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 15, no. 3, pp. 1491-1500, 2019. [11] I. Fayed, “Electromagnetic Radiation and its effects on human beings: Survey and Environmental Recommendations,” 15th Sci. Symp. Hajj, Umr. Madinah, pp. 35-47, 2015.
  • 8.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 661 - 668 668 [12] I. Fayed and E. El-Din, “Safety Distance Calculations for Macrocell Mobile Base Station and on-Site Radiation Measurements,” Eur. Conf. Electr. Eng. Comput. Sci., pp. 449–453, 2017. [13] A. Mumin, et al, “Assessment of Electromagnetic Absorption towards Human Head Using Specific Absorption Rate,” Bulletin of Electrical Engineering and Informatics, vol. 7, no. 4, pp. 657-664, 2018. [14] F. Caluyo and G. Mappatao, “Azimuth radiation pattern shaping and control for FM broadcast,” International Journal on Communications Antenna and Propagation. Vol. 1, no. 3, pp. 284-289, 2011. [15] G. P. Mappatao, “Radiation pattern shaping for FM broadcast-optimizing coverage,” ISIEA 2010-2010 IEEE Symposium on Industrial Electronics and Applications, pp. 222-225, 2010 [16] N. Mukit, et al., “Designing large-scale antenna array using sub-array,” Bulletin of Electrical Engineering and Informatics, vol. 8, no. 3, pp. 906-915, 2019. [17] A. Taybi, et al., “A new configuration of patch antenna array for rectenna array applications,” TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 17, no. 5, pp. 2186-2193, 2019. [18] R. Nibir, et al., “Multiband antenna using stacked series array for Ka-Band application,” Bulletin of Electrical Engineering and Informatics, vol. 8, no. 3, pp. 1004-1013, 2019. [19] N. Malek, et al., “Beam Steering using the Active Element Pattern of Antenna Array,” TELKOMNIKA Telecommunication Computing Electronics and Control. vol. 16, no. 4, pp. 1542-1550, 2018. [20] T. Purnamirza, et al., “A design of radial line slot array antennas (RLSA) using the specification of panel antennas,” TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 17, no. 6, pp. 3066-3072, 2019. [21] F. Shaikh, et al., “Design and parametric evaluation of UWB antenna for array arrangement,” Bulletin of Electrical Engineering and Informatics, vol. 8, no. 2, pp. 644-652, 2019. [22] I. Ali, et al., “Wideband and high gain dielectric resonator antenna for 5G applications,” Bulletin of Electrical Engineering and Informatics, vol. 8, no. 3, pp. 1047-1052, 2019. [23] C. Aragones, P. Elpa, D. Pangan, Q. Santos, G. Mappatao, “Scalable remote water monitoring system using radio frequency links,” Lecture Notes in Electrical Engineering, vol. 379, no. 1, pp. 13-23, 2016. [24] T. Siriborvornratanakul, “An Automatic Road Distress Visual Inspection System Using an Onboard In-Car Camera,” Advances in Multimedia, vol. 2018, pp. 1-10, 2018. [25] C. Kerdvibulvech, “Hand tracking by extending distance transform and hand model in real-time,” Pattern Recognition and Image Analysis, vol. 25, no. 3, pp. 437-441, 2015. BIOGRAPHY OF AUTHOR Gerino P. Mappatao was born in Tuao, Cagayan, Philippines. He received the B.S. degree in electronics and communications engineering (ECE) from Saint Louis University, Baguio City, Philippines in 1989, the M.S. and PhD degrees in ECE from De La Salle University-Manila, Philippines in 1998 and 2012, respectively. He is currently an Associate Professor of Electronics and Communications Engineering at De La Salle University-Manila. He authored and co-authored papers in conference proceedings and journals on antennas, broadcast engineering, wireless communications and image processing.