SlideShare a Scribd company logo
1 of 23
Download to read offline
University of Tehran
College of Engineering
School of Electrical and
Computer Engineering
University of Tehran
College of Engineering
School of Electrical
And Computer Engineering
Using Metamaterials
As Optical Perfect Absorbers
Review Report
Sepehr Ahmadzadeh
810188299
Spring 2012 - 2013
Submitted June 23, 2013
All Rights Received
Contents
I. Introduction 3
II. EM Wave Absorber 3
II.a Resonant Absorbers 4
II.b BroadBand Absorbers 4
II.c Near Unity Absorber 4
III.EM Wave Absorber Theory 5
III.a Fresnel Equations 6
IV.Metamaterial Perfect Absorbers 9
IV.a Simulation 9
IV.b Fabrication 10
IV.c Characterization 10
IV.d Applications 10
V. Recent Papers 11
VI.Conclusion 22
VII. References 23
Submitted June 23, 2013
All Rights Received
Metamaterial as Optical
Perfect Absorber
Sepehr Ahmadzadeh – 810188299
Photonic Research Lab
Dept. Communication
University of Tehran
Tehran, Iran
se.ahmadzadeh@ut.ac.ir
Abstract – The following report describes the history, theory, implementation and characterization of
metamaterial perfect absorbers (MPAs). The motivation for studying MPAs comes mainly from their use in
potential applications. These applications briefly include: emitters, sensors, spatial light modulators, IR
camouflage, use in thermophotovoltaics, and wireless communication. MPAs also provide insight into the
theory of metamaterials (MMs) as an effective medium where the designer can control the electromagnetic
properties by engineering the geometry. Also using artificial materials as perfect optical absorbers are
discussed and some recent papers in the area have been introduced.
Keywords – Optical perfect absorber, Metamaterial, perfect absorber, Effective medium, Electromagnetic,
MPA
I. INTRODUCTION
Metamaterials are artificial materials engineered for specific electric and magnetic responses. Since
the first attempts for designing metamaterials new applications of such materials have been proposed.
For example, Absorbers are devices in which incident radiation is absorbed at the operating frequency.
Near unity absorption is one the hot topics of this modern world because it has several applications such
as solar cell materials, photodetectors, selectivee thermal emmiters, detection and sensing,
microbolometers, integrated photonic circuits and other things. In the following sections, first some
basics about EM wave absorbers and types of them are discussed. Then in section III, the basic theory of
EM wave absorption is discussed and then in section IV, metamaterial perfect absorbers will be
introduced and finally, some recent papers in the area will be covered.
II. EM WAVE ABSORBER
Electromagnetic (EM) wave absorbers can be categorized into two types: resonant absorbers and
broadband absorbers [1]. Resonant absorbers rely on the material interacting with the incident radiation
4
in a resonant way at a specific frequency, (where the wavelength corresponding to is =
and c is the speed of light in vacuum). Broadband absorbers generally rely on materials whose properties
are frequency independent and therefore can absorb radiation over a large bandwidth.
2.1 Resonant Absorbers
Resonant absorbers have utilized, for the most part, multiple layers separated by a quarter of the
operation wavelength. In transmission line theory, a metal plate acts like a short circuit, and when it is
placed behind any sort of “load,” will act like an open circuit at the resistive sheet (i.e. conductance G
= 0). Therefore, the incident wave sees just the admittance of the resistive sheet. When the load
impedance matches free space, the reflectivity goes to zero.With the addition of loss, high absorption can
be achieved. Initial interests in electromagnetic wave absorbers were largely in the microwave range.
The usefulness of absorbers in both improving radar performance and providing concealment against
others’ radar systems was utilized as a military technique.
Two well known scientists who developed EM absorbers are W. W. Salisbury and J. Jaumann,
who independently created similar devices. One such device, known as the Salisbury screen, is a basic
example of the resonant absorber mentioned above. A resistive sheet is placed in front of a metal
ground plane, usually separated by some lossless dielectric. The effective open circuit creates R( ) =
off the resistive layer.
The Jaumann absorber can conceptually be considered an extension of the Salisbury screen which
consists of two or more resistive sheets in front of a single ground plane. All sheets are designed to
operate at a distinct wavelength, and thus each sheet is separated by approximately λ/4, producing
multiple reflection minimums around some center frequency . The effect is that it acts as a resonant
absorber over multiple wavelengths, achieving a broadband response.
The Dällenbach layer employs a different mechanism than the Salisbury screen; its design consists of
a homogeneous layer in front of a ground plane. The homogeneous layer is selected for particular loss
values resulting from the imaginary portions of the electric permittivity and the magnetic permeability.
The idea is to impedance match to free space as to minimize the reflection of the surface and then utilize
the loss in the homogeneous layer to absorb the incident radiation.
Another type of resonant electromagnetic wave absorber, known as the crossed grating absorber, uses
a reflective metal plane with an etched shallow periodic grid which is shown in Fig.1.
Fig. 1. Crossed grating Absorbers
5
A resonance is created due to the interaction between the periodic grid and incident radiation, creating
a period of anomalous diffraction. [2] It was shown that anomalous diffraction is correlated to periods of
enhanced absorption.
2.2 Broadband Absorbers
One example of a broadband absorber is a geometric transition absorber. These devices are most
commonly used in anechoic chambers. The idea is to create a slowly varying transition from free space
into a lossy material using shapes such as pyramids or wedges loaded with lossy material which is
shown if Fig.2.
Fig.2 Geometric Transition Absorber
This way reflectivity is minimized and the wave is gradually absorbed over the length of the shaped
geometry. By using a thick layer of this material, one can generate enough loss to create high
absorption.[1]
2.3 Near Unity Absorber (Perfect Absorbers)
A near unity absorber is a device in which all incident radiation is absorbed at the operating
frequency– transmissivity, reflectivity, scattering and all other EM propagation channels are disabled.
What happens in optical frequency regime? One of the most important issues in this frequency band is
material’s transparency against light. Therefore, scientists seek a way to change the material in order to
have a perfect absorption and zero transmission or reflection. Artificial materials are engineerd structures
which can be used for this purpose. Hence, in this report we introduce metamaterial perfect absorbers
and the theory behind them. But first, let me explain a little about the theory of EM wave absorption in
general.
III. Electromagnetic Wave Absorption Theory
We begin by considering all possible ways in which electromagnetic energy can propagate at an
interface. Electromagnetic waves incident upon a boundary or surface may be reflected, transmitted,
absorbed, scattered, or may excite surface electromagnetic waves (SEWs). Let us consider wavelengths
in the range of , and assume that the surface has an average roughness that is much smaller than the
wavelength, ≪ such that we may ignore scattering effects. The surface may also support plasmons
6
or, more generally, surface electromagnetic waves, which may be explored by considering their
propagation length, often described as L = , where k is the imaginary part of the complex
wavevector k|| = k + ik . It is clear that it is impossible to clarify if an external electromagnetic wave
can couple to a surface and propagate as a SEW even if the plasmon propagation length L is known.
Usually, researchers propose a figure of merit which is shown below:
Obviously the figure of merit presented describes how much our incident wavevector matches the
dispersion of our surface k , and considers the loss k of the surface for propagation of the SEW.
Clearly, W reduces to L if k = k .
If k is sufficiently large, generation of surface electromagneticnetic waves may be a form of
loss but the SEW may re-radiate the wave if, e.g. our surface is curved. Thus, assuming we have a flat
surface such that any SEWs or plasmons die out before re-scattering, we may then finally resolve that a
wave may be reflected (R), transmitted (T), or absorbed (A), with their relationship given as A = 1–T–
R.
3.1 Fresnel Equations
Let us consider two cases; (1) a slab of thickness d of magneto-dielectric medium described by both
the magnetic permeability ( ) = ( ) and the electric permittivity ( ) = ( ) and backed
by a highly conductive opaque metallic ground plane. (2) A slab of thickness d of a magneto-dielectric
medium embedded in a vaccum.
For Case (1), since we consider a highly conductive metallic ground plane, transmission can be
neglected and we begin by considering the reflectivity (R) and reflection coefficient (r) of an interface,
for transverse electric (TE) and transverse magnetic (TM) polarized waves as,
= | | =
− √ −
+ √ −
= | | =
− √ −
+ √ −
Where θ is the angle of incidence, and is the index of refraction of the magneto-dielectric
medium. If we restrict our incident electromagnetic wave to normal, i.e. θ = 0°, equations above reduce
to:
7
Where Z is the impedance of the magneto-dielectric material and is the impedance of free space.
However, as mentioned, our impedance matched condition above is only valid for the reflectivity of an
interface and thus incident radiation may still be transmitted through the medium. If our material is not
of sufficient thickness (d) and loss ( ) then the wave will be reflected from the conducting metallic
plane and may be reflected back into free space. A simple unit cell of this type absorber is shown in
Fig.3. This structure is suggested by Smith [3] in 2008 and it is a unit cell which is
operating at microwave regime.
Fig.3 magneto-electric unit cell consisting of an ERR combined with a metallic ground plane–polarization
In general, we can assume absorbers in two cases. Therefore, it is logical to present their
absorption, transmission and reflection coefficients in the way shown in Fig.4. [4]. In the figure we plot
results of Case (i): the reflectivity (green curve), transmissivity (blue curve), and the absorptivity (red
curve); in this figure the magneto-dielectric layer is shown. As can be observed is zero everywhere,
but is small and thus the absorptivity is near unity.
The second case is magneto dielectric material in air and without any ground plane. The reflection and
transmission coefficients for this matieral are given by
is the relative impedance of the medium which is . Note that in this case there is no reflection due
to matching between the material and free space but unlike case (1) there is transmission. Therefore, we
can write equations as shown below:
8
As you can see in this figure, absorption and transmission is shown in figure ( c ) which is related to
magneto-dielectric material embedded in the vaccum. But there is no reflection due to impedance
matching between the material and the free space. As it mentioned above is related to and .
Hence, by assuming large and we have a little transmission in a desired frequency. It is obvious
that, in order to have a perfect absorber in optical regime, it is necessary to have small values of
because is big and their multiplication has to be a small value.
In both cases, the absorptivity is narrow band and out of this band the electromagnetic wave is
reflected in case 1 or transmitted in case 2.
9
IV. Metamaterial Perfect Absorbers
Using Metamaterials as perfect absorbers is a logical option approximately in all frequency regimes.
Because of their subwavelength engineerd structure and their ability to design effective constitutive
parameters, they can be used to achieve desired results.
In order to have a wide band absorption, using lossy materials is necessary. Thus, finding a way to
design a wide band perfect absorber is one the most crucial characteristics which attract researchers. For
example, solar cells could be more practical if their absorbing material functions in a wider band of
frequency. Using multistructures as a resonant part of a design, can help the metamaterials to resonance
at various frequencies and absorb better in a wider band.
Another performance flexibility which is important for scientists is polarization of the incident
wave which absorbed by the material. Nowadays, independency of the polarization is the goal.
Polarization independent magnetic metamaterials were first proposed for near infrared frequencies[5] as
a means to eliminate bianisotropy by appealing to racemic mixtures of unit cells. Another work proposed
that chiral metamaterials could achieve polarization independent absorption.
Angle of incidence is in a high priority too. Wide angle absorption is a characteristic which can help
engineers to design high performance solar cells, accurate sensors and so on. Most of the studies noted
that a monotonic decrease in the absorptivity at resonance for TE modes as a function of incidence angle
for those above roughly 40°, whereas there was little change for the TM mode–at least below ∼80 °. It
was stated in multiple studies[6] that this is due to the fact that, as the incident angle increases, the
parallel magnetic field component approaches zero and thus can no longer effectively induce antiparallel
currents in the top MM layer and the back metal structure resulting in a drop in the magnetic flux.
4.1. Simulation
Metamaterial perfect absorbers, similar to other metamaterials, are composed of repeating unit cells
arranged in two or three dimensional periodic structures. The periodic array can be precisely modeled by
simulation of one unit cell with the knowledge of material properties and the assignment of appropriate
excitations (i.e., ports) and boundary conditions. One advantage of MPA simulation is that an optimized
structure can be designed and the behavior predicted without unnecessary fabrication iterations. Also,
due to the accuracy of the simulation techniques, there is generally a good match between simulated and
experimental results if the material properties are well known. Among the simulation programs, CST
Microwave studio, HFSS, and Comsol are some of the most common. Metal is one critical part of MPAs
which affects the resonating behavior. Therefore, good knowledge of metal properties in simulation is
essential to obtain trustable results. At low frequencies, such as microwaves, metals such as gold and
copper are modeled as good conductors with a particular value for the conductivity. However, when
simulating metamaterials at higher frequencies, such as infrared or optical, metals tend to be lossier and
the Drude model is often used to reproduce their frequency dependent optical properties. Simulations
10
also provide the phase information of and . Together with the amplitude, the effective permittivity
and permeability can be calculated for a MPA.
4.2 Fabrication
MPAs that operate in the microwave frequency range are normally fabricated using the printed
circuit board (PCB) method in which a certain thickness of copper is deposited on both sides of a
photosensitized board, FR-4 being a common example. Since, in this frequency range, the sizes of
metamaterial resonators are relative large, i.e. on the order of millimeters with the smallest
dimensionapproximately 100 μ m, a photo mask can simply be printed on a transparency using a high
resolution printer. After exposing to light, developing, and the post etching process, MPAs with a
patternon one or both sides can be fabricated.[7] Since the resonance of a metamaterial scales with the
size of the operational wavelength, by moving to a higher frequency the size of the resonator becomes
smaller, which requires higher precision fabrication techniques. Many studies on MPAs have been
carried out in the THz range due to the many interesting properties and possible applications at these
frequencies. In this range, metamaterial resonators are on the order of tens of microns with a smallest
feature size of several microns. For these sizes, photolithography is the most effective manner of
fabrication.[8] Fabricating the MPA at higher frequencies surpasses the capability of photolithography
and thus requires a technique with a higher resolution. It has been demonstrated that MPAs operating in
the infrared and visible range are best fabricated using techniques such as e-beam lithography and
focused ion beam (FIB). These methods are capable of making structures with sizes that are on the order
of tens of nanometers.
4.3 Characterization
Different techniques are used to characterize the performance of MPAs at different frequencies. In the
microwave range, characterization is usually carried out in a microwave anechoic chamber where horn
antennas, connected to a vector network analyzer, detect reflected and transmitted microwaves from a
sample. Terahertz time domain spectroscopy (TDS) is another powerful tool to characterize
theperformance of MPAs, especially at THz frequencies. By Fourier transforming the time pulse from
the sample and reference, both amplitude and phase information can be obtained. Fourier transform
infrared (FTIR) spectroscopy is the most frequently used method to characterize MPAs working in
ranges higher than microwave and covers an extremely broad spectrum ranging from THz to visible.[9]
4.4. Applications
Other than their rich ability as a platform to study fundamental electromagnetic wave theory,
MPAs offer a wide variety of practical applications.
Because MPAs are tunable with respect to their operational wavelength, they can be used as
spectrally sensitive detectors or sensors. Much work has done in both integrating MPAs into existing
designs and creating novel devices based on MPAs to provide detection and sensing throughout the
11
electromagnetic spectrum. Microbolometers are a type of thermal detector in which incident
electromagnetic radiation is absorbed by a material and then sensed by a thermometer.[10]
There are a multitude of other applications for MPAs. absorbers in the millimeter range could be
used for radar sensors for adaptive cruise control.[11] MPAs have been postulated to be useful in
integrated photonic circuits, spectroscopy and imaging and so on.
V. Recent Papers
In this section we discuss about some recent papaers and researches about metamaterial perfect
absorbers and then cover the performance flexibility and some other issues which was mentioned before
and it was crucial in designing EM wave absorbers.
5.1 Wide-angle infrared absorber based on negative index plasmonic metamaterial [12]
In this paper, the author proposed an approach to design a perfect absorber which has wide angle
absorption in infrared frequency band. It is shown analytically that a sub-wavelength in all three
dimensions enables absorption of close to 100% for incidence angles up to 45 deg to the normal.
The structure proposed in this paper is useful for wavelength-selective infrared and THz detection
which is important for thermal imaging, night vision systems and non-destructive detection. Wide-angle
power absorption efficiency is desirable for miniaturizing photodetectorsor microbolometers down to the
wavelength size.
Consider a semi-infinite slab of a lossy metamaterial with engineered dielectric permittivity and
magnetic permeability tensors ε and μ. Radiation is assumed to be incident in the x−z plane at an angle θ
with respect to the vacuum-material interface normal. Therefore, relevant components of constitutive
parameters are , and . For our semi-infinite slab (assuming that the metamaterial’s thickness
is sufficient to absorb all transmitted radiation), absorptivity A is limited only by reflection. A
straightforward calculation yields the reflection and absorption.
Note that Lossy material causes that elimination of transmission in this structure. By assuming = 0
it is obvious that absorber’s material impedance is equal to
μ
ε
. Hence, if in a specific wavelength
= and if we can consider = 1 then A ≈ 1 − tan (
θ
). Therefore, it can be assumed that
12
between 0 and the absorption is more than 97%. Matching between the structure and air causes zero
reflectivity and also by using taylor series it is obvious that between a specific angles, aborptivitty is
high. Their proposed structure is shown in Fig.5. Each unit cell consists of two parallel layers separated
by the distance ℎ . Electromagnetic resonances in effective permittivity and magnetic permeability of
plasmonic composites are unambiguously related to the electrostatic surface plasmon resonances of the
appropriate symmetry (electric dipole and magnetic dipole, correspondingly). Wire-strip loops
participate in magnetic field and both of them also participate in Electrical field.
Fig.5. PIMNIM Structure. Unit cell for electromagnetic and electrostatic simulations isinside the dashed rectangles.
Angular dependence of the absorption coefficient is shown in the Fig.7. This structure was only
simulated by commercial programs such as HFSS or CST. In this paper they use CST for their
simulation. And their result for absorption, transmission and reflection and constitutive parameters is
shown below:
13
Fig.6 Constitutive Parameters
Fig.7 Angular dependence of the absorption coefficient for the idealized structure
14
Fig.8 Absorption, Reflection and Transmission Coefficients
Also you can find the dimensions of the structure here:
5.2 Optically thin composite resonant absorber at the near infrared band: a polarization independent and
spectrally broadband configuration [13]
The proposed absorber in this paper electrically and magntecialy is perfectly matched to free space.
Therefore, there is no reflection from the surface to the air. Mainly, it consists of 4 layers which is a
metal back plate, dielectric spacer and two artificial layers respectively. Hence, it can be assumed as a
case (1) EM wave absorber which was mentioned in part II. The most important characteristic of this
structure is the broad band performance and independency of polarization. Also due to the
subwavelength unit cell, incident wave support wide angles. This kind of absorber can be used in
thermal photovoltaic, sensors and camouflage applications.
The structure is shown in Fig.9.
15
Fig.9 Geometry and schematic of the absorber design. The absorber consists of an array of magnetic resonators placed on
top of a thin dielectric. The wave vector (k) of the incident field is in the ̶ z-direction and the electric field (E) is in the y-
direction
They fabricated this structure and test it with spectrometer with free space method and the result
which was reported in the paper is shown in Fig.10. The numerical simulation was performed using CST
Microwave Studio.
The resonators which are used were from gold and up to this point the normal incidence and
single polarization is supported. But they modified their structure and add this capability to support
various angles and polarizations.
It is also stated that the magnetic response of the metamaterial layer is independent of the back
metal and high absorbance is present for multiple dielectric spacer thicknesses that may be desired for
specific applications. As we increased the dielectric layer thickness, the absorption magnitude shows an
oscillatory behavior, and the maxima and minima depend on the surface impedance variation of the
metamaterial layer. The magnetic resonance frequency of the individual SRRs strongly depend on
the resonator arm length (L). By changing L, we can change the resonance frequency considerably,
which is one of the reasons for the wide bandwidth response in the experiments as large parametric
variations for L were present at the fabricated samples.
16
Fig.10 Numerical and experimental data of absorbance derived from scattering parameters. The blue dotted line
corresponds to gold-only SRR layer performance. The SEM image of a section of the printed area and an example SRR
are shown on the right
By modifying the sample and rotate nano structures same as the Fig.11. it is possible to have wide-
angle absorption and polarization independency. They added a resistive sheet (thin titanium) layer
between the metamaterial and dielectric layers. The three layer configuration composed of resistive
sheet, dielectric spacer, and back metal itself behaves as a resonant absorber. By changing the thickness
of the titanium layer, its electrical surface impedance can be tuned. In order to obtain wide bandwidth
operation, the resistive sheet resonant absorption wavelength and metamaterial layer resonant
absorption wavelength can be combined. They merged the two structures and the composite absorber
thereby had a larger bandwidth than the two individual cases. In order to achieve polarization
independence, we changed the unit cell so that it is now composed of 4 SRRs. There are elements
parallel to the y-direction and other elements that are parallel to the x-direction. They saw that the
simulated absorption spectra for the incident wave polarization of 45° is the same as the polarization
angles 0°and 90°, which clearly proves the polarization independent response.
17
Fig.9 Polarization independent response and corresponding unit cell
Fig.10. Simulated absorption response of the SRR based metamaterial absorber for several incidence angles
18
For the oblique illumination they investigated the incidence angles of 20°, 40°, 60°, and 80° in the x-z
and y-z planes. Fig.10. shows the spectral response for several angles of incidence: the peak absorption
frequency changes and remains more than 70%, and up to a 60° angle of incidence. For oblique
illumination, the excitation of SRRs is partially electrically and partially magnetically originated. There
was a slight shift of the operation frequency that slightly decreased the operation bandwidth. Even
though the operation frequency of the absorber changed slightly, the absorption values remained large
for up to 60° at the x-y and y-z planes.
5.3 Optical metamaterial absorber based on leaf-shaped cells [14]
In this paper the authors presented the model of an infrared metamaterialabsorber composed of
metallic leaf-shaped cells, dielectric substrate, and continuous metallic film which has absorptivity more
than 99.3 % at the 126.7 Thz and support different incident angles and radiation modes.
Note that this structure is kind of random nano structures which can be fabricated only by
electrochemical decomposition techniques which is a chemical process. According to author postulate, it
can be used in applications such as IR imaging systems, thermal bolometers, and optical bi-stable
switches. Fig.11. shows the schematic illustration of leaf-shaped metamaterial absorber. From the
inspiration of natural existed leaf as shown in Fig.11(c), they design and fabricate a similar structure
shown in Fig.11(a). For EM wave normal incidence (Fig.11), the continuous trunks of the leafshaped
cells behave as an array of periodical wires [15], supplying the electric coupling to incidentEfield. The
magnetic coupling is created by the antiparallel currents between the metal leaf and metal film response
to the incident Hfield. We will show, in this paper, these two resonances could be well overlapped in the
given frequency range if appropriately modulating the geometrical parameters, and it may be able to
realize almost complete absorption to the incident electromagnetic wave. In the paper first they simulate
and experiment the structure for microwave regime then they fabricate the nano structre for optical
regime. Due to self-scalable ability of metamaterials it is a correct decision. The results is shown in
Fig.12. and Fig.13. If the dimensions of the proposed structure are reduced down to nanoscale, the
structure will give perfect absorption at optical frequency. Figure 11(d) shows the infrared metamaterial
prepared with a chemical deposition method. Metamaterial absorber could be prepared with the similar
method that combines with a thin silver film.
19
Fig 11. (a) The schematic illustration of the leaf-shaped based metamaterial absorber model, (b) the unit cell of the leaf
shaped configuration, and definition of the geometry parameters, (c) scheme of natural existed leaf, (d) the silver leaf-
shaped cell fabricated with electrochemical deposition
Fig 12. TheS11(a) and absorptivity (b) of the microwave metamaterial absorber from simulations and microwave
experiments
c
d
b
a
20
Fig 13. TheSparameter (a) and absorptivity (b) of the infrared metamaterial absorber from simulation
The S parameters of the optical metamaterial are numerically simulated. In Fig.13 (a), you could find
that the S11 has a sudden dip near the frequency of 126.7 THz, the minimum of which is -25.1dB. The
S21 (the amplitude of transmission) is all below -20 dB at the whole wavelength reign, and get -24.6dB
at 126.7 THz.
In this case, the absorptivity could be calculated as A(ω) = 1-10×exp(S11/10)-10×exp(S21/10), and
the result is shown in Fig.13(b). We could find the absorptivity as high as 99.3% and is achieved for this
metamaterial close to the frequency of 126.7 THz. The result shows clearly the viability of using silver
leaf-shaped cells to build metamaterial absorber at infrared frequencies if it combines with additional
continuous silver film.
6.3 Perfect absorbers on curved surfaces and their potential applications [16]
In this paper, the author presented a curved surface metamaterial absorber which it can be used in
applications such as suppression of back-scattered light from covered objects and clocked it in
reflection, optical black holes and suppression of spurious back-scattered light for example in
Radar absorbers. In this paper just simulation is done and the structure is assumed from flexible
polymer film. The structure is periodic in y-direction with periodicity P and is infinitely extended in
z-direction. We assumed that the dielectric deposited onto the metal is characterized by = 2.25
reflecting the properties of SiO2. The ground plate and the metallic wires are assumed to be made
from silver. The structure is shown in Fig.14. Since the operational domain should be in the near-
21
infrared, the thickness of the ground plate is set to be 200nm. The perfect absorber is optimized such
that reflection is negligible (R~0) when an antisymmetric resonance is excited in the coupled system
made from the nanowire and the ground plate. Therefore, the absorption of the perfect absorber is
close to unity (A=1−T−R~1).
Fig.14. Geometry and illumination under consideration(a) Schematic of a planar perfect metamaterial
absorber. (b) Schematic of the perfect metamaterial absorber on a curved surface. Geometrical parameters
are chosen according to dfilm=200 nm,tgap=10 nm, twire=10 nm, L=125 nm,P=200 nm, Rdie=8.2μm. The
structure illuminated by TM polarized plane wave and the magnetic filed is always along the infinite
nanowires i.e. z direction.
To quantify the optical response, the two-dimensional scattering cross sections (SCSs) of the cylinder
with and without perfect absorbing cover are shown in Fig.15(d). The total SCS of the cylinder coincides
with the absorption cross section at resonance frequency as suggested by the principle of critical
coupling. The back-scattering cross section of the covered cylinder compared to the dielectric cylinder is
significantly suppressed at resonance and even indistinguishable from zero on a linear scale. Hence, the
proposed device can reduce the back-scattering significantly at the design frequency. Obviously, the
total SCS at resonance frequency is then equal to the forward SCS that can be easily extracted while
subtracting the backward SCS from the total SCS.
22
Fig.15. Optical response of the perfect metamaterial absorber on planar and curved surface.(a) Hz-
component and Jy- component at resonance frequency f =232 (b) Absorption of the planar absorberas a
function of frequency and the angle of incidence. (c)Hz- component at resonance for a plane wave incident at
an absorber on curved surface. (d) Cross sections per unit length of the absorber on curved surface (solid
lines) and a referential dielectric cylinder (dashed lines). The figure shows the total and the backward
scattering cross section as well as the absorption cross section (all per unit length).
VI. Conclusion
In this review report first we introduce EM wave absorbers and describe the necessity of using them
and name some applications. Then we explain the mechanism of absorption and types of absorber
matieral. We paid attention to some crucial issues in the design and try to solve them by using
metamaterial perfect absorber. Then we said that optical perfect absorbers is just like others but with
very smaller dimensions. At the end we explaind four recent papers about using metmaterial as optical
perfect absorbers and solving some important problems in absorber’s performance.
23
VII. References
[1] G.T.Ruck, D.E.Barrick , W.D.Stuart, Radar Cross Section Handbook, Vol. 2, Plenum , New York 1970.
[2] R.W.Wood, Phil.Mag. & J.Sci. 1902, 4, 396
[3] N.I.Landy, S.Sajuyigbe, J.J.Mock, D.R.Smith, W.J.Padilla, Phys. Rev. Lett. 2008, 100, 207402
[4]Claire M.Watts, Xianliang Liu, and Willie J.Padilla, Metamaterial Electromagnetic Wave Absorbers, Adv.Mater.2012, 24
[5] S. O’Brien, D. McPeake , S.A.Ramakrishna , J.B.Pendry , Phys. Rev. B 2004, 69, 241101(R)
[6] H.Tao, C.M.Bingham, A.C.Strikwerda, D.Pilon, N.I.Landy, K.Fan, X.Zhang, W.J.Padilla, R.D.Averitt, Phys. Rev. B 2008
[7] N. I. Landy , S. Sajuyigbe , J. J. Mock , D. R. Smith , W. J. Padilla , Phys. Rev. Lett. 2008, 100, 207402 .
[8] N. I. Landy , C. M. Bingham , T. Tyler , N. Jokerst , D. R. Smith , W. J. Padilla , Phys. Rev. B 2009, 79, 125104 .
[9] X. Liu , T. Tyler , T. Starr , A. Starr , N. M. Jokerst , W. J. Padilla , Phys. Rev. Lett. 2011, 107, 045901 .
[10] R.A.Wood, in Infrared Detectors and Emitters: Materials and DevicesKluwer Academic Publishers , Norwell, USA 2001.
[11] A.I.M.Ayala, Master of Science Thesis, Tufts University, USA, 2009.
[12] Y.Avitzour, Y.A.Urzhumov “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial” Phys. Rev.
[13] Kamil Boratay Alici, Adil Burak Turhan, and Ekmel Ozbay18 July 2011 / Vol. 19, No. 15 / OPTICS EXPRESS 14260
[14] Optical metamaterial absorber based on leaf-shaped cells Applied Physics A 102: 147–151 (2011)
[15] J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett.76, 4773 (1996)
[16] Rasoul Alaee, Christoph Menzel, Falk Lederer;Perfect absorbers on curved surfaces and their potential applications 30 July
OPTICS EXPRESS
[17] Jiaming Hao, Jing Wang, Xianliang Liu, Willie J. Padilla, Lei Zhou, and Min Qiu,High performance optical absorber

More Related Content

What's hot

Dr. Jason Valentine-Metamaterials 2017
Dr. Jason Valentine-Metamaterials 2017Dr. Jason Valentine-Metamaterials 2017
Dr. Jason Valentine-Metamaterials 2017Vetrea Ruffin
 
Metamaterials, A great achievement of material science
Metamaterials, A great achievement of material scienceMetamaterials, A great achievement of material science
Metamaterials, A great achievement of material scienceSakti Prasanna Muduli
 
Metamaterials Innovation Network – Launch event
Metamaterials Innovation Network – Launch eventMetamaterials Innovation Network – Launch event
Metamaterials Innovation Network – Launch eventKTN
 
Metasurface Hologram Invisibility - ppt
Metasurface Hologram Invisibility -  pptMetasurface Hologram Invisibility -  ppt
Metasurface Hologram Invisibility - pptCarlo Andrea Gonano
 
Giant magnetoresistance ppt
Giant magnetoresistance pptGiant magnetoresistance ppt
Giant magnetoresistance ppttedoado
 
paper presentation on fss 19 feb
paper presentation on fss 19 febpaper presentation on fss 19 feb
paper presentation on fss 19 febANKUSH PRAJAPAT
 
PLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle wavesPLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle wavesDHRUVIN PATEL
 
Electro-optic Modulator
Electro-optic ModulatorElectro-optic Modulator
Electro-optic ModulatorAhmed El-Sayed
 

What's hot (20)

Metamaterial
MetamaterialMetamaterial
Metamaterial
 
Metamaterial
MetamaterialMetamaterial
Metamaterial
 
Metamaterials
MetamaterialsMetamaterials
Metamaterials
 
Dr. Jason Valentine-Metamaterials 2017
Dr. Jason Valentine-Metamaterials 2017Dr. Jason Valentine-Metamaterials 2017
Dr. Jason Valentine-Metamaterials 2017
 
METAMATERIALS
METAMATERIALSMETAMATERIALS
METAMATERIALS
 
Negative Refraction
Negative RefractionNegative Refraction
Negative Refraction
 
Metamaterials
MetamaterialsMetamaterials
Metamaterials
 
Metamaterials
MetamaterialsMetamaterials
Metamaterials
 
Metamaterials, A great achievement of material science
Metamaterials, A great achievement of material scienceMetamaterials, A great achievement of material science
Metamaterials, A great achievement of material science
 
Metamaterials
MetamaterialsMetamaterials
Metamaterials
 
Metamaterials Innovation Network – Launch event
Metamaterials Innovation Network – Launch eventMetamaterials Innovation Network – Launch event
Metamaterials Innovation Network – Launch event
 
metamaterial
metamaterialmetamaterial
metamaterial
 
Metasurface Hologram Invisibility - ppt
Metasurface Hologram Invisibility -  pptMetasurface Hologram Invisibility -  ppt
Metasurface Hologram Invisibility - ppt
 
Giant magnetoresistance ppt
Giant magnetoresistance pptGiant magnetoresistance ppt
Giant magnetoresistance ppt
 
paper presentation on fss 19 feb
paper presentation on fss 19 febpaper presentation on fss 19 feb
paper presentation on fss 19 feb
 
PLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle wavesPLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle waves
 
Electro-optic Modulator
Electro-optic ModulatorElectro-optic Modulator
Electro-optic Modulator
 
PLASMONICS
PLASMONICSPLASMONICS
PLASMONICS
 
PHOTONIC CRYSTALS
PHOTONIC CRYSTALSPHOTONIC CRYSTALS
PHOTONIC CRYSTALS
 
Plasmons
PlasmonsPlasmons
Plasmons
 

Viewers also liked

Radar Absorbing Materials by Shaunak Aphale
Radar Absorbing Materials by Shaunak AphaleRadar Absorbing Materials by Shaunak Aphale
Radar Absorbing Materials by Shaunak AphaleShaunak Aphale
 
Polypyrrole as radar absorbent material(RAM)
Polypyrrole as radar absorbent material(RAM)Polypyrrole as radar absorbent material(RAM)
Polypyrrole as radar absorbent material(RAM)Debajyoti Biswas
 
MICROSTRIP ANTENNAS FOR RFID APPLICATION USING META-MATERIAL
MICROSTRIP ANTENNAS FOR RFID APPLICATION USING META-MATERIALMICROSTRIP ANTENNAS FOR RFID APPLICATION USING META-MATERIAL
MICROSTRIP ANTENNAS FOR RFID APPLICATION USING META-MATERIALNIKITA JANJAL
 
Definisi tahun, dekad, abad dan alaf
Definisi tahun, dekad, abad dan alafDefinisi tahun, dekad, abad dan alaf
Definisi tahun, dekad, abad dan alafimranczar
 
Broadside array vs end fire array
Broadside array vs end fire arrayBroadside array vs end fire array
Broadside array vs end fire arrayAJAL A J
 
5S Workshop &Visual management - Krishna Heda
5S Workshop &Visual management - Krishna Heda5S Workshop &Visual management - Krishna Heda
5S Workshop &Visual management - Krishna Hedakrishnaheda
 
Defining Automotive Technology by SouLSteer
Defining Automotive Technology by SouLSteerDefining Automotive Technology by SouLSteer
Defining Automotive Technology by SouLSteerShobhit Gosain
 
Microstrip Patch Antenna Design
Microstrip Patch Antenna DesignMicrostrip Patch Antenna Design
Microstrip Patch Antenna DesignAmit Samanta
 
5S: A Workplace Organization Method
5S: A Workplace Organization Method5S: A Workplace Organization Method
5S: A Workplace Organization MethodNanette Bajador
 

Viewers also liked (13)

Radar Absorbing Materials by Shaunak Aphale
Radar Absorbing Materials by Shaunak AphaleRadar Absorbing Materials by Shaunak Aphale
Radar Absorbing Materials by Shaunak Aphale
 
Polypyrrole as radar absorbent material(RAM)
Polypyrrole as radar absorbent material(RAM)Polypyrrole as radar absorbent material(RAM)
Polypyrrole as radar absorbent material(RAM)
 
MICROSTRIP ANTENNAS FOR RFID APPLICATION USING META-MATERIAL
MICROSTRIP ANTENNAS FOR RFID APPLICATION USING META-MATERIALMICROSTRIP ANTENNAS FOR RFID APPLICATION USING META-MATERIAL
MICROSTRIP ANTENNAS FOR RFID APPLICATION USING META-MATERIAL
 
Definisi tahun, dekad, abad dan alaf
Definisi tahun, dekad, abad dan alafDefinisi tahun, dekad, abad dan alaf
Definisi tahun, dekad, abad dan alaf
 
Broadside array vs end fire array
Broadside array vs end fire arrayBroadside array vs end fire array
Broadside array vs end fire array
 
5S Workshop &Visual management - Krishna Heda
5S Workshop &Visual management - Krishna Heda5S Workshop &Visual management - Krishna Heda
5S Workshop &Visual management - Krishna Heda
 
Defining Automotive Technology by SouLSteer
Defining Automotive Technology by SouLSteerDefining Automotive Technology by SouLSteer
Defining Automotive Technology by SouLSteer
 
Microstrip Patch Antenna Design
Microstrip Patch Antenna DesignMicrostrip Patch Antenna Design
Microstrip Patch Antenna Design
 
Metamaterials
MetamaterialsMetamaterials
Metamaterials
 
Electrical car ppt
Electrical car pptElectrical car ppt
Electrical car ppt
 
Hybrid Electric Vehicle
Hybrid Electric VehicleHybrid Electric Vehicle
Hybrid Electric Vehicle
 
5S Techniques by Operational Excellence Consulting
5S Techniques by Operational Excellence Consulting5S Techniques by Operational Excellence Consulting
5S Techniques by Operational Excellence Consulting
 
5S: A Workplace Organization Method
5S: A Workplace Organization Method5S: A Workplace Organization Method
5S: A Workplace Organization Method
 

Similar to Using Metamaterial as Optical Perfect Absorber

Dielectic measurement final
Dielectic measurement finalDielectic measurement final
Dielectic measurement finalNiranjan Gupta
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiationSumant Diwakar
 
IRJET- A Retropect Survey on Metamaterial Absorber Configuration, Execution a...
IRJET- A Retropect Survey on Metamaterial Absorber Configuration, Execution a...IRJET- A Retropect Survey on Metamaterial Absorber Configuration, Execution a...
IRJET- A Retropect Survey on Metamaterial Absorber Configuration, Execution a...IRJET Journal
 
Ultraviolet visible (uv vis) spectroscopy Likhith K
Ultraviolet visible (uv vis) spectroscopy Likhith KUltraviolet visible (uv vis) spectroscopy Likhith K
Ultraviolet visible (uv vis) spectroscopy Likhith KLIKHITHK1
 
Role of electromagnetic Radiation in Remote Sensing
Role of electromagnetic Radiation in  Remote SensingRole of electromagnetic Radiation in  Remote Sensing
Role of electromagnetic Radiation in Remote SensingNzar Braim
 
Metamaterial Absorber for X-band.doc
Metamaterial Absorber for X-band.docMetamaterial Absorber for X-band.doc
Metamaterial Absorber for X-band.docAmjadNadeem2
 
Nenopartical optical sensors
Nenopartical optical sensorsNenopartical optical sensors
Nenopartical optical sensorsRam Niwas Bajiya
 
Wireless mobile charging using microwaves full report
Wireless mobile charging using microwaves full reportWireless mobile charging using microwaves full report
Wireless mobile charging using microwaves full reportAyswarya Ayshu P R
 
Antenna basics from-r&s
Antenna basics from-r&sAntenna basics from-r&s
Antenna basics from-r&sSaurabh Verma
 
Kratzer, Aaron Undergraduate Thesis
Kratzer, Aaron Undergraduate ThesisKratzer, Aaron Undergraduate Thesis
Kratzer, Aaron Undergraduate ThesisAaron Kratzer
 
Introduction of spectroscopy
Introduction of spectroscopyIntroduction of spectroscopy
Introduction of spectroscopyZainab&Sons
 

Similar to Using Metamaterial as Optical Perfect Absorber (20)

Dielectic measurement final
Dielectic measurement finalDielectic measurement final
Dielectic measurement final
 
Gravitational Radiation
Gravitational RadiationGravitational Radiation
Gravitational Radiation
 
X – ray diffraction by iswar hazarika
X – ray diffraction by iswar hazarikaX – ray diffraction by iswar hazarika
X – ray diffraction by iswar hazarika
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiation
 
IRJET- A Retropect Survey on Metamaterial Absorber Configuration, Execution a...
IRJET- A Retropect Survey on Metamaterial Absorber Configuration, Execution a...IRJET- A Retropect Survey on Metamaterial Absorber Configuration, Execution a...
IRJET- A Retropect Survey on Metamaterial Absorber Configuration, Execution a...
 
Plasma Antenna
Plasma AntennaPlasma Antenna
Plasma Antenna
 
Ultraviolet visible (uv vis) spectroscopy Likhith K
Ultraviolet visible (uv vis) spectroscopy Likhith KUltraviolet visible (uv vis) spectroscopy Likhith K
Ultraviolet visible (uv vis) spectroscopy Likhith K
 
10346
1034610346
10346
 
Role of electromagnetic Radiation in Remote Sensing
Role of electromagnetic Radiation in  Remote SensingRole of electromagnetic Radiation in  Remote Sensing
Role of electromagnetic Radiation in Remote Sensing
 
Metamaterial Absorber for X-band.doc
Metamaterial Absorber for X-band.docMetamaterial Absorber for X-band.doc
Metamaterial Absorber for X-band.doc
 
8 gelombang em
8 gelombang em8 gelombang em
8 gelombang em
 
ECE2708 Microwave Engineering Lab Joournal
ECE2708 Microwave Engineering Lab JoournalECE2708 Microwave Engineering Lab Joournal
ECE2708 Microwave Engineering Lab Joournal
 
Nenopartical optical sensors
Nenopartical optical sensorsNenopartical optical sensors
Nenopartical optical sensors
 
Wireless mobile charging using microwaves full report
Wireless mobile charging using microwaves full reportWireless mobile charging using microwaves full report
Wireless mobile charging using microwaves full report
 
Lecture 21
Lecture 21Lecture 21
Lecture 21
 
Antenna basics from-r&s
Antenna basics from-r&sAntenna basics from-r&s
Antenna basics from-r&s
 
Microwaves
MicrowavesMicrowaves
Microwaves
 
Kratzer, Aaron Undergraduate Thesis
Kratzer, Aaron Undergraduate ThesisKratzer, Aaron Undergraduate Thesis
Kratzer, Aaron Undergraduate Thesis
 
Introduction of spectroscopy
Introduction of spectroscopyIntroduction of spectroscopy
Introduction of spectroscopy
 
PDF_thesis
PDF_thesisPDF_thesis
PDF_thesis
 

Recently uploaded

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 

Recently uploaded (20)

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 

Using Metamaterial as Optical Perfect Absorber

  • 1. University of Tehran College of Engineering School of Electrical and Computer Engineering University of Tehran College of Engineering School of Electrical And Computer Engineering Using Metamaterials As Optical Perfect Absorbers Review Report Sepehr Ahmadzadeh 810188299 Spring 2012 - 2013
  • 2. Submitted June 23, 2013 All Rights Received Contents I. Introduction 3 II. EM Wave Absorber 3 II.a Resonant Absorbers 4 II.b BroadBand Absorbers 4 II.c Near Unity Absorber 4 III.EM Wave Absorber Theory 5 III.a Fresnel Equations 6 IV.Metamaterial Perfect Absorbers 9 IV.a Simulation 9 IV.b Fabrication 10 IV.c Characterization 10 IV.d Applications 10 V. Recent Papers 11 VI.Conclusion 22 VII. References 23
  • 3. Submitted June 23, 2013 All Rights Received Metamaterial as Optical Perfect Absorber Sepehr Ahmadzadeh – 810188299 Photonic Research Lab Dept. Communication University of Tehran Tehran, Iran se.ahmadzadeh@ut.ac.ir Abstract – The following report describes the history, theory, implementation and characterization of metamaterial perfect absorbers (MPAs). The motivation for studying MPAs comes mainly from their use in potential applications. These applications briefly include: emitters, sensors, spatial light modulators, IR camouflage, use in thermophotovoltaics, and wireless communication. MPAs also provide insight into the theory of metamaterials (MMs) as an effective medium where the designer can control the electromagnetic properties by engineering the geometry. Also using artificial materials as perfect optical absorbers are discussed and some recent papers in the area have been introduced. Keywords – Optical perfect absorber, Metamaterial, perfect absorber, Effective medium, Electromagnetic, MPA I. INTRODUCTION Metamaterials are artificial materials engineered for specific electric and magnetic responses. Since the first attempts for designing metamaterials new applications of such materials have been proposed. For example, Absorbers are devices in which incident radiation is absorbed at the operating frequency. Near unity absorption is one the hot topics of this modern world because it has several applications such as solar cell materials, photodetectors, selectivee thermal emmiters, detection and sensing, microbolometers, integrated photonic circuits and other things. In the following sections, first some basics about EM wave absorbers and types of them are discussed. Then in section III, the basic theory of EM wave absorption is discussed and then in section IV, metamaterial perfect absorbers will be introduced and finally, some recent papers in the area will be covered. II. EM WAVE ABSORBER Electromagnetic (EM) wave absorbers can be categorized into two types: resonant absorbers and broadband absorbers [1]. Resonant absorbers rely on the material interacting with the incident radiation
  • 4. 4 in a resonant way at a specific frequency, (where the wavelength corresponding to is = and c is the speed of light in vacuum). Broadband absorbers generally rely on materials whose properties are frequency independent and therefore can absorb radiation over a large bandwidth. 2.1 Resonant Absorbers Resonant absorbers have utilized, for the most part, multiple layers separated by a quarter of the operation wavelength. In transmission line theory, a metal plate acts like a short circuit, and when it is placed behind any sort of “load,” will act like an open circuit at the resistive sheet (i.e. conductance G = 0). Therefore, the incident wave sees just the admittance of the resistive sheet. When the load impedance matches free space, the reflectivity goes to zero.With the addition of loss, high absorption can be achieved. Initial interests in electromagnetic wave absorbers were largely in the microwave range. The usefulness of absorbers in both improving radar performance and providing concealment against others’ radar systems was utilized as a military technique. Two well known scientists who developed EM absorbers are W. W. Salisbury and J. Jaumann, who independently created similar devices. One such device, known as the Salisbury screen, is a basic example of the resonant absorber mentioned above. A resistive sheet is placed in front of a metal ground plane, usually separated by some lossless dielectric. The effective open circuit creates R( ) = off the resistive layer. The Jaumann absorber can conceptually be considered an extension of the Salisbury screen which consists of two or more resistive sheets in front of a single ground plane. All sheets are designed to operate at a distinct wavelength, and thus each sheet is separated by approximately λ/4, producing multiple reflection minimums around some center frequency . The effect is that it acts as a resonant absorber over multiple wavelengths, achieving a broadband response. The Dällenbach layer employs a different mechanism than the Salisbury screen; its design consists of a homogeneous layer in front of a ground plane. The homogeneous layer is selected for particular loss values resulting from the imaginary portions of the electric permittivity and the magnetic permeability. The idea is to impedance match to free space as to minimize the reflection of the surface and then utilize the loss in the homogeneous layer to absorb the incident radiation. Another type of resonant electromagnetic wave absorber, known as the crossed grating absorber, uses a reflective metal plane with an etched shallow periodic grid which is shown in Fig.1. Fig. 1. Crossed grating Absorbers
  • 5. 5 A resonance is created due to the interaction between the periodic grid and incident radiation, creating a period of anomalous diffraction. [2] It was shown that anomalous diffraction is correlated to periods of enhanced absorption. 2.2 Broadband Absorbers One example of a broadband absorber is a geometric transition absorber. These devices are most commonly used in anechoic chambers. The idea is to create a slowly varying transition from free space into a lossy material using shapes such as pyramids or wedges loaded with lossy material which is shown if Fig.2. Fig.2 Geometric Transition Absorber This way reflectivity is minimized and the wave is gradually absorbed over the length of the shaped geometry. By using a thick layer of this material, one can generate enough loss to create high absorption.[1] 2.3 Near Unity Absorber (Perfect Absorbers) A near unity absorber is a device in which all incident radiation is absorbed at the operating frequency– transmissivity, reflectivity, scattering and all other EM propagation channels are disabled. What happens in optical frequency regime? One of the most important issues in this frequency band is material’s transparency against light. Therefore, scientists seek a way to change the material in order to have a perfect absorption and zero transmission or reflection. Artificial materials are engineerd structures which can be used for this purpose. Hence, in this report we introduce metamaterial perfect absorbers and the theory behind them. But first, let me explain a little about the theory of EM wave absorption in general. III. Electromagnetic Wave Absorption Theory We begin by considering all possible ways in which electromagnetic energy can propagate at an interface. Electromagnetic waves incident upon a boundary or surface may be reflected, transmitted, absorbed, scattered, or may excite surface electromagnetic waves (SEWs). Let us consider wavelengths in the range of , and assume that the surface has an average roughness that is much smaller than the wavelength, ≪ such that we may ignore scattering effects. The surface may also support plasmons
  • 6. 6 or, more generally, surface electromagnetic waves, which may be explored by considering their propagation length, often described as L = , where k is the imaginary part of the complex wavevector k|| = k + ik . It is clear that it is impossible to clarify if an external electromagnetic wave can couple to a surface and propagate as a SEW even if the plasmon propagation length L is known. Usually, researchers propose a figure of merit which is shown below: Obviously the figure of merit presented describes how much our incident wavevector matches the dispersion of our surface k , and considers the loss k of the surface for propagation of the SEW. Clearly, W reduces to L if k = k . If k is sufficiently large, generation of surface electromagneticnetic waves may be a form of loss but the SEW may re-radiate the wave if, e.g. our surface is curved. Thus, assuming we have a flat surface such that any SEWs or plasmons die out before re-scattering, we may then finally resolve that a wave may be reflected (R), transmitted (T), or absorbed (A), with their relationship given as A = 1–T– R. 3.1 Fresnel Equations Let us consider two cases; (1) a slab of thickness d of magneto-dielectric medium described by both the magnetic permeability ( ) = ( ) and the electric permittivity ( ) = ( ) and backed by a highly conductive opaque metallic ground plane. (2) A slab of thickness d of a magneto-dielectric medium embedded in a vaccum. For Case (1), since we consider a highly conductive metallic ground plane, transmission can be neglected and we begin by considering the reflectivity (R) and reflection coefficient (r) of an interface, for transverse electric (TE) and transverse magnetic (TM) polarized waves as, = | | = − √ − + √ − = | | = − √ − + √ − Where θ is the angle of incidence, and is the index of refraction of the magneto-dielectric medium. If we restrict our incident electromagnetic wave to normal, i.e. θ = 0°, equations above reduce to:
  • 7. 7 Where Z is the impedance of the magneto-dielectric material and is the impedance of free space. However, as mentioned, our impedance matched condition above is only valid for the reflectivity of an interface and thus incident radiation may still be transmitted through the medium. If our material is not of sufficient thickness (d) and loss ( ) then the wave will be reflected from the conducting metallic plane and may be reflected back into free space. A simple unit cell of this type absorber is shown in Fig.3. This structure is suggested by Smith [3] in 2008 and it is a unit cell which is operating at microwave regime. Fig.3 magneto-electric unit cell consisting of an ERR combined with a metallic ground plane–polarization In general, we can assume absorbers in two cases. Therefore, it is logical to present their absorption, transmission and reflection coefficients in the way shown in Fig.4. [4]. In the figure we plot results of Case (i): the reflectivity (green curve), transmissivity (blue curve), and the absorptivity (red curve); in this figure the magneto-dielectric layer is shown. As can be observed is zero everywhere, but is small and thus the absorptivity is near unity. The second case is magneto dielectric material in air and without any ground plane. The reflection and transmission coefficients for this matieral are given by is the relative impedance of the medium which is . Note that in this case there is no reflection due to matching between the material and free space but unlike case (1) there is transmission. Therefore, we can write equations as shown below:
  • 8. 8 As you can see in this figure, absorption and transmission is shown in figure ( c ) which is related to magneto-dielectric material embedded in the vaccum. But there is no reflection due to impedance matching between the material and the free space. As it mentioned above is related to and . Hence, by assuming large and we have a little transmission in a desired frequency. It is obvious that, in order to have a perfect absorber in optical regime, it is necessary to have small values of because is big and their multiplication has to be a small value. In both cases, the absorptivity is narrow band and out of this band the electromagnetic wave is reflected in case 1 or transmitted in case 2.
  • 9. 9 IV. Metamaterial Perfect Absorbers Using Metamaterials as perfect absorbers is a logical option approximately in all frequency regimes. Because of their subwavelength engineerd structure and their ability to design effective constitutive parameters, they can be used to achieve desired results. In order to have a wide band absorption, using lossy materials is necessary. Thus, finding a way to design a wide band perfect absorber is one the most crucial characteristics which attract researchers. For example, solar cells could be more practical if their absorbing material functions in a wider band of frequency. Using multistructures as a resonant part of a design, can help the metamaterials to resonance at various frequencies and absorb better in a wider band. Another performance flexibility which is important for scientists is polarization of the incident wave which absorbed by the material. Nowadays, independency of the polarization is the goal. Polarization independent magnetic metamaterials were first proposed for near infrared frequencies[5] as a means to eliminate bianisotropy by appealing to racemic mixtures of unit cells. Another work proposed that chiral metamaterials could achieve polarization independent absorption. Angle of incidence is in a high priority too. Wide angle absorption is a characteristic which can help engineers to design high performance solar cells, accurate sensors and so on. Most of the studies noted that a monotonic decrease in the absorptivity at resonance for TE modes as a function of incidence angle for those above roughly 40°, whereas there was little change for the TM mode–at least below ∼80 °. It was stated in multiple studies[6] that this is due to the fact that, as the incident angle increases, the parallel magnetic field component approaches zero and thus can no longer effectively induce antiparallel currents in the top MM layer and the back metal structure resulting in a drop in the magnetic flux. 4.1. Simulation Metamaterial perfect absorbers, similar to other metamaterials, are composed of repeating unit cells arranged in two or three dimensional periodic structures. The periodic array can be precisely modeled by simulation of one unit cell with the knowledge of material properties and the assignment of appropriate excitations (i.e., ports) and boundary conditions. One advantage of MPA simulation is that an optimized structure can be designed and the behavior predicted without unnecessary fabrication iterations. Also, due to the accuracy of the simulation techniques, there is generally a good match between simulated and experimental results if the material properties are well known. Among the simulation programs, CST Microwave studio, HFSS, and Comsol are some of the most common. Metal is one critical part of MPAs which affects the resonating behavior. Therefore, good knowledge of metal properties in simulation is essential to obtain trustable results. At low frequencies, such as microwaves, metals such as gold and copper are modeled as good conductors with a particular value for the conductivity. However, when simulating metamaterials at higher frequencies, such as infrared or optical, metals tend to be lossier and the Drude model is often used to reproduce their frequency dependent optical properties. Simulations
  • 10. 10 also provide the phase information of and . Together with the amplitude, the effective permittivity and permeability can be calculated for a MPA. 4.2 Fabrication MPAs that operate in the microwave frequency range are normally fabricated using the printed circuit board (PCB) method in which a certain thickness of copper is deposited on both sides of a photosensitized board, FR-4 being a common example. Since, in this frequency range, the sizes of metamaterial resonators are relative large, i.e. on the order of millimeters with the smallest dimensionapproximately 100 μ m, a photo mask can simply be printed on a transparency using a high resolution printer. After exposing to light, developing, and the post etching process, MPAs with a patternon one or both sides can be fabricated.[7] Since the resonance of a metamaterial scales with the size of the operational wavelength, by moving to a higher frequency the size of the resonator becomes smaller, which requires higher precision fabrication techniques. Many studies on MPAs have been carried out in the THz range due to the many interesting properties and possible applications at these frequencies. In this range, metamaterial resonators are on the order of tens of microns with a smallest feature size of several microns. For these sizes, photolithography is the most effective manner of fabrication.[8] Fabricating the MPA at higher frequencies surpasses the capability of photolithography and thus requires a technique with a higher resolution. It has been demonstrated that MPAs operating in the infrared and visible range are best fabricated using techniques such as e-beam lithography and focused ion beam (FIB). These methods are capable of making structures with sizes that are on the order of tens of nanometers. 4.3 Characterization Different techniques are used to characterize the performance of MPAs at different frequencies. In the microwave range, characterization is usually carried out in a microwave anechoic chamber where horn antennas, connected to a vector network analyzer, detect reflected and transmitted microwaves from a sample. Terahertz time domain spectroscopy (TDS) is another powerful tool to characterize theperformance of MPAs, especially at THz frequencies. By Fourier transforming the time pulse from the sample and reference, both amplitude and phase information can be obtained. Fourier transform infrared (FTIR) spectroscopy is the most frequently used method to characterize MPAs working in ranges higher than microwave and covers an extremely broad spectrum ranging from THz to visible.[9] 4.4. Applications Other than their rich ability as a platform to study fundamental electromagnetic wave theory, MPAs offer a wide variety of practical applications. Because MPAs are tunable with respect to their operational wavelength, they can be used as spectrally sensitive detectors or sensors. Much work has done in both integrating MPAs into existing designs and creating novel devices based on MPAs to provide detection and sensing throughout the
  • 11. 11 electromagnetic spectrum. Microbolometers are a type of thermal detector in which incident electromagnetic radiation is absorbed by a material and then sensed by a thermometer.[10] There are a multitude of other applications for MPAs. absorbers in the millimeter range could be used for radar sensors for adaptive cruise control.[11] MPAs have been postulated to be useful in integrated photonic circuits, spectroscopy and imaging and so on. V. Recent Papers In this section we discuss about some recent papaers and researches about metamaterial perfect absorbers and then cover the performance flexibility and some other issues which was mentioned before and it was crucial in designing EM wave absorbers. 5.1 Wide-angle infrared absorber based on negative index plasmonic metamaterial [12] In this paper, the author proposed an approach to design a perfect absorber which has wide angle absorption in infrared frequency band. It is shown analytically that a sub-wavelength in all three dimensions enables absorption of close to 100% for incidence angles up to 45 deg to the normal. The structure proposed in this paper is useful for wavelength-selective infrared and THz detection which is important for thermal imaging, night vision systems and non-destructive detection. Wide-angle power absorption efficiency is desirable for miniaturizing photodetectorsor microbolometers down to the wavelength size. Consider a semi-infinite slab of a lossy metamaterial with engineered dielectric permittivity and magnetic permeability tensors ε and μ. Radiation is assumed to be incident in the x−z plane at an angle θ with respect to the vacuum-material interface normal. Therefore, relevant components of constitutive parameters are , and . For our semi-infinite slab (assuming that the metamaterial’s thickness is sufficient to absorb all transmitted radiation), absorptivity A is limited only by reflection. A straightforward calculation yields the reflection and absorption. Note that Lossy material causes that elimination of transmission in this structure. By assuming = 0 it is obvious that absorber’s material impedance is equal to μ ε . Hence, if in a specific wavelength = and if we can consider = 1 then A ≈ 1 − tan ( θ ). Therefore, it can be assumed that
  • 12. 12 between 0 and the absorption is more than 97%. Matching between the structure and air causes zero reflectivity and also by using taylor series it is obvious that between a specific angles, aborptivitty is high. Their proposed structure is shown in Fig.5. Each unit cell consists of two parallel layers separated by the distance ℎ . Electromagnetic resonances in effective permittivity and magnetic permeability of plasmonic composites are unambiguously related to the electrostatic surface plasmon resonances of the appropriate symmetry (electric dipole and magnetic dipole, correspondingly). Wire-strip loops participate in magnetic field and both of them also participate in Electrical field. Fig.5. PIMNIM Structure. Unit cell for electromagnetic and electrostatic simulations isinside the dashed rectangles. Angular dependence of the absorption coefficient is shown in the Fig.7. This structure was only simulated by commercial programs such as HFSS or CST. In this paper they use CST for their simulation. And their result for absorption, transmission and reflection and constitutive parameters is shown below:
  • 13. 13 Fig.6 Constitutive Parameters Fig.7 Angular dependence of the absorption coefficient for the idealized structure
  • 14. 14 Fig.8 Absorption, Reflection and Transmission Coefficients Also you can find the dimensions of the structure here: 5.2 Optically thin composite resonant absorber at the near infrared band: a polarization independent and spectrally broadband configuration [13] The proposed absorber in this paper electrically and magntecialy is perfectly matched to free space. Therefore, there is no reflection from the surface to the air. Mainly, it consists of 4 layers which is a metal back plate, dielectric spacer and two artificial layers respectively. Hence, it can be assumed as a case (1) EM wave absorber which was mentioned in part II. The most important characteristic of this structure is the broad band performance and independency of polarization. Also due to the subwavelength unit cell, incident wave support wide angles. This kind of absorber can be used in thermal photovoltaic, sensors and camouflage applications. The structure is shown in Fig.9.
  • 15. 15 Fig.9 Geometry and schematic of the absorber design. The absorber consists of an array of magnetic resonators placed on top of a thin dielectric. The wave vector (k) of the incident field is in the ̶ z-direction and the electric field (E) is in the y- direction They fabricated this structure and test it with spectrometer with free space method and the result which was reported in the paper is shown in Fig.10. The numerical simulation was performed using CST Microwave Studio. The resonators which are used were from gold and up to this point the normal incidence and single polarization is supported. But they modified their structure and add this capability to support various angles and polarizations. It is also stated that the magnetic response of the metamaterial layer is independent of the back metal and high absorbance is present for multiple dielectric spacer thicknesses that may be desired for specific applications. As we increased the dielectric layer thickness, the absorption magnitude shows an oscillatory behavior, and the maxima and minima depend on the surface impedance variation of the metamaterial layer. The magnetic resonance frequency of the individual SRRs strongly depend on the resonator arm length (L). By changing L, we can change the resonance frequency considerably, which is one of the reasons for the wide bandwidth response in the experiments as large parametric variations for L were present at the fabricated samples.
  • 16. 16 Fig.10 Numerical and experimental data of absorbance derived from scattering parameters. The blue dotted line corresponds to gold-only SRR layer performance. The SEM image of a section of the printed area and an example SRR are shown on the right By modifying the sample and rotate nano structures same as the Fig.11. it is possible to have wide- angle absorption and polarization independency. They added a resistive sheet (thin titanium) layer between the metamaterial and dielectric layers. The three layer configuration composed of resistive sheet, dielectric spacer, and back metal itself behaves as a resonant absorber. By changing the thickness of the titanium layer, its electrical surface impedance can be tuned. In order to obtain wide bandwidth operation, the resistive sheet resonant absorption wavelength and metamaterial layer resonant absorption wavelength can be combined. They merged the two structures and the composite absorber thereby had a larger bandwidth than the two individual cases. In order to achieve polarization independence, we changed the unit cell so that it is now composed of 4 SRRs. There are elements parallel to the y-direction and other elements that are parallel to the x-direction. They saw that the simulated absorption spectra for the incident wave polarization of 45° is the same as the polarization angles 0°and 90°, which clearly proves the polarization independent response.
  • 17. 17 Fig.9 Polarization independent response and corresponding unit cell Fig.10. Simulated absorption response of the SRR based metamaterial absorber for several incidence angles
  • 18. 18 For the oblique illumination they investigated the incidence angles of 20°, 40°, 60°, and 80° in the x-z and y-z planes. Fig.10. shows the spectral response for several angles of incidence: the peak absorption frequency changes and remains more than 70%, and up to a 60° angle of incidence. For oblique illumination, the excitation of SRRs is partially electrically and partially magnetically originated. There was a slight shift of the operation frequency that slightly decreased the operation bandwidth. Even though the operation frequency of the absorber changed slightly, the absorption values remained large for up to 60° at the x-y and y-z planes. 5.3 Optical metamaterial absorber based on leaf-shaped cells [14] In this paper the authors presented the model of an infrared metamaterialabsorber composed of metallic leaf-shaped cells, dielectric substrate, and continuous metallic film which has absorptivity more than 99.3 % at the 126.7 Thz and support different incident angles and radiation modes. Note that this structure is kind of random nano structures which can be fabricated only by electrochemical decomposition techniques which is a chemical process. According to author postulate, it can be used in applications such as IR imaging systems, thermal bolometers, and optical bi-stable switches. Fig.11. shows the schematic illustration of leaf-shaped metamaterial absorber. From the inspiration of natural existed leaf as shown in Fig.11(c), they design and fabricate a similar structure shown in Fig.11(a). For EM wave normal incidence (Fig.11), the continuous trunks of the leafshaped cells behave as an array of periodical wires [15], supplying the electric coupling to incidentEfield. The magnetic coupling is created by the antiparallel currents between the metal leaf and metal film response to the incident Hfield. We will show, in this paper, these two resonances could be well overlapped in the given frequency range if appropriately modulating the geometrical parameters, and it may be able to realize almost complete absorption to the incident electromagnetic wave. In the paper first they simulate and experiment the structure for microwave regime then they fabricate the nano structre for optical regime. Due to self-scalable ability of metamaterials it is a correct decision. The results is shown in Fig.12. and Fig.13. If the dimensions of the proposed structure are reduced down to nanoscale, the structure will give perfect absorption at optical frequency. Figure 11(d) shows the infrared metamaterial prepared with a chemical deposition method. Metamaterial absorber could be prepared with the similar method that combines with a thin silver film.
  • 19. 19 Fig 11. (a) The schematic illustration of the leaf-shaped based metamaterial absorber model, (b) the unit cell of the leaf shaped configuration, and definition of the geometry parameters, (c) scheme of natural existed leaf, (d) the silver leaf- shaped cell fabricated with electrochemical deposition Fig 12. TheS11(a) and absorptivity (b) of the microwave metamaterial absorber from simulations and microwave experiments c d b a
  • 20. 20 Fig 13. TheSparameter (a) and absorptivity (b) of the infrared metamaterial absorber from simulation The S parameters of the optical metamaterial are numerically simulated. In Fig.13 (a), you could find that the S11 has a sudden dip near the frequency of 126.7 THz, the minimum of which is -25.1dB. The S21 (the amplitude of transmission) is all below -20 dB at the whole wavelength reign, and get -24.6dB at 126.7 THz. In this case, the absorptivity could be calculated as A(ω) = 1-10×exp(S11/10)-10×exp(S21/10), and the result is shown in Fig.13(b). We could find the absorptivity as high as 99.3% and is achieved for this metamaterial close to the frequency of 126.7 THz. The result shows clearly the viability of using silver leaf-shaped cells to build metamaterial absorber at infrared frequencies if it combines with additional continuous silver film. 6.3 Perfect absorbers on curved surfaces and their potential applications [16] In this paper, the author presented a curved surface metamaterial absorber which it can be used in applications such as suppression of back-scattered light from covered objects and clocked it in reflection, optical black holes and suppression of spurious back-scattered light for example in Radar absorbers. In this paper just simulation is done and the structure is assumed from flexible polymer film. The structure is periodic in y-direction with periodicity P and is infinitely extended in z-direction. We assumed that the dielectric deposited onto the metal is characterized by = 2.25 reflecting the properties of SiO2. The ground plate and the metallic wires are assumed to be made from silver. The structure is shown in Fig.14. Since the operational domain should be in the near-
  • 21. 21 infrared, the thickness of the ground plate is set to be 200nm. The perfect absorber is optimized such that reflection is negligible (R~0) when an antisymmetric resonance is excited in the coupled system made from the nanowire and the ground plate. Therefore, the absorption of the perfect absorber is close to unity (A=1−T−R~1). Fig.14. Geometry and illumination under consideration(a) Schematic of a planar perfect metamaterial absorber. (b) Schematic of the perfect metamaterial absorber on a curved surface. Geometrical parameters are chosen according to dfilm=200 nm,tgap=10 nm, twire=10 nm, L=125 nm,P=200 nm, Rdie=8.2μm. The structure illuminated by TM polarized plane wave and the magnetic filed is always along the infinite nanowires i.e. z direction. To quantify the optical response, the two-dimensional scattering cross sections (SCSs) of the cylinder with and without perfect absorbing cover are shown in Fig.15(d). The total SCS of the cylinder coincides with the absorption cross section at resonance frequency as suggested by the principle of critical coupling. The back-scattering cross section of the covered cylinder compared to the dielectric cylinder is significantly suppressed at resonance and even indistinguishable from zero on a linear scale. Hence, the proposed device can reduce the back-scattering significantly at the design frequency. Obviously, the total SCS at resonance frequency is then equal to the forward SCS that can be easily extracted while subtracting the backward SCS from the total SCS.
  • 22. 22 Fig.15. Optical response of the perfect metamaterial absorber on planar and curved surface.(a) Hz- component and Jy- component at resonance frequency f =232 (b) Absorption of the planar absorberas a function of frequency and the angle of incidence. (c)Hz- component at resonance for a plane wave incident at an absorber on curved surface. (d) Cross sections per unit length of the absorber on curved surface (solid lines) and a referential dielectric cylinder (dashed lines). The figure shows the total and the backward scattering cross section as well as the absorption cross section (all per unit length). VI. Conclusion In this review report first we introduce EM wave absorbers and describe the necessity of using them and name some applications. Then we explain the mechanism of absorption and types of absorber matieral. We paid attention to some crucial issues in the design and try to solve them by using metamaterial perfect absorber. Then we said that optical perfect absorbers is just like others but with very smaller dimensions. At the end we explaind four recent papers about using metmaterial as optical perfect absorbers and solving some important problems in absorber’s performance.
  • 23. 23 VII. References [1] G.T.Ruck, D.E.Barrick , W.D.Stuart, Radar Cross Section Handbook, Vol. 2, Plenum , New York 1970. [2] R.W.Wood, Phil.Mag. & J.Sci. 1902, 4, 396 [3] N.I.Landy, S.Sajuyigbe, J.J.Mock, D.R.Smith, W.J.Padilla, Phys. Rev. Lett. 2008, 100, 207402 [4]Claire M.Watts, Xianliang Liu, and Willie J.Padilla, Metamaterial Electromagnetic Wave Absorbers, Adv.Mater.2012, 24 [5] S. O’Brien, D. McPeake , S.A.Ramakrishna , J.B.Pendry , Phys. Rev. B 2004, 69, 241101(R) [6] H.Tao, C.M.Bingham, A.C.Strikwerda, D.Pilon, N.I.Landy, K.Fan, X.Zhang, W.J.Padilla, R.D.Averitt, Phys. Rev. B 2008 [7] N. I. Landy , S. Sajuyigbe , J. J. Mock , D. R. Smith , W. J. Padilla , Phys. Rev. Lett. 2008, 100, 207402 . [8] N. I. Landy , C. M. Bingham , T. Tyler , N. Jokerst , D. R. Smith , W. J. Padilla , Phys. Rev. B 2009, 79, 125104 . [9] X. Liu , T. Tyler , T. Starr , A. Starr , N. M. Jokerst , W. J. Padilla , Phys. Rev. Lett. 2011, 107, 045901 . [10] R.A.Wood, in Infrared Detectors and Emitters: Materials and DevicesKluwer Academic Publishers , Norwell, USA 2001. [11] A.I.M.Ayala, Master of Science Thesis, Tufts University, USA, 2009. [12] Y.Avitzour, Y.A.Urzhumov “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial” Phys. Rev. [13] Kamil Boratay Alici, Adil Burak Turhan, and Ekmel Ozbay18 July 2011 / Vol. 19, No. 15 / OPTICS EXPRESS 14260 [14] Optical metamaterial absorber based on leaf-shaped cells Applied Physics A 102: 147–151 (2011) [15] J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett.76, 4773 (1996) [16] Rasoul Alaee, Christoph Menzel, Falk Lederer;Perfect absorbers on curved surfaces and their potential applications 30 July OPTICS EXPRESS [17] Jiaming Hao, Jing Wang, Xianliang Liu, Willie J. Padilla, Lei Zhou, and Min Qiu,High performance optical absorber