SlideShare a Scribd company logo
1 of 14
Download to read offline
Hysteretic Mechanical Systems
and Materials
with Matlab Codes
Version 05 August 2023 Nicolò Vaiana, Ph.D.
University of Naples Federico II
Polytechnic and Basic Sciences School
Department of Structures for Engineering and Architecture
1
P1
Hysteretic Mechanical Systems and Materials
Vaiana-Rosati Model
Differential Formulation
SIMULATION OF COMPLEX HYSTERESIS LOOPS
P1
P21
Model formulation - Generalized force
The generalized force 𝑓, during the generic loading phase ( ሶ
𝑢 > 0), is evaluated by solving the following ODE:
ሶ
𝑓+
𝑢, 𝑢𝑃, 𝑓𝑃 = 𝑘𝑒
+
𝑢 + 𝑘𝑏
+
+ 𝛼+
𝑓
𝑒
+
𝑢 + 𝑘𝑏
+
𝑢 + 𝑓0
+
− 𝑓+
𝑢, 𝑢𝑃, 𝑓𝑃 ሶ
𝑢,
with:
𝑘𝑒
+
𝑢 = 𝛽1
+
𝛽2
+
𝑒𝛽2
+
𝑢
+
4 𝛾1
+𝛾2
+𝑒−𝛾2
+ 𝑢−𝛾3
+
1+𝑒−𝛾2
+ 𝑢−𝛾3
+ 2 ,
𝑓
𝑒
+
𝑢 = 𝛽1
+
𝑒𝛽2
+
𝑢
− 𝛽1
+
+
4 𝛾1
+
1+𝑒−𝛾2
+ 𝑢−𝛾3
+ − 2𝛾1
+
.
Similarly, during the generic unloading one ( ሶ
𝑢 < 0), it is computed by solving the following ODE:
ሶ
𝑓−
𝑢, 𝑢𝑃, 𝑓𝑃 = 𝑘𝑒
−
𝑢 + 𝑘𝑏
−
− 𝛼−
𝑓𝑒
−
𝑢 + 𝑘𝑏
−
𝑢 − 𝑓0
−
− 𝑓−
𝑢, 𝑢𝑃, 𝑓𝑃 ሶ
𝑢,
with:
𝑘𝑒
−
𝑢 = 𝛽1
−
𝛽2
−
𝑒𝛽2
−
𝑢
+
4 𝛾1
−𝛾2
−𝑒−𝛾2
− 𝑢−𝛾3
−
1+𝑒−𝛾2
− 𝑢−𝛾3
− 2 ,
𝑓
𝑒
−
𝑢 = 𝛽1
−
𝑒𝛽2
−
𝑢
− 𝛽1
−
+
4 𝛾1
−
1+𝑒−𝛾2
− 𝑢−𝛾3
− − 2𝛾1
−
.
In the previous expressions, 𝑢 is the generalized displacement, 𝑢𝑃 and 𝑓𝑃 are the coordinates of the current
point 𝑃, whereas the other terms represent the model parameters.
Note that the graph of 𝑓+
(𝑓−
) asymptotically approaches the upper (lower) limiting curve 𝑐𝑢 (𝑐𝑙).
SIMULATION OF COMPLEX HYSTERESIS LOOPS
Hysteretic Mechanical Systems and Materials
P1
P31
The generalized tangent stiffness 𝑘𝑡, during the generic loading phase ( ሶ
𝑢 > 0), is evaluated as:
𝑘𝑡
+
𝑢, 𝑢𝑃, 𝑓𝑃 = 𝑘𝑒
+
𝑢 + 𝑘𝑏
+
+ 𝛼+
𝑓
𝑒
+
𝑢 + 𝑘𝑏
+
𝑢 + 𝑓0
+
− 𝑓+
𝑢, 𝑢𝑃, 𝑓𝑃 .
Similarly, during the generic unloading one ( ሶ
𝑢 < 0), it is computed as:
𝑘𝑡
−
𝑢, 𝑢𝑃, 𝑓𝑃 = 𝑘𝑒
−
𝑢 + 𝑘𝑏
−
− 𝛼−
𝑓
𝑒
−
𝑢 + 𝑘𝑏
−
𝑢 − 𝑓0
−
− 𝑓−
𝑢, 𝑢𝑃, 𝑓𝑃 .
SIMULATION OF COMPLEX HYSTERESIS LOOPS
Model formulation - Generalized tangent stiffness
Hysteretic Mechanical Systems and Materials
shape type limiting curves subtype obtained for
S1 straight lines −
𝛽1
+
= 𝛽2
+
= 0
𝛽1
−
= 𝛽2
−
= 0
𝛾1
+
= 𝛾2
+
= 0
𝛾1
−
= 𝛾2
−
= 0
S2
curves with no
inflection point
S2.1
𝛽1
+
> 0, 𝛽2
+
> 0
𝛽1
−
> 0, 𝛽2
−
> 0
𝛾1
+
= 𝛾2
+
= 0
𝛾1
−
= 𝛾2
−
= 0
S2.2
𝛽1
+
> 0, 𝛽2
+
> 0
𝛽1
−
< 0, 𝛽2
−
< 0
𝛾1
+
= 𝛾2
+
= 0
𝛾1
−
= 𝛾2
−
= 0
S2.3
𝛽1
+
> 0, 𝛽2
+
> 0
𝛽1
−
< 0, 𝛽2
−
< 0
𝛾1
+
> 0, 𝛾2
+
< 0
𝛾1
−
> 0, 𝛾2
−
< 0
S3
curves with one
inflection point
S3.1
𝛽1
+
= 𝛽2
+
= 0
𝛽1
−
= 𝛽2
−
= 0
𝛾1
+
> 0, 𝛾2
+
> 0
𝛾1
−
> 0, 𝛾2
−
> 0
S3.2
𝛽1
+
= 𝛽2
+
= 0
𝛽1
−
= 𝛽2
−
= 0
𝛾1
+
> 0, 𝛾2
+
> 0
𝛾1
−
> 0, 𝛾2
−
< 0
S3.3
𝛽1
+
> 0, 𝛽2
+
> 0
𝛽1
−
< 0, 𝛽2
−
< 0
𝛾1
+
> 0, 𝛾2
+
< 0
𝛾1
−
> 0, 𝛾2
−
< 0
S4
curves with two
inflection points
−
𝛽1
+
> 0, 𝛽2
+
> 0
𝛽1
−
< 0, 𝛽2
−
< 0
𝛾1
+
> 0, 𝛾2
+
> 0
𝛾1
−
> 0, 𝛾2
−
> 0
P1
P41
SIMULATION OF COMPLEX HYSTERESIS LOOPS
Model parameters
The model parameters governing the generic loading phase ( ሶ
𝑢 > 0) are:
𝑘𝑏
+
, 𝑓0
+
, 𝛼+
, 𝛽1
+
, 𝛽2
+
, 𝛾1
+
, 𝛾2
+
, 𝛾3
+
,
whereas those governing the generic unloading one ( ሶ
𝑢 < 0) are:
𝑘𝑏
−
, 𝑓0
−
, 𝛼−
, 𝛽1
−
, 𝛽2
−
, 𝛾1
−
, 𝛾2
−
, 𝛾3
−
.
The only conditions to be satisfied are:
𝛼+
> 0, 𝛼−
> 0, 𝑓0
+
> 𝑓0
−
,
since the other parameters can be arbitrary real numbers.
The model is capable of reproducing four types of hysteresis loop shapes depending on the values assumed
by the parameters 𝛽1
+
, 𝛽2
+
, 𝛾1
+
, 𝛾2
+
and 𝛽1
−
, 𝛽2
−
, 𝛾1
−
, 𝛾2
−
, as shown in the above table.
Hysteretic Mechanical Systems and Materials
P1
P51
Simulated hysteresis loops – Shape type S1
SIMULATION OF COMPLEX HYSTERESIS LOOPS
Examples of hysteresis loops limited by two straight lines
shape type superscript 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3
S1a + 0.5 2 10 0 0 0 0 0
− 0 2 10 0 0 0 0 0
S1b + 0.5 4 10 0 0 0 0 0
− 0.5 2 10 0 0 0 0 0
S1c + 0.5 2 2 0 0 0 0 0
− 0.5 2 10 0 0 0 0 0
Hysteretic Mechanical Systems and Materials
P1
P61
SIMULATION OF COMPLEX HYSTERESIS LOOPS
Simulated hysteresis loops – Shape type S2
Examples of hysteresis loops limited by two curves with no inflection point
shape type superscript 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3
S2.1 + 0.5 1 10 0.5 1.2 0 0 0
− 0 1 10 0.5 0.8 0 0 0
S2.2 + 0.5 1 10 0.5 1.2 0 0 0
− 0 1 10 -0.5 -0.8 0 0 0
S2.3 + 0.5 4 10 0.5 1.2 1.5 -2 -2
− 0 4 10 -0.5 -0.8 1.5 -2 2
Hysteretic Mechanical Systems and Materials
P1
P71
SIMULATION OF COMPLEX HYSTERESIS LOOPS
Simulated hysteresis loops – Shape type S3
Examples of hysteresis loops limited by two curves with one inflection point
shape type superscript 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3
S3.1a + 0.5 1 10 0 0 2 2 0
− 0.5 1 10 0 0 2 2 0
S3.1b + 0.5 2 10 0 0 0.5 4 0.5
− 0.5 2 10 0 0 0.5 4 -0.5
S3.1c + 0.5 2 10 0 0 0.5 4 0.5
− 0.5 2 10 0 0 0.5 8 -1
Hysteretic Mechanical Systems and Materials
P1
P81
SIMULATION OF COMPLEX HYSTERESIS LOOPS
Simulated hysteresis loops – Shape type S3
Examples of hysteresis loops limited by two curves with one inflection point
shape type superscript 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3
S3.1d + 0.5 1 10 0 0 2 40 0
− 0.5 1 10 0 0 2 40 0
S3.2 + 0.5 3.5 10 0 0 1.5 2 0.5
− 0.5 3.5 10 0 0 2 -1 0.5
S3.3 + 0.5 0.5 100 0.5 0.8 4 -2 0
− 0.5 0.5 100 -0.5 -0.8 4 -2 0
Hysteretic Mechanical Systems and Materials
P1
P91
SIMULATION OF COMPLEX HYSTERESIS LOOPS
Simulated hysteresis loops – Shape type S4
Examples of hysteresis loops limited by two curves with two inflection points
shape type superscript 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3
S4a + 0 1 10 0.1 2 1 4 0
− 0 1 10 -0.1 -2 1 4 0
S4b + 0 0.5 20 0.001 5 1 8 -0.05
− 0 0.5 20 -0.001 -5 1 8 0.05
S4c + 0.5 0.5 10 0.1 2 1 40 0
− 0.5 0.5 10 -0.1 -2 1 40 0
Hysteretic Mechanical Systems and Materials
P101
Implementation algorithm
1 Initial setting
1.1 Set the model parameters
𝑘𝑏
+
, 𝑓0
+
, 𝛼+
, 𝛽1
+
, 𝛽2
+
, 𝛾1
+
, 𝛾2
+
, 𝛾3
+
and 𝑘𝑏
−
, 𝑓0
−
, 𝛼−
, 𝛽1
−
, 𝛽2
−
, 𝛾1
−
, 𝛾2
−
, 𝛾3
−
.
1.2 Define initial values of generalized force and tangent stiffness
𝑓𝑡=0 and 𝑘𝑡 𝑡=0.
2 Calculations at each time step
2.1 Update the model parameters
2.2 Evaluate the generalized force at time 𝑡 by using a numerical method
𝑘𝑏 = 𝑘𝑏
+
𝑘𝑏
−
, 𝑓0 = 𝑓0
+
𝑓0
−
, 𝛼 = 𝛼+
𝛼−
, 𝛽1 = 𝛽1
+
𝛽1
−
, 𝛽2 = 𝛽2
+
𝛽2
−
,
𝛾1 = 𝛾1
+
𝛾1
−
, 𝛾2 = 𝛾2
+
𝛾2
−
, 𝛾3 = 𝛾3
+
𝛾3
−
, if 𝑠𝑡 > 0 (𝑠𝑡 < 0).
𝑘𝑒 𝑡 = 𝛽1𝛽2𝑒𝛽2𝑢𝑡 +
4𝛾1𝛾2𝑒−𝛾2 𝑢𝑡−𝛾3
1+𝑒−𝛾2 𝑢𝑡−𝛾3
2,
𝑓𝑒 𝑡 = 𝛽1𝑒𝛽2𝑢𝑡 − 𝛽1 +
4𝛾1
1+𝑒−𝛾2 𝑢𝑡−𝛾3
− 2𝛾1,
ሶ
𝑓𝑡 = 𝑘𝑒 𝑡 + 𝑘𝑏 + 𝑠𝑡𝛼 𝑓𝑒 𝑡 + 𝑘𝑏 𝑢𝑡 + 𝑠𝑡 𝑓0 − 𝑓𝑡 ሶ
𝑢𝑡.
P1
SIMULATION OF COMPLEX HYSTERESIS LOOPS
2.3 Compute the generalized tangent stiffness at time 𝑡
𝑘𝑡 𝑡 = 𝑘𝑒 𝑡 + 𝑘𝑏 + 𝑠𝑡𝛼 𝑓𝑒 𝑡 + 𝑘𝑏 𝑢𝑡 + 𝑠𝑡 𝑓0 − 𝑓𝑡 .
Hysteretic Mechanical Systems and Materials
11
Matlab code - VRM_DF.m
% =========================================================================================
% August 2023
% Vaiana Rosati Model Algorithm
% Nicolo' Vaiana, Assistant Professor in Structural Mechanics and Dynamics
% Department of Structures for Engineering and Architecture
% University of Naples Federico II
% via Claudio 21, 80125, Napoli, Italy
% e-mail: nicolo.vaiana@unina.it, nicolovaiana@outlook.it
% =========================================================================================
clc; clear all; close all;
%% APPLIED GENERALIZED DISPLACEMENT
dt = 0.001; % s time step
t = 0:dt:1.5; % s time interval
u0 = 1.0; % m displacement amplitude
fr = 1; % Hz displacement frequency
u = u0*sin((2*pi*fr)*t(1:length(t))); % m displacement vector
ud = 2*pi*fr*u0*cos((2*pi*fr)*t(1:length(t))); % m/s velocity vector
Ns = length(u); % - number of time steps
%% 1 INITIAL SETTINGS
% 1.1 Set the model parameters
kbp = 2.5; kbm = 0; % N/m
f0p = 4; f0m = 4; % N
alfap = 10; alfam = 10; % 1/m
beta1p = 0; beta1m = -2; % N
beta2p = 0; beta2m = 1; % 1/m
gamma1p = 1; gamma1m = 0; % N
gamma2p = 3.5; gamma2m = 0; % 1/m
gamma3p = 0; gamma3m = 0; % m
% 1.2 Define initial values of generalized force and tangent stiffness
f(1) = 0.0; % N
kt(1) = 0.0; % N/m
%% 2 CALCULATIONS AT EACH TIME STEP
for i = 2:Ns
% 2.1 Update the model parameters
kb = kbp; f0 = f0p; alfa = alfap; beta1 = beta1p; beta2 = beta2p; gamma1 = gamma1p; gamma2 = gamma2p; gamma3 =
gamma3p;
if sign(ud(i)) < 0
kb = kbm; f0 = f0m; alfa = alfam; beta1 = beta1m; beta2 = beta2m; gamma1 = gamma1m; gamma2 = gamma2m; gamma3 =
gamma3m;
end
% 2.2 Evaluate the generalized force
par = [kb f0 alfa beta1 beta2 gamma1 gamma2 gamma3];
options = odeset('RelTol',1e-10,'AbsTol',1e-10);
[tt,ff] = ode45(@(tt,ff) VRM_fd(tt,ff,[t(i-1) t(i)],[u(i-1) u(i)],[ud(i-1) ud(i)],par),[t(i-1) t(i)],f(i-
1),options);
f(i) = ff(length(tt));
% 2.3 Compute the generalized tangent stiffness
ke(i) = beta1*beta2*exp(beta2*u(i))+(4*gamma1*gamma2*exp(-gamma2*(u(i)-gamma3)))/(1+exp(-gamma2*(u(i)-
gamma3)))^2;
fe(i) = beta1*exp(beta2*u(i))-beta1+(4*gamma1/(1+exp(-gamma2*(u(i)-gamma3))))-2*gamma1;
kt(i) = ke(i)+kb+sign(ud(i))*alfa*(fe(i)+kb*u(i)+sign(ud(i))*f0-f(i));
end
%% PLOT
figure
plot(u,f,'k','linewidth',4);
set(gca,'FontSize',28)
set(gca,'FontName','Times New Roman')
grid('on');
xlabel('displacement');
ylabel('force');
P1
SIMULATION OF COMPLEX HYSTERESIS LOOPS
Hysteretic Mechanical Systems and Materials
12
Matlab code - VRM_fd.m
function fd = VRM_fd(t,f,tv,uv,udv,par)
%% GENERALIZED DISPLACEMENT AND VELOCITY
u = interp1(tv,uv,t);
ud = interp1(tv,udv,t);
%% MODEL PARAMETERS
kb = par(1); f0 = par(2); alfa = par(3); beta1 = par(4); beta2 = par(5); gamma1 = par(6); gamma2 = par(7); gamma3
= par(8);
%% ORDINARY DIFFERENTIAL EQUATION
ke = beta1*beta2*exp(beta2*u)+(4*gamma1*gamma2*exp(-gamma2*(u-gamma3)))/(1+exp(-gamma2*(u-gamma3)))^2;
fe = beta1*exp(beta2*u)-beta1+(4*gamma1/(1+exp(-gamma2*(u-gamma3))))-2*gamma1;
fd = (ke+kb+sign(ud)*alfa*(fe+kb*u+sign(ud)*f0-f))*ud;
end
P1
SIMULATION OF COMPLEX HYSTERESIS LOOPS
Hysteretic Mechanical Systems and Materials
13
References
[1] Vaiana N, Sessa S, Marmo F, Rosati L (2018) A class of uniaxial phenomenological models for simulating hysteretic
phenomena in rate-independent mechanical systems and materials. Nonlinear Dynamics 93(3): 1647-1669.
[2] Vaiana N, Sessa S, Marmo F, Rosati L (2019) An accurate and computationally efficient uniaxial phenomenological model for
steel and fiber reinforced elastomeric bearings. Composite Structures 211: 196-212.
[3] Vaiana N, Sessa S, Marmo F, Rosati L (2019) Nonlinear dynamic analysis of hysteretic mechanical systems by combining a
novel rate-independent model and an explicit time integration method. Nonlinear Dynamics 98(4): 2879-2901.
[4] Vaiana N, Sessa S, Rosati L (2021) A generalized class of uniaxial rate-independent models for simulating asymmetric
mechanical hysteresis phenomena. Mechanical Systems and Signal Processing 146: 106984.
[5] Vaiana N, Rosati L (2023) Classification and unified phenomenological modeling of complex uniaxial rate-independent
hysteretic responses. Mechanical Systems and Signal Processing 182: 109539.
[6] Vaiana N, Capuano R, Rosati L (2023) Evaluation of path-dependent work and internal energy change for hysteretic
mechanical systems. Mechanical Systems and Signal Processing 186: 109862.
[7] Vaiana N, Rosati L (2023) Analytical and differential reformulations of the Vaiana–Rosati model for complex rate-independent
mechanical hysteresis phenomena. Mechanical Systems and Signal Processing 199: 110448.
P1
SIMULATION OF COMPLEX HYSTERESIS LOOPS
Hysteretic Mechanical Systems and Materials

More Related Content

Similar to Vaiana Rosati Model of Hysteresis - Differential Formulation.pdf

Revised PPT on Week 2 Lecture.pptx
Revised PPT on Week 2 Lecture.pptxRevised PPT on Week 2 Lecture.pptx
Revised PPT on Week 2 Lecture.pptxpralayroy2
 
3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS
3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS
3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESISTakshil Gajjar
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsionrro7560
 
assignemts.pdf
assignemts.pdfassignemts.pdf
assignemts.pdframish32
 
Stability and pole location
Stability and pole locationStability and pole location
Stability and pole locationssuser5d64bb
 
vibration of machines and structures
vibration of machines and structuresvibration of machines and structures
vibration of machines and structuresAniruddhsinh Barad
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxDrOmarShAlyozbaky
 
OPTIMAL PID CONTROLLER DESIGN FOR SPEED CONTROL OF A SEPARATELY EXCITED DC MO...
OPTIMAL PID CONTROLLER DESIGN FOR SPEED CONTROL OF A SEPARATELY EXCITED DC MO...OPTIMAL PID CONTROLLER DESIGN FOR SPEED CONTROL OF A SEPARATELY EXCITED DC MO...
OPTIMAL PID CONTROLLER DESIGN FOR SPEED CONTROL OF A SEPARATELY EXCITED DC MO...ijscmcj
 
Dq0 transformation & per unit representation of synchronous machine.pptx
Dq0 transformation & per unit representation of synchronous machine.pptxDq0 transformation & per unit representation of synchronous machine.pptx
Dq0 transformation & per unit representation of synchronous machine.pptxpralayroy2
 
lecture 1 courseII (2).pptx
lecture 1 courseII (2).pptxlecture 1 courseII (2).pptx
lecture 1 courseII (2).pptxAYMENGOODKid
 
Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNikolai Priezjev
 
Controller design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqrController design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqreSAT Journals
 
Controller design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqrController design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqreSAT Publishing House
 
Nonlinear Control of an Active Magnetic Bearing with Output Constraint
Nonlinear Control of an Active Magnetic Bearing with Output ConstraintNonlinear Control of an Active Magnetic Bearing with Output Constraint
Nonlinear Control of an Active Magnetic Bearing with Output ConstraintIJECEIAES
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxAYMENGOODKid
 

Similar to Vaiana Rosati Model of Hysteresis - Differential Formulation.pdf (20)

Revised PPT on Week 2 Lecture.pptx
Revised PPT on Week 2 Lecture.pptxRevised PPT on Week 2 Lecture.pptx
Revised PPT on Week 2 Lecture.pptx
 
3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS
3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS
3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 
assignemts.pdf
assignemts.pdfassignemts.pdf
assignemts.pdf
 
Stability and pole location
Stability and pole locationStability and pole location
Stability and pole location
 
vibration of machines and structures
vibration of machines and structuresvibration of machines and structures
vibration of machines and structures
 
Ips csmc 14.06.2016
Ips csmc 14.06.2016Ips csmc 14.06.2016
Ips csmc 14.06.2016
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
 
OPTIMAL PID CONTROLLER DESIGN FOR SPEED CONTROL OF A SEPARATELY EXCITED DC MO...
OPTIMAL PID CONTROLLER DESIGN FOR SPEED CONTROL OF A SEPARATELY EXCITED DC MO...OPTIMAL PID CONTROLLER DESIGN FOR SPEED CONTROL OF A SEPARATELY EXCITED DC MO...
OPTIMAL PID CONTROLLER DESIGN FOR SPEED CONTROL OF A SEPARATELY EXCITED DC MO...
 
Dq0 transformation & per unit representation of synchronous machine.pptx
Dq0 transformation & per unit representation of synchronous machine.pptxDq0 transformation & per unit representation of synchronous machine.pptx
Dq0 transformation & per unit representation of synchronous machine.pptx
 
lecture 1 courseII (2).pptx
lecture 1 courseII (2).pptxlecture 1 courseII (2).pptx
lecture 1 courseII (2).pptx
 
Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equations
 
Controller design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqrController design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqr
 
Controller design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqrController design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqr
 
Nonlinear Control of an Active Magnetic Bearing with Output Constraint
Nonlinear Control of an Active Magnetic Bearing with Output ConstraintNonlinear Control of an Active Magnetic Bearing with Output Constraint
Nonlinear Control of an Active Magnetic Bearing with Output Constraint
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
 
B010310813
B010310813B010310813
B010310813
 
Project_Report.pdf
Project_Report.pdfProject_Report.pdf
Project_Report.pdf
 
Ee321s3.1
Ee321s3.1Ee321s3.1
Ee321s3.1
 
CE541-F14-Bhobe-Jain
CE541-F14-Bhobe-JainCE541-F14-Bhobe-Jain
CE541-F14-Bhobe-Jain
 

Recently uploaded

Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGSIVASHANKAR N
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 

Recently uploaded (20)

Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 

Vaiana Rosati Model of Hysteresis - Differential Formulation.pdf

  • 1. Hysteretic Mechanical Systems and Materials with Matlab Codes Version 05 August 2023 Nicolò Vaiana, Ph.D. University of Naples Federico II Polytechnic and Basic Sciences School Department of Structures for Engineering and Architecture
  • 2. 1 P1 Hysteretic Mechanical Systems and Materials Vaiana-Rosati Model Differential Formulation SIMULATION OF COMPLEX HYSTERESIS LOOPS
  • 3. P1 P21 Model formulation - Generalized force The generalized force 𝑓, during the generic loading phase ( ሶ 𝑢 > 0), is evaluated by solving the following ODE: ሶ 𝑓+ 𝑢, 𝑢𝑃, 𝑓𝑃 = 𝑘𝑒 + 𝑢 + 𝑘𝑏 + + 𝛼+ 𝑓 𝑒 + 𝑢 + 𝑘𝑏 + 𝑢 + 𝑓0 + − 𝑓+ 𝑢, 𝑢𝑃, 𝑓𝑃 ሶ 𝑢, with: 𝑘𝑒 + 𝑢 = 𝛽1 + 𝛽2 + 𝑒𝛽2 + 𝑢 + 4 𝛾1 +𝛾2 +𝑒−𝛾2 + 𝑢−𝛾3 + 1+𝑒−𝛾2 + 𝑢−𝛾3 + 2 , 𝑓 𝑒 + 𝑢 = 𝛽1 + 𝑒𝛽2 + 𝑢 − 𝛽1 + + 4 𝛾1 + 1+𝑒−𝛾2 + 𝑢−𝛾3 + − 2𝛾1 + . Similarly, during the generic unloading one ( ሶ 𝑢 < 0), it is computed by solving the following ODE: ሶ 𝑓− 𝑢, 𝑢𝑃, 𝑓𝑃 = 𝑘𝑒 − 𝑢 + 𝑘𝑏 − − 𝛼− 𝑓𝑒 − 𝑢 + 𝑘𝑏 − 𝑢 − 𝑓0 − − 𝑓− 𝑢, 𝑢𝑃, 𝑓𝑃 ሶ 𝑢, with: 𝑘𝑒 − 𝑢 = 𝛽1 − 𝛽2 − 𝑒𝛽2 − 𝑢 + 4 𝛾1 −𝛾2 −𝑒−𝛾2 − 𝑢−𝛾3 − 1+𝑒−𝛾2 − 𝑢−𝛾3 − 2 , 𝑓 𝑒 − 𝑢 = 𝛽1 − 𝑒𝛽2 − 𝑢 − 𝛽1 − + 4 𝛾1 − 1+𝑒−𝛾2 − 𝑢−𝛾3 − − 2𝛾1 − . In the previous expressions, 𝑢 is the generalized displacement, 𝑢𝑃 and 𝑓𝑃 are the coordinates of the current point 𝑃, whereas the other terms represent the model parameters. Note that the graph of 𝑓+ (𝑓− ) asymptotically approaches the upper (lower) limiting curve 𝑐𝑢 (𝑐𝑙). SIMULATION OF COMPLEX HYSTERESIS LOOPS Hysteretic Mechanical Systems and Materials
  • 4. P1 P31 The generalized tangent stiffness 𝑘𝑡, during the generic loading phase ( ሶ 𝑢 > 0), is evaluated as: 𝑘𝑡 + 𝑢, 𝑢𝑃, 𝑓𝑃 = 𝑘𝑒 + 𝑢 + 𝑘𝑏 + + 𝛼+ 𝑓 𝑒 + 𝑢 + 𝑘𝑏 + 𝑢 + 𝑓0 + − 𝑓+ 𝑢, 𝑢𝑃, 𝑓𝑃 . Similarly, during the generic unloading one ( ሶ 𝑢 < 0), it is computed as: 𝑘𝑡 − 𝑢, 𝑢𝑃, 𝑓𝑃 = 𝑘𝑒 − 𝑢 + 𝑘𝑏 − − 𝛼− 𝑓 𝑒 − 𝑢 + 𝑘𝑏 − 𝑢 − 𝑓0 − − 𝑓− 𝑢, 𝑢𝑃, 𝑓𝑃 . SIMULATION OF COMPLEX HYSTERESIS LOOPS Model formulation - Generalized tangent stiffness Hysteretic Mechanical Systems and Materials
  • 5. shape type limiting curves subtype obtained for S1 straight lines − 𝛽1 + = 𝛽2 + = 0 𝛽1 − = 𝛽2 − = 0 𝛾1 + = 𝛾2 + = 0 𝛾1 − = 𝛾2 − = 0 S2 curves with no inflection point S2.1 𝛽1 + > 0, 𝛽2 + > 0 𝛽1 − > 0, 𝛽2 − > 0 𝛾1 + = 𝛾2 + = 0 𝛾1 − = 𝛾2 − = 0 S2.2 𝛽1 + > 0, 𝛽2 + > 0 𝛽1 − < 0, 𝛽2 − < 0 𝛾1 + = 𝛾2 + = 0 𝛾1 − = 𝛾2 − = 0 S2.3 𝛽1 + > 0, 𝛽2 + > 0 𝛽1 − < 0, 𝛽2 − < 0 𝛾1 + > 0, 𝛾2 + < 0 𝛾1 − > 0, 𝛾2 − < 0 S3 curves with one inflection point S3.1 𝛽1 + = 𝛽2 + = 0 𝛽1 − = 𝛽2 − = 0 𝛾1 + > 0, 𝛾2 + > 0 𝛾1 − > 0, 𝛾2 − > 0 S3.2 𝛽1 + = 𝛽2 + = 0 𝛽1 − = 𝛽2 − = 0 𝛾1 + > 0, 𝛾2 + > 0 𝛾1 − > 0, 𝛾2 − < 0 S3.3 𝛽1 + > 0, 𝛽2 + > 0 𝛽1 − < 0, 𝛽2 − < 0 𝛾1 + > 0, 𝛾2 + < 0 𝛾1 − > 0, 𝛾2 − < 0 S4 curves with two inflection points − 𝛽1 + > 0, 𝛽2 + > 0 𝛽1 − < 0, 𝛽2 − < 0 𝛾1 + > 0, 𝛾2 + > 0 𝛾1 − > 0, 𝛾2 − > 0 P1 P41 SIMULATION OF COMPLEX HYSTERESIS LOOPS Model parameters The model parameters governing the generic loading phase ( ሶ 𝑢 > 0) are: 𝑘𝑏 + , 𝑓0 + , 𝛼+ , 𝛽1 + , 𝛽2 + , 𝛾1 + , 𝛾2 + , 𝛾3 + , whereas those governing the generic unloading one ( ሶ 𝑢 < 0) are: 𝑘𝑏 − , 𝑓0 − , 𝛼− , 𝛽1 − , 𝛽2 − , 𝛾1 − , 𝛾2 − , 𝛾3 − . The only conditions to be satisfied are: 𝛼+ > 0, 𝛼− > 0, 𝑓0 + > 𝑓0 − , since the other parameters can be arbitrary real numbers. The model is capable of reproducing four types of hysteresis loop shapes depending on the values assumed by the parameters 𝛽1 + , 𝛽2 + , 𝛾1 + , 𝛾2 + and 𝛽1 − , 𝛽2 − , 𝛾1 − , 𝛾2 − , as shown in the above table. Hysteretic Mechanical Systems and Materials
  • 6. P1 P51 Simulated hysteresis loops – Shape type S1 SIMULATION OF COMPLEX HYSTERESIS LOOPS Examples of hysteresis loops limited by two straight lines shape type superscript 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3 S1a + 0.5 2 10 0 0 0 0 0 − 0 2 10 0 0 0 0 0 S1b + 0.5 4 10 0 0 0 0 0 − 0.5 2 10 0 0 0 0 0 S1c + 0.5 2 2 0 0 0 0 0 − 0.5 2 10 0 0 0 0 0 Hysteretic Mechanical Systems and Materials
  • 7. P1 P61 SIMULATION OF COMPLEX HYSTERESIS LOOPS Simulated hysteresis loops – Shape type S2 Examples of hysteresis loops limited by two curves with no inflection point shape type superscript 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3 S2.1 + 0.5 1 10 0.5 1.2 0 0 0 − 0 1 10 0.5 0.8 0 0 0 S2.2 + 0.5 1 10 0.5 1.2 0 0 0 − 0 1 10 -0.5 -0.8 0 0 0 S2.3 + 0.5 4 10 0.5 1.2 1.5 -2 -2 − 0 4 10 -0.5 -0.8 1.5 -2 2 Hysteretic Mechanical Systems and Materials
  • 8. P1 P71 SIMULATION OF COMPLEX HYSTERESIS LOOPS Simulated hysteresis loops – Shape type S3 Examples of hysteresis loops limited by two curves with one inflection point shape type superscript 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3 S3.1a + 0.5 1 10 0 0 2 2 0 − 0.5 1 10 0 0 2 2 0 S3.1b + 0.5 2 10 0 0 0.5 4 0.5 − 0.5 2 10 0 0 0.5 4 -0.5 S3.1c + 0.5 2 10 0 0 0.5 4 0.5 − 0.5 2 10 0 0 0.5 8 -1 Hysteretic Mechanical Systems and Materials
  • 9. P1 P81 SIMULATION OF COMPLEX HYSTERESIS LOOPS Simulated hysteresis loops – Shape type S3 Examples of hysteresis loops limited by two curves with one inflection point shape type superscript 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3 S3.1d + 0.5 1 10 0 0 2 40 0 − 0.5 1 10 0 0 2 40 0 S3.2 + 0.5 3.5 10 0 0 1.5 2 0.5 − 0.5 3.5 10 0 0 2 -1 0.5 S3.3 + 0.5 0.5 100 0.5 0.8 4 -2 0 − 0.5 0.5 100 -0.5 -0.8 4 -2 0 Hysteretic Mechanical Systems and Materials
  • 10. P1 P91 SIMULATION OF COMPLEX HYSTERESIS LOOPS Simulated hysteresis loops – Shape type S4 Examples of hysteresis loops limited by two curves with two inflection points shape type superscript 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3 S4a + 0 1 10 0.1 2 1 4 0 − 0 1 10 -0.1 -2 1 4 0 S4b + 0 0.5 20 0.001 5 1 8 -0.05 − 0 0.5 20 -0.001 -5 1 8 0.05 S4c + 0.5 0.5 10 0.1 2 1 40 0 − 0.5 0.5 10 -0.1 -2 1 40 0 Hysteretic Mechanical Systems and Materials
  • 11. P101 Implementation algorithm 1 Initial setting 1.1 Set the model parameters 𝑘𝑏 + , 𝑓0 + , 𝛼+ , 𝛽1 + , 𝛽2 + , 𝛾1 + , 𝛾2 + , 𝛾3 + and 𝑘𝑏 − , 𝑓0 − , 𝛼− , 𝛽1 − , 𝛽2 − , 𝛾1 − , 𝛾2 − , 𝛾3 − . 1.2 Define initial values of generalized force and tangent stiffness 𝑓𝑡=0 and 𝑘𝑡 𝑡=0. 2 Calculations at each time step 2.1 Update the model parameters 2.2 Evaluate the generalized force at time 𝑡 by using a numerical method 𝑘𝑏 = 𝑘𝑏 + 𝑘𝑏 − , 𝑓0 = 𝑓0 + 𝑓0 − , 𝛼 = 𝛼+ 𝛼− , 𝛽1 = 𝛽1 + 𝛽1 − , 𝛽2 = 𝛽2 + 𝛽2 − , 𝛾1 = 𝛾1 + 𝛾1 − , 𝛾2 = 𝛾2 + 𝛾2 − , 𝛾3 = 𝛾3 + 𝛾3 − , if 𝑠𝑡 > 0 (𝑠𝑡 < 0). 𝑘𝑒 𝑡 = 𝛽1𝛽2𝑒𝛽2𝑢𝑡 + 4𝛾1𝛾2𝑒−𝛾2 𝑢𝑡−𝛾3 1+𝑒−𝛾2 𝑢𝑡−𝛾3 2, 𝑓𝑒 𝑡 = 𝛽1𝑒𝛽2𝑢𝑡 − 𝛽1 + 4𝛾1 1+𝑒−𝛾2 𝑢𝑡−𝛾3 − 2𝛾1, ሶ 𝑓𝑡 = 𝑘𝑒 𝑡 + 𝑘𝑏 + 𝑠𝑡𝛼 𝑓𝑒 𝑡 + 𝑘𝑏 𝑢𝑡 + 𝑠𝑡 𝑓0 − 𝑓𝑡 ሶ 𝑢𝑡. P1 SIMULATION OF COMPLEX HYSTERESIS LOOPS 2.3 Compute the generalized tangent stiffness at time 𝑡 𝑘𝑡 𝑡 = 𝑘𝑒 𝑡 + 𝑘𝑏 + 𝑠𝑡𝛼 𝑓𝑒 𝑡 + 𝑘𝑏 𝑢𝑡 + 𝑠𝑡 𝑓0 − 𝑓𝑡 . Hysteretic Mechanical Systems and Materials
  • 12. 11 Matlab code - VRM_DF.m % ========================================================================================= % August 2023 % Vaiana Rosati Model Algorithm % Nicolo' Vaiana, Assistant Professor in Structural Mechanics and Dynamics % Department of Structures for Engineering and Architecture % University of Naples Federico II % via Claudio 21, 80125, Napoli, Italy % e-mail: nicolo.vaiana@unina.it, nicolovaiana@outlook.it % ========================================================================================= clc; clear all; close all; %% APPLIED GENERALIZED DISPLACEMENT dt = 0.001; % s time step t = 0:dt:1.5; % s time interval u0 = 1.0; % m displacement amplitude fr = 1; % Hz displacement frequency u = u0*sin((2*pi*fr)*t(1:length(t))); % m displacement vector ud = 2*pi*fr*u0*cos((2*pi*fr)*t(1:length(t))); % m/s velocity vector Ns = length(u); % - number of time steps %% 1 INITIAL SETTINGS % 1.1 Set the model parameters kbp = 2.5; kbm = 0; % N/m f0p = 4; f0m = 4; % N alfap = 10; alfam = 10; % 1/m beta1p = 0; beta1m = -2; % N beta2p = 0; beta2m = 1; % 1/m gamma1p = 1; gamma1m = 0; % N gamma2p = 3.5; gamma2m = 0; % 1/m gamma3p = 0; gamma3m = 0; % m % 1.2 Define initial values of generalized force and tangent stiffness f(1) = 0.0; % N kt(1) = 0.0; % N/m %% 2 CALCULATIONS AT EACH TIME STEP for i = 2:Ns % 2.1 Update the model parameters kb = kbp; f0 = f0p; alfa = alfap; beta1 = beta1p; beta2 = beta2p; gamma1 = gamma1p; gamma2 = gamma2p; gamma3 = gamma3p; if sign(ud(i)) < 0 kb = kbm; f0 = f0m; alfa = alfam; beta1 = beta1m; beta2 = beta2m; gamma1 = gamma1m; gamma2 = gamma2m; gamma3 = gamma3m; end % 2.2 Evaluate the generalized force par = [kb f0 alfa beta1 beta2 gamma1 gamma2 gamma3]; options = odeset('RelTol',1e-10,'AbsTol',1e-10); [tt,ff] = ode45(@(tt,ff) VRM_fd(tt,ff,[t(i-1) t(i)],[u(i-1) u(i)],[ud(i-1) ud(i)],par),[t(i-1) t(i)],f(i- 1),options); f(i) = ff(length(tt)); % 2.3 Compute the generalized tangent stiffness ke(i) = beta1*beta2*exp(beta2*u(i))+(4*gamma1*gamma2*exp(-gamma2*(u(i)-gamma3)))/(1+exp(-gamma2*(u(i)- gamma3)))^2; fe(i) = beta1*exp(beta2*u(i))-beta1+(4*gamma1/(1+exp(-gamma2*(u(i)-gamma3))))-2*gamma1; kt(i) = ke(i)+kb+sign(ud(i))*alfa*(fe(i)+kb*u(i)+sign(ud(i))*f0-f(i)); end %% PLOT figure plot(u,f,'k','linewidth',4); set(gca,'FontSize',28) set(gca,'FontName','Times New Roman') grid('on'); xlabel('displacement'); ylabel('force'); P1 SIMULATION OF COMPLEX HYSTERESIS LOOPS Hysteretic Mechanical Systems and Materials
  • 13. 12 Matlab code - VRM_fd.m function fd = VRM_fd(t,f,tv,uv,udv,par) %% GENERALIZED DISPLACEMENT AND VELOCITY u = interp1(tv,uv,t); ud = interp1(tv,udv,t); %% MODEL PARAMETERS kb = par(1); f0 = par(2); alfa = par(3); beta1 = par(4); beta2 = par(5); gamma1 = par(6); gamma2 = par(7); gamma3 = par(8); %% ORDINARY DIFFERENTIAL EQUATION ke = beta1*beta2*exp(beta2*u)+(4*gamma1*gamma2*exp(-gamma2*(u-gamma3)))/(1+exp(-gamma2*(u-gamma3)))^2; fe = beta1*exp(beta2*u)-beta1+(4*gamma1/(1+exp(-gamma2*(u-gamma3))))-2*gamma1; fd = (ke+kb+sign(ud)*alfa*(fe+kb*u+sign(ud)*f0-f))*ud; end P1 SIMULATION OF COMPLEX HYSTERESIS LOOPS Hysteretic Mechanical Systems and Materials
  • 14. 13 References [1] Vaiana N, Sessa S, Marmo F, Rosati L (2018) A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dynamics 93(3): 1647-1669. [2] Vaiana N, Sessa S, Marmo F, Rosati L (2019) An accurate and computationally efficient uniaxial phenomenological model for steel and fiber reinforced elastomeric bearings. Composite Structures 211: 196-212. [3] Vaiana N, Sessa S, Marmo F, Rosati L (2019) Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel rate-independent model and an explicit time integration method. Nonlinear Dynamics 98(4): 2879-2901. [4] Vaiana N, Sessa S, Rosati L (2021) A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena. Mechanical Systems and Signal Processing 146: 106984. [5] Vaiana N, Rosati L (2023) Classification and unified phenomenological modeling of complex uniaxial rate-independent hysteretic responses. Mechanical Systems and Signal Processing 182: 109539. [6] Vaiana N, Capuano R, Rosati L (2023) Evaluation of path-dependent work and internal energy change for hysteretic mechanical systems. Mechanical Systems and Signal Processing 186: 109862. [7] Vaiana N, Rosati L (2023) Analytical and differential reformulations of the Vaiana–Rosati model for complex rate-independent mechanical hysteresis phenomena. Mechanical Systems and Signal Processing 199: 110448. P1 SIMULATION OF COMPLEX HYSTERESIS LOOPS Hysteretic Mechanical Systems and Materials