SlideShare a Scribd company logo
1 of 29
Prof. David R. Jackson
Dept. of ECE
Notes 3
ECE 5317-6351
Microwave Engineering
Fall 2019
Transmission Lines
Part 2: TL Formulas
1
Adapted from notes by
Prof. Jeffery T. Williams
 In this set of notes we develop some general formulas
that hold for any transmission line.
 We first examine the coaxial cable as an example.
Overview
2
Coaxial Cable
Here we present a “case study” of one particular transmission line, the coaxial cable.
Find C, L, G, R
We will assume no variation in the z direction, and take a length of one meter in
the z direction in order to calculate the per-unit-length parameters.
3
For a TEMz mode, the shape of the fields is independent of frequency, and
hence we can perform the calculation of C and L using electrostatics and
magnetostatics.
,
r d
 
a
b
Coaxial Cable (cont.)
-l0
l0
a
b
r

0 0
0
ˆ ˆ
2 2 r
E
 
 
    
 
 
   
 
   
Find C (capacitance / length)
Coaxial cable
h = 1 [m]
r

From Gauss’s law:
0
0
ln
2
B
AB
A
b
r
a
V V E dr
b
E d
a



 
  
 
   
 


4
0 (C/m)
  line charge density on the inner conductor
Coaxial cable
 
0
0
0
1
ln
2 r
Q
C
V b
a


 
 
   
   
 
 
Hence
We then have:
0
F/m
2
[ ]
ln
r
C
b
a
 

 
 
 
Coaxial Cable (cont.)
5
r

 
1 m
h 
r

0
l

0
l


a
b
ˆ
2
I
H 
 
 
  
 
Find L (inductance / length)
From Ampere’s law:
Coaxial cable
0
ˆ
2
r
I
B   
 
 
  
 
(1)
b
a
B d

 
 
Magnetic flux:
Coaxial Cable (cont.)
6
Note:
We ignore “internal inductance” here, and only
look at the magnetic field between the two
conductors (accurate for high frequency.
r

I
 
1 m
h 
z
S
Center conductor
I
I
1 [ ]
h m

  0
0
0
1
2
ln
2
b
r
a
b
r
a
r
H d
I
d
I b
a

   
  

 



 
  
 


0
1
ln
2
r
b
L
I a

 

 
   
 
0
H/m
ln [ ]
2
r b
L
a
 

 
  
 
Hence
Coaxial Cable (cont.)
7
r

I
 
1 m
h 
0
H/m
ln [ ]
2
r b
L
a
 

 
  
 
Observations:
0
F/m
2
[ ]
ln
r
C
b
a
 

 
 
 
 
0 0 r r
LC     
 
This result actually holds for any transmission line that is
homogenously filled* (proof omitted).
Coaxial Cable (cont.)
8
(independent of frequency)
(independent of frequency)
*This result assumes that the permittivity is real. To be more general, for a lossy
line, we replace the permittivity with the real part of the permittivity in this result.
0
H/m
ln [ ]
2
r b
L
a
 

 
  
 
For a lossless (or low loss) cable:
0
F/m
2
[ ]
ln
r
C
b
a
 

 
 
 
0
L
Z
C

0 0
1
ln [ ]
2
r
r
b
Z
a


 
 
 
 
 
0
0
0
376.7303 [ ]



  
Coaxial Cable (cont.)
9
0 0
0
ˆ ˆ
2 2 r
E
 
 
    
 
 
   
 
   
Find G (conductance / length)
Coaxial cable
From Gauss’s law:
0
0
ln
2
B
AB
A
b
r
a
V V E dr
b
E d
a



 
  
 
   
 


Coaxial Cable (cont.)
10
d

 
1 m
h 
r

0
l

0
l


a
b
d
J E


We then have leak
I
G
V

 
0
0
(1)2
2
2
2
leak a
d a
d
r
I J a
a E
a
a
 
 

 

 
 




 
  
 
0
0
0
0
2
2
ln
2
d
r
r
a
a
G
b
a

 
 

 
 
 
 

 
 
 
2
[S/m]
ln
d
G
b
a


 
 
 
or
Coaxial Cable (cont.)
11
d

0
l

0
l


a
b
Observation:
F/m
2
[ ]
ln
C
b
a


 
 
 
d
G C


 
  
 
2
[S/m]
ln
d
G
b
a


 
 
 
0 r
  

Coaxial Cable (cont.)
12
*This result assumes that the G term arises only from conductivity, and not polarization loss.
This result actually holds for any transmission line that is
homogenously filled* (proof omitted).
d
G C


 
  
 
Hence:
tan
d
d
G
C


 
 
 
 
 
tan d
G
C



Coaxial Cable (cont.)
As just derived,
13
This is the loss tangent that would
arise from conductivity.
*This result is very general, and allows the G term to come from either conductivity or polarization loss.
or
This result actually holds for any transmission line that is
homogenously filled* (proof omitted).
Complex Permittivity
Accounting for Dielectric Loss
14
The permittivity becomes complex when there is
polarization (molecular friction) loss.
 
j
  
 
 
Loss term due to polarization (molecular friction)
Example: Distilled water heats up in a microwave oven, even though there is
essentially no conductivity!
Effective Complex Permittivity
c j

 

 
   
 
Effective permittivity that accounts for conductivity
15
c
c
 

 

 

 
 
  
 
The effective permittivity accounts for conductive loss.
 
c
c c
j j
j

  

 
 
 
    
 
 
 
Hence We then have
Accounting for Dielectric Loss (cont.)
Most general expression for loss tangent:
c c c
j
  
 
 
tan c
c


 



 
 
  
 


Loss due to molecular friction Loss due to conductivity
16
c
c
 

 

 

 
 
   
 
Accounting for Dielectric Loss (cont.)
The loss tangent accounts for both molecular friction and conductivity.
For most practical insulators (e.g., Teflon), we have
tan c
c
 



 
 


17
0
 
Note: The loss tangent is usually (approximately) constant for
practical insulating materials, over a wide range of frequencies.
Typical microwave insulating material (e.g., Teflon): tan = 0.001.
Accounting for Dielectric Loss (cont.)
18
Accounting for Dielectric Loss (cont.)
r r
 

In most books, is denoted as simply
Important point about notation:
 
1 tan
rc r j
  
 
In this case we then write:
 
r rc

 

Means real part of
(We will adopt this convention also.)
The effective complex relative permittivity
Find R (resistance / length)
Coaxial cable
Coaxial Cable (cont.)
a b
R R R
 
1
2
a sa
R R
a

 
  
 
1
2
b sb
R R
b

 
  
 
1
sa
a a
R
 

1
sb
b b
R
 

0
2
a
ra a

  

0
2
b
rb b

  

Rs = surface resistance of metal
19
 
1 m
h 
(This is discussed later.)
 = skin depth of metal
,
b rb
 
d

,
a ra
 
a
b
Inner conductor
Outer conductor
General Formulas for (L,G,C)
 tan d
G C
 

0 0 0
lossless
r r
L Z    

0 0 0
/ lossless
r r
C Z
   

The three per-unit-length parameters (L, G, C) can be found from
20
0 , , tan
lossless
r d
Z  
0
lossless L
Z
C

 characteristic impedance of line
lossless
These values are usually known from the manufacturer.
These formulas hold for
any homogeneously-
filled transmission line.
General Formulas for (L,G,C) (cont.)
The derivation of the previous results follows from:
21
0 0
r r
LC    

 
2
0
lossless
L
Z
C

Multiply and divide
.
r r
 
denotes
Here
General Formulas for (L,G,C) (cont.)
Example:
22
A transmission line has the following properties:
 
2.1
r
  Teflon
0 50
lossless
Z  
tan 0.001
 
 
 
 
7
11
3
2.4169 10 H/m
9.6677 10 F/m
6.0744 10 S/m
L
C
G



 
 
 
Results:
 
10 GHz
f  (frequency is only needed for G)
Note:
We cannot determine R without
knowing the type of transmission line
and the dimensions (and the
conductivity of the metal).
Wavenumber Formulas
23
General case (R,L,G,C):
( )( )
z
k j j R j L G j C
   
     
Lossless case (L,C):
0
z r r
k LC k k
     
    
Dielectric loss only (L,C,G):
0
z c r rc
k k k jk k
   
 
     (please see next slide)
Wavenumber (cont.)
24
Dielectric loss only (L,C,G):
( )( )
( )( tan )
( )( tan )
( )(tan )
(1 tan )
(1 tan )
(1 tan )
z
d
d
d
d
d
d
c
k j j L G j C
j j L C j C
j jL C jC
j LC j j
j LC j
LC j
j
k
 
   
 
 
 
 
  
 
 
  
  
  
   
 

 


Note:
The mode stays a perfect
TEMz mode if R = 0.
kz = k for any TEMz mode.
0
R 
tan
c
c
c
 



 




Notes:
Common Transmission Lines
0 0
1
ln [ ]
2
lossless r
r
b
Z
a


 
 
 
 
 
Coax
1 1
2 2
sa sb
R R R
a b
 
   
 
   
   
25
 
0 0 0
0 0 0
/
tan
lossless
r r
lossless
r r
d
L Z
C Z
G C
R R
   
   
 




1
sa
a a
R
 

1
sb
b b
R
 

0
2
a
ra a

  

0
2
b
rb b

  

,
r r
 
a
b
a
b




conductivity of inner conductor metal
conductivity of outer conductor metal
tan ( )
d
 dielectric
(skin depth of metal for inner or outer conductors)
(surface resistance of metal for inner or outer conductors)
Common Transmission Lines
Twin-lead
1
0
0 cosh [ ]
2
lossless r
r
h
Z
a
 
 
  
 
 
 
2
1 2
1
2
s
h
a
R R
a h
a

 
 
 
 
 
 
  
 
 

 
 
 
 
26
 
0 0 0
0 0 0
/
tan
lossless
r r
lossless
r r
d
L Z
C Z
G C
R R
   
   
 




1
s
m
R
 

0
2
rm m

  

Two identical conductors
m
  conductivity of metal
,
r r
 
a a
h
tan ( )
d
 dielectric
(skin depth of metal)
(surface resistance of metal)
Common Transmission Lines (cont.)
Microstrip ( / 1)
w h 
27
Approximate CAD formula
r
w t
h
0
60 8
ln
4
eff
r
h w
Z
w h

 
 
 
 
1 1 1
2 2
1 12
eff r r
r
h
w
 

 
 
 
   
 

 
 
Common Transmission Lines (cont.)
Microstrip
   
 
 
 
 
0 0
1 0
0
0 1
eff eff
r r
eff eff
r r
f
Z f Z
f
 
 
 

  
 

 
 
     
 
0
120
0
0 / 1.393 0.667ln / 1.444
eff
r
Z
w h w h



 
 
  
 
( / 1)
w h 
2
1 ln
t h
w w
t

 
 
     
 
 
 
28
Approximate CAD formula
r
w t
h
Note:
Usually w/h > 1 for a
50  line.
Common Transmission Lines (cont.)
Microstrip ( / 1)
w h 
 
2
1.5
(0)
(0)
1 4
eff
r r
eff eff
r r
f
F
 
  
 

 
 
 

 
 
 
1 1 1
1 /
0
2 2 4.6 /
1 12 /
eff r r r
r
t h
w h
h w
  

 
    
   
 
  
    
 
   
  
 
2
0
4 1 0.5 1 0.868ln 1
r
h w
F
h


 
   
 
    
 
   
 
 
 
 
   
29
Approximate CAD formula
r
w t
h

More Related Content

What's hot (20)

Pcm
PcmPcm
Pcm
 
Introduction to equalization
Introduction to equalizationIntroduction to equalization
Introduction to equalization
 
Transmission line, single and double matching
Transmission line, single and double matchingTransmission line, single and double matching
Transmission line, single and double matching
 
Sinusoidal oscillators
Sinusoidal oscillatorsSinusoidal oscillators
Sinusoidal oscillators
 
1 phase semiconverter
1 phase semiconverter1 phase semiconverter
1 phase semiconverter
 
Coherent and Non-coherent detection of ASK, FSK AND QASK
Coherent and Non-coherent detection of ASK, FSK AND QASKCoherent and Non-coherent detection of ASK, FSK AND QASK
Coherent and Non-coherent detection of ASK, FSK AND QASK
 
Bode plot
Bode plotBode plot
Bode plot
 
Classification of antenna
Classification of antennaClassification of antenna
Classification of antenna
 
FUNDAMENTAL PARAMETERS OF ANTENNA
FUNDAMENTAL PARAMETERS OF ANTENNAFUNDAMENTAL PARAMETERS OF ANTENNA
FUNDAMENTAL PARAMETERS OF ANTENNA
 
Passive and active devices
Passive and active devicesPassive and active devices
Passive and active devices
 
Antenna (2)
Antenna (2)Antenna (2)
Antenna (2)
 
Compensators
CompensatorsCompensators
Compensators
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
 
ADC and DAC Best Ever Pers
ADC and DAC Best Ever PersADC and DAC Best Ever Pers
ADC and DAC Best Ever Pers
 
chapter 3 part 1.ppt
chapter 3 part 1.pptchapter 3 part 1.ppt
chapter 3 part 1.ppt
 
Nyquist plot
Nyquist plotNyquist plot
Nyquist plot
 
Z Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And SystemsZ Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And Systems
 
antennas
antennasantennas
antennas
 
Space time coding in mimo
Space time coding in mimo Space time coding in mimo
Space time coding in mimo
 
Antenna array
Antenna arrayAntenna array
Antenna array
 

Similar to Transmission Lines Part 2 (TL Formulas).pptx

Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxPawanKumar391848
 
Unit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptx
Unit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptxUnit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptx
Unit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptxAnonyMessiah
 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxDibyadipRoy1
 
Presentation1.pptx
Presentation1.pptxPresentation1.pptx
Presentation1.pptxssusere58e49
 
Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxRituparna Mitra
 
713_Transmission_Lines-F21.ppt
713_Transmission_Lines-F21.ppt713_Transmission_Lines-F21.ppt
713_Transmission_Lines-F21.pptyash919530
 
713_Transmission_Lines-F21.ppt
713_Transmission_Lines-F21.ppt713_Transmission_Lines-F21.ppt
713_Transmission_Lines-F21.pptHalarMustafa1
 
713_Transmission_Lines-F21.ppt
713_Transmission_Lines-F21.ppt713_Transmission_Lines-F21.ppt
713_Transmission_Lines-F21.pptAnandKumar689627
 
713_Transmission_Lines-F15.ppt
713_Transmission_Lines-F15.ppt713_Transmission_Lines-F15.ppt
713_Transmission_Lines-F15.pptDOAFCLF
 
Class06 transmission line_basics
Class06 transmission line_basicsClass06 transmission line_basics
Class06 transmission line_basicss.p.c.e.t.
 
Ee8402 inductance calculation
Ee8402 inductance calculationEe8402 inductance calculation
Ee8402 inductance calculationSugavanam KR
 
Transmission lines
Transmission linesTransmission lines
Transmission linesSuneel Varma
 
skineffect(2).ppt
skineffect(2).pptskineffect(2).ppt
skineffect(2).pptwhmonkey
 

Similar to Transmission Lines Part 2 (TL Formulas).pptx (20)

Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
Unit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptx
Unit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptxUnit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptx
Unit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptx
 
UNIT I.ppt
UNIT I.pptUNIT I.ppt
UNIT I.ppt
 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
 
Presentation1.pptx
Presentation1.pptxPresentation1.pptx
Presentation1.pptx
 
TL_Theory_L_28-08.pdf
TL_Theory_L_28-08.pdfTL_Theory_L_28-08.pdf
TL_Theory_L_28-08.pdf
 
emtl
emtlemtl
emtl
 
Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptx
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
 
713_Transmission_Lines-F21.ppt
713_Transmission_Lines-F21.ppt713_Transmission_Lines-F21.ppt
713_Transmission_Lines-F21.ppt
 
713_Transmission_Lines-F21.ppt
713_Transmission_Lines-F21.ppt713_Transmission_Lines-F21.ppt
713_Transmission_Lines-F21.ppt
 
713_Transmission_Lines-F21.ppt
713_Transmission_Lines-F21.ppt713_Transmission_Lines-F21.ppt
713_Transmission_Lines-F21.ppt
 
713_Transmission_Lines-F15.ppt
713_Transmission_Lines-F15.ppt713_Transmission_Lines-F15.ppt
713_Transmission_Lines-F15.ppt
 
Lecture 6
Lecture 6Lecture 6
Lecture 6
 
Class06 transmission line_basics
Class06 transmission line_basicsClass06 transmission line_basics
Class06 transmission line_basics
 
Ee8402 inductance calculation
Ee8402 inductance calculationEe8402 inductance calculation
Ee8402 inductance calculation
 
Transmission lines
Transmission linesTransmission lines
Transmission lines
 
Anodes_Crosstalk_Overview.ppt
Anodes_Crosstalk_Overview.pptAnodes_Crosstalk_Overview.ppt
Anodes_Crosstalk_Overview.ppt
 
skineffect(2).ppt
skineffect(2).pptskineffect(2).ppt
skineffect(2).ppt
 
Bridge ppt 1
Bridge ppt 1Bridge ppt 1
Bridge ppt 1
 

Recently uploaded

What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...Call Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Recently uploaded (20)

What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 

Transmission Lines Part 2 (TL Formulas).pptx

  • 1. Prof. David R. Jackson Dept. of ECE Notes 3 ECE 5317-6351 Microwave Engineering Fall 2019 Transmission Lines Part 2: TL Formulas 1 Adapted from notes by Prof. Jeffery T. Williams
  • 2.  In this set of notes we develop some general formulas that hold for any transmission line.  We first examine the coaxial cable as an example. Overview 2
  • 3. Coaxial Cable Here we present a “case study” of one particular transmission line, the coaxial cable. Find C, L, G, R We will assume no variation in the z direction, and take a length of one meter in the z direction in order to calculate the per-unit-length parameters. 3 For a TEMz mode, the shape of the fields is independent of frequency, and hence we can perform the calculation of C and L using electrostatics and magnetostatics. , r d   a b
  • 4. Coaxial Cable (cont.) -l0 l0 a b r  0 0 0 ˆ ˆ 2 2 r E                        Find C (capacitance / length) Coaxial cable h = 1 [m] r  From Gauss’s law: 0 0 ln 2 B AB A b r a V V E dr b E d a                   4 0 (C/m)   line charge density on the inner conductor
  • 5. Coaxial cable   0 0 0 1 ln 2 r Q C V b a                   Hence We then have: 0 F/m 2 [ ] ln r C b a          Coaxial Cable (cont.) 5 r    1 m h  r  0 l  0 l   a b
  • 6. ˆ 2 I H           Find L (inductance / length) From Ampere’s law: Coaxial cable 0 ˆ 2 r I B             (1) b a B d      Magnetic flux: Coaxial Cable (cont.) 6 Note: We ignore “internal inductance” here, and only look at the magnetic field between the two conductors (accurate for high frequency. r  I   1 m h  z S Center conductor I I 1 [ ] h m 
  • 7.   0 0 0 1 2 ln 2 b r a b r a r H d I d I b a                        0 1 ln 2 r b L I a             0 H/m ln [ ] 2 r b L a           Hence Coaxial Cable (cont.) 7 r  I   1 m h 
  • 8. 0 H/m ln [ ] 2 r b L a           Observations: 0 F/m 2 [ ] ln r C b a            0 0 r r LC        This result actually holds for any transmission line that is homogenously filled* (proof omitted). Coaxial Cable (cont.) 8 (independent of frequency) (independent of frequency) *This result assumes that the permittivity is real. To be more general, for a lossy line, we replace the permittivity with the real part of the permittivity in this result.
  • 9. 0 H/m ln [ ] 2 r b L a           For a lossless (or low loss) cable: 0 F/m 2 [ ] ln r C b a          0 L Z C  0 0 1 ln [ ] 2 r r b Z a             0 0 0 376.7303 [ ]       Coaxial Cable (cont.) 9
  • 10. 0 0 0 ˆ ˆ 2 2 r E                        Find G (conductance / length) Coaxial cable From Gauss’s law: 0 0 ln 2 B AB A b r a V V E dr b E d a                   Coaxial Cable (cont.) 10 d    1 m h  r  0 l  0 l   a b
  • 11. d J E   We then have leak I G V    0 0 (1)2 2 2 2 leak a d a d r I J a a E a a                        0 0 0 0 2 2 ln 2 d r r a a G b a                      2 [S/m] ln d G b a         or Coaxial Cable (cont.) 11 d  0 l  0 l   a b
  • 12. Observation: F/m 2 [ ] ln C b a         d G C          2 [S/m] ln d G b a         0 r     Coaxial Cable (cont.) 12 *This result assumes that the G term arises only from conductivity, and not polarization loss. This result actually holds for any transmission line that is homogenously filled* (proof omitted).
  • 13. d G C          Hence: tan d d G C             tan d G C    Coaxial Cable (cont.) As just derived, 13 This is the loss tangent that would arise from conductivity. *This result is very general, and allows the G term to come from either conductivity or polarization loss. or This result actually holds for any transmission line that is homogenously filled* (proof omitted).
  • 14. Complex Permittivity Accounting for Dielectric Loss 14 The permittivity becomes complex when there is polarization (molecular friction) loss.   j        Loss term due to polarization (molecular friction) Example: Distilled water heats up in a microwave oven, even though there is essentially no conductivity!
  • 15. Effective Complex Permittivity c j             Effective permittivity that accounts for conductivity 15 c c                   The effective permittivity accounts for conductive loss.   c c c j j j                       Hence We then have Accounting for Dielectric Loss (cont.)
  • 16. Most general expression for loss tangent: c c c j        tan c c                   Loss due to molecular friction Loss due to conductivity 16 c c                    Accounting for Dielectric Loss (cont.) The loss tangent accounts for both molecular friction and conductivity.
  • 17. For most practical insulators (e.g., Teflon), we have tan c c            17 0   Note: The loss tangent is usually (approximately) constant for practical insulating materials, over a wide range of frequencies. Typical microwave insulating material (e.g., Teflon): tan = 0.001. Accounting for Dielectric Loss (cont.)
  • 18. 18 Accounting for Dielectric Loss (cont.) r r    In most books, is denoted as simply Important point about notation:   1 tan rc r j      In this case we then write:   r rc     Means real part of (We will adopt this convention also.) The effective complex relative permittivity
  • 19. Find R (resistance / length) Coaxial cable Coaxial Cable (cont.) a b R R R   1 2 a sa R R a         1 2 b sb R R b         1 sa a a R    1 sb b b R    0 2 a ra a      0 2 b rb b      Rs = surface resistance of metal 19   1 m h  (This is discussed later.)  = skin depth of metal , b rb   d  , a ra   a b Inner conductor Outer conductor
  • 20. General Formulas for (L,G,C)  tan d G C    0 0 0 lossless r r L Z      0 0 0 / lossless r r C Z      The three per-unit-length parameters (L, G, C) can be found from 20 0 , , tan lossless r d Z   0 lossless L Z C   characteristic impedance of line lossless These values are usually known from the manufacturer. These formulas hold for any homogeneously- filled transmission line.
  • 21. General Formulas for (L,G,C) (cont.) The derivation of the previous results follows from: 21 0 0 r r LC        2 0 lossless L Z C  Multiply and divide . r r   denotes Here
  • 22. General Formulas for (L,G,C) (cont.) Example: 22 A transmission line has the following properties:   2.1 r   Teflon 0 50 lossless Z   tan 0.001         7 11 3 2.4169 10 H/m 9.6677 10 F/m 6.0744 10 S/m L C G          Results:   10 GHz f  (frequency is only needed for G) Note: We cannot determine R without knowing the type of transmission line and the dimensions (and the conductivity of the metal).
  • 23. Wavenumber Formulas 23 General case (R,L,G,C): ( )( ) z k j j R j L G j C           Lossless case (L,C): 0 z r r k LC k k            Dielectric loss only (L,C,G): 0 z c r rc k k k jk k            (please see next slide)
  • 24. Wavenumber (cont.) 24 Dielectric loss only (L,C,G): ( )( ) ( )( tan ) ( )( tan ) ( )(tan ) (1 tan ) (1 tan ) (1 tan ) z d d d d d d c k j j L G j C j j L C j C j jL C jC j LC j j j LC j LC j j k                                          Note: The mode stays a perfect TEMz mode if R = 0. kz = k for any TEMz mode. 0 R  tan c c c            Notes:
  • 25. Common Transmission Lines 0 0 1 ln [ ] 2 lossless r r b Z a             Coax 1 1 2 2 sa sb R R R a b                 25   0 0 0 0 0 0 / tan lossless r r lossless r r d L Z C Z G C R R               1 sa a a R    1 sb b b R    0 2 a ra a      0 2 b rb b      , r r   a b a b     conductivity of inner conductor metal conductivity of outer conductor metal tan ( ) d  dielectric (skin depth of metal for inner or outer conductors) (surface resistance of metal for inner or outer conductors)
  • 26. Common Transmission Lines Twin-lead 1 0 0 cosh [ ] 2 lossless r r h Z a              2 1 2 1 2 s h a R R a h a                              26   0 0 0 0 0 0 / tan lossless r r lossless r r d L Z C Z G C R R               1 s m R    0 2 rm m      Two identical conductors m   conductivity of metal , r r   a a h tan ( ) d  dielectric (skin depth of metal) (surface resistance of metal)
  • 27. Common Transmission Lines (cont.) Microstrip ( / 1) w h  27 Approximate CAD formula r w t h 0 60 8 ln 4 eff r h w Z w h          1 1 1 2 2 1 12 eff r r r h w                    
  • 28. Common Transmission Lines (cont.) Microstrip             0 0 1 0 0 0 1 eff eff r r eff eff r r f Z f Z f                          0 120 0 0 / 1.393 0.667ln / 1.444 eff r Z w h w h             ( / 1) w h  2 1 ln t h w w t                  28 Approximate CAD formula r w t h Note: Usually w/h > 1 for a 50  line.
  • 29. Common Transmission Lines (cont.) Microstrip ( / 1) w h    2 1.5 (0) (0) 1 4 eff r r eff eff r r f F                      1 1 1 1 / 0 2 2 4.6 / 1 12 / eff r r r r t h w h h w                                     2 0 4 1 0.5 1 0.868ln 1 r h w F h                                  29 Approximate CAD formula r w t h