SlideShare a Scribd company logo
1 of 14
APPLICATION OF
  DIFFERENTIATION

INCREASING AND DECREASING FUNCTION
    MINIMUM & MAXIMUM VALUES
          RATE OF CHANGE
Increasing & Decreasing
        function

     2 ND D I F F E R E N T I A T I O N
Determine set values of x in which the function is increasing and
 decreasing                                 y
                                         40




                                         20



                                                                     x
    -6          -4            -2                        2                4



                                         -20




                                         -40




                                         -60




                                         -80

The function decreases when


The function increases when
The nature of stationary point

        2 ND D I F F E R E N T I A T I O N
10
                                            y
      Find the point on the curve when8 its
      tangent line has a gradient of 0. 6
                                       4


                                       2

                                                                    x
-10       -8      -6     -4      -2              2      4   6   8       10

                                       -2


                                       -4


                                       -6


                                       -8


                                      -10




         Stationary point is a point where its
         tangent line is either horizontal or
         vertical.

          How is this related to 2nd differentiation?
10
                                        y

                                   8


                                   6


                                   4


                                   2

                                                                x
-10     -8     -6     -4     -2             2       4   6   8       10

                                   -2



      Find the point on the curve when its
                                   -4


      tangent line has a gradient of 0.
                                   -6


                                   -8


                                  -10



      How is this related to 2nd differentiation?
Find the point on the curve when its
                               y
     tangent line has a gradient of 0.
                           5.5


                             5


                            4.5


                             4


                            3.5


                             3


                            2.5


                             2


                            1.5
                                                           x
-2    -1.5    -1     -0.5    1     0.5      1   1.5    2




     What is the nature of this point?

                                                This point is neither maximum nor
                                                minimum point and its called
                                                STATIONARY POINT OF INFLEXION
How do we apply these concepts?

Find the coordinates of the stationary points on the curve
y = x3  3x + 2 and determine the nature of these points.
Hence, sketch the graph of y = x3  3x + 2 and determine the set
values of x in which the function increases and decreases.

    What are the strategies to solve this question?
5   y




                4




                3




                2




                1




–6   –4   –2            2



               –1




               –2




               –3
How do we apply these concepts to solve real-life
                    problems?

An open tank with a square base is to be made from a thin
sheet of metal. Find the length of the square base and the
height of the tank so that the least amount of metal is used to
make a tank with a capacity of 8 m3.

 What are the strategies to solve                            h
         this question?                          x
                                                       x
 • Derive a function from surface area and/ or
   volume area.
 • Express the function in one single term (x)
 • Use the function to identify maximum or
   minimum value.
An open tank with a square base is to be made from a
thin sheet of metal. Find the length of the square base
and the height of the tank so that the least amount of
metal is used to make a tank with a capacity of 8 m3.                                h

The Volume shows relationship between                         x
the height (h) and length (x) of the tank                                    x

                                                   Since the amount of the metal needed
                                                   depends on the surface area of the
                                                   tank, the area of metal needed is
                      Express S in terms of x
Rate of Change

   CHAIN RULE
What the symbol means




A radius of a circle
increases at a rate of
0.2 cm/ s

A water drops at a
rate of 0.5 cm3/ s


The side of a metal
cube expands at a
rate of 0.0013 mm/ s
The radius of a circle increases at a rate of 3 cms-1. Find the
rate increase of the area when
a) the radius is 5 cm,     b) the area is 4π cm2




                                         Apply CHAIN RULE

More Related Content

What's hot

Application of differentiation
Application   of   differentiationApplication   of   differentiation
Application of differentiationDhanush Kumar
 
Differential calculus
Differential calculusDifferential calculus
Differential calculusShubham .
 
Applied Calculus Chapter 3 partial derivatives
Applied Calculus Chapter  3 partial derivativesApplied Calculus Chapter  3 partial derivatives
Applied Calculus Chapter 3 partial derivativesJ C
 
Double integration final
Double integration finalDouble integration final
Double integration finalroypark31
 
The Application of Derivatives
The Application of DerivativesThe Application of Derivatives
The Application of Derivativesdivaprincess09
 
Limit of Function And Its Types
Limit of Function And Its TypesLimit of Function And Its Types
Limit of Function And Its TypesAdeel Rasheed
 
Lecture 15 section 5.4 graph of sin & cos
Lecture 15   section 5.4 graph of sin & cosLecture 15   section 5.4 graph of sin & cos
Lecture 15 section 5.4 graph of sin & cosnjit-ronbrown
 
Concepts of Maxima And Minima
Concepts of Maxima And MinimaConcepts of Maxima And Minima
Concepts of Maxima And MinimaJitin Pillai
 
Real life Application of maximum and minimum
Real life Application of maximum and minimumReal life Application of maximum and minimum
Real life Application of maximum and minimumNiloy Biswas
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Application of derivatives
Application of derivativesApplication of derivatives
Application of derivativesindu thakur
 
Ideals and factor rings
Ideals and factor ringsIdeals and factor rings
Ideals and factor ringsdianageorge27
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Matthew Leingang
 
Trigonometric function
Trigonometric functionTrigonometric function
Trigonometric functionAzurah Razak
 

What's hot (20)

Application of differentiation
Application   of   differentiationApplication   of   differentiation
Application of differentiation
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Application of Derivatives
Application of DerivativesApplication of Derivatives
Application of Derivatives
 
Applied Calculus Chapter 3 partial derivatives
Applied Calculus Chapter  3 partial derivativesApplied Calculus Chapter  3 partial derivatives
Applied Calculus Chapter 3 partial derivatives
 
Double integration final
Double integration finalDouble integration final
Double integration final
 
The Application of Derivatives
The Application of DerivativesThe Application of Derivatives
The Application of Derivatives
 
Limit of Function And Its Types
Limit of Function And Its TypesLimit of Function And Its Types
Limit of Function And Its Types
 
Application of derivative
Application of derivativeApplication of derivative
Application of derivative
 
Lecture 15 section 5.4 graph of sin & cos
Lecture 15   section 5.4 graph of sin & cosLecture 15   section 5.4 graph of sin & cos
Lecture 15 section 5.4 graph of sin & cos
 
Concepts of Maxima And Minima
Concepts of Maxima And MinimaConcepts of Maxima And Minima
Concepts of Maxima And Minima
 
Real life Application of maximum and minimum
Real life Application of maximum and minimumReal life Application of maximum and minimum
Real life Application of maximum and minimum
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Ch 3 the derivative
Ch 3 the derivativeCh 3 the derivative
Ch 3 the derivative
 
Trapezoidal rule
Trapezoidal ruleTrapezoidal rule
Trapezoidal rule
 
Application of derivatives
Application of derivativesApplication of derivatives
Application of derivatives
 
Ideals and factor rings
Ideals and factor ringsIdeals and factor rings
Ideals and factor rings
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
Trigonometric function
Trigonometric functionTrigonometric function
Trigonometric function
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Double integration
Double integrationDouble integration
Double integration
 

Similar to Application of differentiation

Graph functions
Graph functionsGraph functions
Graph functionsdaisy_yani
 
Elrc 4535 amy pp
Elrc 4535 amy ppElrc 4535 amy pp
Elrc 4535 amy pprhafford
 
Coordinate plane with voice
Coordinate plane with voiceCoordinate plane with voice
Coordinate plane with voicerhafford
 
Chapter 4 Extra Practice Answers
Chapter 4 Extra Practice AnswersChapter 4 Extra Practice Answers
Chapter 4 Extra Practice Answersleblance
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networksESCOM
 
Day 1 intro to functions
Day 1 intro to functionsDay 1 intro to functions
Day 1 intro to functionsErik Tjersland
 
Intro to Domain, Range, and Functions.
Intro to Domain, Range, and Functions.Intro to Domain, Range, and Functions.
Intro to Domain, Range, and Functions.Colomduran
 
12 x1 t04 06 integrating functions of time (2013)
12 x1 t04 06 integrating functions of time (2013)12 x1 t04 06 integrating functions of time (2013)
12 x1 t04 06 integrating functions of time (2013)Nigel Simmons
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)Nigel Simmons
 
Recognize Relation-Function Part 1 edmodo
Recognize Relation-Function Part 1 edmodoRecognize Relation-Function Part 1 edmodo
Recognize Relation-Function Part 1 edmodoshumwayc
 
1-05 Intro to Functions Notes
1-05 Intro to Functions Notes1-05 Intro to Functions Notes
1-05 Intro to Functions Notesnechamkin
 
Algebra 2 Section 2-7
Algebra 2 Section 2-7Algebra 2 Section 2-7
Algebra 2 Section 2-7Jimbo Lamb
 
Algebra 2 Section 2-1
Algebra 2 Section 2-1Algebra 2 Section 2-1
Algebra 2 Section 2-1Jimbo Lamb
 
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...Waqas Afzal
 
Quadratic Functions graph
Quadratic Functions graphQuadratic Functions graph
Quadratic Functions graphRefat Ullah
 

Similar to Application of differentiation (20)

Maximum and minimum
Maximum and minimumMaximum and minimum
Maximum and minimum
 
Lesson 54
Lesson 54Lesson 54
Lesson 54
 
Lesson 52
Lesson 52Lesson 52
Lesson 52
 
Graph functions
Graph functionsGraph functions
Graph functions
 
Algebra
AlgebraAlgebra
Algebra
 
Elrc 4535 amy pp
Elrc 4535 amy ppElrc 4535 amy pp
Elrc 4535 amy pp
 
Coordinate plane with voice
Coordinate plane with voiceCoordinate plane with voice
Coordinate plane with voice
 
Chapter 4 Extra Practice Answers
Chapter 4 Extra Practice AnswersChapter 4 Extra Practice Answers
Chapter 4 Extra Practice Answers
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networks
 
Lecture co4 math21-1
Lecture co4 math21-1Lecture co4 math21-1
Lecture co4 math21-1
 
Day 1 intro to functions
Day 1 intro to functionsDay 1 intro to functions
Day 1 intro to functions
 
Intro to Domain, Range, and Functions.
Intro to Domain, Range, and Functions.Intro to Domain, Range, and Functions.
Intro to Domain, Range, and Functions.
 
12 x1 t04 06 integrating functions of time (2013)
12 x1 t04 06 integrating functions of time (2013)12 x1 t04 06 integrating functions of time (2013)
12 x1 t04 06 integrating functions of time (2013)
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)
 
Recognize Relation-Function Part 1 edmodo
Recognize Relation-Function Part 1 edmodoRecognize Relation-Function Part 1 edmodo
Recognize Relation-Function Part 1 edmodo
 
1-05 Intro to Functions Notes
1-05 Intro to Functions Notes1-05 Intro to Functions Notes
1-05 Intro to Functions Notes
 
Algebra 2 Section 2-7
Algebra 2 Section 2-7Algebra 2 Section 2-7
Algebra 2 Section 2-7
 
Algebra 2 Section 2-1
Algebra 2 Section 2-1Algebra 2 Section 2-1
Algebra 2 Section 2-1
 
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...
 
Quadratic Functions graph
Quadratic Functions graphQuadratic Functions graph
Quadratic Functions graph
 

More from Lily Maryati

Trigonometry - SPA Program
Trigonometry - SPA ProgramTrigonometry - SPA Program
Trigonometry - SPA ProgramLily Maryati
 
How statistics used in real world
How statistics used in real worldHow statistics used in real world
How statistics used in real worldLily Maryati
 
Integration of function on non standard form
Integration of function on non standard formIntegration of function on non standard form
Integration of function on non standard formLily Maryati
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational formLily Maryati
 
Quadratic Equations
Quadratic EquationsQuadratic Equations
Quadratic EquationsLily Maryati
 
Relative velocity introduction
Relative velocity   introductionRelative velocity   introduction
Relative velocity introductionLily Maryati
 
Vectors in 2 Dimensions
Vectors in 2 DimensionsVectors in 2 Dimensions
Vectors in 2 DimensionsLily Maryati
 
Further trigonometry identities
Further trigonometry identitiesFurther trigonometry identities
Further trigonometry identitiesLily Maryati
 
2 circular measure arc length
2 circular measure   arc length2 circular measure   arc length
2 circular measure arc lengthLily Maryati
 
1 resource radian measure and arc length
1 resource   radian measure and arc length1 resource   radian measure and arc length
1 resource radian measure and arc lengthLily Maryati
 
Equation of a Circle
Equation of a CircleEquation of a Circle
Equation of a CircleLily Maryati
 

More from Lily Maryati (12)

Trigonometry - SPA Program
Trigonometry - SPA ProgramTrigonometry - SPA Program
Trigonometry - SPA Program
 
How statistics used in real world
How statistics used in real worldHow statistics used in real world
How statistics used in real world
 
Integration of function on non standard form
Integration of function on non standard formIntegration of function on non standard form
Integration of function on non standard form
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
Quadratic Equations
Quadratic EquationsQuadratic Equations
Quadratic Equations
 
Relative velocity introduction
Relative velocity   introductionRelative velocity   introduction
Relative velocity introduction
 
Inequalities
InequalitiesInequalities
Inequalities
 
Vectors in 2 Dimensions
Vectors in 2 DimensionsVectors in 2 Dimensions
Vectors in 2 Dimensions
 
Further trigonometry identities
Further trigonometry identitiesFurther trigonometry identities
Further trigonometry identities
 
2 circular measure arc length
2 circular measure   arc length2 circular measure   arc length
2 circular measure arc length
 
1 resource radian measure and arc length
1 resource   radian measure and arc length1 resource   radian measure and arc length
1 resource radian measure and arc length
 
Equation of a Circle
Equation of a CircleEquation of a Circle
Equation of a Circle
 

Recently uploaded

BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 

Recently uploaded (20)

BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 

Application of differentiation

  • 1. APPLICATION OF DIFFERENTIATION INCREASING AND DECREASING FUNCTION MINIMUM & MAXIMUM VALUES RATE OF CHANGE
  • 2. Increasing & Decreasing function 2 ND D I F F E R E N T I A T I O N
  • 3. Determine set values of x in which the function is increasing and decreasing y 40 20 x -6 -4 -2 2 4 -20 -40 -60 -80 The function decreases when The function increases when
  • 4. The nature of stationary point 2 ND D I F F E R E N T I A T I O N
  • 5. 10 y Find the point on the curve when8 its tangent line has a gradient of 0. 6 4 2 x -10 -8 -6 -4 -2 2 4 6 8 10 -2 -4 -6 -8 -10 Stationary point is a point where its tangent line is either horizontal or vertical. How is this related to 2nd differentiation?
  • 6. 10 y 8 6 4 2 x -10 -8 -6 -4 -2 2 4 6 8 10 -2 Find the point on the curve when its -4 tangent line has a gradient of 0. -6 -8 -10 How is this related to 2nd differentiation?
  • 7. Find the point on the curve when its y tangent line has a gradient of 0. 5.5 5 4.5 4 3.5 3 2.5 2 1.5 x -2 -1.5 -1 -0.5 1 0.5 1 1.5 2 What is the nature of this point? This point is neither maximum nor minimum point and its called STATIONARY POINT OF INFLEXION
  • 8. How do we apply these concepts? Find the coordinates of the stationary points on the curve y = x3  3x + 2 and determine the nature of these points. Hence, sketch the graph of y = x3  3x + 2 and determine the set values of x in which the function increases and decreases. What are the strategies to solve this question?
  • 9. 5 y 4 3 2 1 –6 –4 –2 2 –1 –2 –3
  • 10. How do we apply these concepts to solve real-life problems? An open tank with a square base is to be made from a thin sheet of metal. Find the length of the square base and the height of the tank so that the least amount of metal is used to make a tank with a capacity of 8 m3. What are the strategies to solve h this question? x x • Derive a function from surface area and/ or volume area. • Express the function in one single term (x) • Use the function to identify maximum or minimum value.
  • 11. An open tank with a square base is to be made from a thin sheet of metal. Find the length of the square base and the height of the tank so that the least amount of metal is used to make a tank with a capacity of 8 m3. h The Volume shows relationship between x the height (h) and length (x) of the tank x Since the amount of the metal needed depends on the surface area of the tank, the area of metal needed is Express S in terms of x
  • 12. Rate of Change CHAIN RULE
  • 13. What the symbol means A radius of a circle increases at a rate of 0.2 cm/ s A water drops at a rate of 0.5 cm3/ s The side of a metal cube expands at a rate of 0.0013 mm/ s
  • 14. The radius of a circle increases at a rate of 3 cms-1. Find the rate increase of the area when a) the radius is 5 cm, b) the area is 4π cm2 Apply CHAIN RULE