SlideShare a Scribd company logo
1 of 13
Download to read offline
Hysteretic Mechanical Systems
and Materials
with Matlab Codes
Version 27 August 2023 Nicolò Vaiana, Ph.D.
University of Naples Federico II
Polytechnic and Basic Sciences School
Department of Structures for Engineering and Architecture
1
P2
Hysteretic Mechanical Systems and Materials
SDF Hysteretic System 1
VRM AF - CFEMs
NONLINEAR TIME HYSTORY ANALYSIS
P21
Introduction
This short report briefly illustrates the main ingredients required to perform Nonlinear Time History Analyses
(NLTHAs) of a Single Degree of Freedom (SDF) system having rate-independent hysteretic behavior.
The Vaiana Rosati Model – Analytical Formulation (VRM AF) is adopted to simulate the behavior of the rate-
independent hysteretic element.
The second-order Ordinary Differential Equation (ODE) of motion is numerically solved by using the Chang’s
Family of Explicit structure-dependent time integration Methods (CFEMs).
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
P31
Nonlinear Equilibrium Equation
The nonlinear equilibrium equation of the SDF rate-independent hysteretic system is:
𝑚 ሷ
𝑢(𝑡) + 𝑓(𝑡) = 𝑝 𝑡 ,
where ሷ
𝑢(𝑡) is the acceleration of the mass 𝑚, 𝑓(𝑡) represents the rate-independent hysteretic generalized
force, and 𝑝 𝑡 is the external generalized force.
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
P41
Rate-Independent Hysteretic Generalized Force
The expression of 𝑓 𝑡 is provided by the Vaiana Rosati Model - Analytical Formulation (VRM AF):
𝑓 𝑡 = 𝑓
𝑒 𝑡 + 𝑘𝑏𝑢(𝑡) + sgn ሶ
𝑢 𝑡 𝑓0 − 𝑓𝑒 𝑡𝑃 + 𝑘𝑏𝑢 𝑡𝑃 + sgn ሶ
𝑢 𝑡 𝑓0 − 𝑓 𝑡𝑃 𝑒−sgn ሶ
𝑢 𝑡 𝛼 𝑢(𝑡)−𝑢(𝑡𝑃)
,
where:
𝑓
𝑒 𝑡 = 𝛽1𝑒𝛽2𝑢(𝑡)
− 𝛽1 +
4𝛾1
1+𝑒−𝛾2 𝑢(𝑡)−𝛾3
− 2𝛾1.
During the generic loading phase ( ሶ
𝑢(𝑡) > 0), the model parameters are:
𝑘𝑏 = 𝑘𝑏
+
, 𝑓0 = 𝑓0
+
, 𝛼 = 𝛼+
, 𝛽1 = 𝛽1
+
, 𝛽2 = 𝛽2
+
, 𝛾1 = 𝛾1
+
, 𝛾2 = 𝛾2
+
, 𝛾3 = 𝛾3
+
,
whereas, during the generic unloading one ( ሶ
𝑢(𝑡) < 0), they are:
𝑘𝑏 = 𝑘𝑏
−
, 𝑓0 = 𝑓0
−
, 𝛼 = 𝛼−
, 𝛽1 = 𝛽1
−
, 𝛽2 = 𝛽2
−
, 𝛾1 = 𝛾1
−
, 𝛾2 = 𝛾2
−
, 𝛾3 = 𝛾3
−
.
Note that the only conditions to be fulfilled are:
𝛼+
> 0, 𝛼−
> 0, 𝑓0
+
> 𝑓0
−
,
since the other parameters can be arbitrary real numbers.
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
P51
External Generalized Force
In the case of a sinusoidal harmonic generalized force (left), the expression of 𝑝 𝑡 is:
𝑝 𝑡 = 𝑝0 sin 2𝜋𝑓𝑝𝑡 ,
whereas, in the case of a cosine harmonic generalized force (right), it becomes:
𝑝 𝑡 = 𝑝0 cos 2𝜋𝑓𝑝𝑡 ,
where 𝑝0 and 𝑓𝑝 represent the force amplitude and frequency, respectively.
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
P61
Numerical Method
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
1 Initial settings
1.1 Evaluate the following scalars:
𝑚 and 𝑘0.
1.2 Initialize 𝑢𝑡=0 and ሶ
𝑢𝑡=0; then evaluate the initial generalized acceleration:
ሷ
𝑢𝑡=0 = 𝑚−1
𝑝𝑡=0 − 𝑓𝑡=0 .
2 Calculations at each time step
2.1 Compute the generalized displacement:
2.2 Evaluate the generalized velocity:
𝑢𝑡 = 𝑢𝑡−∆𝑡 + ∆𝑡 ሶ
𝑢𝑡−∆𝑡 + 𝑠0
−1
𝑚 ∆𝑡 2
ሷ
𝑢𝑡−∆𝑡 + α ∆𝑡 2
𝑝𝑡 − 𝑝𝑡−∆𝑡 .
ሶ
𝑢𝑡 = ሶ
𝑢𝑡−∆𝑡 + 𝑠0
−1
𝑚 ∆𝑡 ሷ
𝑢𝑡−∆𝑡.
2.4 Evaluate the generalized acceleration:
ሷ
𝑢𝑡 = 𝑚−1
𝑝𝑡 − 𝑓𝑡 .
1.3 Select time step ∆𝑡, set 𝛼 = 1/4, and compute 𝑠0:
𝑠0 = 𝑚 + α ∆𝑡 2
𝑘0.
2.3 Compute the rate-independent hysteretic generalized force:
𝑓𝑡 = 𝑓𝑒 𝑡 + 𝑘𝑏 𝑢𝑡 + 𝑠𝑡 𝑓0 − 𝑓𝑒 𝑡−∆𝑡 + 𝑘𝑏 𝑢𝑡−∆𝑡 + 𝑠𝑡 𝑓0 − 𝑓𝑡−∆𝑡 𝑒−𝑠𝑡𝛼 𝑢𝑡−𝑢𝑡−∆𝑡 ,
with:
𝑓𝑒 𝑡−∆𝑡 = 𝛽1𝑒𝛽2𝑢𝑡−∆𝑡 − 𝛽1 +
4𝛾1
1+𝑒−𝛾2 𝑢𝑡−∆𝑡−𝛾3
− 2𝛾1,
𝑓𝑒 𝑡 = 𝛽1𝑒𝛽2𝑢𝑡 − 𝛽1 +
4𝛾1
1+𝑒−𝛾2 𝑢𝑡−𝛾3
− 2𝛾1,
and:
𝑘𝑏 = 𝑘𝑏
+
𝑘𝑏
−
, 𝑓0 = 𝑓0
+
𝑓0
−
, 𝛼 = 𝛼+
𝛼−
, 𝛽1 = 𝛽1
+
𝛽1
−
, 𝛽2 = 𝛽2
+
𝛽2
−
,
𝛾1 = 𝛾1
+
𝛾1
−
, 𝛾2 = 𝛾2
+
𝛾2
−
, 𝛾3 = 𝛾3
+
𝛾3
−
, if 𝑠𝑡 > 0 (𝑠𝑡 < 0).
The adopted numerical method, whose implementation algorithm is illustrated above, belongs to the Chang’s
Family of Explicit structure-dependent time integration Methods (CFEMs). Such a method, obtained by setting
𝛼 = 1/4, exhibits excellent accuracy and stability properties. More details are available in [3].
P71
Results – Sinusoidal Generalized Force
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
mass applied force VRM parameters
𝑚 𝑝0 𝑓𝑝 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3
Ns2m−1
N Hz Nm−1
N m−1
N m−1
N m−1
m
10 14 1 + 0 1.2 80 0.01 35 2 80 0.006
− 0 1.2 80 - 0.01 - 35 2 80 - 0.006
P81
Results – Cosine Generalized Force
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
mass applied force VRM parameters
𝑚 𝑝0 𝑓𝑝 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3
Ns2m−1
N Hz Nm−1
N m−1
N m−1
N m−1
m
10 14 1 + 0 1.2 80 0.01 35 2 80 0.006
− 0 1.2 80 - 0.01 - 35 2 80 - 0.006
9
Matlab Code - NLTHA_SYSTEM_1_VRM_AF_CFEMs.m
% =========================================================================================
% August 2023
% Nonlinear Time History Analysis of SDF Rate-Independent Hysteretic Systems
% Nicolo' Vaiana, Assistant Professor in Structural Mechanics and Dynamics
% Department of Structures for Engineering and Architecture
% University of Naples Federico II
% via Claudio 21, 80125, Napoli, Italy
% e-mail: nicolo.vaiana@unina.it, nicolovaiana@outlook.it
% =========================================================================================
clc; clear all; close all;
%% SDF RATE-INDEPEDENT HYSTERETIC SYSTEM MASS
m = 10; % Ns^2/m
%% VAIANA ROSATI MODEL PARAMETERS
kbp = 0; kbm = 0; % N/m
f0p = 1.2; f0m = 1.2; % N
alfap = 80; alfam = 80; % 1/m
beta1p = 0.01; beta1m = -0.01; % N
beta2p = 35; beta2m = -35; % 1/m
gamma1p = 2; gamma1m = 2; % N
gamma2p = 80; gamma2m = 80; % 1/m
gamma3p = 0.006; gamma3m = -0.006; % m
parp = [kbp f0p alfap beta1p beta2p gamma1p gamma2p gamma3p]; % -
parm = [kbm f0m alfam beta1m beta2m gamma1m gamma2m gamma3m]; % -
%% INITIAL CONDITIONS
u0 = 0; % m
ud0 = 0; % m/s
%% EXTERNAL GENERALIZED FORCE
dt = 0.001; % s
tv = 0:dt:10; % s
fp = 1; % Hz
p0 = 14; % N
p = p0*sin(2*pi*fp*tv); % N
Ns = length(tv); % -
%% CHANG'S FAMILY OF EXPLICIT METHODS
%% 1 INITIAL SETTINGS
% 1.1 Evaluate the following scalars:
[f(1),kt(1)] = VRM_AF(u0,ud0,0,0,parp,parm); % -
k0 = kt(1); % N/m
% 1.2 Initialize u0 and ud0; then evaluate the initial generalized acceleration:
u(1) = u0; % m
ud(1) = ud0; % m/s
udd(1) = m(p(1)-f(1)); % m/s^2
% 1.3 Set alfa = 1/4 and compute s0:
alfa = 1/4; % -
s0 = m+alfa*dt^2*k0; % Ns^2/m
%% 2 CALCULATIONS AT EACH TIME STEP
for i = 2:Ns
% 2.1 Compute the generalized displacement:
u(i) = u(i-1)+dt*ud(i-1)+s0(m*dt^2*udd(i-1)+alfa*dt^2*(p(i)-p(i-1))); % m
% 2.2 Evaluate the generalized velocity:
ud(i) = ud(i-1)+s0(m*dt*udd(i-1)); % m/s
% 2.3 Compute the rate-independent hysteretic generalized force:
f(i) = VRM_AF(u(i),sign(ud(i)),u(i-1),f(i-1),parp,parm); % N
% 2.4 Evaluate the generalized acceleration:
udd(i) = m(p(i)-f(i)); % m/s^2
end
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
10
%% PLOTS
figure('Color',[0.949019610881805 0.949019610881805 0.949019610881805]);
subplot('Position',[0.05 0.58 0.2 0.4]);
grid on; box on;
xlabel('time [s]');
ylabel('applied force [N]');
axis([0 10 -20 20]);
set(gca,'XTick',[0 2 4 6 8 10]);
set(gca,'YTick',[-20 -10 0 10 20]);
set(gca,'GridLineStyle','--');
set(gca,'FontName','Times New Roman');
set(gca,'FontSize',16);
plot1 = line(tv,p,'Color','[0.584313750267029 0.168627455830574 0.294117659330368]','LineWidth',3);
subplot('Position',[0.30 0.58 0.2 0.4]);
grid on; box on;
xlabel('time [s]');
ylabel('displacement [m]');
axis([0 10 -0.2 0.2]);
set(gca,'XTick',[0 2 4 6 8 10]);
set(gca,'YTick',[-0.2 -0.1 0 0.1 0.2]);
set(gca,'GridLineStyle','--');
set(gca,'FontName','Times New Roman');
set(gca,'FontSize',16);
plot2 = line(tv,u,'Color','[0.204, 0.302, 0.494]','LineWidth',3);
subplot('Position',[0.05 0.08 0.2 0.4]);
grid on; box on;
xlabel('time [s]');
ylabel('velocity [m/s]');
axis([0 10 -0.8 0.8]);
set(gca,'XTick',[0 2 4 6 8 10]);
set(gca,'YTick',[-0.8 -0.4 0 0.4 0.8]);
set(gca,'GridLineStyle','--');
set(gca,'FontName','Times New Roman');
set(gca,'FontSize',16);
plot3 = line(tv,ud,'Color','[0.204, 0.302, 0.494]','LineWidth',3);
subplot('Position',[0.30 0.08 0.2 0.4]);
grid on; box on;
xlabel('displacement [m]');
ylabel('force [N]');
axis([-0.2 0.2 -8 8]);
set(gca,'XTick',[-0.2 -0.1 0 0.1 0.2]);
set(gca,'YTick',[-8.0 -4.0 0 4.0 8.0]);
set(gca,'GridLineStyle','--');
set(gca,'FontName','Times New Roman');
set(gca,'FontSize',16);
plot4 = line(u,f,'Color','[0.204, 0.302, 0.494]','LineWidth',3);
subplot('Position',[0.56 0.12 0.4 0.8]);
grid on; box on;
xlabel('d [m]');
ylabel('v [m/s]');
zlabel('f [N]');
axis([-0.2 0.2 -0.8 0.8 -8 8]);
set(gca,'XTick',[-0.2 -0.1 0 0.1 0.2]);
set(gca,'YTick',[-0.8 -0.4 0 0.4 0.8]);
set(gca,'ZTick',[-8.0 -4.0 0 4.0 8.0]);
set(gca,'GridLineStyle','--');
set(gca,'FontName','Times New Roman');
set(gca,'FontSize',16);
set(gca,'BoxStyle','full');
view([229.572533907569 40.0908387200157]);
plot5 = line(u,ud,f,'Color','[0.204, 0.302, 0.494]','Linewidth',3);
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
Matlab Code - NLTHA_SYSTEM_1_VRM_AF_CFEMs.m
11
Matlab Code - VRM_AF.m
function [f,kt] = VRM_AF(u,s,up,fp,parp,parm)
% Update the model parameters
kb = parp(1); f0 = parp(2); alfa = parp(3); beta1 = parp(4);
beta2 = parp(5); gamma1 = parp(6); gamma2 = parp(7); gamma3 = parp(8);
if s < 0
kb = parm(1); f0 = parm(2); alfa = parm(3); beta1 = parm(4);
beta2 = parm(5); gamma1 = parm(6); gamma2 = parm(7); gamma3 = parm(8);
end
% Evaluate the generalized force
fep = beta1*exp(beta2*up)-beta1+(4*gamma1/(1+exp(-gamma2*(up-gamma3))))-2*gamma1;
fe = beta1*exp(beta2*u) -beta1+(4*gamma1/(1+exp(-gamma2*(u -gamma3))))-2*gamma1;
f = fe+kb*u+s*f0-(fep+kb*up+s*f0-fp)*exp(-s*alfa*(u-up));
% Compute the generalized tangent stiffness
ke = beta1*beta2*exp(beta2*u)+(4*gamma1*gamma2*exp(-gamma2*(u-gamma3)))/(1+exp(-gamma2*(u-gamma3)))^2;
kt = ke+kb+s*alfa*(fep+kb*up+s*f0-fp)*exp(-s*alfa*(u-up));
end
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
12
References
[1] Vaiana N, Sessa S, Marmo F, Rosati L (2018) A class of uniaxial phenomenological models for simulating hysteretic
phenomena in rate-independent mechanical systems and materials. Nonlinear Dynamics 93(3): 1647-1669.
[2] Vaiana N, Sessa S, Marmo F, Rosati L (2019) An accurate and computationally efficient uniaxial phenomenological model for
steel and fiber reinforced elastomeric bearings. Composite Structures 211: 196-212.
[3] Vaiana N, Sessa S, Marmo F, Rosati L (2019) Nonlinear dynamic analysis of hysteretic mechanical systems by combining a
novel rate-independent model and an explicit time integration method. Nonlinear Dynamics 98(4): 2879-2901.
[4] Vaiana N, Sessa S, Rosati L (2021) A generalized class of uniaxial rate-independent models for simulating asymmetric
mechanical hysteresis phenomena. Mechanical Systems and Signal Processing 146: 106984.
[5] Vaiana N, Rosati L (2023) Classification and unified phenomenological modeling of complex uniaxial rate-independent
hysteretic responses. Mechanical Systems and Signal Processing 182: 109539.
[6] Vaiana N, Capuano R, Rosati L (2023) Evaluation of path-dependent work and internal energy change for hysteretic
mechanical systems. Mechanical Systems and Signal Processing 186: 109862.
[7] Vaiana N, Rosati L (2023) Analytical and differential reformulations of the Vaiana–Rosati model for complex rate-independent
mechanical hysteresis phenomena. Mechanical Systems and Signal Processing 199: 110448.
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS

More Related Content

Similar to SDF Hysteretic System 1 - Analytical Vaiana Rosati Model

Adaptive Flight-Control with Unknown Time-Varying Unstable Zero Dynamics
Adaptive Flight-Control with Unknown Time-Varying Unstable Zero DynamicsAdaptive Flight-Control with Unknown Time-Varying Unstable Zero Dynamics
Adaptive Flight-Control with Unknown Time-Varying Unstable Zero Dynamics
Syed Aseem Ul Islam
 
17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf
Mouli Reddy
 
PhD Defence Part 2
PhD Defence Part 2PhD Defence Part 2
PhD Defence Part 2
Daniel Theis
 

Similar to SDF Hysteretic System 1 - Analytical Vaiana Rosati Model (20)

Adaptive Type-2 Fuzzy Second Order Sliding Mode Control for Nonlinear Uncerta...
Adaptive Type-2 Fuzzy Second Order Sliding Mode Control for Nonlinear Uncerta...Adaptive Type-2 Fuzzy Second Order Sliding Mode Control for Nonlinear Uncerta...
Adaptive Type-2 Fuzzy Second Order Sliding Mode Control for Nonlinear Uncerta...
 
G04123844
G04123844G04123844
G04123844
 
Adaptive Flight-Control with Unknown Time-Varying Unstable Zero Dynamics
Adaptive Flight-Control with Unknown Time-Varying Unstable Zero DynamicsAdaptive Flight-Control with Unknown Time-Varying Unstable Zero Dynamics
Adaptive Flight-Control with Unknown Time-Varying Unstable Zero Dynamics
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
 
17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf
 
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems
Adaptive Projective Lag Synchronization of T and Lu  Chaotic Systems Adaptive Projective Lag Synchronization of T and Lu  Chaotic Systems
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems
 
Investigation of auto-oscilational regimes of the system by dynamic nonlinear...
Investigation of auto-oscilational regimes of the system by dynamic nonlinear...Investigation of auto-oscilational regimes of the system by dynamic nonlinear...
Investigation of auto-oscilational regimes of the system by dynamic nonlinear...
 
simple linear regression - brief introduction
simple linear regression - brief introductionsimple linear regression - brief introduction
simple linear regression - brief introduction
 
Stochastic augmentation by generalized minimum variance control with rst loop...
Stochastic augmentation by generalized minimum variance control with rst loop...Stochastic augmentation by generalized minimum variance control with rst loop...
Stochastic augmentation by generalized minimum variance control with rst loop...
 
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
 
Economia01
Economia01Economia01
Economia01
 
Economia01
Economia01Economia01
Economia01
 
論文紹介 Probabilistic sfa for behavior analysis
論文紹介 Probabilistic sfa for behavior analysis論文紹介 Probabilistic sfa for behavior analysis
論文紹介 Probabilistic sfa for behavior analysis
 
Controlled administration of Amiodarone using a Fractional-Order Controller
Controlled administration of Amiodarone using a Fractional-Order ControllerControlled administration of Amiodarone using a Fractional-Order Controller
Controlled administration of Amiodarone using a Fractional-Order Controller
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
 
On tracking control problem for polysolenoid motor model predictive approach
On tracking control problem for polysolenoid motor model predictive approach On tracking control problem for polysolenoid motor model predictive approach
On tracking control problem for polysolenoid motor model predictive approach
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
 
On Selection of Periodic Kernels Parameters in Time Series Prediction
On Selection of Periodic Kernels Parameters in Time Series Prediction On Selection of Periodic Kernels Parameters in Time Series Prediction
On Selection of Periodic Kernels Parameters in Time Series Prediction
 
ON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTION
ON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTIONON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTION
ON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTION
 
PhD Defence Part 2
PhD Defence Part 2PhD Defence Part 2
PhD Defence Part 2
 

Recently uploaded

Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Recently uploaded (20)

University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 

SDF Hysteretic System 1 - Analytical Vaiana Rosati Model

  • 1. Hysteretic Mechanical Systems and Materials with Matlab Codes Version 27 August 2023 Nicolò Vaiana, Ph.D. University of Naples Federico II Polytechnic and Basic Sciences School Department of Structures for Engineering and Architecture
  • 2. 1 P2 Hysteretic Mechanical Systems and Materials SDF Hysteretic System 1 VRM AF - CFEMs NONLINEAR TIME HYSTORY ANALYSIS
  • 3. P21 Introduction This short report briefly illustrates the main ingredients required to perform Nonlinear Time History Analyses (NLTHAs) of a Single Degree of Freedom (SDF) system having rate-independent hysteretic behavior. The Vaiana Rosati Model – Analytical Formulation (VRM AF) is adopted to simulate the behavior of the rate- independent hysteretic element. The second-order Ordinary Differential Equation (ODE) of motion is numerically solved by using the Chang’s Family of Explicit structure-dependent time integration Methods (CFEMs). Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 4. P31 Nonlinear Equilibrium Equation The nonlinear equilibrium equation of the SDF rate-independent hysteretic system is: 𝑚 ሷ 𝑢(𝑡) + 𝑓(𝑡) = 𝑝 𝑡 , where ሷ 𝑢(𝑡) is the acceleration of the mass 𝑚, 𝑓(𝑡) represents the rate-independent hysteretic generalized force, and 𝑝 𝑡 is the external generalized force. Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 5. P41 Rate-Independent Hysteretic Generalized Force The expression of 𝑓 𝑡 is provided by the Vaiana Rosati Model - Analytical Formulation (VRM AF): 𝑓 𝑡 = 𝑓 𝑒 𝑡 + 𝑘𝑏𝑢(𝑡) + sgn ሶ 𝑢 𝑡 𝑓0 − 𝑓𝑒 𝑡𝑃 + 𝑘𝑏𝑢 𝑡𝑃 + sgn ሶ 𝑢 𝑡 𝑓0 − 𝑓 𝑡𝑃 𝑒−sgn ሶ 𝑢 𝑡 𝛼 𝑢(𝑡)−𝑢(𝑡𝑃) , where: 𝑓 𝑒 𝑡 = 𝛽1𝑒𝛽2𝑢(𝑡) − 𝛽1 + 4𝛾1 1+𝑒−𝛾2 𝑢(𝑡)−𝛾3 − 2𝛾1. During the generic loading phase ( ሶ 𝑢(𝑡) > 0), the model parameters are: 𝑘𝑏 = 𝑘𝑏 + , 𝑓0 = 𝑓0 + , 𝛼 = 𝛼+ , 𝛽1 = 𝛽1 + , 𝛽2 = 𝛽2 + , 𝛾1 = 𝛾1 + , 𝛾2 = 𝛾2 + , 𝛾3 = 𝛾3 + , whereas, during the generic unloading one ( ሶ 𝑢(𝑡) < 0), they are: 𝑘𝑏 = 𝑘𝑏 − , 𝑓0 = 𝑓0 − , 𝛼 = 𝛼− , 𝛽1 = 𝛽1 − , 𝛽2 = 𝛽2 − , 𝛾1 = 𝛾1 − , 𝛾2 = 𝛾2 − , 𝛾3 = 𝛾3 − . Note that the only conditions to be fulfilled are: 𝛼+ > 0, 𝛼− > 0, 𝑓0 + > 𝑓0 − , since the other parameters can be arbitrary real numbers. Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 6. P51 External Generalized Force In the case of a sinusoidal harmonic generalized force (left), the expression of 𝑝 𝑡 is: 𝑝 𝑡 = 𝑝0 sin 2𝜋𝑓𝑝𝑡 , whereas, in the case of a cosine harmonic generalized force (right), it becomes: 𝑝 𝑡 = 𝑝0 cos 2𝜋𝑓𝑝𝑡 , where 𝑝0 and 𝑓𝑝 represent the force amplitude and frequency, respectively. Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 7. P61 Numerical Method Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS 1 Initial settings 1.1 Evaluate the following scalars: 𝑚 and 𝑘0. 1.2 Initialize 𝑢𝑡=0 and ሶ 𝑢𝑡=0; then evaluate the initial generalized acceleration: ሷ 𝑢𝑡=0 = 𝑚−1 𝑝𝑡=0 − 𝑓𝑡=0 . 2 Calculations at each time step 2.1 Compute the generalized displacement: 2.2 Evaluate the generalized velocity: 𝑢𝑡 = 𝑢𝑡−∆𝑡 + ∆𝑡 ሶ 𝑢𝑡−∆𝑡 + 𝑠0 −1 𝑚 ∆𝑡 2 ሷ 𝑢𝑡−∆𝑡 + α ∆𝑡 2 𝑝𝑡 − 𝑝𝑡−∆𝑡 . ሶ 𝑢𝑡 = ሶ 𝑢𝑡−∆𝑡 + 𝑠0 −1 𝑚 ∆𝑡 ሷ 𝑢𝑡−∆𝑡. 2.4 Evaluate the generalized acceleration: ሷ 𝑢𝑡 = 𝑚−1 𝑝𝑡 − 𝑓𝑡 . 1.3 Select time step ∆𝑡, set 𝛼 = 1/4, and compute 𝑠0: 𝑠0 = 𝑚 + α ∆𝑡 2 𝑘0. 2.3 Compute the rate-independent hysteretic generalized force: 𝑓𝑡 = 𝑓𝑒 𝑡 + 𝑘𝑏 𝑢𝑡 + 𝑠𝑡 𝑓0 − 𝑓𝑒 𝑡−∆𝑡 + 𝑘𝑏 𝑢𝑡−∆𝑡 + 𝑠𝑡 𝑓0 − 𝑓𝑡−∆𝑡 𝑒−𝑠𝑡𝛼 𝑢𝑡−𝑢𝑡−∆𝑡 , with: 𝑓𝑒 𝑡−∆𝑡 = 𝛽1𝑒𝛽2𝑢𝑡−∆𝑡 − 𝛽1 + 4𝛾1 1+𝑒−𝛾2 𝑢𝑡−∆𝑡−𝛾3 − 2𝛾1, 𝑓𝑒 𝑡 = 𝛽1𝑒𝛽2𝑢𝑡 − 𝛽1 + 4𝛾1 1+𝑒−𝛾2 𝑢𝑡−𝛾3 − 2𝛾1, and: 𝑘𝑏 = 𝑘𝑏 + 𝑘𝑏 − , 𝑓0 = 𝑓0 + 𝑓0 − , 𝛼 = 𝛼+ 𝛼− , 𝛽1 = 𝛽1 + 𝛽1 − , 𝛽2 = 𝛽2 + 𝛽2 − , 𝛾1 = 𝛾1 + 𝛾1 − , 𝛾2 = 𝛾2 + 𝛾2 − , 𝛾3 = 𝛾3 + 𝛾3 − , if 𝑠𝑡 > 0 (𝑠𝑡 < 0). The adopted numerical method, whose implementation algorithm is illustrated above, belongs to the Chang’s Family of Explicit structure-dependent time integration Methods (CFEMs). Such a method, obtained by setting 𝛼 = 1/4, exhibits excellent accuracy and stability properties. More details are available in [3].
  • 8. P71 Results – Sinusoidal Generalized Force Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS mass applied force VRM parameters 𝑚 𝑝0 𝑓𝑝 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3 Ns2m−1 N Hz Nm−1 N m−1 N m−1 N m−1 m 10 14 1 + 0 1.2 80 0.01 35 2 80 0.006 − 0 1.2 80 - 0.01 - 35 2 80 - 0.006
  • 9. P81 Results – Cosine Generalized Force Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS mass applied force VRM parameters 𝑚 𝑝0 𝑓𝑝 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3 Ns2m−1 N Hz Nm−1 N m−1 N m−1 N m−1 m 10 14 1 + 0 1.2 80 0.01 35 2 80 0.006 − 0 1.2 80 - 0.01 - 35 2 80 - 0.006
  • 10. 9 Matlab Code - NLTHA_SYSTEM_1_VRM_AF_CFEMs.m % ========================================================================================= % August 2023 % Nonlinear Time History Analysis of SDF Rate-Independent Hysteretic Systems % Nicolo' Vaiana, Assistant Professor in Structural Mechanics and Dynamics % Department of Structures for Engineering and Architecture % University of Naples Federico II % via Claudio 21, 80125, Napoli, Italy % e-mail: nicolo.vaiana@unina.it, nicolovaiana@outlook.it % ========================================================================================= clc; clear all; close all; %% SDF RATE-INDEPEDENT HYSTERETIC SYSTEM MASS m = 10; % Ns^2/m %% VAIANA ROSATI MODEL PARAMETERS kbp = 0; kbm = 0; % N/m f0p = 1.2; f0m = 1.2; % N alfap = 80; alfam = 80; % 1/m beta1p = 0.01; beta1m = -0.01; % N beta2p = 35; beta2m = -35; % 1/m gamma1p = 2; gamma1m = 2; % N gamma2p = 80; gamma2m = 80; % 1/m gamma3p = 0.006; gamma3m = -0.006; % m parp = [kbp f0p alfap beta1p beta2p gamma1p gamma2p gamma3p]; % - parm = [kbm f0m alfam beta1m beta2m gamma1m gamma2m gamma3m]; % - %% INITIAL CONDITIONS u0 = 0; % m ud0 = 0; % m/s %% EXTERNAL GENERALIZED FORCE dt = 0.001; % s tv = 0:dt:10; % s fp = 1; % Hz p0 = 14; % N p = p0*sin(2*pi*fp*tv); % N Ns = length(tv); % - %% CHANG'S FAMILY OF EXPLICIT METHODS %% 1 INITIAL SETTINGS % 1.1 Evaluate the following scalars: [f(1),kt(1)] = VRM_AF(u0,ud0,0,0,parp,parm); % - k0 = kt(1); % N/m % 1.2 Initialize u0 and ud0; then evaluate the initial generalized acceleration: u(1) = u0; % m ud(1) = ud0; % m/s udd(1) = m(p(1)-f(1)); % m/s^2 % 1.3 Set alfa = 1/4 and compute s0: alfa = 1/4; % - s0 = m+alfa*dt^2*k0; % Ns^2/m %% 2 CALCULATIONS AT EACH TIME STEP for i = 2:Ns % 2.1 Compute the generalized displacement: u(i) = u(i-1)+dt*ud(i-1)+s0(m*dt^2*udd(i-1)+alfa*dt^2*(p(i)-p(i-1))); % m % 2.2 Evaluate the generalized velocity: ud(i) = ud(i-1)+s0(m*dt*udd(i-1)); % m/s % 2.3 Compute the rate-independent hysteretic generalized force: f(i) = VRM_AF(u(i),sign(ud(i)),u(i-1),f(i-1),parp,parm); % N % 2.4 Evaluate the generalized acceleration: udd(i) = m(p(i)-f(i)); % m/s^2 end Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 11. 10 %% PLOTS figure('Color',[0.949019610881805 0.949019610881805 0.949019610881805]); subplot('Position',[0.05 0.58 0.2 0.4]); grid on; box on; xlabel('time [s]'); ylabel('applied force [N]'); axis([0 10 -20 20]); set(gca,'XTick',[0 2 4 6 8 10]); set(gca,'YTick',[-20 -10 0 10 20]); set(gca,'GridLineStyle','--'); set(gca,'FontName','Times New Roman'); set(gca,'FontSize',16); plot1 = line(tv,p,'Color','[0.584313750267029 0.168627455830574 0.294117659330368]','LineWidth',3); subplot('Position',[0.30 0.58 0.2 0.4]); grid on; box on; xlabel('time [s]'); ylabel('displacement [m]'); axis([0 10 -0.2 0.2]); set(gca,'XTick',[0 2 4 6 8 10]); set(gca,'YTick',[-0.2 -0.1 0 0.1 0.2]); set(gca,'GridLineStyle','--'); set(gca,'FontName','Times New Roman'); set(gca,'FontSize',16); plot2 = line(tv,u,'Color','[0.204, 0.302, 0.494]','LineWidth',3); subplot('Position',[0.05 0.08 0.2 0.4]); grid on; box on; xlabel('time [s]'); ylabel('velocity [m/s]'); axis([0 10 -0.8 0.8]); set(gca,'XTick',[0 2 4 6 8 10]); set(gca,'YTick',[-0.8 -0.4 0 0.4 0.8]); set(gca,'GridLineStyle','--'); set(gca,'FontName','Times New Roman'); set(gca,'FontSize',16); plot3 = line(tv,ud,'Color','[0.204, 0.302, 0.494]','LineWidth',3); subplot('Position',[0.30 0.08 0.2 0.4]); grid on; box on; xlabel('displacement [m]'); ylabel('force [N]'); axis([-0.2 0.2 -8 8]); set(gca,'XTick',[-0.2 -0.1 0 0.1 0.2]); set(gca,'YTick',[-8.0 -4.0 0 4.0 8.0]); set(gca,'GridLineStyle','--'); set(gca,'FontName','Times New Roman'); set(gca,'FontSize',16); plot4 = line(u,f,'Color','[0.204, 0.302, 0.494]','LineWidth',3); subplot('Position',[0.56 0.12 0.4 0.8]); grid on; box on; xlabel('d [m]'); ylabel('v [m/s]'); zlabel('f [N]'); axis([-0.2 0.2 -0.8 0.8 -8 8]); set(gca,'XTick',[-0.2 -0.1 0 0.1 0.2]); set(gca,'YTick',[-0.8 -0.4 0 0.4 0.8]); set(gca,'ZTick',[-8.0 -4.0 0 4.0 8.0]); set(gca,'GridLineStyle','--'); set(gca,'FontName','Times New Roman'); set(gca,'FontSize',16); set(gca,'BoxStyle','full'); view([229.572533907569 40.0908387200157]); plot5 = line(u,ud,f,'Color','[0.204, 0.302, 0.494]','Linewidth',3); Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS Matlab Code - NLTHA_SYSTEM_1_VRM_AF_CFEMs.m
  • 12. 11 Matlab Code - VRM_AF.m function [f,kt] = VRM_AF(u,s,up,fp,parp,parm) % Update the model parameters kb = parp(1); f0 = parp(2); alfa = parp(3); beta1 = parp(4); beta2 = parp(5); gamma1 = parp(6); gamma2 = parp(7); gamma3 = parp(8); if s < 0 kb = parm(1); f0 = parm(2); alfa = parm(3); beta1 = parm(4); beta2 = parm(5); gamma1 = parm(6); gamma2 = parm(7); gamma3 = parm(8); end % Evaluate the generalized force fep = beta1*exp(beta2*up)-beta1+(4*gamma1/(1+exp(-gamma2*(up-gamma3))))-2*gamma1; fe = beta1*exp(beta2*u) -beta1+(4*gamma1/(1+exp(-gamma2*(u -gamma3))))-2*gamma1; f = fe+kb*u+s*f0-(fep+kb*up+s*f0-fp)*exp(-s*alfa*(u-up)); % Compute the generalized tangent stiffness ke = beta1*beta2*exp(beta2*u)+(4*gamma1*gamma2*exp(-gamma2*(u-gamma3)))/(1+exp(-gamma2*(u-gamma3)))^2; kt = ke+kb+s*alfa*(fep+kb*up+s*f0-fp)*exp(-s*alfa*(u-up)); end Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 13. 12 References [1] Vaiana N, Sessa S, Marmo F, Rosati L (2018) A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dynamics 93(3): 1647-1669. [2] Vaiana N, Sessa S, Marmo F, Rosati L (2019) An accurate and computationally efficient uniaxial phenomenological model for steel and fiber reinforced elastomeric bearings. Composite Structures 211: 196-212. [3] Vaiana N, Sessa S, Marmo F, Rosati L (2019) Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel rate-independent model and an explicit time integration method. Nonlinear Dynamics 98(4): 2879-2901. [4] Vaiana N, Sessa S, Rosati L (2021) A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena. Mechanical Systems and Signal Processing 146: 106984. [5] Vaiana N, Rosati L (2023) Classification and unified phenomenological modeling of complex uniaxial rate-independent hysteretic responses. Mechanical Systems and Signal Processing 182: 109539. [6] Vaiana N, Capuano R, Rosati L (2023) Evaluation of path-dependent work and internal energy change for hysteretic mechanical systems. Mechanical Systems and Signal Processing 186: 109862. [7] Vaiana N, Rosati L (2023) Analytical and differential reformulations of the Vaiana–Rosati model for complex rate-independent mechanical hysteresis phenomena. Mechanical Systems and Signal Processing 199: 110448. Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS