SlideShare a Scribd company logo
1 of 49
Download to read offline
1
Chapter 8
Natural and Step Responses of
RLC Circuits
8.1-2 The Natural Response of a Parallel RLC
Circuit
8.3 The Step Response of a Parallel RLC
Circuit
8.4 The Natural and Step Response of a
Series RLC Circuit
2
Key points
 What do the response curves of over-, under-,
and critically-damped circuits look like? How to
choose R, L, C values to achieve fast switching
or to prevent overshooting damage?
 What are the initial conditions in an RLC circuit?
How to use them to determine the expansion
coefficients of the complete solution?
 Comparisons between: (1) natural & step
responses, (2) parallel, series, or general RLC.
3
Section 8.1, 8.2
The Natural Response of a
Parallel RLC Circuit
1. ODE, ICs, general solution of parallel
voltage
2. Over-damped response
3. Under-damped response
4. Critically-damped response
4
The governing ordinary differential equation (ODE)
.
0
)
(
1
0
0 






 


  R
v
t
d
t
v
L
I
dt
dv
C
t
 By KCL:
.
0
1
2
2



LC
v
dt
dv
RC
dt
v
d
 Perform time derivative, we got a linear 2nd-
order ODE of v(t) with constant coefficients:
V0, I0, v(t) must
satisfy the
passive sign
convention.
5
The two initial conditions (ICs)
 The capacitor voltage cannot change abruptly,
)
2
(
)
0
(
)
0
(
,
)
0
(
,
)
0
(
)
0
(
)
0
(
,
)
0
(
0
0
0
0
0
0


RC
V
C
I
v
v
dt
dv
C
i
R
V
I
i
i
i
I
i
C
t
C
C
R
L
C
L

























)
1
(
)
0
( 0 
V
v 
 
 The inductor current cannot change abruptly,
6
General solution
.
0
1
2



LC
RC
s
s
 Assume the solution is , where A, s are
unknown constants to be solved.
 Substitute into the ODE, we got an algebraic
(characteristic) equation of s determined by the circuit
parameters:
st
Ae
t
v 
)
(
where the expansion constants A1, A2 will be determined
by the two initial conditions.
,
)
( 2
1
2
1
t
s
t
s
e
A
e
A
t
v 

 Since the ODE is linear,  linear combination of
solutions remains a solution to the equation. The
general solution of v(t) must be of the form:
7
Neper and resonance frequencies
 In general, s has two roots, which can be (1)
distinct real, (2) degenerate real, or (3) complex
conjugate pair.
,
1
2
1
2
1 2
0
2
2
2
,
1 

 













LC
RC
RC
s
LC
1
0 

,
2
1
RC


where
…resonance (natural) frequency
…neper frequency
8
Three types of natural response
Over-damped  
real, distinct
roots s1, s2
Under-damped 
complex roots
s1 = (s2)*
Critically-damped 
real, equal roots
s1 = s2
The Circuit is When Solutions
 How the circuit reaches its steady state depends
on the relative magnitudes of  and 0:
9
where are distinct real.
Over-damped response ( >0)
 The complete solution and its derivative are of
the form:










.
)
(
,
)
(
2
1
2
1
2
2
1
1
2
1
t
s
t
s
t
s
t
s
e
s
A
e
s
A
t
v
e
A
e
A
t
v
2
0
2
2
,
1 

 



s
 Substitute the two ICs:
















)
2
(
)
0
(
)
1
(
)
0
(
0
0
2
2
1
1
0
2
1


RC
V
C
I
A
s
A
s
v
V
A
A
v  solve
A1, A2.
10
Example 8.2: Discharging a parallel RLC circuit (1)
12 V 30 mA
 Q: v(t), iC(t), iL(t), iR(t)=?



















kHz.
10
)
10
2
)(
10
5
(
1
1
,
kHz
5
.
12
)
10
2
)(
200
(
2
1
2
1
7
2
0
7
LC
RC

  >0,
over-
damped
11
Example 8.2: Solving the parameters (2)
 The 2 distinct real roots of s are:

















.
kHz
20
,
kHz
5
2
0
2
2
2
0
2
1






s
s
…|s2|>(fast)
…|s1|<(slow)





















450
20
5
12
2
1
2
1
0
0
2
2
1
1
0
2
1
A
A
A
A
RC
V
C
I
A
s
A
s
V
A
A
 The 2 expansion coefficients are:
V.
26
,
V
14 2
1 


 A
A
12
Example 8.2: The parallel voltage evolution (3)
Converge
to zero
|s1|<(slow)
dominates
|s2|>(fast)
dominates
 V.
26
14
)
( 20000
5000
2
1
2
1 t
t
t
s
t
s
e
e
e
A
e
A
t
v 






“Over”
damp
13
Example 8.2: The branch currents evolution (4)
 The branch current through R is:
 mA.
130
70
200
)
(
)
( 20000
5000 t
t
R e
e
t
v
t
i 






 The branch current through L is:
 mA.
26
56
)
(
mH
0
5
1
mA
30
)
( 20000
5000
0
t
t
t
L e
e
t
d
t
v
t
i 






 
 The branch current through C is:
 mA.
104
14
μF)
2
.
0
(
)
( 20000
5000 t
t
C e
e
dt
dv
t
i 




14
Example 8.2: The branch currents evolution (5)
Converge
to zero
15
where is the damped frequency.
General solution to under-damped response ( <0)
 The two roots of s are complex conjugate pair:
2
2
0 

 

d
,
2
0
2
2
,
1 d
j
s 



 






   
 
   
 
 .
sin
cos
sin
cos
sin
cos
sin
cos
)
(
2
1
2
1
2
1
2
1
)
(
2
)
(
1
t
B
t
B
e
t
A
A
j
t
A
A
e
t
j
t
A
t
j
t
A
e
e
A
e
A
t
v
d
d
t
d
d
t
d
d
d
d
t
t
j
t
j d
d


































 The general solution is reformulated as:
16
Solving the expansion coefficients B1, B2 by ICs
 Substitute the two ICs:
















)
2
(
)
0
(
)
1
(
)
0
(
0
0
2
1
0
1


RC
V
C
I
B
B
v
V
B
v
d


 solve
B1, B2.
 
 
   
 .
sin
cos
cos
sin
sin
cos
)
(
1
2
2
1
2
1
t
B
B
t
B
B
e
t
e
t
e
B
t
e
t
e
B
t
v
d
d
d
d
t
d
t
d
d
t
d
t
d
d
t




































 The derivative of v(t) is:
17
Example 8.4: Discharging a parallel RLC circuit (1)
0 V
-12.25 mA
 Q: v(t), iC(t), iL(t), iR(t)=?


















kHz.
1
)
10
25
.
1
)(
8
(
1
1
,
kHz
2
.
0
)
10
25
.
1
)(
10
2
(
2
1
2
1
7
0
7
4
LC
RC

  <0,
under-
damped
18
Example 8.4: Solving the parameters (2)
.
kHz
98
.
0
2
.
0
1 2
2
2
2
0 



 

d
 The damped frequency is:
 The 2 expansion coefficients are:


















V
100
,
0
)
2
(
)
1
(
0
2
1
0
0
2
1
0
1
B
B
RC
V
C
I
B
B
V
B
d 



19
Example 8.4: The parallel voltage evolution (3)
  .
V
980
sin
100
sin
cos
)
( 200
2
1 t
e
t
e
B
t
e
B
t
v t
d
t
d
t 




 
 

 The voltage
oscillates (~d) and
approaches the final
value (~), different
from the over-
damped case (no
oscillation, 2 decay
constants).
20
Example 8.4: The branch currents evolutions (4)
 The three branch currents are:
21
Rules for circuit designers
 If one desires the circuit reaches the final value
as fast as possible while the minor oscillation is
of less concern, choosing R, L, C values to
satisfy under-damped condition.
 If one concerns that the response not exceed its
final value to prevent potential damage,
designing the system to be over-damped at the
cost of slower response.
22
General solution to critically-damped response (=0)
 Two identical real roots of s make
 The general solution is reformulated as:
,
)
(
)
( 0
2
1
2
1
st
st
st
st
e
A
e
A
A
e
A
e
A
t
v 




not possible to satisfy 2 independent ICs (V0, I0)
with a single expansion constant A0.
 .
)
( 2
1 D
t
D
e
t
v t

 
 You can prove the validity of this form by
substituting it into the ODE:
.
0
)
(
)
(
)
(
)
(
)
( 1
1





 

t
v
LC
t
v
RC
t
v
23
Solving the expansion coefficients D1, D2 by ICs
 Substitute the two ICs:















)
2
(
)
0
(
)
1
(
)
0
(
0
0
2
1
0
2


RC
V
C
I
D
D
v
V
D
v

 solve D1, D2.
   
  .
)
( 1
2
1
2
1
t
t
t
t
e
t
D
D
D
e
D
te
e
D
t
v 






 










 The derivative of v(t) is:
24
Example 8.5: Discharging a parallel RLC circuit (1)
0 V
-12.25 mA
R
 Q: What is R such that the circuit is critically-
damped? Plot the corresponding v(t).
.
k
4
10
25
.
1
8
2
1
2
1
,
1
2
1
, 7
0 





 
C
L
R
LC
RC


 Increasing R tends to bring the circuit from over-
to critically- and even under-damped.
25
Example 8.5: Solving the parameters (2)
 The neper frequency is:
 The 2 expansion coefficients are:
ms.
1
1
,
kHz
1
)
10
25
.
1
)(
10
4
(
2
1
2
1
7
3







 



RC

















0
s
kV
98
)
2
(
)
1
(
0
2
1
0
0
2
1
0
2
D
D
RC
V
C
I
D
D
V
D



-12.25 mA
0.125 F
26
Example 8.5: The parallel voltage evolution (3)
98 V/ms
  .
V
000
,
98
)
( 1000
2
1
t
t
t
te
e
D
te
D
t
v 




 

27
Procedures of solving nature response of parallel RLC
 Calculate parameters and .
 Write the form of v(t) by comparing  and :
 Find the expansion constants (A1, A2), (B1, B2), or
(D1, D2) by two ICs:
LC
1
0 

1
)
2
( 
 RC













)
2
(
)
0
(
),
1
(
)
0
(
0
0
0


RC
V
C
I
v
V
v
 
 





















.
if
,
,
if
,
,
sin
cos
,
if
,
-
,
)
(
0
2
1
0
2
2
0
2
1
0
2
0
2
2
,
1
2
1
2
1
















D
t
D
e
t
B
t
B
e
s
e
A
e
A
t
v
t
d
d
d
t
t
s
t
s
28
Section 8.3
The Step Response of
a Parallel RLC Circuit
1. Inhomogeneous ODE, ICs, and general
solution
29
The homogeneous ODE
.
)
(
1
0
0 s
t
I
R
v
t
d
t
v
L
I
dt
dv
C 






 


 
 By KCL:
.
0
1
2
2



LC
v
dt
dv
RC
dt
v
d
 Perform time derivative, we got a homogeneous
ODE of v(t) independent of the source current Is:
V0 I0
Is
+

30
The inhomogeneous ODE
LC
I
LC
i
dt
di
RC
dt
i
d
dt
di
L
v
I
R
v
i
dt
dv
C
s
L
L
L
L
s
L















1
,
,
2
2
 Change the unknown to the inductor current iL(t):
iL
V0 I0
Is
31
The two initial conditions (ICs)
 The inductor current cannot change abruptly,
)
2
(
)
0
(
,
)
0
(
),
0
(
)
0
(
0
0
0


L
V
i
dt
di
L
v
v
V
v
L
t
L
L
L
C













)
1
(
)
0
( 0 
I
iL 
 
 The capacitor voltage cannot change abruptly,
Is
iL
V0 I0
32
General solution
where the three types of nature responses were
elucidated in Section 8.2:
 The solution is the sum of final current If =Is and
the nature response iL,nature(t):
),
(
)
( , t
i
I
t
i nature
L
f
L 

 
 

























.
if
,
,
if
,
sin
cos
,
if
,
)
(
0
2
1
0
2
1
0
2
1
2
1










D
t
D
e
I
t
B
t
B
e
I
e
A
e
A
I
t
i
t
f
d
d
t
f
t
s
t
s
f
L
33
Example 8.7: Charging a parallel RLC circuit (1)
625 
Is=
24
mA V0 =0
I0=0
 Q: iL(t) = ?



















kHz.
40
)
10
5
.
2
)(
10
5
.
2
(
1
1
,
kHz
32
)
10
5
.
2
)(
625
(
2
1
2
1
8
2
0
8
LC
RC

  <0,
under-
damped
34
Example 8.7: Solving the parameters (2)
.
kHz
24
32
40 2
2
2
2
0 



 

d
 The complete solution is of the form:
 The 2 expansion coefficients are:

























mA
32
,
mA
24
)
2
(
0
)
1
(
0
2
1
0
2
1
0
1
B
B
L
V
B
B
I
B
I
d
s




 ,
sin
cos
)
( 2
1 t
B
t
B
e
I
t
i d
d
t
s
L 






 
where
35
Example 8.7: Inductor current evolution (3)
  .
mA
)
000
,
24
sin(
32
)
000
,
24
cos(
24
24
)
( 000
,
32
000
,
32
t
e
t
e
t
i t
t
L





36
Example 8.9: Charging of parallel RLC circuits (1)
 Q: Compare iL(t) when the resistance R = 625 
(under-damp), 500  (critical damp), 400 
(over-damp), respectively.
Is=
24
mA
 Initial & final conditions remain: iL(0+)=0, i'L(0+)=0,
If =24 mA. Different R’s give different functional
forms and expansion constants.
V0 =0
I0=0
37
Example 8.9: Comparison of rise times (2)
 The current of an under-damped circuit rises
faster than that of its over-damped counterpart.
38
Section 8.4
The Natural and Step
Response of a Series RLC
Circuit
1. Modifications of time constant, neper
frequency
39
ODE of nature response
.
0
)
(
1
0
0 





 



 
t
t
d
t
i
C
V
dt
di
L
Ri
.
0
2
2



LC
i
dt
di
L
R
dt
i
d
RC
1
in parallel RLC
 By KVL:
 By derivative:
V0, I0, i(t) must
satisfy the
passive sign
convention.
40
The two initial conditions (ICs)
 The inductor cannot change abruptly,
)
2
(
)
0
(
)
0
(
,
)
0
(
,
)
0
(
)
0
(
)
0
(
,
)
0
(
0
0
0
0
0
0


L
R
I
V
i
i
dt
di
L
v
R
I
V
v
v
v
V
v
L
t
L
L
R
C
L
C

























)
1
(
)
0
( 0 
I
i 
 
 The capacitor voltage cannot change abruptly,
41
General solution
.
0
1
2



LC
s
L
R
s
 Substitute into the ODE, we got a
different characteristic equation of s:
st
Ae
t
i 
)
(
 
 














0
2
1
0
2
1
0
2
1
if
,
if
,
sin
cos
if
,
)
(
2
1










D
t
D
e
t
B
t
B
e
e
A
e
A
t
i
t
d
d
t
t
s
t
s
 The form of s1,2 determines the form of general
solution:
.
2
0
2
2
,
1 

 



 s
.
,
1
,
2
2
2
0
0 



 


 d
LC
L
R
where
1
)
2
( 
RC in parallel RLC
42
Example 8.11: Discharging a series RLC circuit (1)
vC(0-)=100 V,
 V0=-100 V
I0 =0















kHz.
10
)
10
1
)(
1
.
0
(
1
1
,
kHz
8
.
2
)
1
.
0
(
2
560
2
7
0
LC
L
R

  <0,
under-
damped
 Q: i(t), vC(t)=?
+
 100 V
43
Example 8.11: Solving the parameters (2)
.
kHz
6
.
9
8
.
2
10 2
2
2
2
0 



 

d
 The damped frequency is:
 The 2 expansion coefficients are:


















mA
2
.
104
,
0
)
2
(
)
1
(
0
2
1
0
0
2
1
0
1
B
B
L
R
I
V
B
B
I
B
d 



9.6
kHz 100 mH
-100 V
44
Example 8.11: Loop current evolution (3)
    .
mA
600
,
9
sin
2
.
104
sin
cos
)
( 800
,
2
2
1 t
e
t
B
t
B
e
t
i t
d
d
t 



 


45
Example 8.11: Capacitor voltage evolution (4)
  .
V
600
,
9
sin
17
.
29
600
,
9
cos
100
)
(
)
(
)
(
800
,
2
t
t
e
t
i
L
t
Ri
t
v
t
c






 When the capacitor
energy starts to
decrease, the
inductor energy starts
to increase.
 Inductor energy starts
to decrease before
capacitor energy
decays to 0.
46
ODEs of step response
 By KVL:
 The homogeneous and inhomogeneous ODEs
of i(t) and vC(t) are:
V0
I0
Vs
+

.
)
(
1
0
0 s
t
V
t
d
t
i
C
V
dt
di
L
Ri 





 



 
.
and
,
0 2
2
2
2
LC
V
LC
v
dt
dv
L
R
dt
v
d
LC
i
dt
di
L
R
dt
i
d s
C
C
C






47
The two initial conditions (ICs)
 The capacitor voltage cannot change abruptly,
)
2
(
)
0
(
,
)
0
(
),
0
(
)
0
(
0
0
0


C
I
v
dt
dv
C
i
i
I
i
C
t
C
C
C
L













)
1
(
)
0
( 0 
V
vC 
 
 The inductor current cannot change abruptly,
V0
I0
Vs
+

vC(t)
48
General solution
where the three types of nature responses were
elucidated in Section 8.4.
 The solution is the sum of final voltage Vf =Vs
and the nature response vC,nature(t):
),
(
)
( , t
v
V
t
v nature
C
f
C 

 
 

























.
if
,
,
if
,
sin
cos
,
if
,
)
(
0
2
1
0
2
1
0
2
1
2
1










D
t
D
e
V
t
B
t
B
e
V
e
A
e
A
V
t
v
t
f
d
d
t
f
t
s
t
s
f
C
49
Key points
 What do the response curves of over-, under-,
and critically-damped circuits look like? How to
choose R, L, C values to achieve fast switching
or to prevent overshooting damage?
 What are the initial conditions in an RLC circuit?
How to use them to determine the expansion
coefficients of the complete solution?
 Comparisons between: (1) natural & step
responses, (2) parallel, series, or general RLC.

More Related Content

What's hot

Silicon controlled rectifier
Silicon controlled rectifierSilicon controlled rectifier
Silicon controlled rectifierRanjith Samala
 
5. differential amplifier
5. differential amplifier5. differential amplifier
5. differential amplifierShahbazQamar2
 
Invering and non inverting amplifiers
Invering and non inverting amplifiersInvering and non inverting amplifiers
Invering and non inverting amplifiersMuhammad Mohsin
 
integrator and differentiator op-amp
integrator and differentiator op-ampintegrator and differentiator op-amp
integrator and differentiator op-ampdanish iqbal
 
Different method of frequency and voltage control
Different method of frequency and voltage controlDifferent method of frequency and voltage control
Different method of frequency and voltage control8141245710
 
Three phase voltage source inverter
Three phase voltage source inverterThree phase voltage source inverter
Three phase voltage source invertertamilnesaner
 
Circuit theory 1 finals
Circuit theory 1 finalsCircuit theory 1 finals
Circuit theory 1 finalsjerbor
 
SUMMING AMPLIFIER
SUMMING AMPLIFIERSUMMING AMPLIFIER
SUMMING AMPLIFIERAK138
 
Transient response of RC , RL circuits with step input
Transient response of RC , RL circuits  with step inputTransient response of RC , RL circuits  with step input
Transient response of RC , RL circuits with step inputDr.YNM
 
Matlab solving rlc circuit
Matlab solving rlc circuitMatlab solving rlc circuit
Matlab solving rlc circuitAmeen San
 
Electronic DC Voltmeter using PMMC
Electronic DC Voltmeter using PMMCElectronic DC Voltmeter using PMMC
Electronic DC Voltmeter using PMMCDr Naim R Kidwai
 
Norton's theorem
Norton's theoremNorton's theorem
Norton's theoremSyed Saeed
 
Unit 4 Automatic Generation Control
Unit 4 Automatic Generation ControlUnit 4 Automatic Generation Control
Unit 4 Automatic Generation ControlSANTOSH GADEKAR
 

What's hot (20)

Unit 4 twoportnetwork
Unit 4 twoportnetworkUnit 4 twoportnetwork
Unit 4 twoportnetwork
 
Feedback amplifiers
Feedback amplifiersFeedback amplifiers
Feedback amplifiers
 
CASCADE AMPLIFIER
CASCADE AMPLIFIERCASCADE AMPLIFIER
CASCADE AMPLIFIER
 
Silicon controlled rectifier
Silicon controlled rectifierSilicon controlled rectifier
Silicon controlled rectifier
 
5. differential amplifier
5. differential amplifier5. differential amplifier
5. differential amplifier
 
Invering and non inverting amplifiers
Invering and non inverting amplifiersInvering and non inverting amplifiers
Invering and non inverting amplifiers
 
Op amp
Op ampOp amp
Op amp
 
integrator and differentiator op-amp
integrator and differentiator op-ampintegrator and differentiator op-amp
integrator and differentiator op-amp
 
Two port network
Two port networkTwo port network
Two port network
 
Different method of frequency and voltage control
Different method of frequency and voltage controlDifferent method of frequency and voltage control
Different method of frequency and voltage control
 
Three phase voltage source inverter
Three phase voltage source inverterThree phase voltage source inverter
Three phase voltage source inverter
 
Circuit theory 1 finals
Circuit theory 1 finalsCircuit theory 1 finals
Circuit theory 1 finals
 
SUMMING AMPLIFIER
SUMMING AMPLIFIERSUMMING AMPLIFIER
SUMMING AMPLIFIER
 
Transient response of RC , RL circuits with step input
Transient response of RC , RL circuits  with step inputTransient response of RC , RL circuits  with step input
Transient response of RC , RL circuits with step input
 
Digital voltmeter (DVM) and its Classification
Digital voltmeter (DVM) and its ClassificationDigital voltmeter (DVM) and its Classification
Digital voltmeter (DVM) and its Classification
 
Matlab solving rlc circuit
Matlab solving rlc circuitMatlab solving rlc circuit
Matlab solving rlc circuit
 
Electronic DC Voltmeter using PMMC
Electronic DC Voltmeter using PMMCElectronic DC Voltmeter using PMMC
Electronic DC Voltmeter using PMMC
 
Oscillators
OscillatorsOscillators
Oscillators
 
Norton's theorem
Norton's theoremNorton's theorem
Norton's theorem
 
Unit 4 Automatic Generation Control
Unit 4 Automatic Generation ControlUnit 4 Automatic Generation Control
Unit 4 Automatic Generation Control
 

Similar to RLC circuits.pdf

Second order ena notes
Second order ena notesSecond order ena notes
Second order ena notesiqbal ahmad
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfsami717280
 
Natural response for RC and RL
Natural response for RC and RLNatural response for RC and RL
Natural response for RC and RLmusadoto
 
Mathematical modeling electric circuits and Transfer Function
Mathematical modeling electric circuits and Transfer FunctionMathematical modeling electric circuits and Transfer Function
Mathematical modeling electric circuits and Transfer FunctionTeerawutSavangboon
 
[doi 10.1002_9781118886502.ch7] Lehr, Jane; Ron, Pralhad -- Foundations of Pu...
[doi 10.1002_9781118886502.ch7] Lehr, Jane; Ron, Pralhad -- Foundations of Pu...[doi 10.1002_9781118886502.ch7] Lehr, Jane; Ron, Pralhad -- Foundations of Pu...
[doi 10.1002_9781118886502.ch7] Lehr, Jane; Ron, Pralhad -- Foundations of Pu...PKSahu6
 
Applications laplace transform
Applications laplace transformApplications laplace transform
Applications laplace transformMuhammad Fadli
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationscuashok07
 
Chapter 20
Chapter 20Chapter 20
Chapter 20Tha Mike
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxPawanKumar391848
 
Second Order Differential Circuits
Second Order Differential CircuitsSecond Order Differential Circuits
Second Order Differential CircuitsPrerak Trivedi
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuitsarjav patel
 
Tutorial simulations-elec 380
Tutorial simulations-elec 380Tutorial simulations-elec 380
Tutorial simulations-elec 380Moez Ansary
 
Ch08_PPT_Fund_Elec_Circ_5e.ppt
Ch08_PPT_Fund_Elec_Circ_5e.pptCh08_PPT_Fund_Elec_Circ_5e.ppt
Ch08_PPT_Fund_Elec_Circ_5e.pptLucasMogaka
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineeringPriyanka Anni
 

Similar to RLC circuits.pdf (20)

Second order ena notes
Second order ena notesSecond order ena notes
Second order ena notes
 
L11_VV (1).pdf
L11_VV (1).pdfL11_VV (1).pdf
L11_VV (1).pdf
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
 
Natural response for RC and RL
Natural response for RC and RLNatural response for RC and RL
Natural response for RC and RL
 
Mathematical modeling electric circuits and Transfer Function
Mathematical modeling electric circuits and Transfer FunctionMathematical modeling electric circuits and Transfer Function
Mathematical modeling electric circuits and Transfer Function
 
[doi 10.1002_9781118886502.ch7] Lehr, Jane; Ron, Pralhad -- Foundations of Pu...
[doi 10.1002_9781118886502.ch7] Lehr, Jane; Ron, Pralhad -- Foundations of Pu...[doi 10.1002_9781118886502.ch7] Lehr, Jane; Ron, Pralhad -- Foundations of Pu...
[doi 10.1002_9781118886502.ch7] Lehr, Jane; Ron, Pralhad -- Foundations of Pu...
 
Applications laplace transform
Applications laplace transformApplications laplace transform
Applications laplace transform
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
Second Order Differential Circuits
Second Order Differential CircuitsSecond Order Differential Circuits
Second Order Differential Circuits
 
Modeling of an RLC circuit
Modeling of an RLC circuitModeling of an RLC circuit
Modeling of an RLC circuit
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuits
 
En mp ggf
En mp ggfEn mp ggf
En mp ggf
 
Tutorial simulations-elec 380
Tutorial simulations-elec 380Tutorial simulations-elec 380
Tutorial simulations-elec 380
 
transformer
transformertransformer
transformer
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuits
 
Ch08_PPT_Fund_Elec_Circ_5e.ppt
Ch08_PPT_Fund_Elec_Circ_5e.pptCh08_PPT_Fund_Elec_Circ_5e.ppt
Ch08_PPT_Fund_Elec_Circ_5e.ppt
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
 
First order circuits
First order circuitsFirst order circuits
First order circuits
 

Recently uploaded

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 

Recently uploaded (20)

Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 

RLC circuits.pdf

  • 1. 1 Chapter 8 Natural and Step Responses of RLC Circuits 8.1-2 The Natural Response of a Parallel RLC Circuit 8.3 The Step Response of a Parallel RLC Circuit 8.4 The Natural and Step Response of a Series RLC Circuit
  • 2. 2 Key points  What do the response curves of over-, under-, and critically-damped circuits look like? How to choose R, L, C values to achieve fast switching or to prevent overshooting damage?  What are the initial conditions in an RLC circuit? How to use them to determine the expansion coefficients of the complete solution?  Comparisons between: (1) natural & step responses, (2) parallel, series, or general RLC.
  • 3. 3 Section 8.1, 8.2 The Natural Response of a Parallel RLC Circuit 1. ODE, ICs, general solution of parallel voltage 2. Over-damped response 3. Under-damped response 4. Critically-damped response
  • 4. 4 The governing ordinary differential equation (ODE) . 0 ) ( 1 0 0              R v t d t v L I dt dv C t  By KCL: . 0 1 2 2    LC v dt dv RC dt v d  Perform time derivative, we got a linear 2nd- order ODE of v(t) with constant coefficients: V0, I0, v(t) must satisfy the passive sign convention.
  • 5. 5 The two initial conditions (ICs)  The capacitor voltage cannot change abruptly, ) 2 ( ) 0 ( ) 0 ( , ) 0 ( , ) 0 ( ) 0 ( ) 0 ( , ) 0 ( 0 0 0 0 0 0   RC V C I v v dt dv C i R V I i i i I i C t C C R L C L                          ) 1 ( ) 0 ( 0  V v     The inductor current cannot change abruptly,
  • 6. 6 General solution . 0 1 2    LC RC s s  Assume the solution is , where A, s are unknown constants to be solved.  Substitute into the ODE, we got an algebraic (characteristic) equation of s determined by the circuit parameters: st Ae t v  ) ( where the expansion constants A1, A2 will be determined by the two initial conditions. , ) ( 2 1 2 1 t s t s e A e A t v    Since the ODE is linear,  linear combination of solutions remains a solution to the equation. The general solution of v(t) must be of the form:
  • 7. 7 Neper and resonance frequencies  In general, s has two roots, which can be (1) distinct real, (2) degenerate real, or (3) complex conjugate pair. , 1 2 1 2 1 2 0 2 2 2 , 1                  LC RC RC s LC 1 0   , 2 1 RC   where …resonance (natural) frequency …neper frequency
  • 8. 8 Three types of natural response Over-damped   real, distinct roots s1, s2 Under-damped  complex roots s1 = (s2)* Critically-damped  real, equal roots s1 = s2 The Circuit is When Solutions  How the circuit reaches its steady state depends on the relative magnitudes of  and 0:
  • 9. 9 where are distinct real. Over-damped response ( >0)  The complete solution and its derivative are of the form:           . ) ( , ) ( 2 1 2 1 2 2 1 1 2 1 t s t s t s t s e s A e s A t v e A e A t v 2 0 2 2 , 1        s  Substitute the two ICs:                 ) 2 ( ) 0 ( ) 1 ( ) 0 ( 0 0 2 2 1 1 0 2 1   RC V C I A s A s v V A A v  solve A1, A2.
  • 10. 10 Example 8.2: Discharging a parallel RLC circuit (1) 12 V 30 mA  Q: v(t), iC(t), iL(t), iR(t)=?                    kHz. 10 ) 10 2 )( 10 5 ( 1 1 , kHz 5 . 12 ) 10 2 )( 200 ( 2 1 2 1 7 2 0 7 LC RC    >0, over- damped
  • 11. 11 Example 8.2: Solving the parameters (2)  The 2 distinct real roots of s are:                  . kHz 20 , kHz 5 2 0 2 2 2 0 2 1       s s …|s2|>(fast) …|s1|<(slow)                      450 20 5 12 2 1 2 1 0 0 2 2 1 1 0 2 1 A A A A RC V C I A s A s V A A  The 2 expansion coefficients are: V. 26 , V 14 2 1     A A
  • 12. 12 Example 8.2: The parallel voltage evolution (3) Converge to zero |s1|<(slow) dominates |s2|>(fast) dominates  V. 26 14 ) ( 20000 5000 2 1 2 1 t t t s t s e e e A e A t v        “Over” damp
  • 13. 13 Example 8.2: The branch currents evolution (4)  The branch current through R is:  mA. 130 70 200 ) ( ) ( 20000 5000 t t R e e t v t i         The branch current through L is:  mA. 26 56 ) ( mH 0 5 1 mA 30 ) ( 20000 5000 0 t t t L e e t d t v t i           The branch current through C is:  mA. 104 14 μF) 2 . 0 ( ) ( 20000 5000 t t C e e dt dv t i     
  • 14. 14 Example 8.2: The branch currents evolution (5) Converge to zero
  • 15. 15 where is the damped frequency. General solution to under-damped response ( <0)  The two roots of s are complex conjugate pair: 2 2 0      d , 2 0 2 2 , 1 d j s                          . sin cos sin cos sin cos sin cos ) ( 2 1 2 1 2 1 2 1 ) ( 2 ) ( 1 t B t B e t A A j t A A e t j t A t j t A e e A e A t v d d t d d t d d d d t t j t j d d                                    The general solution is reformulated as:
  • 16. 16 Solving the expansion coefficients B1, B2 by ICs  Substitute the two ICs:                 ) 2 ( ) 0 ( ) 1 ( ) 0 ( 0 0 2 1 0 1   RC V C I B B v V B v d    solve B1, B2.          . sin cos cos sin sin cos ) ( 1 2 2 1 2 1 t B B t B B e t e t e B t e t e B t v d d d d t d t d d t d t d d t                                      The derivative of v(t) is:
  • 17. 17 Example 8.4: Discharging a parallel RLC circuit (1) 0 V -12.25 mA  Q: v(t), iC(t), iL(t), iR(t)=?                   kHz. 1 ) 10 25 . 1 )( 8 ( 1 1 , kHz 2 . 0 ) 10 25 . 1 )( 10 2 ( 2 1 2 1 7 0 7 4 LC RC    <0, under- damped
  • 18. 18 Example 8.4: Solving the parameters (2) . kHz 98 . 0 2 . 0 1 2 2 2 2 0        d  The damped frequency is:  The 2 expansion coefficients are:                   V 100 , 0 ) 2 ( ) 1 ( 0 2 1 0 0 2 1 0 1 B B RC V C I B B V B d    
  • 19. 19 Example 8.4: The parallel voltage evolution (3)   . V 980 sin 100 sin cos ) ( 200 2 1 t e t e B t e B t v t d t d t            The voltage oscillates (~d) and approaches the final value (~), different from the over- damped case (no oscillation, 2 decay constants).
  • 20. 20 Example 8.4: The branch currents evolutions (4)  The three branch currents are:
  • 21. 21 Rules for circuit designers  If one desires the circuit reaches the final value as fast as possible while the minor oscillation is of less concern, choosing R, L, C values to satisfy under-damped condition.  If one concerns that the response not exceed its final value to prevent potential damage, designing the system to be over-damped at the cost of slower response.
  • 22. 22 General solution to critically-damped response (=0)  Two identical real roots of s make  The general solution is reformulated as: , ) ( ) ( 0 2 1 2 1 st st st st e A e A A e A e A t v      not possible to satisfy 2 independent ICs (V0, I0) with a single expansion constant A0.  . ) ( 2 1 D t D e t v t     You can prove the validity of this form by substituting it into the ODE: . 0 ) ( ) ( ) ( ) ( ) ( 1 1         t v LC t v RC t v
  • 23. 23 Solving the expansion coefficients D1, D2 by ICs  Substitute the two ICs:                ) 2 ( ) 0 ( ) 1 ( ) 0 ( 0 0 2 1 0 2   RC V C I D D v V D v   solve D1, D2.       . ) ( 1 2 1 2 1 t t t t e t D D D e D te e D t v                     The derivative of v(t) is:
  • 24. 24 Example 8.5: Discharging a parallel RLC circuit (1) 0 V -12.25 mA R  Q: What is R such that the circuit is critically- damped? Plot the corresponding v(t). . k 4 10 25 . 1 8 2 1 2 1 , 1 2 1 , 7 0         C L R LC RC    Increasing R tends to bring the circuit from over- to critically- and even under-damped.
  • 25. 25 Example 8.5: Solving the parameters (2)  The neper frequency is:  The 2 expansion coefficients are: ms. 1 1 , kHz 1 ) 10 25 . 1 )( 10 4 ( 2 1 2 1 7 3             RC                  0 s kV 98 ) 2 ( ) 1 ( 0 2 1 0 0 2 1 0 2 D D RC V C I D D V D    -12.25 mA 0.125 F
  • 26. 26 Example 8.5: The parallel voltage evolution (3) 98 V/ms   . V 000 , 98 ) ( 1000 2 1 t t t te e D te D t v        
  • 27. 27 Procedures of solving nature response of parallel RLC  Calculate parameters and .  Write the form of v(t) by comparing  and :  Find the expansion constants (A1, A2), (B1, B2), or (D1, D2) by two ICs: LC 1 0   1 ) 2 (   RC              ) 2 ( ) 0 ( ), 1 ( ) 0 ( 0 0 0   RC V C I v V v                          . if , , if , , sin cos , if , - , ) ( 0 2 1 0 2 2 0 2 1 0 2 0 2 2 , 1 2 1 2 1                 D t D e t B t B e s e A e A t v t d d d t t s t s
  • 28. 28 Section 8.3 The Step Response of a Parallel RLC Circuit 1. Inhomogeneous ODE, ICs, and general solution
  • 29. 29 The homogeneous ODE . ) ( 1 0 0 s t I R v t d t v L I dt dv C               By KCL: . 0 1 2 2    LC v dt dv RC dt v d  Perform time derivative, we got a homogeneous ODE of v(t) independent of the source current Is: V0 I0 Is + 
  • 31. 31 The two initial conditions (ICs)  The inductor current cannot change abruptly, ) 2 ( ) 0 ( , ) 0 ( ), 0 ( ) 0 ( 0 0 0   L V i dt di L v v V v L t L L L C              ) 1 ( ) 0 ( 0  I iL     The capacitor voltage cannot change abruptly, Is iL V0 I0
  • 32. 32 General solution where the three types of nature responses were elucidated in Section 8.2:  The solution is the sum of final current If =Is and the nature response iL,nature(t): ), ( ) ( , t i I t i nature L f L                                . if , , if , sin cos , if , ) ( 0 2 1 0 2 1 0 2 1 2 1           D t D e I t B t B e I e A e A I t i t f d d t f t s t s f L
  • 33. 33 Example 8.7: Charging a parallel RLC circuit (1) 625  Is= 24 mA V0 =0 I0=0  Q: iL(t) = ?                    kHz. 40 ) 10 5 . 2 )( 10 5 . 2 ( 1 1 , kHz 32 ) 10 5 . 2 )( 625 ( 2 1 2 1 8 2 0 8 LC RC    <0, under- damped
  • 34. 34 Example 8.7: Solving the parameters (2) . kHz 24 32 40 2 2 2 2 0        d  The complete solution is of the form:  The 2 expansion coefficients are:                          mA 32 , mA 24 ) 2 ( 0 ) 1 ( 0 2 1 0 2 1 0 1 B B L V B B I B I d s      , sin cos ) ( 2 1 t B t B e I t i d d t s L          where
  • 35. 35 Example 8.7: Inductor current evolution (3)   . mA ) 000 , 24 sin( 32 ) 000 , 24 cos( 24 24 ) ( 000 , 32 000 , 32 t e t e t i t t L     
  • 36. 36 Example 8.9: Charging of parallel RLC circuits (1)  Q: Compare iL(t) when the resistance R = 625  (under-damp), 500  (critical damp), 400  (over-damp), respectively. Is= 24 mA  Initial & final conditions remain: iL(0+)=0, i'L(0+)=0, If =24 mA. Different R’s give different functional forms and expansion constants. V0 =0 I0=0
  • 37. 37 Example 8.9: Comparison of rise times (2)  The current of an under-damped circuit rises faster than that of its over-damped counterpart.
  • 38. 38 Section 8.4 The Natural and Step Response of a Series RLC Circuit 1. Modifications of time constant, neper frequency
  • 39. 39 ODE of nature response . 0 ) ( 1 0 0              t t d t i C V dt di L Ri . 0 2 2    LC i dt di L R dt i d RC 1 in parallel RLC  By KVL:  By derivative: V0, I0, i(t) must satisfy the passive sign convention.
  • 40. 40 The two initial conditions (ICs)  The inductor cannot change abruptly, ) 2 ( ) 0 ( ) 0 ( , ) 0 ( , ) 0 ( ) 0 ( ) 0 ( , ) 0 ( 0 0 0 0 0 0   L R I V i i dt di L v R I V v v v V v L t L L R C L C                          ) 1 ( ) 0 ( 0  I i     The capacitor voltage cannot change abruptly,
  • 41. 41 General solution . 0 1 2    LC s L R s  Substitute into the ODE, we got a different characteristic equation of s: st Ae t i  ) (                   0 2 1 0 2 1 0 2 1 if , if , sin cos if , ) ( 2 1           D t D e t B t B e e A e A t i t d d t t s t s  The form of s1,2 determines the form of general solution: . 2 0 2 2 , 1         s . , 1 , 2 2 2 0 0          d LC L R where 1 ) 2 (  RC in parallel RLC
  • 42. 42 Example 8.11: Discharging a series RLC circuit (1) vC(0-)=100 V,  V0=-100 V I0 =0                kHz. 10 ) 10 1 )( 1 . 0 ( 1 1 , kHz 8 . 2 ) 1 . 0 ( 2 560 2 7 0 LC L R    <0, under- damped  Q: i(t), vC(t)=? +  100 V
  • 43. 43 Example 8.11: Solving the parameters (2) . kHz 6 . 9 8 . 2 10 2 2 2 2 0        d  The damped frequency is:  The 2 expansion coefficients are:                   mA 2 . 104 , 0 ) 2 ( ) 1 ( 0 2 1 0 0 2 1 0 1 B B L R I V B B I B d     9.6 kHz 100 mH -100 V
  • 44. 44 Example 8.11: Loop current evolution (3)     . mA 600 , 9 sin 2 . 104 sin cos ) ( 800 , 2 2 1 t e t B t B e t i t d d t        
  • 45. 45 Example 8.11: Capacitor voltage evolution (4)   . V 600 , 9 sin 17 . 29 600 , 9 cos 100 ) ( ) ( ) ( 800 , 2 t t e t i L t Ri t v t c        When the capacitor energy starts to decrease, the inductor energy starts to increase.  Inductor energy starts to decrease before capacitor energy decays to 0.
  • 46. 46 ODEs of step response  By KVL:  The homogeneous and inhomogeneous ODEs of i(t) and vC(t) are: V0 I0 Vs +  . ) ( 1 0 0 s t V t d t i C V dt di L Ri              . and , 0 2 2 2 2 LC V LC v dt dv L R dt v d LC i dt di L R dt i d s C C C      
  • 47. 47 The two initial conditions (ICs)  The capacitor voltage cannot change abruptly, ) 2 ( ) 0 ( , ) 0 ( ), 0 ( ) 0 ( 0 0 0   C I v dt dv C i i I i C t C C C L              ) 1 ( ) 0 ( 0  V vC     The inductor current cannot change abruptly, V0 I0 Vs +  vC(t)
  • 48. 48 General solution where the three types of nature responses were elucidated in Section 8.4.  The solution is the sum of final voltage Vf =Vs and the nature response vC,nature(t): ), ( ) ( , t v V t v nature C f C                                . if , , if , sin cos , if , ) ( 0 2 1 0 2 1 0 2 1 2 1           D t D e V t B t B e V e A e A V t v t f d d t f t s t s f C
  • 49. 49 Key points  What do the response curves of over-, under-, and critically-damped circuits look like? How to choose R, L, C values to achieve fast switching or to prevent overshooting damage?  What are the initial conditions in an RLC circuit? How to use them to determine the expansion coefficients of the complete solution?  Comparisons between: (1) natural & step responses, (2) parallel, series, or general RLC.