SlideShare a Scribd company logo
1 of 49
MOSFET I-Vs
Substrate
Channel Drain
Insulator
Gate
Operation of a transistor
VSG > 0
n type operation
Positive gate bias attracts electrons into channel
Channel now becomes more conductive
More
electrons
Source
VSD
VSG
Some important equations in the
inversion regime (Depth direction)
VT = fms + 2yB + yox
Wdm = [2eS(2yB)/qNA]
Qinv = -Cox(VG - VT)
yox = Qs/Cox
Qs = qNAWdm
VT = fms + 2yB + [4eSyBqNA]/Cox
Substrate
Channel Drain
Insulator
Gate
Source
x
MOSFET Geometry
x
y
z
L
Z
S D
VG
VD
How to include y-dependent potential
without doing the whole problem over?
Assume potential V(y) varies slowly along
channel, so the x-dependent and y-dependent
electrostats are independent
(GRADUAL CHANNEL APPROXIMATION)
i.e.,
Ignore ∂Ex/∂y
Potential is separable in
x and y
How to include y-dependent potentials?
yS = 2yB + V(y)
VG = yS + [2eSySqNA]/Cox
Need VG – V(y) > VT to invert
channel at y (V increases
threshold)
Since V(y) largest at drain end, that
end reverts from inversion to
depletion first (Pinch off) 
SATURATION [VDSAT = VG – VT]
j = qninvv = (Qinv/tinv)v
I = jA = jZtinv = ZQinvv
So current:
Qinv = -Cox[VG – VT - V(y)]
v = -meffdV(y)/dy
So current:
I = meff ZCox[VG – VT - V(y)]dV(y)/dy
I = meff ZCox[(VG – VT )VD- VD
2/2]/L
Continuity implies ∫Idy = IL
But this current behaves like a parabola !!
ID
VD
IDsat
VDsat
I = meff ZCox[(VG – VT )VD- VD
2/2]/L
We have assumed inversion in our model (ie, always above pinch-off)
So we just extend the maximum current into saturation…
Easy to check that above current is maximum for VDsat = VG - VT
Substituting, IDsat = (CoxmeffZ/2L)(VG-VT)2
What’s Pinch off?
0
0 0
0
VG VG
Now add in the drain voltage to drive a current. Initially you get
an increasing current with increasing drain bias
0 VD
VG VG
When you reach VDsat = VG – VT, inversion is disabled at the drain
end (pinch-off), but the source end is still inverted
The charges still flow, just that you can’t draw more current
with higher drain bias, and the current saturates
Square law theory of MOSFETs
I = meff ZCox[(VG – VT )VD- VD
2/2]/L, VD < VG - VT
I = meff ZCox(VG – VT )2/2L, VD > VG - VT
J = qnv
n ~ Cox(VG – VT )
v ~ meffVD /L
Ideal Characteristics of n-channel
enhancement mode MOSFET
Drain current for REALLY small VD
 
 
 
 
T
G
D
D
T
G
i
n
D
D
D
T
G
i
n
D
V
V
V
V
V
V
C
L
Z
I
V
V
V
V
C
L
Z
I













m
m 2
2
1
Linear operation
Channel Conductance:
)
( T
G
i
n
V
D
D
D V
V
C
L
Z
V
I
g
G

m




Transconductance:
D
i
n
V
G
D
m V
C
L
Z
V
I
g
D
m




In Saturation
• Channel Conductance:
• Transconductance:
 2
2
T
G
i
n
D V
V
C
L
Z
sat
I 
m

0




G
V
D
D
D
V
I
g
 
T
G
i
n
V
G
D
m V
V
C
L
Z
V
I
g
D

m




Equivalent Circuit – Low Frequency AC
• Gate looks like open circuit
• S-D output stage looks like current source with channel
conductance
g
m
d
D
G
V
G
D
D
V
D
D
D
v
g
v
g
i
V
V
I
V
V
I
I
D
G











• Input stage looks like capacitances gate-to-source(gate) and
gate-to-drain(overlap)
• Output capacitances ignored -drain-to-source capacitance
small
Equivalent Circuit – Higher Frequency AC
• Input circuit:
• Input capacitance is mainly gate capacitance
• Output circuit:
  g
gate
g
gd
gs
in v
fC
j
v
C
C
j
i 



 2
g
m
out v
g
i 
gate
m
in
out
fC
g
i
i


2
D
i
n
V
G
D
m V
C
L
Z
V
I
g
D
m




Equivalent Circuit – Higher Frequency AC
Maximum Frequency (not in saturation)
• Ci is capacitance per unit area and Cgate is total capacitance
of the gate
• F=fmax when gain=1 (iout/iin=1)
2
max
max
2
2
2
L
V
ZL
C
C
V
L
Z
f
C
g
f
D
n
i
i
D
n
gate
m

m


m



ZL
C
C i
gate 
Maximum Frequency (not in saturation)
2
max 2 L
V
f D
n

m

L
V
v
v
L
D /
/
1
max
m



(Inverse transit time)
Switching Speed, Power Dissipation
ton = CoxZLVD/ION
Trade-off: If Cox too small, Cs and Cd take over and you lose
control of the channel potential (e.g. saturation)
(DRAIN-INDUCED BARRIER LOWERING/DIBL)
If Cox increases, you want to make sure you don’t control
immobile charges (parasitics) which do not contribute to
current.
Switching Speed, Power Dissipation
Pdyn = ½ CoxZLVD
2f
Pst = IoffVD
CMOS
NOT gate
(inverter)
CMOS
NOT gate
(inverter)
Positive gate turns nMOS on
Vin = 1 Vout = 0
CMOS
NOT gate
(inverter)
Negative gate turns pMOS on
Vin = 0 Vout = 1
So what?
• If we can create a NOT gate
we can create other gates
(e.g. NAND, EXOR)
So what?
Ring Oscillator
So what?
• More importantly, since one is open and one is shut at steady
state, no current except during turn-on/turn-off
 Low power dissipation
Getting the inverter output
Gain
ON
OFF
0




G
V
D
D
D
V
I
g
 
T
G
i
n
V
G
D
m V
V
C
L
Z
V
I
g
D

m




What’s the gain here?
Signal Restoration
BJT vs MOSFET
• RTL logic vs CMOS logic
• DC Input impedance of MOSFET (at gate end) is infinite
Thus, current output can drive many inputs  FANOUT
• CMOS static dissipation is low!! ~ IOFFVDD
• Normally BJTs have higher transconductance/current (faster!)
IC = (qni
2Dn/WBND)exp(qVBE/kT) ID = mCoxW(VG-VT) 2/L
gm = IC/VBE = IC/(kT/q) gm = ID/VG = ID/[(VG-VT)/2]
• Today’s MOSFET ID >> IC due to near ballistic operation
What if it isn’t ideal?
• If work function differences and oxide charges are present,
threshold voltage is shifted just like for MOS capacitor:
• If the substrate is biased wrt the Source (VBS) the
threshold voltage is also shifted
i
B
A
s
B
i
f
ms
i
B
A
s
B
FB
T
C
qN
C
Q
C
qN
V
V
)
2
(
2
2
)
2
(
2
2
y
e

y








f

y
e

y


i
BS
B
A
s
B
FB
T
C
V
qN
V
V
)
2
(
2
2

y
e

y


Threshold Voltage Control
• Substrate Bias:
i
BS
B
A
s
B
FB
T
C
V
qN
V
V
)
2
(
2
2

y
e

y


 
B
BS
B
i
A
s
T
BS
T
BS
T
T
V
C
qN
V
V
V
V
V
V
y


y
e






2
2
2
)
0
(
)
(
Threshold Voltage Control-substrate bias
It also affects the I-V
VG
The threshold voltage is increased due to the depletion region
that grows at the drain end because the inversion layer shrinks
there and can’t screen it any more. (Wd > Wdm)
Qinv = -Cox[VG-VT(y)], I = -meffZQinvdV(y)/dy
VT(y) = y + √2esqNAy/Cox
y = 2yB + V(y)
It also affects the I-V
IL = ∫meffZCox[VG – (2yB+V) - √2esqNA(2yB+V)/Cox]dV
I = (ZmeffCox/L)[(VG–2yB)VD –VD
2/2
-2√2esqNA{(2yB+VD)3/2-(2yB)3/2}/3Cox]
We can approximately include this…
Include an additional charge term from the
depletion layer capacitance controlling V(y)
Q = -Cox[VG-VT]+(Cox + Cd)V(y)
where Cd = es/Wdm
Q = -Cox[VG –VT - MV(y)], M = 1 + Cd/Cox
ID = (ZmeffCox/L)[(VG-VT - MVD/2)VD]
Comparison between different models
Square Law Theory
Body Coefficient
Bulk Charge Theory
Still not good below threshold or above saturation
Mobility
• Drain current model assumed constant mobility in channel
• Mobility of channel less than bulk – surface scattering
• Mobility depends on gate voltage – carriers in inversion
channel are attracted to gate – increased surface scattering
– reduced mobility
Mobility dependence on gate voltage
)
(
1
0
T
G V
V 


m

m
Sub-Threshold Behavior
• For gate voltage less than the threshold – weak inversion
• Diffusion is dominant current mechanism (not drift)
L
L
n
o
n
qAD
y
n
qAD
A
J
I n
n
D
D
)
(
)
( 







kT
V
q
i
kT
q
i
D
B
s
B
s
e
n
L
n
e
n
n
/
)
(
/
)
(
)
(
)
0
(

y

y
y

y


Sub-threshold
  kT
q
kT
qV
kT
i
n
D
s
D
B
e
e
L
e
n
qAD
I /
/
/
1 y

y



We can approximate ys with VG-VT below threshold since all
voltage drops across depletion region
    kT
V
V
q
kT
qV
kT
i
n
D
T
G
D
B
e
e
L
e
n
qAD
I /
/
/
1 

y



•Sub-threshold current is exponential function of applied gate voltage
•Sub-threshold current gets larger for smaller gates (L)
Subthreshold Characteristic
 
 
G
D V
I
S



log
1
Subthreshold Swing
Tunneling transistor
– Band filter like operation
J Appenzeller et al, PRL ‘04
Ghosh, Rakshit, Datta
(Nanoletters, 2004)
(Sconf)min=2.3(kBT/e).(etox/m)
Hodgkin and Huxley, J. Physiol. 116, 449 (1952a)
Subthreshold slope = (60/Z) mV/decade
Much of new research depends on reducing S !
Much of new research depends on reducing S !
• Increase ‘q’ by collective motion (e.g. relay)
Ghosh, Rakshit, Datta, NL ‘03
• Effectively reduce N through interactions
Salahuddin, Datta
• Negative capacitance
Salahuddin, Datta
• Non-thermionic switching (T-independent)
Appenzeller et al, PRL
• Nonequilibrium switching
Li, Ghosh, Stan
• Impact Ionization
Plummer
More complete model – sub-threshold to
saturation
• Must include diffusion and drift currents
• Still use gradual channel approximation
• Yields sub-threshold and saturation behavior for long
channel MOSFETS
• Exact Charge Model – numerical integration
 








y
m
e

y
y


y
D s
B
V
p
p
V
D
n
s
D
p
n
V
F
e
L
L
Z
I
0
0
0
,
,
Exact Charge Model (Pao-Sah)
– Long Channel MOSFET
http://www.nsti.org/Nanotech2006/WCM2006/WCM2006-BJie.pdf
MOSFET.ppt

More Related Content

Similar to MOSFET.ppt

FET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif SirFET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif SirMuntasir Mahdi
 
Metal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect TransistorsMetal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect Transistorsutpal sarkar
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect TransistorYong Heui Cho
 
Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.pptssuserb4d806
 
MOS Inverters Static Characteristics.pptx
MOS Inverters Static Characteristics.pptxMOS Inverters Static Characteristics.pptx
MOS Inverters Static Characteristics.pptxBalraj Singh
 
Power consumption
Power consumptionPower consumption
Power consumptionsdpable
 
Power mosfet characteristics
Power mosfet characteristicsPower mosfet characteristics
Power mosfet characteristicssanu singh
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)aicdesign
 
MOSFET threshold voltage
MOSFET  threshold voltage MOSFET  threshold voltage
MOSFET threshold voltage Murali Rai
 
Field Effect Transistor (FET)
Field Effect Transistor (FET)Field Effect Transistor (FET)
Field Effect Transistor (FET)Jess Rangcasajo
 
(Latest) topic 5 field_effect_transistors
(Latest) topic 5 field_effect_transistors(Latest) topic 5 field_effect_transistors
(Latest) topic 5 field_effect_transistorsGabriel O'Brien
 

Similar to MOSFET.ppt (20)

FET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif SirFET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif Sir
 
Small signal Analysis.ppt
Small signal Analysis.pptSmall signal Analysis.ppt
Small signal Analysis.ppt
 
Metal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect TransistorsMetal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect Transistors
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.ppt
 
MOS Inverters Static Characteristics.pptx
MOS Inverters Static Characteristics.pptxMOS Inverters Static Characteristics.pptx
MOS Inverters Static Characteristics.pptx
 
emtl
emtlemtl
emtl
 
15 mosfet threshold voltage
15 mosfet threshold voltage15 mosfet threshold voltage
15 mosfet threshold voltage
 
Power consumption
Power consumptionPower consumption
Power consumption
 
Mosfet baising
Mosfet baisingMosfet baising
Mosfet baising
 
Power mosfet characteristics
Power mosfet characteristicsPower mosfet characteristics
Power mosfet characteristics
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)
 
UNIT I.ppt
UNIT I.pptUNIT I.ppt
UNIT I.ppt
 
VLSI- Unit I
VLSI- Unit IVLSI- Unit I
VLSI- Unit I
 
Tluenotes lehmann
Tluenotes lehmannTluenotes lehmann
Tluenotes lehmann
 
MOSFET threshold voltage
MOSFET  threshold voltage MOSFET  threshold voltage
MOSFET threshold voltage
 
Field Effect Transistor (FET)
Field Effect Transistor (FET)Field Effect Transistor (FET)
Field Effect Transistor (FET)
 
(Latest) topic 5 field_effect_transistors
(Latest) topic 5 field_effect_transistors(Latest) topic 5 field_effect_transistors
(Latest) topic 5 field_effect_transistors
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Giannakas____icecs2010
Giannakas____icecs2010Giannakas____icecs2010
Giannakas____icecs2010
 

More from SouravRoyElectronics (7)

Unit-4_ESE.pdf
Unit-4_ESE.pdfUnit-4_ESE.pdf
Unit-4_ESE.pdf
 
lect501.ppt
lect501.pptlect501.ppt
lect501.ppt
 
CMOS Combinational_Logic_Circuits.pdf
CMOS Combinational_Logic_Circuits.pdfCMOS Combinational_Logic_Circuits.pdf
CMOS Combinational_Logic_Circuits.pdf
 
VIVADO PPT.pptx
VIVADO PPT.pptxVIVADO PPT.pptx
VIVADO PPT.pptx
 
lecture25_fpga-conclude.ppt
lecture25_fpga-conclude.pptlecture25_fpga-conclude.ppt
lecture25_fpga-conclude.ppt
 
lect14.ppt
lect14.pptlect14.ppt
lect14.ppt
 
Lec9
Lec9Lec9
Lec9
 

Recently uploaded

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 

Recently uploaded (20)

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 

MOSFET.ppt

  • 2. Substrate Channel Drain Insulator Gate Operation of a transistor VSG > 0 n type operation Positive gate bias attracts electrons into channel Channel now becomes more conductive More electrons Source VSD VSG
  • 3. Some important equations in the inversion regime (Depth direction) VT = fms + 2yB + yox Wdm = [2eS(2yB)/qNA] Qinv = -Cox(VG - VT) yox = Qs/Cox Qs = qNAWdm VT = fms + 2yB + [4eSyBqNA]/Cox Substrate Channel Drain Insulator Gate Source x
  • 5. How to include y-dependent potential without doing the whole problem over?
  • 6. Assume potential V(y) varies slowly along channel, so the x-dependent and y-dependent electrostats are independent (GRADUAL CHANNEL APPROXIMATION) i.e., Ignore ∂Ex/∂y Potential is separable in x and y
  • 7. How to include y-dependent potentials? yS = 2yB + V(y) VG = yS + [2eSySqNA]/Cox Need VG – V(y) > VT to invert channel at y (V increases threshold) Since V(y) largest at drain end, that end reverts from inversion to depletion first (Pinch off)  SATURATION [VDSAT = VG – VT]
  • 8. j = qninvv = (Qinv/tinv)v I = jA = jZtinv = ZQinvv So current: Qinv = -Cox[VG – VT - V(y)] v = -meffdV(y)/dy
  • 9. So current: I = meff ZCox[VG – VT - V(y)]dV(y)/dy I = meff ZCox[(VG – VT )VD- VD 2/2]/L Continuity implies ∫Idy = IL
  • 10. But this current behaves like a parabola !! ID VD IDsat VDsat I = meff ZCox[(VG – VT )VD- VD 2/2]/L We have assumed inversion in our model (ie, always above pinch-off) So we just extend the maximum current into saturation… Easy to check that above current is maximum for VDsat = VG - VT Substituting, IDsat = (CoxmeffZ/2L)(VG-VT)2
  • 11. What’s Pinch off? 0 0 0 0 VG VG Now add in the drain voltage to drive a current. Initially you get an increasing current with increasing drain bias 0 VD VG VG When you reach VDsat = VG – VT, inversion is disabled at the drain end (pinch-off), but the source end is still inverted The charges still flow, just that you can’t draw more current with higher drain bias, and the current saturates
  • 12. Square law theory of MOSFETs I = meff ZCox[(VG – VT )VD- VD 2/2]/L, VD < VG - VT I = meff ZCox(VG – VT )2/2L, VD > VG - VT J = qnv n ~ Cox(VG – VT ) v ~ meffVD /L
  • 13. Ideal Characteristics of n-channel enhancement mode MOSFET
  • 14. Drain current for REALLY small VD         T G D D T G i n D D D T G i n D V V V V V V C L Z I V V V V C L Z I              m m 2 2 1 Linear operation Channel Conductance: ) ( T G i n V D D D V V C L Z V I g G  m     Transconductance: D i n V G D m V C L Z V I g D m    
  • 15. In Saturation • Channel Conductance: • Transconductance:  2 2 T G i n D V V C L Z sat I  m  0     G V D D D V I g   T G i n V G D m V V C L Z V I g D  m    
  • 16. Equivalent Circuit – Low Frequency AC • Gate looks like open circuit • S-D output stage looks like current source with channel conductance g m d D G V G D D V D D D v g v g i V V I V V I I D G           
  • 17. • Input stage looks like capacitances gate-to-source(gate) and gate-to-drain(overlap) • Output capacitances ignored -drain-to-source capacitance small Equivalent Circuit – Higher Frequency AC
  • 18. • Input circuit: • Input capacitance is mainly gate capacitance • Output circuit:   g gate g gd gs in v fC j v C C j i      2 g m out v g i  gate m in out fC g i i   2 D i n V G D m V C L Z V I g D m     Equivalent Circuit – Higher Frequency AC
  • 19. Maximum Frequency (not in saturation) • Ci is capacitance per unit area and Cgate is total capacitance of the gate • F=fmax when gain=1 (iout/iin=1) 2 max max 2 2 2 L V ZL C C V L Z f C g f D n i i D n gate m  m   m    ZL C C i gate 
  • 20. Maximum Frequency (not in saturation) 2 max 2 L V f D n  m  L V v v L D / / 1 max m    (Inverse transit time)
  • 21. Switching Speed, Power Dissipation ton = CoxZLVD/ION Trade-off: If Cox too small, Cs and Cd take over and you lose control of the channel potential (e.g. saturation) (DRAIN-INDUCED BARRIER LOWERING/DIBL) If Cox increases, you want to make sure you don’t control immobile charges (parasitics) which do not contribute to current.
  • 22. Switching Speed, Power Dissipation Pdyn = ½ CoxZLVD 2f Pst = IoffVD
  • 24. CMOS NOT gate (inverter) Positive gate turns nMOS on Vin = 1 Vout = 0
  • 25. CMOS NOT gate (inverter) Negative gate turns pMOS on Vin = 0 Vout = 1
  • 26. So what? • If we can create a NOT gate we can create other gates (e.g. NAND, EXOR)
  • 28. So what? • More importantly, since one is open and one is shut at steady state, no current except during turn-on/turn-off  Low power dissipation
  • 29. Getting the inverter output Gain ON OFF
  • 32. BJT vs MOSFET • RTL logic vs CMOS logic • DC Input impedance of MOSFET (at gate end) is infinite Thus, current output can drive many inputs  FANOUT • CMOS static dissipation is low!! ~ IOFFVDD • Normally BJTs have higher transconductance/current (faster!) IC = (qni 2Dn/WBND)exp(qVBE/kT) ID = mCoxW(VG-VT) 2/L gm = IC/VBE = IC/(kT/q) gm = ID/VG = ID/[(VG-VT)/2] • Today’s MOSFET ID >> IC due to near ballistic operation
  • 33. What if it isn’t ideal? • If work function differences and oxide charges are present, threshold voltage is shifted just like for MOS capacitor: • If the substrate is biased wrt the Source (VBS) the threshold voltage is also shifted i B A s B i f ms i B A s B FB T C qN C Q C qN V V ) 2 ( 2 2 ) 2 ( 2 2 y e  y         f  y e  y   i BS B A s B FB T C V qN V V ) 2 ( 2 2  y e  y  
  • 34. Threshold Voltage Control • Substrate Bias: i BS B A s B FB T C V qN V V ) 2 ( 2 2  y e  y     B BS B i A s T BS T BS T T V C qN V V V V V V y   y e       2 2 2 ) 0 ( ) (
  • 36. It also affects the I-V VG The threshold voltage is increased due to the depletion region that grows at the drain end because the inversion layer shrinks there and can’t screen it any more. (Wd > Wdm) Qinv = -Cox[VG-VT(y)], I = -meffZQinvdV(y)/dy VT(y) = y + √2esqNAy/Cox y = 2yB + V(y)
  • 37. It also affects the I-V IL = ∫meffZCox[VG – (2yB+V) - √2esqNA(2yB+V)/Cox]dV I = (ZmeffCox/L)[(VG–2yB)VD –VD 2/2 -2√2esqNA{(2yB+VD)3/2-(2yB)3/2}/3Cox]
  • 38. We can approximately include this… Include an additional charge term from the depletion layer capacitance controlling V(y) Q = -Cox[VG-VT]+(Cox + Cd)V(y) where Cd = es/Wdm Q = -Cox[VG –VT - MV(y)], M = 1 + Cd/Cox ID = (ZmeffCox/L)[(VG-VT - MVD/2)VD]
  • 39. Comparison between different models Square Law Theory Body Coefficient Bulk Charge Theory Still not good below threshold or above saturation
  • 40. Mobility • Drain current model assumed constant mobility in channel • Mobility of channel less than bulk – surface scattering • Mobility depends on gate voltage – carriers in inversion channel are attracted to gate – increased surface scattering – reduced mobility
  • 41. Mobility dependence on gate voltage ) ( 1 0 T G V V    m  m
  • 42. Sub-Threshold Behavior • For gate voltage less than the threshold – weak inversion • Diffusion is dominant current mechanism (not drift) L L n o n qAD y n qAD A J I n n D D ) ( ) (         kT V q i kT q i D B s B s e n L n e n n / ) ( / ) ( ) ( ) 0 (  y  y y  y  
  • 43. Sub-threshold   kT q kT qV kT i n D s D B e e L e n qAD I / / / 1 y  y    We can approximate ys with VG-VT below threshold since all voltage drops across depletion region     kT V V q kT qV kT i n D T G D B e e L e n qAD I / / / 1   y    •Sub-threshold current is exponential function of applied gate voltage •Sub-threshold current gets larger for smaller gates (L)
  • 44. Subthreshold Characteristic     G D V I S    log 1 Subthreshold Swing
  • 45. Tunneling transistor – Band filter like operation J Appenzeller et al, PRL ‘04 Ghosh, Rakshit, Datta (Nanoletters, 2004) (Sconf)min=2.3(kBT/e).(etox/m) Hodgkin and Huxley, J. Physiol. 116, 449 (1952a) Subthreshold slope = (60/Z) mV/decade Much of new research depends on reducing S !
  • 46. Much of new research depends on reducing S ! • Increase ‘q’ by collective motion (e.g. relay) Ghosh, Rakshit, Datta, NL ‘03 • Effectively reduce N through interactions Salahuddin, Datta • Negative capacitance Salahuddin, Datta • Non-thermionic switching (T-independent) Appenzeller et al, PRL • Nonequilibrium switching Li, Ghosh, Stan • Impact Ionization Plummer
  • 47. More complete model – sub-threshold to saturation • Must include diffusion and drift currents • Still use gradual channel approximation • Yields sub-threshold and saturation behavior for long channel MOSFETS • Exact Charge Model – numerical integration           y m e  y y   y D s B V p p V D n s D p n V F e L L Z I 0 0 0 , ,
  • 48. Exact Charge Model (Pao-Sah) – Long Channel MOSFET http://www.nsti.org/Nanotech2006/WCM2006/WCM2006-BJie.pdf