SlideShare a Scribd company logo
1 of 54
Download to read offline
Determinants
Prepared by:
Joey F. Valdriz
Matrix
Recall:
Inverse of a
SUB-TOPICS
Determinant of a Square Matrix
Minors and Cofactors
Properties of Determinants
Applications of Determinants
Area of a Triangle
Condition of Collinearity of Three Points
Solution of System of Linear Equations
(Cramer’s Rule)
DETERMINANT
Every square matrix has associated with it a scalar called
its determinant.
Given a matrix A, we use det(A) or |A| to designate its
determinant.
We can also designate the determinant of matrix A by
replacing the brackets by vertical straight lines. For
example,







3
0
1
2
A
3
0
1
2
)
det( 
A
Definition 1: The determinant of a 11 matrix [a] is the scalar
a.
Definition 2: The determinant of a 22 matrix is the
scalar ad-bc.
For higher order matrices, we will use a recursive procedure to
compute determinants.






d
c
b
a
Example
4 - 3
Evaluate the determinant :
2 5
 
4 - 3
Solution : = 4×5 - 2× -3 = 20 + 6 = 26
2 5
Solution
The determinant of a 3 × 3 matrix A,
where









33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
A
is a real number defined as
 
  
  
det 11 22 33 12 23 31 13 21 32
31 22 13 32 23 11 33 21 12
A a a a a a a a a a
a a a a a a a a a .
Solution
If A = is a square matrix of order 3, then
11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
 
 
 
 
 
[Expanding along first row]
11 12 13
22 23 21 23 21 22
21 22 23 11 12 13
32 33 31 33 31 32
31 32 33
a a a
a a a a a a
| A |= a a a = a - a + a
a a a a a a
a a a
     
11 22 33 32 23 12 21 33 31 23 13 21 32 31 22
= a a a - a a - a a a - a a + a a a - a a
   
11 22 33 12 31 23 13 21 32 11 23 32 12 21 33 13 31 22
a a a a a a a a a a a a a a a a a a
     
Example
2 3 - 5
Evaluate the determinant : 7 1 - 2
-3 4 1
 
2 3 - 5
1 - 2 7 - 2 7 1
7 1 - 2 = 2 - 3 + -5
4 1 -3 1 -3 4
-3 4 1
     
= 2 1+ 8 - 3 7 - 6 - 5 28 + 3
= 18 - 3 - 155
= -140
[Expanding along first row]
Solution :
Properties of Determinants
1. The value of a determinant remains unchanged, if its
rows and columns are interchanged.
1 1 1 1 2 3
2 2 2 1 2 3
3 3 3 1 2 3
a b c a a a
a b c = b b b
a b c c c c
i e A A

. . '
2. If any two rows (or columns) of a determinant are interchanged,
then the value of the determinant is changed by minus sign.
 
1 1 1 2 2 2
2 2 2 1 1 1 2 1
3 3 3 3 3 3
a b c a b c
a b c = - a b c R R
a b c a b c
Applying 
Properties
3. If all the elements of a row (or column) is multiplied by a
non-zero number k, then the value of the new determinant
is k times the value of the original determinant.
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
ka kb kc a b c
a b c = k a b c
a b c a b c
which also implies
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
a b c ma mb mc
1
a b c = a b c
m
a b c a b c
Properties
4. If each element of any row (or column) consists of
two or more terms, then the determinant can be
expressed as the sum of two or more determinants.
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
a +x b c a b c x b c
a +y b c = a b c + y b c
a +z b c a b c z b c
5. The value of a determinant is unchanged, if any row
(or column) is multiplied by a number and then added
to any other row (or column).
 
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 1 1 2 3
3 3 3 3 3 3 3 3
a b c a +mb - nc b c
a b c = a +mb - nc b c C C + mC -nC
a b c a +mb - nc b c
Applying 
Properties
6. If any two rows (or columns) of a determinant
are identical, then its value is zero.
2 2 2
3 3 3
0 0 0
a b c = 0
a b c
7. If each element of a row (or column) of a determinant is
zero, then its value is zero.
1 1 1
2 2 2
1 1 1
a b c
a b c = 0
a b c
Properties
 
a 0 0
8 Let A = 0 b 0 be a diagonal matrix, then
0 0 c
 
 
 
 
 
a 0 0
= 0 b 0
0 0 c
A abc

Copyright © 2011 Pearson Education, Inc. Slide 7.5-14
The Minor of an Element
• The determinant of each 3 × 3 matrix is called
a minor of the associated element.
• The symbol Mij represents the minor when the
ith row and jth column are eliminated.
Copyright © 2011 Pearson Education, Inc. Slide 7.5-15
• To find the determinant of a 3 × 3 or larger square
matrix:
1. Choose any row or column,
2. Multiply the minor of each element in that row or
column by a +1 or –1, depending on whether the
sum of i + j is even or odd,
3. Then, multiply each cofactor by its corresponding
element in the matrix and find the sum of these
products. This sum is the determinant of the
matrix.
The Cofactor of an Element
Let Mij be the minor for element aij in an n × n matrix.
The cofactor of aij, written Aij, is
  .
M
A ij
j
i
ij 



1
Copyright © 2011 Pearson Education, Inc. Slide 7.5-16
Example Evaluate det , expanding
by the second column.
Solution First find the minors of each element in the
second column.
Finding the Determinant














2
0
1
3
4
1
2
3
2
8
)
2
)(
1
(
)
3
(
2
3
1
2
2
det
2
)
2
)(
1
(
)
2
(
2
2
1
2
2
det
5
)
3
)(
1
(
)
2
(
1
2
1
3
1
det
32
22
12
















































M
M
M
Copyright © 2011 Pearson Education, Inc. Slide 7.5-17
Now, find the cofactor.
The determinant is found by multiplying each cofactor by its
corresponding element in the matrix and finding the sum of
these products.
Finding the Determinant
8
)
8
(
)
1
(
)
1
(
2
)
2
(
)
1
(
)
1
(
5
)
5
(
)
1
(
)
1
(
5
32
2
3
32
4
22
2
2
22
3
12
2
1
12


























M
A
M
A
M
A
23
)
8
)(
0
(
)
2
)(
4
(
)
5
(
3
2
0
1
3
4
1
2
3
2
det 32
32
22
22
12
12



























A
a
A
a
A
a
VALUE OF DETERMINANT IN TERMS OF
MINORS AND COFACTORS
11 12 13
21 22 23
31 32 33
a a a
If A = a a a , then
a a a
 
 
 
 
 
 
3 3
i j
ij ij ij ij
j 1 j 1
A 1 a M a C

 
  
 
i1 i1 i2 i2 i3 i3
= a C +a C +a C , for i=1 or i=2 or i=3
ROW (COLUMN) OPERATIONS
Following are the notations to evaluate a determinant:
Similar notations can be used to denote column
operations by replacing R with C.
(i) Ri to denote ith row
(ii) Ri Rj to denote the interchange of ith and jth
rows.
(iii) Ri Ri + lRj to denote the addition of l times the
elements of jth row to the corresponding elements
of ith row.
(iv) lRi to denote the multiplication of all elements of
ith row by l.


EVALUATION OF DETERMINANTS
If a determinant becomes zero on putting
is the factor of the determinant.
 
x = , then x -
 
2
3
x 5 2
For example, if Δ = x 9 4 , then at x =2
x 16 8
, because C1 and C2 are identical at x = 2
Hence, (x – 2) is a factor of determinant .
  0

SIGN SYSTEM FOR EXPANSION OF DETERMINANT
Sign System for order 2 and order 3 are given by
+ – +
+ –
, – + –
– +
+ – +
 
42 1 6 6×7 1 6
i 28 7 4 = 4×7 7 4
14 3 2 2×7 3 2
 
1
6 1 6
=7 4 7 4 Taking out 7 common from C
2 3 2
EXAMPLE - 1
6 -3 2
2 -1 2
-10 5 2
42 1 6
28 7 4
14 3 2
Find the value of the following determinants
(i) (ii)
Solution :
1 3
= 7×0 C and C are identical
= 0
 
 
EXAMPLE –1 (II)
6 -3 2
2 -1 2
-10 5 2
(ii)
 
 
 
   
    
 
3 2 3 2
1 2 1 2
5 2 5 2
 
    
 
 
    
 

1
1 2
3 3 2
( 2) 1 1 2 Taking out 2 common from C
5 5 2
( 2) 0 C and C are identical
0
Evaluate the determinant
1 a b+c
1 b c+a
1 c a+b
Solution :
 
3 2 3
1 a b+c 1 a a+b+c
1 b c+a = 1 b a+b+c Applying c c +c
1 c a+b 1 c a+b+c

    3
1 a 1
= a+b+c 1 b 1 Taking a+b+c common from C
1 c 1
 
 
EXAMPLE - 2
  1 3
= a+ b + c ×0 C and C are identical
= 0
 
 
2 2 2
a b c
We have a b c
bc ca ab
 
2
1 1 2 2 2 3
(a-b) b-c c
= (a-b)(a+b) (b-c)(b+c) c Applying C C -C and C C -C
-c(a-b) -a(b-c) ab
 
   
2
1 2
1 1 c
Taking a-b and b-c common
=(a-b)(b-c) a+b b+c c
from C and C respectively
-c -a ab
 
 
 
EXAMPLE - 3
bc
2 2 2
a b c
a b c
ca ab
Evaluate the determinant:
Solution:
 
2
1 1 2
0 1 c
=(a-b)(b-c) -(c-a) b+c c Applying c c -c
-(c-a) -a ab

2
0 1 c
=-(a-b)(b-c)(c-a) 1 b+c c
1 -a ab
 
2
2 2 3
0 1 c
= -(a-b)(b-c)(c-a) 0 a+b+c c -ab Applying R R -R
1 -a ab

Now expanding along C1 , we get
(a-b) (b-c) (c-a) [- (c2 – ab – ac – bc – c2)]
= (a-b) (b-c) (c-a) (ab + bc + ac)
SOLUTION CONT.
Without expanding the determinant,
prove that
3
3x+y 2x x
4x+3y 3x 3x =x
5x+6y 4x 6x
3x+y 2x x 3x 2x x y 2x x
L.H.S= 4x+3y 3x 3x = 4x 3x 3x + 3y 3x 3x
5x+6y 4x 6x 5x 4x 6x 6y 4x 6x
3 2
3 2 1 1 2 1
= x 4 3 3 +x y 3 3 3
5 4 6 6 4 6
EXAMPLE - 4
Solution :
 
3 2
1 2
3 2 1
= x 4 3 3 +x y×0 C and C are identical in II determinant
5 4 6
SOLUTION CONT.
 
3
1 1 2
1 2 1
= x 1 3 3 Applying C C -C
1 4 6

 
3
2 2 1 3 3 2
1 2 1
= x 0 1 2 ApplyingR R -R and R R -R
0 1 3
 
 
3
1
3
= x ×(3-2) Expanding along C
=x =R.H.S.
3
3 2 1
=x 4 3 3
5 4 6
Prove that : = 0 , where w is cube root of unity.
3 5
3 4
5 5
1 ω ω
ω 1 ω
ω ω 1
3 5 3 3 2
3 4 3 3
5 5 3 2 3 2
1 ω ω 1 ω ω .ω
L.H.S= ω 1 ω = ω 1 ω .ω
ω ω 1 ω .ω ω .ω 1
 
2
3
2 2
1 2
1 1 ω
= 1 1 ω ω =1
ω ω 1
=0=R.H.S. C and C are identical
 
 
EXAMPLE - 5
Solution :
EXAMPLE - 6
2
x+a b c
a x+b c =x (x+a+b+c)
a b x+C
Prove that :
 
1 1 2 3
x+a b c x+a+b+c b c
L.H.S= a x+b c = x+a+b+c x+b c
a b x+C x+a+b+c b x+c
Applying C C +C +C

Solution :
 
  1
1 b c
= x+a+b+c 1 x+b c
1 b x+c
Taking x+a+b+c commonfrom C
 
 
SOLUTION CONT.
 
2 2 1 3 3 1
1 b c
=(x+a+b+c) 0 x 0
0 0 x
Applying R R -R and R R -R
 
Expanding along C1 , we get
(x + a + b + c) [1(x2)] = x2 (x + a + b + c)
= R.H.S
 
1 1 2 3
2(a+b+c) 2(a+b+c) 2(a+b+c)
= c+a a+b b+c Applying R R +R +R
a+b b+c c+a

1 1 1
=2(a+b+c) c+a a+b b+c
a+b b+c c+a
EXAMPLE - 7
Solution :
Using properties of determinants, prove that
2 2 2
b+c c+a a+b
c+a a+b b+c =2(a+b+c)(ab+bc+ca-a -b -c ).
a+b b+c c+a
b+c c+a a+b
L.H.S= c+a a+b b+c
a+b b+c c+a
 
1 1 2 2 2 3
0 0 1
=2(a+b+c) (c-b) (a-c) b+c Applying C C -C and C C -C
(a-c) (b-a) c+a
 
Now expanding along R1 , we get
2
2(a+b+c) (c-b)(b-a)-(a-c)
 
 
2 2 2
=2(a+b+c) bc-b -ac+ab-(a +c -2ac)
 
 
SOLUTION CONT.
2 2 2
=2(a+b+c) ab+bc+ac-a -b -c
=R.H.S
 
 
Using properties of determinants prove that
2
x+4 2x 2x
2x x+4 2x =(5x+4)(4-x)
2x 2x x+4
EXAMPLE - 8
1 2x 2x
=(5x+4)1 x+4 2x
1 2x x+4
Solution :
 
1 1 2 3
x+4 2x 2x 5x+4 2x 2x
L.H.S= 2x x+4 2x =5x+4 x+4 2x Applying C C +C +C
2x 2x x+4 5x+4 2x x+4

SOLUTION CONT.
 
2 2 1 3 3 2
1 2x 2x
=(5x+4) 0 -(x-4) 0 ApplyingR R -R and R R -R
0 x-4 -(x-4)
 
Now expanding along C1 , we get
2
(5x+4) 1(x-4) -0
 
 
2
=(5x+4)(4-x)
=R.H.S
EXAMPLE - 9
Using properties of determinants, prove that
x+9 x x
x x+9 x =243 (x+3)
x x x+9
x+9 x x
L.H.S= x x+9 x
x x x+9
 
1 1 2 3
3x+9 x x
= 3x+9 x+9 x Applying C C +C +C
3x+9 x x+9

Solution :
 
1
=3(x+3) 81 Expanding along C
=243(x+3)
=R.H.S.

1 x x
=(3x+9)1 x+9 x
1 x x+9
SOLUTION CONT.
  2 2 1 3 3 2
1 x x
=3 x+3 0 9 0 Applying R R -R and R R -R
0 -9 9
 
 
 
SOLUTION CONT.
 
2
2 2 2
2 2 1 3 3 2
1 a bc
=(a +b +c ) 0 (b-a)(b+a) c(a-b) Applying R R -R and R R -R
0 (c-b)(c+b) a(b-c)
 
 
2 2 2 2 2
1
=(a +b +c )(a-b)(b-c)(-ab-a +bc+c ) Expanding along C
2 2 2
=(a +b +c )(a-b)(b-c)(c-a)(a+b+c)=R.H.S.
2
2 2 2
1 a bc
=(a +b +c )(a-b)(b-c) 0 -(b+a) c
0 -(b+c) a
    
2 2 2
=(a +b +c )(a-b)(b-c) b c-a + c-a c+a
 
 
EXAMPLE - 10
Solution :
2 2 2 2 2
2 2 2 2 2
1 1 3
2 2 2 2 2
(b+c) a bc b +c a bc
L.H.S.= (c+a) b ca = c +a b ca Applying C C -2C
(a+b) c ab a +b c ab
 

 
 
2 2 2 2
2 2 2 2
1 1 2
2 2 2 2
a +b +c a bc
a +b +c b ca Applying C C +C
a +b +c c ab
 
2
2 2 2 2
2
1 a bc
=(a +b +c )1 b ca
1 c ab
2 2
2 2 2 2 2
2 2
(b+c) a bc
(c+a) b ca =(a +b +c )(a-b)(b-c)(c-a)(a+b+c)
(a+b) c ab
Show that
Applications of Determinants
(Area of a Triangle)
The area of a triangle whose vertices are
is given by the expression
1 1 2 2 3 3
(x , y ), (x , y ) and (x , y )
1 1
2 2
3 3
x y 1
1
Δ= x y 1
2
x y 1
1 2 3 2 3 1 3 1 2
1
= [x (y - y )+ x (y - y )+ x (y - y )]
2
Example
Find the area of a triangle whose vertices are (-1, 8), (-2, -3)
and (3, 2).
Solution :
1 1
2 2
3 3
x y 1 -1 8 1
1 1
Area of triangle= x y 1 = -2 -3 1
2 2
x y 1 3 2 1
 
1
= -1(-3-2)-8(-2-3)+1(-4+9)
2
 
1
= 5+40+5 =25 sq.units
2
If are three points,
then A, B, C are collinear
1 1 2 2 3 3
A (x , y ), B (x , y ) and C (x , y )
1 1 1 1
2 2 2 2
3 3 3 3
Area of triangle ABC = 0
x y 1 x y 1
1
x y 1 = 0 x y 1 = 0
2
x y 1 x y 1

 
Condition of Collinearity of Three Points
If the points (x, -2) , (5, 2), (8, 8) are collinear, find x , using
determinants.
Example
Solution :
x -2 1
5 2 1 =0
8 8 1

      
x 2-8 - -2 5-8 +1 40-16 =0

-6x-6+24=0

6x=18 x=3
 
Since the given points are collinear.
Solution of System of 2 Linear
Equations (Cramer’s Rule)
Let the system of linear equations be
 
2 2 2
a x+b y = c ... ii
 
1 1 1
a x+b y = c ... i
1 2
D D
Then x = , y = provided D 0,
D D

1 1 1 1 1 1
1 2
2 2 2 2 2 2
a b c b a c
where D = , D = and D =
a b c b a c
Cramer’s Rule
then the system is consistent and has infinitely many
solutions.
  1 2
2 If D = 0 and D =D = 0,
then the system is inconsistent and has no solution.
 
1 If D 0
Note :
,

then the system is consistent and has unique solution.
  1 2
3 If D=0 and one of D , D 0,

Example
2 -3
D= =2+9=11 0
3 1

1
7 -3
D = =7+15=22
5 1
2
2 7
D = =10-21=-11
3 5
Solution :
1 2
D 0
D D
22 -11
By Cramer's Rule x= = =2 and y= = =-1
D 11 D 11


Using Cramer's rule , solve the following
system of equations 2x-3y=7, 3x+y=5
Solution of System of 3 Linear
Equations (Cramer’s Rule)
Let the system of linear equations be
 
2 2 2 2
a x+b y+c z = d ... ii
 
1 1 1 1
a x+b y+c z = d ... i
 
3 3 3 3
a x+b y+c z = d ... iii
3
1 2 D
D D
Then x = , y = z = provided D 0,
D D D
, 
1 1 1 1 1 1 1 1 1
2 2 2 1 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
a b c d b c a d c
where D = a b c , D = d b c , D = a d c
a b c d b c a d c
1 1 1
3 2 2 2
3 3 3
a b d
and D = a b d
a b d
Cramer’s Rule
Note:
(1) If D  0, then the system is consistent and has a unique
solution.
(2) If D=0 and D1 = D2 = D3 = 0, then the system has infinite
solutions or no solution.
(3) If D = 0 and one of D1, D2, D3  0, then the system
is inconsistent and has no solution.
(4) If d1 = d2 = d3 = 0, then the system is called the system of
homogeneous linear equations.
(i) If D  0, then the system has only trivial solution x = y = z = 0.
(ii) If D = 0, then the system has infinite solutions.
Example
Using Cramer's rule , solve the following
system of equations
5x - y+ 4z = 5
2x + 3y+ 5z = 2
5x - 2y + 6z = -1
Solution :
5 -1 4
D= 2 3 5
5 -2 6
1
5 -1 4
D = 2 3 5
-1 -2 6
= 5(18+10)+1(12+5)+4(-4 +3)
= 140 +17 –4
= 153
= 5(18+10) + 1(12-25)+4(-4 -15)
= 140 –13 –76 =140 - 89
= 51 0

3
5 -1 5
D = 2 3 2
5 -2 -1
= 5(-3 +4)+1(-2 - 10)+5(-4-15)
= 5 – 12 – 95 = 5 - 107
= - 102
Solution
1 2
3
D 0
D D
153 102
By Cramer's Rule x= = =3, y= = =2
D 51 D 51
D -102
and z= = =-2
D 51


2
5 5 4
D = 2 2 5
5 -1 6
= 5(12 +5)+5(12 - 25)+ 4(-2 - 10)
= 85 + 65 – 48 = 150 - 48
= 102
Example
Solve the following system of homogeneous linear equations:
x + y – z = 0, x – 2y + z = 0, 3x + 6y + -5z = 0
Solution:
     
1 1 - 1
We have D = 1 - 2 1 = 1 10 - 6 - 1 -5 - 3 - 1 6 + 6
3 6 - 5
= 4 + 8 - 12 = 0
 
 
 
 
 
The systemhas infinitely many solutions.

Putting z = k, in first two equations, we get
x + y = k, x – 2y = -k
1
k 1
D -k - 2 -2k + k k
By Cramer's rule x = = = =
D -2 - 1 3
1 1
1 - 2

2
1 k
D 1 - k -k - k 2k
y = = = =
D -2 - 1 3
1 1
1 - 2
k 2k
x = , y = , z = k , where k R
3 3
 
These values of x, y and z = k satisfy (iii) equation.
Seatwork
Find the determinant of each matrix.
42 1 6
28 7 4
14 3 2
6 -3 2
2 -1 2
-10 5 2
2 3 1
0 2 4
2 5 6

 
 
 
 

 
8 2 1 4
3 5 3 11
0 0 4 0
2 2 7 1
 
 
 

 
 
 

 
Thank you

More Related Content

Similar to determinants-160504230830_repaired.pdf

Similar to determinants-160504230830_repaired.pdf (17)

Determinants. Cramer’s Rule
Determinants. Cramer’s RuleDeterminants. Cramer’s Rule
Determinants. Cramer’s Rule
 
Gate mathematics chapter wise all gate questions of all branch
Gate mathematics chapter wise all gate questions of all branchGate mathematics chapter wise all gate questions of all branch
Gate mathematics chapter wise all gate questions of all branch
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
 
lemh2sm.pdf
lemh2sm.pdflemh2sm.pdf
lemh2sm.pdf
 
Vivek
VivekVivek
Vivek
 
Notes and formulae mathematics
Notes and formulae mathematicsNotes and formulae mathematics
Notes and formulae mathematics
 
Algebra unit 9.1
Algebra unit 9.1Algebra unit 9.1
Algebra unit 9.1
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
 
0.7 Radical Expressions
0.7 Radical Expressions0.7 Radical Expressions
0.7 Radical Expressions
 
M112rev
M112revM112rev
M112rev
 
Sesion de aprendizaje de ecuacion de primer grado algebra pre universitaria c...
Sesion de aprendizaje de ecuacion de primer grado algebra pre universitaria c...Sesion de aprendizaje de ecuacion de primer grado algebra pre universitaria c...
Sesion de aprendizaje de ecuacion de primer grado algebra pre universitaria c...
 
Indices
IndicesIndices
Indices
 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - Mathematics
 
Takue
TakueTakue
Takue
 
Chapter0
Chapter0Chapter0
Chapter0
 
the inverse of the matrix
the inverse of the matrixthe inverse of the matrix
the inverse of the matrix
 
Mat 223_Ch3-Determinants.ppt
Mat 223_Ch3-Determinants.pptMat 223_Ch3-Determinants.ppt
Mat 223_Ch3-Determinants.ppt
 

More from TGBSmile

Electromagnetic spectrum
Electromagnetic spectrum Electromagnetic spectrum
Electromagnetic spectrum TGBSmile
 
160800-blue-template-16x9.pptx
160800-blue-template-16x9.pptx160800-blue-template-16x9.pptx
160800-blue-template-16x9.pptxTGBSmile
 
determinants.ppt
determinants.pptdeterminants.ppt
determinants.pptTGBSmile
 
PoliticalScience_SrSec_2023-24.pdf
PoliticalScience_SrSec_2023-24.pdfPoliticalScience_SrSec_2023-24.pdf
PoliticalScience_SrSec_2023-24.pdfTGBSmile
 
embryonic-development-1202916376980246-4.pdf
embryonic-development-1202916376980246-4.pdfembryonic-development-1202916376980246-4.pdf
embryonic-development-1202916376980246-4.pdfTGBSmile
 
1001274_lecture three.ppt
1001274_lecture three.ppt1001274_lecture three.ppt
1001274_lecture three.pptTGBSmile
 
Reproduction and Development
Reproduction and DevelopmentReproduction and Development
Reproduction and DevelopmentTGBSmile
 
2 biological classification.ppsx.pptx
2 biological classification.ppsx.pptx2 biological classification.ppsx.pptx
2 biological classification.ppsx.pptxTGBSmile
 

More from TGBSmile (8)

Electromagnetic spectrum
Electromagnetic spectrum Electromagnetic spectrum
Electromagnetic spectrum
 
160800-blue-template-16x9.pptx
160800-blue-template-16x9.pptx160800-blue-template-16x9.pptx
160800-blue-template-16x9.pptx
 
determinants.ppt
determinants.pptdeterminants.ppt
determinants.ppt
 
PoliticalScience_SrSec_2023-24.pdf
PoliticalScience_SrSec_2023-24.pdfPoliticalScience_SrSec_2023-24.pdf
PoliticalScience_SrSec_2023-24.pdf
 
embryonic-development-1202916376980246-4.pdf
embryonic-development-1202916376980246-4.pdfembryonic-development-1202916376980246-4.pdf
embryonic-development-1202916376980246-4.pdf
 
1001274_lecture three.ppt
1001274_lecture three.ppt1001274_lecture three.ppt
1001274_lecture three.ppt
 
Reproduction and Development
Reproduction and DevelopmentReproduction and Development
Reproduction and Development
 
2 biological classification.ppsx.pptx
2 biological classification.ppsx.pptx2 biological classification.ppsx.pptx
2 biological classification.ppsx.pptx
 

Recently uploaded

Simple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfSimple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfstareducators107
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptNishitharanjan Rout
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxPooja Bhuva
 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonhttgc7rh9c
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningMarc Dusseiller Dusjagr
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSAnaAcapella
 
Introduction to TechSoup’s Digital Marketing Services and Use Cases
Introduction to TechSoup’s Digital Marketing  Services and Use CasesIntroduction to TechSoup’s Digital Marketing  Services and Use Cases
Introduction to TechSoup’s Digital Marketing Services and Use CasesTechSoup
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17Celine George
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
Play hard learn harder: The Serious Business of Play
Play hard learn harder:  The Serious Business of PlayPlay hard learn harder:  The Serious Business of Play
Play hard learn harder: The Serious Business of PlayPooky Knightsmith
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 

Recently uploaded (20)

Simple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfSimple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdf
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
Introduction to TechSoup’s Digital Marketing Services and Use Cases
Introduction to TechSoup’s Digital Marketing  Services and Use CasesIntroduction to TechSoup’s Digital Marketing  Services and Use Cases
Introduction to TechSoup’s Digital Marketing Services and Use Cases
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Play hard learn harder: The Serious Business of Play
Play hard learn harder:  The Serious Business of PlayPlay hard learn harder:  The Serious Business of Play
Play hard learn harder: The Serious Business of Play
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 

determinants-160504230830_repaired.pdf

  • 3. SUB-TOPICS Determinant of a Square Matrix Minors and Cofactors Properties of Determinants Applications of Determinants Area of a Triangle Condition of Collinearity of Three Points Solution of System of Linear Equations (Cramer’s Rule)
  • 4. DETERMINANT Every square matrix has associated with it a scalar called its determinant. Given a matrix A, we use det(A) or |A| to designate its determinant. We can also designate the determinant of matrix A by replacing the brackets by vertical straight lines. For example,        3 0 1 2 A 3 0 1 2 ) det(  A Definition 1: The determinant of a 11 matrix [a] is the scalar a. Definition 2: The determinant of a 22 matrix is the scalar ad-bc. For higher order matrices, we will use a recursive procedure to compute determinants.       d c b a
  • 5. Example 4 - 3 Evaluate the determinant : 2 5   4 - 3 Solution : = 4×5 - 2× -3 = 20 + 6 = 26 2 5
  • 6. Solution The determinant of a 3 × 3 matrix A, where          33 32 31 23 22 21 13 12 11 a a a a a a a a a A is a real number defined as         det 11 22 33 12 23 31 13 21 32 31 22 13 32 23 11 33 21 12 A a a a a a a a a a a a a a a a a a a .
  • 7. Solution If A = is a square matrix of order 3, then 11 12 13 21 22 23 31 32 33 a a a a a a a a a           [Expanding along first row] 11 12 13 22 23 21 23 21 22 21 22 23 11 12 13 32 33 31 33 31 32 31 32 33 a a a a a a a a a | A |= a a a = a - a + a a a a a a a a a a       11 22 33 32 23 12 21 33 31 23 13 21 32 31 22 = a a a - a a - a a a - a a + a a a - a a     11 22 33 12 31 23 13 21 32 11 23 32 12 21 33 13 31 22 a a a a a a a a a a a a a a a a a a      
  • 8. Example 2 3 - 5 Evaluate the determinant : 7 1 - 2 -3 4 1   2 3 - 5 1 - 2 7 - 2 7 1 7 1 - 2 = 2 - 3 + -5 4 1 -3 1 -3 4 -3 4 1       = 2 1+ 8 - 3 7 - 6 - 5 28 + 3 = 18 - 3 - 155 = -140 [Expanding along first row] Solution :
  • 9. Properties of Determinants 1. The value of a determinant remains unchanged, if its rows and columns are interchanged. 1 1 1 1 2 3 2 2 2 1 2 3 3 3 3 1 2 3 a b c a a a a b c = b b b a b c c c c i e A A  . . ' 2. If any two rows (or columns) of a determinant are interchanged, then the value of the determinant is changed by minus sign.   1 1 1 2 2 2 2 2 2 1 1 1 2 1 3 3 3 3 3 3 a b c a b c a b c = - a b c R R a b c a b c Applying 
  • 10. Properties 3. If all the elements of a row (or column) is multiplied by a non-zero number k, then the value of the new determinant is k times the value of the original determinant. 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 ka kb kc a b c a b c = k a b c a b c a b c which also implies 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 a b c ma mb mc 1 a b c = a b c m a b c a b c
  • 11. Properties 4. If each element of any row (or column) consists of two or more terms, then the determinant can be expressed as the sum of two or more determinants. 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 a +x b c a b c x b c a +y b c = a b c + y b c a +z b c a b c z b c 5. The value of a determinant is unchanged, if any row (or column) is multiplied by a number and then added to any other row (or column).   1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 3 3 3 3 a b c a +mb - nc b c a b c = a +mb - nc b c C C + mC -nC a b c a +mb - nc b c Applying 
  • 12. Properties 6. If any two rows (or columns) of a determinant are identical, then its value is zero. 2 2 2 3 3 3 0 0 0 a b c = 0 a b c 7. If each element of a row (or column) of a determinant is zero, then its value is zero. 1 1 1 2 2 2 1 1 1 a b c a b c = 0 a b c
  • 13. Properties   a 0 0 8 Let A = 0 b 0 be a diagonal matrix, then 0 0 c           a 0 0 = 0 b 0 0 0 c A abc 
  • 14. Copyright © 2011 Pearson Education, Inc. Slide 7.5-14 The Minor of an Element • The determinant of each 3 × 3 matrix is called a minor of the associated element. • The symbol Mij represents the minor when the ith row and jth column are eliminated.
  • 15. Copyright © 2011 Pearson Education, Inc. Slide 7.5-15 • To find the determinant of a 3 × 3 or larger square matrix: 1. Choose any row or column, 2. Multiply the minor of each element in that row or column by a +1 or –1, depending on whether the sum of i + j is even or odd, 3. Then, multiply each cofactor by its corresponding element in the matrix and find the sum of these products. This sum is the determinant of the matrix. The Cofactor of an Element Let Mij be the minor for element aij in an n × n matrix. The cofactor of aij, written Aij, is   . M A ij j i ij     1
  • 16. Copyright © 2011 Pearson Education, Inc. Slide 7.5-16 Example Evaluate det , expanding by the second column. Solution First find the minors of each element in the second column. Finding the Determinant               2 0 1 3 4 1 2 3 2 8 ) 2 )( 1 ( ) 3 ( 2 3 1 2 2 det 2 ) 2 )( 1 ( ) 2 ( 2 2 1 2 2 det 5 ) 3 )( 1 ( ) 2 ( 1 2 1 3 1 det 32 22 12                                                 M M M
  • 17. Copyright © 2011 Pearson Education, Inc. Slide 7.5-17 Now, find the cofactor. The determinant is found by multiplying each cofactor by its corresponding element in the matrix and finding the sum of these products. Finding the Determinant 8 ) 8 ( ) 1 ( ) 1 ( 2 ) 2 ( ) 1 ( ) 1 ( 5 ) 5 ( ) 1 ( ) 1 ( 5 32 2 3 32 4 22 2 2 22 3 12 2 1 12                           M A M A M A 23 ) 8 )( 0 ( ) 2 )( 4 ( ) 5 ( 3 2 0 1 3 4 1 2 3 2 det 32 32 22 22 12 12                            A a A a A a
  • 18. VALUE OF DETERMINANT IN TERMS OF MINORS AND COFACTORS 11 12 13 21 22 23 31 32 33 a a a If A = a a a , then a a a             3 3 i j ij ij ij ij j 1 j 1 A 1 a M a C         i1 i1 i2 i2 i3 i3 = a C +a C +a C , for i=1 or i=2 or i=3
  • 19. ROW (COLUMN) OPERATIONS Following are the notations to evaluate a determinant: Similar notations can be used to denote column operations by replacing R with C. (i) Ri to denote ith row (ii) Ri Rj to denote the interchange of ith and jth rows. (iii) Ri Ri + lRj to denote the addition of l times the elements of jth row to the corresponding elements of ith row. (iv) lRi to denote the multiplication of all elements of ith row by l.  
  • 20. EVALUATION OF DETERMINANTS If a determinant becomes zero on putting is the factor of the determinant.   x = , then x -   2 3 x 5 2 For example, if Δ = x 9 4 , then at x =2 x 16 8 , because C1 and C2 are identical at x = 2 Hence, (x – 2) is a factor of determinant .   0 
  • 21. SIGN SYSTEM FOR EXPANSION OF DETERMINANT Sign System for order 2 and order 3 are given by + – + + – , – + – – + + – +
  • 22.   42 1 6 6×7 1 6 i 28 7 4 = 4×7 7 4 14 3 2 2×7 3 2   1 6 1 6 =7 4 7 4 Taking out 7 common from C 2 3 2 EXAMPLE - 1 6 -3 2 2 -1 2 -10 5 2 42 1 6 28 7 4 14 3 2 Find the value of the following determinants (i) (ii) Solution : 1 3 = 7×0 C and C are identical = 0    
  • 23. EXAMPLE –1 (II) 6 -3 2 2 -1 2 -10 5 2 (ii)                  3 2 3 2 1 2 1 2 5 2 5 2                    1 1 2 3 3 2 ( 2) 1 1 2 Taking out 2 common from C 5 5 2 ( 2) 0 C and C are identical 0
  • 24. Evaluate the determinant 1 a b+c 1 b c+a 1 c a+b Solution :   3 2 3 1 a b+c 1 a a+b+c 1 b c+a = 1 b a+b+c Applying c c +c 1 c a+b 1 c a+b+c      3 1 a 1 = a+b+c 1 b 1 Taking a+b+c common from C 1 c 1     EXAMPLE - 2   1 3 = a+ b + c ×0 C and C are identical = 0    
  • 25. 2 2 2 a b c We have a b c bc ca ab   2 1 1 2 2 2 3 (a-b) b-c c = (a-b)(a+b) (b-c)(b+c) c Applying C C -C and C C -C -c(a-b) -a(b-c) ab       2 1 2 1 1 c Taking a-b and b-c common =(a-b)(b-c) a+b b+c c from C and C respectively -c -a ab       EXAMPLE - 3 bc 2 2 2 a b c a b c ca ab Evaluate the determinant: Solution:
  • 26.   2 1 1 2 0 1 c =(a-b)(b-c) -(c-a) b+c c Applying c c -c -(c-a) -a ab  2 0 1 c =-(a-b)(b-c)(c-a) 1 b+c c 1 -a ab   2 2 2 3 0 1 c = -(a-b)(b-c)(c-a) 0 a+b+c c -ab Applying R R -R 1 -a ab  Now expanding along C1 , we get (a-b) (b-c) (c-a) [- (c2 – ab – ac – bc – c2)] = (a-b) (b-c) (c-a) (ab + bc + ac) SOLUTION CONT.
  • 27. Without expanding the determinant, prove that 3 3x+y 2x x 4x+3y 3x 3x =x 5x+6y 4x 6x 3x+y 2x x 3x 2x x y 2x x L.H.S= 4x+3y 3x 3x = 4x 3x 3x + 3y 3x 3x 5x+6y 4x 6x 5x 4x 6x 6y 4x 6x 3 2 3 2 1 1 2 1 = x 4 3 3 +x y 3 3 3 5 4 6 6 4 6 EXAMPLE - 4 Solution :   3 2 1 2 3 2 1 = x 4 3 3 +x y×0 C and C are identical in II determinant 5 4 6
  • 28. SOLUTION CONT.   3 1 1 2 1 2 1 = x 1 3 3 Applying C C -C 1 4 6    3 2 2 1 3 3 2 1 2 1 = x 0 1 2 ApplyingR R -R and R R -R 0 1 3     3 1 3 = x ×(3-2) Expanding along C =x =R.H.S. 3 3 2 1 =x 4 3 3 5 4 6
  • 29. Prove that : = 0 , where w is cube root of unity. 3 5 3 4 5 5 1 ω ω ω 1 ω ω ω 1 3 5 3 3 2 3 4 3 3 5 5 3 2 3 2 1 ω ω 1 ω ω .ω L.H.S= ω 1 ω = ω 1 ω .ω ω ω 1 ω .ω ω .ω 1   2 3 2 2 1 2 1 1 ω = 1 1 ω ω =1 ω ω 1 =0=R.H.S. C and C are identical     EXAMPLE - 5 Solution :
  • 30. EXAMPLE - 6 2 x+a b c a x+b c =x (x+a+b+c) a b x+C Prove that :   1 1 2 3 x+a b c x+a+b+c b c L.H.S= a x+b c = x+a+b+c x+b c a b x+C x+a+b+c b x+c Applying C C +C +C  Solution :     1 1 b c = x+a+b+c 1 x+b c 1 b x+c Taking x+a+b+c commonfrom C    
  • 31. SOLUTION CONT.   2 2 1 3 3 1 1 b c =(x+a+b+c) 0 x 0 0 0 x Applying R R -R and R R -R   Expanding along C1 , we get (x + a + b + c) [1(x2)] = x2 (x + a + b + c) = R.H.S
  • 32.   1 1 2 3 2(a+b+c) 2(a+b+c) 2(a+b+c) = c+a a+b b+c Applying R R +R +R a+b b+c c+a  1 1 1 =2(a+b+c) c+a a+b b+c a+b b+c c+a EXAMPLE - 7 Solution : Using properties of determinants, prove that 2 2 2 b+c c+a a+b c+a a+b b+c =2(a+b+c)(ab+bc+ca-a -b -c ). a+b b+c c+a b+c c+a a+b L.H.S= c+a a+b b+c a+b b+c c+a
  • 33.   1 1 2 2 2 3 0 0 1 =2(a+b+c) (c-b) (a-c) b+c Applying C C -C and C C -C (a-c) (b-a) c+a   Now expanding along R1 , we get 2 2(a+b+c) (c-b)(b-a)-(a-c)     2 2 2 =2(a+b+c) bc-b -ac+ab-(a +c -2ac)     SOLUTION CONT. 2 2 2 =2(a+b+c) ab+bc+ac-a -b -c =R.H.S    
  • 34. Using properties of determinants prove that 2 x+4 2x 2x 2x x+4 2x =(5x+4)(4-x) 2x 2x x+4 EXAMPLE - 8 1 2x 2x =(5x+4)1 x+4 2x 1 2x x+4 Solution :   1 1 2 3 x+4 2x 2x 5x+4 2x 2x L.H.S= 2x x+4 2x =5x+4 x+4 2x Applying C C +C +C 2x 2x x+4 5x+4 2x x+4 
  • 35. SOLUTION CONT.   2 2 1 3 3 2 1 2x 2x =(5x+4) 0 -(x-4) 0 ApplyingR R -R and R R -R 0 x-4 -(x-4)   Now expanding along C1 , we get 2 (5x+4) 1(x-4) -0     2 =(5x+4)(4-x) =R.H.S
  • 36. EXAMPLE - 9 Using properties of determinants, prove that x+9 x x x x+9 x =243 (x+3) x x x+9 x+9 x x L.H.S= x x+9 x x x x+9   1 1 2 3 3x+9 x x = 3x+9 x+9 x Applying C C +C +C 3x+9 x x+9  Solution :
  • 37.   1 =3(x+3) 81 Expanding along C =243(x+3) =R.H.S.  1 x x =(3x+9)1 x+9 x 1 x x+9 SOLUTION CONT.   2 2 1 3 3 2 1 x x =3 x+3 0 9 0 Applying R R -R and R R -R 0 -9 9      
  • 38. SOLUTION CONT.   2 2 2 2 2 2 1 3 3 2 1 a bc =(a +b +c ) 0 (b-a)(b+a) c(a-b) Applying R R -R and R R -R 0 (c-b)(c+b) a(b-c)     2 2 2 2 2 1 =(a +b +c )(a-b)(b-c)(-ab-a +bc+c ) Expanding along C 2 2 2 =(a +b +c )(a-b)(b-c)(c-a)(a+b+c)=R.H.S. 2 2 2 2 1 a bc =(a +b +c )(a-b)(b-c) 0 -(b+a) c 0 -(b+c) a      2 2 2 =(a +b +c )(a-b)(b-c) b c-a + c-a c+a    
  • 39. EXAMPLE - 10 Solution : 2 2 2 2 2 2 2 2 2 2 1 1 3 2 2 2 2 2 (b+c) a bc b +c a bc L.H.S.= (c+a) b ca = c +a b ca Applying C C -2C (a+b) c ab a +b c ab        2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 a +b +c a bc a +b +c b ca Applying C C +C a +b +c c ab   2 2 2 2 2 2 1 a bc =(a +b +c )1 b ca 1 c ab 2 2 2 2 2 2 2 2 2 (b+c) a bc (c+a) b ca =(a +b +c )(a-b)(b-c)(c-a)(a+b+c) (a+b) c ab Show that
  • 40. Applications of Determinants (Area of a Triangle) The area of a triangle whose vertices are is given by the expression 1 1 2 2 3 3 (x , y ), (x , y ) and (x , y ) 1 1 2 2 3 3 x y 1 1 Δ= x y 1 2 x y 1 1 2 3 2 3 1 3 1 2 1 = [x (y - y )+ x (y - y )+ x (y - y )] 2
  • 41. Example Find the area of a triangle whose vertices are (-1, 8), (-2, -3) and (3, 2). Solution : 1 1 2 2 3 3 x y 1 -1 8 1 1 1 Area of triangle= x y 1 = -2 -3 1 2 2 x y 1 3 2 1   1 = -1(-3-2)-8(-2-3)+1(-4+9) 2   1 = 5+40+5 =25 sq.units 2
  • 42. If are three points, then A, B, C are collinear 1 1 2 2 3 3 A (x , y ), B (x , y ) and C (x , y ) 1 1 1 1 2 2 2 2 3 3 3 3 Area of triangle ABC = 0 x y 1 x y 1 1 x y 1 = 0 x y 1 = 0 2 x y 1 x y 1    Condition of Collinearity of Three Points
  • 43. If the points (x, -2) , (5, 2), (8, 8) are collinear, find x , using determinants. Example Solution : x -2 1 5 2 1 =0 8 8 1         x 2-8 - -2 5-8 +1 40-16 =0  -6x-6+24=0  6x=18 x=3   Since the given points are collinear.
  • 44. Solution of System of 2 Linear Equations (Cramer’s Rule) Let the system of linear equations be   2 2 2 a x+b y = c ... ii   1 1 1 a x+b y = c ... i 1 2 D D Then x = , y = provided D 0, D D  1 1 1 1 1 1 1 2 2 2 2 2 2 2 a b c b a c where D = , D = and D = a b c b a c
  • 45. Cramer’s Rule then the system is consistent and has infinitely many solutions.   1 2 2 If D = 0 and D =D = 0, then the system is inconsistent and has no solution.   1 If D 0 Note : ,  then the system is consistent and has unique solution.   1 2 3 If D=0 and one of D , D 0, 
  • 46. Example 2 -3 D= =2+9=11 0 3 1  1 7 -3 D = =7+15=22 5 1 2 2 7 D = =10-21=-11 3 5 Solution : 1 2 D 0 D D 22 -11 By Cramer's Rule x= = =2 and y= = =-1 D 11 D 11   Using Cramer's rule , solve the following system of equations 2x-3y=7, 3x+y=5
  • 47. Solution of System of 3 Linear Equations (Cramer’s Rule) Let the system of linear equations be   2 2 2 2 a x+b y+c z = d ... ii   1 1 1 1 a x+b y+c z = d ... i   3 3 3 3 a x+b y+c z = d ... iii 3 1 2 D D D Then x = , y = z = provided D 0, D D D ,  1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 a b c d b c a d c where D = a b c , D = d b c , D = a d c a b c d b c a d c 1 1 1 3 2 2 2 3 3 3 a b d and D = a b d a b d
  • 48. Cramer’s Rule Note: (1) If D  0, then the system is consistent and has a unique solution. (2) If D=0 and D1 = D2 = D3 = 0, then the system has infinite solutions or no solution. (3) If D = 0 and one of D1, D2, D3  0, then the system is inconsistent and has no solution. (4) If d1 = d2 = d3 = 0, then the system is called the system of homogeneous linear equations. (i) If D  0, then the system has only trivial solution x = y = z = 0. (ii) If D = 0, then the system has infinite solutions.
  • 49. Example Using Cramer's rule , solve the following system of equations 5x - y+ 4z = 5 2x + 3y+ 5z = 2 5x - 2y + 6z = -1 Solution : 5 -1 4 D= 2 3 5 5 -2 6 1 5 -1 4 D = 2 3 5 -1 -2 6 = 5(18+10)+1(12+5)+4(-4 +3) = 140 +17 –4 = 153 = 5(18+10) + 1(12-25)+4(-4 -15) = 140 –13 –76 =140 - 89 = 51 0 
  • 50. 3 5 -1 5 D = 2 3 2 5 -2 -1 = 5(-3 +4)+1(-2 - 10)+5(-4-15) = 5 – 12 – 95 = 5 - 107 = - 102 Solution 1 2 3 D 0 D D 153 102 By Cramer's Rule x= = =3, y= = =2 D 51 D 51 D -102 and z= = =-2 D 51   2 5 5 4 D = 2 2 5 5 -1 6 = 5(12 +5)+5(12 - 25)+ 4(-2 - 10) = 85 + 65 – 48 = 150 - 48 = 102
  • 51. Example Solve the following system of homogeneous linear equations: x + y – z = 0, x – 2y + z = 0, 3x + 6y + -5z = 0 Solution:       1 1 - 1 We have D = 1 - 2 1 = 1 10 - 6 - 1 -5 - 3 - 1 6 + 6 3 6 - 5 = 4 + 8 - 12 = 0           The systemhas infinitely many solutions.  Putting z = k, in first two equations, we get x + y = k, x – 2y = -k
  • 52. 1 k 1 D -k - 2 -2k + k k By Cramer's rule x = = = = D -2 - 1 3 1 1 1 - 2  2 1 k D 1 - k -k - k 2k y = = = = D -2 - 1 3 1 1 1 - 2 k 2k x = , y = , z = k , where k R 3 3   These values of x, y and z = k satisfy (iii) equation.
  • 53. Seatwork Find the determinant of each matrix. 42 1 6 28 7 4 14 3 2 6 -3 2 2 -1 2 -10 5 2 2 3 1 0 2 4 2 5 6             8 2 1 4 3 5 3 11 0 0 4 0 2 2 7 1                