SlideShare a Scribd company logo
1 of 17
Download to read offline
1
Differentiation
Introduction:The derivative is a mathematical operator, which measures the rate of change of a
quantity relative to another quantity. The process of finding a derivative is called differentiation.
There are many phenomena related changing quantities such as speed of a particle, inflation of
currency, intensity of an earthquake and voltage of an electrical signal etc. in the world. In this
chapter we will discuss about various techniques of derivative.
Outcomes: After successful completion of the chapter, the students will be able to:
1. determine the speed, velocity and acceleration of a particle with respect to time.
2. calculate the rate at which the number of bacteria , the population changes with time.
3. measurethe rate at which the length of a metal rod changes with temperature.
4. find out the rate at which production cost changes with the quantity of a product .
Derivatives of elementary functions:
1.   0,
d
c
dx
 where c is a constant. 2.   1.
d
x
dx

3.   1
.
n n
d
x nx
dx

 4.   1
.
2
d
x
dx x

5.   .
x x
d
e e
dx
 6.   ln .
x x
d
a a a
dx

7.  
1
ln .
d
x
dx x
 8.  
sin cos .
d
x x
dx

9.  
cos sin .
d
x x
dx
  10.   2
tan sec .
d
x x
dx

11.  
sec sec tan .
d
x x x
dx
 12.   2
cot cos .
d
x ec x
dx
 
13.  
cos cos cot .
d
ecx ecx x
dx
  14.  
1
2
1
sin .
1
d
x
dx x



15.  
1
2
1
cos .
1
d
x
dx x
 


16.  
1
2
1
tan .
1
d
x
dx x



17.  
1
2
1
cot .
1
d
x
dx x
 


18.  
1
2
1
sec .
1
d
x
dx x x



19.  
1
2
1
cos .
1
d
ec x
dx x x
 


20.   .
d dv du
uv u v
dx dx dx
 
21.    
ln .
v v
d d
u u v u
dx dx
 22. 2
du dv
v u
d u dx dx
dx v v

 

 
 
where u and v are functions of x.
2
 Find the differential coefficient (
dy
dx
)of the following functions with respect to x.
 
     
 
6
6
7
7
7
7
3 2 1
: , 3 2 1
2.
3
21 2 0
21 2 .
,
3 2 1
2 1
y x x
Given that y x x
Differentiating with res
dy d
dx dx
d d d
pect to x we get
x
dx dx dx
x
x A
x
ns
x
x
  
  



  
 

 
Sol
 
 
 
8
8
8 1
8
7
8
5
: , 5
1.
5
,
5
5 8
40 .
y x
Given that y x
Differentiating with
dy d
x
dx dx
d
x
dx
respect to x we ge
x
x ns
t
A



 



Sol
 
   
 
 
3.
4 sin cos
4cos sin
4c
4sin cos
: , 4sin cos
,
4sin cos
os sin .
y x x
Given that y x x
Differentiating with respect to x we g
dy d
dx dx
d d
x x
dx dx
x x
x x An
e
x
s
t
x

 
 
 
 


 
Sol
 
   
   
   
2 2
2 2
2 2
2 2
2
2
2
sec tan
: , sec tan
,
sec tan
sec tan
4.
2se sec tan
sec t
c 2tan
2sec an sec
sec
2tan
2sec tan 2 tan
0
y x x
Given that y x x
Differentiating with respect to x we get
x x
x x
x x
x
dy d
dx dx
d d
dx dx
d d
x x
x x
x
dx dx
x x
x x x
Ans

 
 
 
 

 
 

Sol
 
.
 
 
 
 
 
 
 
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2 2 2
2 2 2
ln
: , ln
5.
1
.
1
. 1
1 1
. 1 .
2
1 2
. 1
,
l
2
n
y x x a
Given that y x x a
Differentiating with respect to x we get
x x a
dy d
dx d
x x a
x x a
x a
x x a
x a
x x a x a
x x a
x
d
dx
d
dx
d
dx
x
x


 
 
 
 
 
 
 

  
  
 
 
 

 

  



 

Sol
 
2
2 2 2 2
2 2
2 2 2 2
2 2
1
. 1
1
.
1
.
a
x x a x a
x a
x x a x a
x
x
x
A s
a
n
 
 
 
 
 
 
 


  

 



 
 
 
 
 
 
 
 
2
ln sec tan
: , ln sec tan
,
ln sec tan
sec tan
sec tan
sec tan sec
sec tan
sec tan sec
sec t
6.
1
.
a
ec
.
n
s
dy d
dx dx
d
y x x
Given that y x x
Differentiating with respect to x we get
x x
x x
x x
x x x
x x
x x x
dx
x
An
x x
s
 
 












Sol
3
 
 
 
 
 
cot
cot
cot
cot
cot
cot
2
cot 2
8.
. cot
1
. . cot
2 cot
. cos
2 cot
cos
2 c
: ,
,
ot
.
x
x
x
x
x
x
x
e
e
dy d
e
dx dx
d
e
y
Given that y
Differentiating with respect
x
dx
d
e x
dx
x
e
ec x
x
e
to x we ge
ec x
t
x
Ans



 


 
Sol
 
 
 
 
   
 
 
 
 
 
 
 
   
2
2
2
2 2
2 2
2
2 2 2
2
2
2
2
10.
sec .
1
sec . .
1
se
tan lnsin
: , tan lnsin
,
tan lnsin
lns
c .c
in ln sin
lnsin sin
sin
lnsin . .
sin
os
cot
x
x
x
x x
x x
x
x x x
x
x
y e
Given that y e
Differentiating with respect to x we get
e
dy d
e e
e e
dx dx
e
e e e
e
d
dx
d
dx
d
dx
e







Sol
     
   
 
2 2 2
2 2 2
2
2
2
sec
2 cot sec
.
lnsin .
lnsin
x x
x x x
e e x
e
d
d
x e
x
e
Ans

 
 
 
 
3
3
3
3
3
2
3
2
3
2 5
: , 2 5
,
2 5
1
2 5
2 2 5
1
3 2 0
2 2 5
3 2
2 2 5
9.
.
.
.
y x x
Given that y x x
Differentiating with respect to x we get
dy d
dx dx
d
dx
Ans
x x
x x
x x
x
x x
x
x x
  
  
 
 
 
 
 




 

Sol
 
 
 
 
 
 
1
1
1
1
1
1
1
1
1
1
1 cot
1 cot
1 cot
cot
2cot
cot
1
2cot
cot
2
2cot
cot
cos
: , cos
,
cos
1
cot
1
11.
1
1
1
1
1
.
.
x
x
x
x
x
x
x
x
x
x
y e
Given that y e
Differentiating with respect to x we g
dy d
dx dx
d
dx
d
d
et
e
e
e
e
e
x
x
e
x
e
e


















 

 

 


 

 



Sol
 
 
1
2 2cot
1
.
x
s
x e
An


 
   
 
 
1
1
1
1
1
1
sin 1
si
2
n 1
sin 1
sin 1
sin 1
sin
2 2
12.
1
1
1
1
.
tan
: , tan
,
tan
tan
. sin
1
x
x
x
x
x
x
dy d
dx dx
d
dx
y e x
Given that y e x
Differentiating with respect to x we get
e x
d
e x
dx
d
e x
dx
e
x
x
An
x
s











 
 











Sol
 
 
 
 
 
2
2
2
2
2
2
2
7.
.
.
: ,
,
2 0
2
ax bx c
ax bx c
ax bx c
ax bx c
ax bx c
ax bx c
y e
Given that y e
Differentiating with respect to x we ge
dy d
dx dx
d
dx
An
t
e
e ax bx c
e ax b
ax b e
s
 
 
 
 
 
 






 
 

Sol
4
 
   
 
 
2 1
2 1
2 1
2 1 1 2
2 1
2
2
1
2
cot
: , cot
,
cot
cot cot
1
cot 2
1
2 cot
13
1
.
.
dy
dx
y x x
Given that y x x
Differentiating with respect to x we get
d
x x
dx
d d
x x x x
dx dx
x x x
x
x
x
s
x
n
x
A



 






 

 






 

Sol
 
   
 
 
3
3
3
3 3
3 2
2 2
ln
: , ln
,
ln
ln ln
1
. ln 2
2 n
4.
l
1
.
y x x
Given that y x x
Differentiating with respect to x w
dy
e get
d
x x
dx
d d
x x x x
dx dx
x x x
x
dx
Ans
x x x









Sol
 
   
   
 
 
sin
: , sin
,
sin
sin sin
cos sin
cos sin
cos sin n
1 .
s
.
i
5 x
x
x
x x
x x x
x x x
x x x
y xe x
Given that y xe x
Differentiating with respect to x we get
d
xe x
dx
d d
xe x x xe
dx dx
d d
xe x x x e e x
dx dx
xe x x xe e
xe x xe x e x
dy
dx
Ans



 
 
 
 
 







Sol
 
   
   
 
cos
: , cos
,
cos
cos cos
sin cos
cos sin
16.
.
ax
ax
ax
ax ax
ax ax
ax ax
dy
dx
y e bx
Given that y e bx
Differentiating with respect to x we get
d
e bx
dx
d d
e bx bx e
dx dx
e b bx bx ae
ae bx
A
b
ns
e bx






 
 
Sol
 
 
 
 
 
   
   
2
2
2
2
2
2 1 1
2 1 1
2 1 1
2 1 1
2 1 1
2 2
2 1
1
2
1 sin
: , 1 sin
,
1 sin
1 sin
1 1
1 . sin . 2 . .2
1 2 1
1
2 i
1 .
s n
1
7 x
x
x
x
x
y x x e
Given that y x x e
Differentiating with respect to x we get
d
x x e
d
dy
dx x
d d
x x e
dx dx
x x x e x
x x
x xe
x x
x
 
 
 
 
 




  
  
 
 
  
 



 
Sol
 
2
2
.
1
x
x
Ans


 
 
 
 
 
     
     
   
sin
sin
sin
sin sin
sin sin
sin sin
sin
: , sin
,
sin
sin sin
.cos . sin . .cos
.cos . l
1
n sin . .co
8.
s
x x
x x
x x
x x x x
x x x x x
x x x x x
y e a
Given that y e a
Differentiating with respect to x we get
d
e a
dx
d d
e a a e
dx dx
d
e a a a e x
dx
e a a a a e x
dy
dx
An









Sol
 
.
s
5
1
2
1
2
1
1
2
1
2
1
1
1
tan
1
: , tan
1
, sin sin
sin
, tan
1 sin
sin
tan
cos
sin
tan
cos
tan .tan
sin
21.
x
y
x
x
Given that y
x
put x x
Now y
x
Differentiating with respect to x we ge
 
















 
  

 
 
  

 
  
 
  

 
 
  
 
 
  
 



Sol
 
 
1
2
,
sin
.
1
1
t
dy
dx
Ans
d
x
dx
x




     
 
 
 
 
2
2
2
2
2
2
2
cos
1 sin
cos
: ,
1 sin
,
cos
1 sin
1 sin cos 1 sin
1 sin
cos
1 sin
c
19.
cos
sin sin
sin sin
sin 1
os
1 sin
1
dy d
dx
x
y
x
x
Given that y
x
Differentiat
dx
d d
x
dx dx
x
ing with respect to x we get
x
x
x x x
x
x
x
x
x
x
x x
x









 
  

  

 


 
 



Sol
 
 
2
1
1 s
sin
in
.
x
x
Ans
 


       
 
 
2
cos sin
cos sin
cos sin
: ,
cos sin
,
cos sin
cos sin
cos sin cos sin cos sin cos sin
cos sin
cos sin sin
20.
dy d
d
x x
y
x x
x x
Given that y
x x
Differentiating with respect to x we get
x x
x x
x x x
x dx
d d
dx dx
x x x x x
x x
x x x







 
 






   


  
Sol
    
   
   
 
2
2 2
2
cos cos sin sin cos
cos sin 2sin cos
cos sin cos sin
1 sin2
1 sin2 1 sin2
1 sin2
1 sin
2
2
.
x x x x x
x x x x
x x x x
x
x x
x
x
Ans

 
  
 
 


 

 
 


 
 
2
1
2
2
1
2
1
2
1
2
1
1
1
2
1
cos
1
1
: , cos
1
, tan tan
1 tan
, cos
1 tan
cos .cos2
2
2tan
,
2
22
tan
1
.
2
.
x
y
x
x
Given that y
x
put x x
Now y
x
Differentiating with respect to x we get
x
x
dy d
dx dx
Ans
 











 

  

 
 

  

 
  
 

  

 






Sol
6
 
 
 
2
1
2
1
1
2
1
2
1
1
1
1 1
tan
1 1
: , tan
, tan tan
1 tan 1
, tan
tan
sec 1
tan
tan
sec 1
tan
tan
1 cos cos
tan .
cos
2
s n
3
t
.
i
x
y
x
x
Given that y
x
put x x
Now y
 






 
 







 
 
 

 
 
 
 
 
 

 
 
 
  
 
 
 

 
 
 
 

  
 
 

 
  
 

 
  
 

Sol
 
 
 
1
1
2
1
1
1
1
1
2
1 cos
an
sin
1 cos
tan
sin
2sin
2
tan
2sin cos
2 2
sin
2
tan
cos
2
tan .tan
2
2
1 tan
2
,
1 tan
2
1
2 1
.
x
Differentiating with respect to
dy
dx
Ans
x we get
d
x
dx
x





 












 
 
 

 
  
 
 
 

 
 
 
 

 
 






7
Homework:-Find
dy
dx
of the following functions:
1.  
ln
y x a x b
    Ans:
  
1
2 x a x b
 
2.    
cos ln ln tan
y x x
  Ans:
 
sin ln
2cos 2
x
ec x
x

3. 𝑦 = 𝑠𝑖𝑛−1
(𝑒𝑡𝑎𝑛−1𝑥
)
4. sin
ax m
y e rx
 Ans:  
sin cot
ax m
e rx a mr rx

5.
2
1 2
sin x
y x xe

  Ans:  
2
2
4
2
2 1
1
x
x
x e
x
 

6. 1
2
tan
1
x
y
x
  
  

 
Ans:
2
1
1 x

7.
1 4
tan
1 4
x
y
x

 
  
 

 
Ans:
 
2
1 4
x x

8.
1 cos
tan
1 sin
x
y
x
  
  

 
Ans:
1
2

Logarithmic differentiation: If we have functions that are composed of products, quotients
and powers, to differentiate such functions it would be convenient first to take logarithm of the function
and then differentiate. Such a technique is called the logarithmic differentiation.
 
 
 
 
   
 
   
     
   
 
ln
ln
ln
ln
ln
ln
ln
: ,
1. sin
sin
sin
sin ln ln sin
sin ln . sin sin .
sin ln . sin .
sin co
,
ln ln ln
1 1
.cos ln
sin
t
x
x
x
x
x
x
x
Given that y
Differentiating with respect to x we get
d
dx
d
dx
y x
x
dy
x
dx
x x x
x x x
d d
x
dx dx
x
x x
x
x x x
x






 
  
 
 
  
 

Sol
 
 
in
ln
.
ln s
x
x
x x
Ans
 





 
 
 
     
   
 
2
2
2
2
2
2
2
1
1
1
1 2
1 2 2
1 2
1
2.
: ,
,
1 ln
ln 1 1 l
. .
ln . .
ln
n
1
0 1 2 1
2 1
x x
x x
x x
x x
x x
x
x
x
x
y x
Given that y x
Differentiating with respect to x we get
d
x
dx
d
x x x x
dx
d d
x x x x x x
dx d
dy
dx
x
x
x x
x
x x x x
x
x
 
 
 
 








 
  
 
 
  



 
    
    



Sol
 
 
2
1
.
x x
A s
x
n
 
 
 



 
8
 
 
 
 
     
 
     
   
sin cos
1
sin cos
1
sin cos
1
sin cos
1 1
sin cos
1 1 1
3. tan
tan
tan
tan sin cos .ln tan
tan sin cos tan tan
: ,
,
ln ln .
x x
x x
x x
x x
x x
y x
x
dy
x
dx
x x x x
x
Given that y
Differentiating with respect to x we get
d
dx
d
dx
d d
dx d
x x x x
x







 

  



 



Sol
 
   
 
   
 
sin cos
1 2
1 1
sin cos
sin cos
tan tan . cos sin
ta
. ln
1
n
.
1
x x
x x
x x
x x x x
x
Ans
x

 

 

 
 
 

 
 
 




 
 
 
 
   
 
     
 
 
 
ln
ln
l
n
ln
ln
n
l
4. sin
sin
sin
sin
sin sin
sin
s
: ,
,
ln ln ln
ln
1 1
. ln ln . .co
s n
in s
i
x
x
x
x
x
x
x
x
x
x
x
x
Given that y
Differentiating with respect to x we get
d
dx
d d
x
dx dx
d d
x x x x
dx dx
x x x x x
x
y x x
x x
dy
x x
dx
x
x x
x
x
x x
 

 




 
 


 
 



 
 

Sol
   
 
ln ln
1 ln ln .co
sin
sin t .
x
x x
x x x x Ans
x
x
 
  
 
 
   
   
   
 
 
   
 
   
     
 
 
cos sin
cos sin
cos
cos sin
cos sin
cos sin
: ,
,
sin
sin cos ln sin
5. sin cos
sin cos
sin cos
c
si
os
cos co
n ln
sin cos
s
x x
x x
x x
x x
x x
x
Given that y
Differentiating with respect to x we get
d
dx
d d
x
dx dx
d d
x x x x
dx d
y x x
x x
dy
x x
dx
x
x x
x
x
 

 






Sol
       
       
sin
cos sin
1 1
. .cos sin ln sin sin . . sin cos ln cos
sin cos
sin cos .cot sin ln sin cos ln cos sin .ta
cos
cos n .
x
x x
x x x x x x x
x
x x
x x
x
x x x x x x x x Ans
 
   
 
 
   
  
 
 
 
  
 
9
9. (𝑐𝑜𝑠𝑥)𝑦
= (𝑠𝑖𝑛𝑦)𝑥
Sol: Taking 𝑙𝑛 in both sides we get
𝑦𝑙𝑛𝑐𝑜𝑠𝑥 = 𝑥𝑙𝑛𝑠𝑖𝑛𝑦
Differentiating w.r.to 𝑥 we get
(𝑙𝑛𝑐𝑜𝑠𝑥)
𝑑𝑦
𝑑𝑥
+ 𝑦
1
𝑐𝑜𝑠𝑥
(−𝑠𝑖𝑛𝑥) = 1. 𝑙𝑛𝑠𝑖𝑛𝑦 + 𝑥
1
𝑠𝑖𝑛𝑦
𝑐𝑜𝑠𝑦
𝑑𝑦
𝑑𝑥
⟹ (𝑙𝑛𝑐𝑜𝑠𝑥 − 𝑥𝑐𝑜𝑡𝑦)
𝑑𝑦
𝑑𝑥
= (𝑙𝑛𝑠𝑖𝑛𝑦 + 𝑦𝑡𝑎𝑛𝑥)
or
𝑑𝑦
𝑑𝑥
=
(𝒍𝒏𝒔𝒊𝒏𝒚+𝒚𝒕𝒂𝒏𝒙)
(𝒍𝒏𝒄𝒐𝒔𝒙−𝒙𝒄𝒐𝒕𝒚)
Ans
Homework:-Find
dy
dx
of the following functions:
1.
1
sin x
y x

 Ans:
1
1
sin
2
sin ln
1
x x x
x
x x


 

 

 
2.  
1
cos
sin
x
y x

 Ans:  
1
cos 1
2
lnsin
sin cot cos
1
x x
x x x
x


 

 

 
 
   
 
1
1
1
1
1
1
cos
cos
cos
cos
cos 1
cos
1
2
:
6. sin ln
sin ln
sin ln
sin ln
sin
c
,
os cos ln
,
ln
cos ln
1
x
x
x
x
x
x
Given that y
Differentiating with respect to x we get
d
dx
d d
x
dx dx
y x x x
x x x
dy
x x x
dx
x x
x
x x
x
d
x x x
dx
x x
x
x x








 

 




 
 
 





Sol
sin
cos ln .
x
x x A
x
ns
 
 




 
 
   
   
   
 
 
   
 
   
     
 
 
tan ln
2
tan ln
2
tan ln
2
tan ln
2
tan ln
2 2
t
2
7. 1 2 sin
1 2 sin
1 2 sin
1 2 s
: ,
in
1 tan 1 2 sin ln 2 si
,
ln l n
n
1
x x
x x
x x
x x
x x
y x x
x x
dy
x x
dx
Given that y
Differentiating with respect to x we get
d
dx
d
dx
d d
x
dx d
d
x x
dx
x x x
x
x
x x
   
  
   
   
   

 
 
Sol
   
 
 
an ln
2
2
2 2 sin
1
ln
2 tan cos ln
sec ln
2 si
2 sin .
n
1
x x x x
x x
x x x
x
x
A s
x
n
x
 

 

 
    
 

   
10
3.
x
x
y x
 Ans:
1
1 ln
x
x x
x x x
x
 
 
 
 
4.  
1 ln
cos
sin
x
x
y x x

  Ans:  
1
1
ln
cos
2
cos ln lnsin
sin ln cot
1
x
x x x x
x x x x
x x
x


   
  
   
 

 
5.    
cot tan
tan cot
x x
y x x
  Ans:        
cot tan
2 2
cos 1 lntan cot s lncot 1
x x
tanx ec x x x ec x x
  
6. 𝑥 + 𝑦 = tan(𝑥𝑦)
7. √
𝑦
𝑥
+ √
𝑥
𝑦
= 6
Parametric Equation: If in the equation of a curve  
y f x
 , x and y are expressed in terms of a
third variable known as parameter i.e,    
,
x t y t
 
  then the equations are called a parametric
equation.
   
 
 
 
 
 
2
1. sin , 1 cos
: ,
sin (1)
1 cos (2)
(1) (2) ,
1 cos
sin
,
sin
1 cos
2sin cos
2 2
2 cos
2
tan .
2
x a t t y a t
sol Given that
x a t t
and y a t
Differentiating and with respect to t we get
dx
a t
dt
dy
and a t
dt
dy
dy dt
Now
dx
dx
dt
a t
a t
t t
t
t
Ans
   
 
 
 






   
 
 
 
 
2. cos sin , sin cos
: ,
cos sin (1)
sin cos (2)
(1) (2) ,
sin cos sin
cos
cos sin cos
sin
,
x a t t t y a t t t
sol Given that
x a t t t
and y a t t t
Differentiating and with respect to t we get
dx
a t t t t
dt
at t
dy
and a t t t t
dt
at t
dy
dy dt
Now
d
dx
   
 
 
   

  


 
sin
cos
tan .
x
dt
at t
at t
t Ans


11
 
1
1
1
1
2 sin
2
sin
2
2
2
2
sin
2
sin
2
sin
3. 1 ,
: ,
1 (1)
(2)
(1) (2) ,
1
1 . 2
2 1
1
1
1
1
1
.
1
1
,
t
t
t
t
x t t y e
sol Giventhat
x t t
and y e
Differentiating and with respect tot we get
dx
t
dt t
t
t
t t
t
dy
and e
dt t
e
t
dy
dy dt
Now
dx
dx
dt
e





   
  

  

 

 








 
1
1
2
2 2
sin
2
1
.
1 1
.
1
t
t
t
t t t
e
Ans
t t


  

 
1 1
2 2
1
2
1
2 1
1
1
1
2
1
2 2
4. tan sin .
1 1
2
: , tan
1
tan
2 tan
tan ;
1 tan tan
tan .tan 2
2
2 tan (1)
2
sin
1
2
sin
x x
Differentiate with respect to
x x
x
sol Let y
x
putting x
x
x
x
and z
x


 


 







   
   
 
   
 
  

 

 
 
  
 
  
   



 
  

 

 
2 1
1
1
2 2
2
2
tan
tan
;
1 tan tan
sin .sin 2
2
2 tan (2)
(1) (2) ,
2 2
1 1
,
2
1
2
1
1 .
putting x
x
x
Differentiating and with respect to x we get
dy dz
and
dx x dx x
dy
dy dx
Now
dz
dz
dx
x
x
Ans


 






 
 
 
 
  
   



 
 





12
     
1
1
1
1
sin 1
sin
1
sin 1
1
sin
2
6. sin .
: , (1)
sin (2)
(1) (2) ,
sin ln ; ln
sin ln
1
x
x
x v v
x
Differentiate x withrespect to x
sol Let y x
and z x
Differentiating and withrespect to x we get
dy d d d
x x x u u v u
dx dx dx dx
x x
x
x x










 
 
 
 
 
 
 

 
 
1
1
2
1
sin
2
2
2 1
sin
1
1
,
sin ln
1
1
1
1 .sin
ln .
x
x
dz
and
dx x
dy
dy dx
Now
dz
dz
dx
x x
x
x x
x
x x
x x Ans
x







 

 

 


 

 
 
 
 
2
1 1
2
1
2
1
1
2
1
1
1
1 1
7. tan tan .
1 1
: , tan
sin
1 sin 1
tan ;
sin sin
cos 1
tan
sin
cos 1
tan
sin
1 cos
tan
x
Differentiate withrespect to x
x
x
sol Let y
x
putting x
x


 




 






 
 
 
 
 
 
 
  
 
 
  
 
 
    
   
 
 
 

  
 
 
 

  
 

 
 
2
1
1
1
1
1
1
sin
2sin
2
tan
2sin cos
2 2
sin
2
tan
cos
2
tan tan
2
tan tan
2
2
1
sin (1)
2
tan (2)
(1) (2) ,
x
and z x
Differentiating and withrespect to x we get
dy
d



 














 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2
2
2
2
2
2
1 1
1
2 1
,
1
2 1
1
1
1
.
2 1
dz
and
x dx x
x
dy
dy dx
Now
dz
dz
dx
x
x
x
Ans
x
  








 

13
 
1 1
2 2
1
2
1
2 1
1
1
1
1
2
1
8. sec tan .
2 1 1
1
: , sec
2 1
cos
1
sec ;
2cos 1 cos
1
sec
cos2
sec sec2
2
2cos (1)
tan
1
x
Differentiate withrespectto
x x
sol Let y
x
putting x
x
x
x
and z
x

 



 







 
 
 
 

  
 
 
  

 

 
 
  
 
  
   
 
  
 






1
1
2
1
2
1
1
1
2 2
sin
sin
tan ;
sin
1 sin
sin
tan
cos
sin
tan
cos
tan .tan
sin (2)
(1) (2) ,
2 1
1 1
,
putting x
x
x
Differentiating and withrespectto x we get
dy dz
and
dx dx
x x
dy
Now
dz

















 
 

   
    
 
  
 
 
  
 
 
  
 



  
 

 
2
2
2
1
1
1
2 .
dy
dx
dz
dx
x
x
Ans




 
14
Homework:-
1.
2
1 1
1 1
tan tan .
x
Differentiate withrespect to x
x
 
 
 
 
 
 
Ans:
1
2
2.
1
sin
cos3 .
x
Differentiate e withrespectto x

Ans:
1
sin
2
3 1 .sin3
x
e
x x



3.
2
1 1
2 2
1 2
cos tan .
1 1
x x
Differentiate withrespectto
x x
 
 
  
   
 
 
 
Ans: 1
Successive derivative
Successive derivative: If  
y f x
 be a function of x then the first order derivative of y with
respect to x is denoted by      
   
1 1
' '
1
, , , , , .
x
dy
f x y y f x f x etc
dx
Again the derivative of first ordered derivative of y with respect to x is called second order derivative
and is denoted by      
   
2
2 2
'' ''
2
2
, , , , , .
x
d y
f x y y f x f x etc
dx
Similarly, the nth derivative of y with respect to x is denoted by
     
   
, , , , , .
n
n n
n n
n x
n
d y
f x y y f x f x etc
dx
 Find the nth derivative of the following functions:
 
  
    
 
    
 
  
1
1
2
2
3
3
1.
: ,
,
1
1 2
,
1 2 1 ; ,
1 2 1
1 2 3.2.1
! .
n
n
n
n
n
n r
r
n n
n
y x
sol Giventhat y x
Differentiating withrespectto xwe get
y nx
y n n x
y n n n x
Similarly
y n n n n r x where r n
y n n n n n x
n n n
n Ans








  
   
     
     
  

1
2
2
3
3
2.
: ,
,
,
; ,
.
ax
ax
ax
ax
ax
r ax
r
n ax
n
y e
sol Giventhat y e
Differentiating withrespectto x we get
y ae
y a e
y a e
Similarly
y a e where r n
y a e Ans



 
 
 
 
15
 
 
 
  
   
    
  
    
  
 
 
1
1
2
2
2
3
3
3
3.
: ,
,
1
1 2
,
1 2 1 ; ,
1 2 1
!
!
m
m
m
m
m
m r
r
r
m n
n
n
n
y ax b
sol Giventhat y ax b
Differentiating withrespect to x we get
y am ax b
y a m m ax b
y a m m m ax b
Similarly
y a m m m m r ax b where r n
y a m m m m n ax b
m
a ax b
m n





 
 
 
   
    
      
      
 

.
m n
Ans

 
 
 
 
 
 
 
 
1
2
2
2
2
3
3
3
4. sin
: , sin
,
cos
sin
2
cos
2
sin
2 2
2
sin
2
2
cos
2
2
sin
2 2
y ax b
sol Giventhat y ax b
Differentiating withrespect to x we get
y a ax b
a ax b
y a ax b
a ax b
a ax b
y a ax b
a ax


 


 
 
 
 
 
  
 
 
 
   
 
 
 
   
 
 
 
  
 
 
 
   
 
 
    
 
 
 
3 3
sin
2
,
sin ; ,
2
sin .
2
r
r
n
n
b
a ax b
Similarly
r
y a ax b where r n
n
y a ax b Ans



 

 
 
 
  
 
 
 
   
 
 
 
   
 
 
 
 
 
 
 
 
 
 
1
2
2
2
2
3
3
3
5. cos
: , cos
,
sin
cos
2
sin
2
cos
2 2
2
cos
2
2
sin
2
2
cos
2 2
y ax b
sol Giventhat y ax b
Differentiating withrespect to x we get
y a ax b
a ax b
y a ax b
a ax b
a ax b
y a ax b
a


 


 
 
 
  
 
  
 
 
 
    
 
 
 
   
 
 
 
  
 
 
 
    
 
 
   
 
 
 
3 3
cos
2
,
cos ; ,
2
cos .
2
r
r
n
n
ax b
a ax b
Similarly
r
y a ax b where r n
n
y a ax b Ans



 
 
 
 
 
  
 
 
 
   
 
 
 
   
 
 
16
 
 
   
   
 
 
1
2 2 1
1
6. sin
: , sin
,
sin cos
sin cos
cos sin
tan
, cos sin sin cos
ax
ax
ax ax
ax
ax
y e bx c
sol Giventhat y e bx c
Differentiating withrespect to x we get
y ae bx c be bx c
e a bx c b bx c
put a r and b r
b
r a b and
a
Now y e r bx c r b
 

 

 
 
   
   
 
 
     
 
    
 
 
   
 
   
 
 
 
 
 
2
2
3
3
2 2 1
sin
sin cos
cos sin sin cos
sin 2
sin 3
,
sin
sin tan .
ax
ax
ax
ax
ax
n ax
n
n
ax
x c
re bx c
y re a bx c b bx c
re r bx c r bx c
r e bx c
y r e bx c
Similarly
y r e bx c n
b
a b e bx c n Ans
a

 
   





  
      
     
  
   
  
 
 
     
 
 
 
 
 
 
 
 
 
   
 
1
2
2 2
3
3 3
4
4 4
1
7. ln
: , ln
,
1.
1.2
1.2.3
,
1 1 !
.
n n
n n
y ax b
sol Giventhat y ax b
Differentiating withrespect to x we get
a
y
ax b
a
y
ax b
a
y
ax b
a
y
ax b
Similarly
n a
y Ans
ax b

 
 


  

 

  

 
 

 
1
2
1
2 2
2
8. sin cos 1 1 sin 2 .
: , sin cos
,
cos sin
sin cos
2 2
cos sin
2 2
r
r
r
If y nx nx then showthat y n nx
sol Giventhat y nx nx
Differentiating with respect to x we get
y n nx n nx
n nx n nx
y n nx n nx
 
 
 
    
 
 
 
   
   
   
   
   
    
   
   
 2 2
3 3
3
3 3
3
2
2 2
sin cos
2 2
2 2
cos sin
2 2
3 3
sin cos
2 2
,
sin cos
2 2
sin cos
2 2
r
r
r
n nx n nx
y n nx n nx
n nx n nx
Similarly
r r
y n nx n nx
r r
n nx nx
 
 
 
 
 
   
  
   
   
   
    
   
   
   
   
   
   
   
   
   
   
 
   
   
 
   
   
 
 
 
1
2
1
2
2 2
1
2
1
2
1
2
sin cos 2sin cos
2 2 2 2
1 sin 2
2
1 sin 2
1 1 sin 2 .
r
r
r
r
r
r r r r
n nx nx nx nx
r
n nx
n r nx
n nx showed
   



 
 
 
 
       
      
       
 
       
 
 
 
  
 
 
 
 
  
 
 
 
  
 
17
Homework:-
1. Find the nth derivative of the following functions:
a. 2
1
5 6
y
x x

 
Ans:  
   
1 1
1 1
1 !
2 3
n
n n n
y n
x x
 
 
  
 
 
 
 
b. 2
2 3
.
3 2
x
y
x x


 
Ans:  
   
1 1
1 1
1 !
1 2
n
n n n
y n
x x
 
 
  
 
 
 
 
   
2
2
1 1
2 2
1
3 3
2
2 3 2 3
1
9.
3 2
1
: ,
3 2
1 1
2 1
( 2) ( 1)
,
( 1)( 2) ( 1)( 1)
( 1)( 2)( 2) ( 1)( 2)( 1)
( 1) 2!( 2) ( 1) 2!( 1)
,
y
x x
sol Giventhat y
x x
x x
x x
Differentiating withrespect to x we get
y x x
y x x
x x
Similarly
y
 
 
 
 

 

 
 
 
   
     
        
     
    
 
   
( 1) ( 1)
1 1
1 !( 2) 1 !( 1)
1 1
1 !
2 1
n n
n n
n
n
n n
n x n x
n Ans
x x
   
 
     
 
 
  
 
 
 
 

More Related Content

What's hot

Btech_II_ engineering mathematics_unit1
Btech_II_ engineering mathematics_unit1Btech_II_ engineering mathematics_unit1
Btech_II_ engineering mathematics_unit1Rai University
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsSoma Shabbir
 
Runge–Kutta methods for ordinary differential equations
Runge–Kutta methods for ordinary differential equationsRunge–Kutta methods for ordinary differential equations
Runge–Kutta methods for ordinary differential equationsYuri Vyatkin
 
Cauchy's Equation & Cauchy's Constant Explained
Cauchy's Equation & Cauchy's Constant ExplainedCauchy's Equation & Cauchy's Constant Explained
Cauchy's Equation & Cauchy's Constant ExplainedDikshaTripathi20
 
Ch 1: Introduction and Math Concepts
Ch 1:  Introduction and Math ConceptsCh 1:  Introduction and Math Concepts
Ch 1: Introduction and Math ConceptsScott Thomas
 
Rules of integration
Rules of integrationRules of integration
Rules of integrationklawdet
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiationTanuj Parikh
 
simple harmonic motion
simple harmonic motionsimple harmonic motion
simple harmonic motionsaba majeed
 
SUPERPOSITION PRINCIPLE
SUPERPOSITION PRINCIPLESUPERPOSITION PRINCIPLE
SUPERPOSITION PRINCIPLEKANNAN
 
Errors and uncertainty
Errors and uncertaintyErrors and uncertainty
Errors and uncertaintymsali_aphs
 
Taylor's & Maclaurin's series simple
Taylor's & Maclaurin's series simpleTaylor's & Maclaurin's series simple
Taylor's & Maclaurin's series simpleNikhilkumar Patel
 
Multiple intigration ppt
Multiple intigration pptMultiple intigration ppt
Multiple intigration pptManish Mor
 

What's hot (20)

Btech_II_ engineering mathematics_unit1
Btech_II_ engineering mathematics_unit1Btech_II_ engineering mathematics_unit1
Btech_II_ engineering mathematics_unit1
 
11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 
Wave mechanics
Wave mechanicsWave mechanics
Wave mechanics
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Runge–Kutta methods for ordinary differential equations
Runge–Kutta methods for ordinary differential equationsRunge–Kutta methods for ordinary differential equations
Runge–Kutta methods for ordinary differential equations
 
Cauchy's Equation & Cauchy's Constant Explained
Cauchy's Equation & Cauchy's Constant ExplainedCauchy's Equation & Cauchy's Constant Explained
Cauchy's Equation & Cauchy's Constant Explained
 
Ch 1: Introduction and Math Concepts
Ch 1:  Introduction and Math ConceptsCh 1:  Introduction and Math Concepts
Ch 1: Introduction and Math Concepts
 
Metric space
Metric spaceMetric space
Metric space
 
Rules of integration
Rules of integrationRules of integration
Rules of integration
 
Physics (significant figures)
Physics (significant figures)Physics (significant figures)
Physics (significant figures)
 
Diffraction
DiffractionDiffraction
Diffraction
 
Linear and non linear equation
Linear and non linear equationLinear and non linear equation
Linear and non linear equation
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiation
 
simple harmonic motion
simple harmonic motionsimple harmonic motion
simple harmonic motion
 
SUPERPOSITION PRINCIPLE
SUPERPOSITION PRINCIPLESUPERPOSITION PRINCIPLE
SUPERPOSITION PRINCIPLE
 
Diffraction
DiffractionDiffraction
Diffraction
 
Errors and uncertainty
Errors and uncertaintyErrors and uncertainty
Errors and uncertainty
 
Taylor's & Maclaurin's series simple
Taylor's & Maclaurin's series simpleTaylor's & Maclaurin's series simple
Taylor's & Maclaurin's series simple
 
Multiple intigration ppt
Multiple intigration pptMultiple intigration ppt
Multiple intigration ppt
 

Similar to Differentiation.pdf

About testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulliAbout testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulliAlexander Decker
 
Beta & Gamma Functions
Beta & Gamma FunctionsBeta & Gamma Functions
Beta & Gamma FunctionsDrDeepaChauhan
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiationJaydevVadachhak
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)Nigel Simmons
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONSBRNSS Publication Hub
 
Derivatives of Trigonometric Functions, Part 2
Derivatives of Trigonometric Functions, Part 2Derivatives of Trigonometric Functions, Part 2
Derivatives of Trigonometric Functions, Part 2Pablo Antuna
 
Amity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAmity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAlbert Jose
 
College textbook business math and statistics - section b - business mathem...
College textbook   business math and statistics - section b - business mathem...College textbook   business math and statistics - section b - business mathem...
College textbook business math and statistics - section b - business mathem...Praveen Tyagi
 
1.3 solving equations
1.3 solving equations1.3 solving equations
1.3 solving equationsmath260
 
Bsc maths derivative_formula
Bsc maths derivative_formulaBsc maths derivative_formula
Bsc maths derivative_formulaShani Qasmi
 
lecture (8)derivatives.pptxdddddddddddddff
lecture (8)derivatives.pptxdddddddddddddfflecture (8)derivatives.pptxdddddddddddddff
lecture (8)derivatives.pptxdddddddddddddffmhamadhawlery16
 
Integration by parts to solve it clearly
Integration by parts  to solve it clearlyIntegration by parts  to solve it clearly
Integration by parts to solve it clearlymuhammadalam77863
 
11 x1 t09 08 implicit differentiation (2013)
11 x1 t09 08 implicit differentiation (2013)11 x1 t09 08 implicit differentiation (2013)
11 x1 t09 08 implicit differentiation (2013)Nigel Simmons
 
Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationtutulk
 

Similar to Differentiation.pdf (20)

About testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulliAbout testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulli
 
Beta & Gamma Functions
Beta & Gamma FunctionsBeta & Gamma Functions
Beta & Gamma Functions
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
 
Derivatives of Trigonometric Functions, Part 2
Derivatives of Trigonometric Functions, Part 2Derivatives of Trigonometric Functions, Part 2
Derivatives of Trigonometric Functions, Part 2
 
Derivatives
DerivativesDerivatives
Derivatives
 
Amity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAmity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notes
 
College textbook business math and statistics - section b - business mathem...
College textbook   business math and statistics - section b - business mathem...College textbook   business math and statistics - section b - business mathem...
College textbook business math and statistics - section b - business mathem...
 
Cu36574580
Cu36574580Cu36574580
Cu36574580
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
1.3 solving equations
1.3 solving equations1.3 solving equations
1.3 solving equations
 
Indefinite Integral 18
Indefinite Integral 18Indefinite Integral 18
Indefinite Integral 18
 
NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
 
Bsc maths derivative_formula
Bsc maths derivative_formulaBsc maths derivative_formula
Bsc maths derivative_formula
 
lecture (8)derivatives.pptxdddddddddddddff
lecture (8)derivatives.pptxdddddddddddddfflecture (8)derivatives.pptxdddddddddddddff
lecture (8)derivatives.pptxdddddddddddddff
 
Integration by parts to solve it clearly
Integration by parts  to solve it clearlyIntegration by parts  to solve it clearly
Integration by parts to solve it clearly
 
11 x1 t09 08 implicit differentiation (2013)
11 x1 t09 08 implicit differentiation (2013)11 x1 t09 08 implicit differentiation (2013)
11 x1 t09 08 implicit differentiation (2013)
 
Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integration
 
Finite difference & interpolation
Finite difference & interpolationFinite difference & interpolation
Finite difference & interpolation
 

Recently uploaded

DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfsumitt6_25730773
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxMuhammadAsimMuhammad6
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...HenryBriggs2
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilVinayVitekari
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptxrouholahahmadi9876
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 

Recently uploaded (20)

DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 

Differentiation.pdf

  • 1. 1 Differentiation Introduction:The derivative is a mathematical operator, which measures the rate of change of a quantity relative to another quantity. The process of finding a derivative is called differentiation. There are many phenomena related changing quantities such as speed of a particle, inflation of currency, intensity of an earthquake and voltage of an electrical signal etc. in the world. In this chapter we will discuss about various techniques of derivative. Outcomes: After successful completion of the chapter, the students will be able to: 1. determine the speed, velocity and acceleration of a particle with respect to time. 2. calculate the rate at which the number of bacteria , the population changes with time. 3. measurethe rate at which the length of a metal rod changes with temperature. 4. find out the rate at which production cost changes with the quantity of a product . Derivatives of elementary functions: 1.   0, d c dx  where c is a constant. 2.   1. d x dx  3.   1 . n n d x nx dx   4.   1 . 2 d x dx x  5.   . x x d e e dx  6.   ln . x x d a a a dx  7.   1 ln . d x dx x  8.   sin cos . d x x dx  9.   cos sin . d x x dx   10.   2 tan sec . d x x dx  11.   sec sec tan . d x x x dx  12.   2 cot cos . d x ec x dx   13.   cos cos cot . d ecx ecx x dx   14.   1 2 1 sin . 1 d x dx x    15.   1 2 1 cos . 1 d x dx x     16.   1 2 1 tan . 1 d x dx x    17.   1 2 1 cot . 1 d x dx x     18.   1 2 1 sec . 1 d x dx x x    19.   1 2 1 cos . 1 d ec x dx x x     20.   . d dv du uv u v dx dx dx   21.     ln . v v d d u u v u dx dx  22. 2 du dv v u d u dx dx dx v v         where u and v are functions of x.
  • 2. 2  Find the differential coefficient ( dy dx )of the following functions with respect to x.           6 6 7 7 7 7 3 2 1 : , 3 2 1 2. 3 21 2 0 21 2 . , 3 2 1 2 1 y x x Given that y x x Differentiating with res dy d dx dx d d d pect to x we get x dx dx dx x x A x ns x x                  Sol       8 8 8 1 8 7 8 5 : , 5 1. 5 , 5 5 8 40 . y x Given that y x Differentiating with dy d x dx dx d x dx respect to x we ge x x ns t A         Sol           3. 4 sin cos 4cos sin 4c 4sin cos : , 4sin cos , 4sin cos os sin . y x x Given that y x x Differentiating with respect to x we g dy d dx dx d d x x dx dx x x x x An e x s t x              Sol               2 2 2 2 2 2 2 2 2 2 2 sec tan : , sec tan , sec tan sec tan 4. 2se sec tan sec t c 2tan 2sec an sec sec 2tan 2sec tan 2 tan 0 y x x Given that y x x Differentiating with respect to x we get x x x x x x x dy d dx dx d d dx dx d d x x x x x dx dx x x x x x Ans                Sol   .               2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ln : , ln 5. 1 . 1 . 1 1 1 . 1 . 2 1 2 . 1 , l 2 n y x x a Given that y x x a Differentiating with respect to x we get x x a dy d dx d x x a x x a x a x x a x a x x a x a x x a x d dx d dx d dx x x                                           Sol   2 2 2 2 2 2 2 2 2 2 2 2 2 1 . 1 1 . 1 . a x x a x a x a x x a x a x x x A s a n                                          2 ln sec tan : , ln sec tan , ln sec tan sec tan sec tan sec tan sec sec tan sec tan sec sec t 6. 1 . a ec . n s dy d dx dx d y x x Given that y x x Differentiating with respect to x we get x x x x x x x x x x x x x x dx x An x x s                 Sol
  • 3. 3           cot cot cot cot cot cot 2 cot 2 8. . cot 1 . . cot 2 cot . cos 2 cot cos 2 c : , , ot . x x x x x x x e e dy d e dx dx d e y Given that y Differentiating with respect x dx d e x dx x e ec x x e to x we ge ec x t x Ans          Sol                               2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 10. sec . 1 sec . . 1 se tan lnsin : , tan lnsin , tan lnsin lns c .c in ln sin lnsin sin sin lnsin . . sin os cot x x x x x x x x x x x x x y e Given that y e Differentiating with respect to x we get e dy d e e e e dx dx e e e e e d dx d dx d dx e        Sol             2 2 2 2 2 2 2 2 2 sec 2 cot sec . lnsin . lnsin x x x x x e e x e d d x e x e Ans          3 3 3 3 3 2 3 2 3 2 5 : , 2 5 , 2 5 1 2 5 2 2 5 1 3 2 0 2 2 5 3 2 2 2 5 9. . . . y x x Given that y x x Differentiating with respect to x we get dy d dx dx d dx Ans x x x x x x x x x x x x                        Sol             1 1 1 1 1 1 1 1 1 1 1 cot 1 cot 1 cot cot 2cot cot 1 2cot cot 2 2cot cot cos : , cos , cos 1 cot 1 11. 1 1 1 1 1 . . x x x x x x x x x x y e Given that y e Differentiating with respect to x we g dy d dx dx d dx d d et e e e e e x x e x e e                                     Sol     1 2 2cot 1 . x s x e An             1 1 1 1 1 1 sin 1 si 2 n 1 sin 1 sin 1 sin 1 sin 2 2 12. 1 1 1 1 . tan : , tan , tan tan . sin 1 x x x x x x dy d dx dx d dx y e x Given that y e x Differentiating with respect to x we get e x d e x dx d e x dx e x x An x s                           Sol           2 2 2 2 2 2 2 7. . . : , , 2 0 2 ax bx c ax bx c ax bx c ax bx c ax bx c ax bx c y e Given that y e Differentiating with respect to x we ge dy d dx dx d dx An t e e ax bx c e ax b ax b e s                        Sol
  • 4. 4           2 1 2 1 2 1 2 1 1 2 2 1 2 2 1 2 cot : , cot , cot cot cot 1 cot 2 1 2 cot 13 1 . . dy dx y x x Given that y x x Differentiating with respect to x we get d x x dx d d x x x x dx dx x x x x x x s x n x A                          Sol           3 3 3 3 3 3 2 2 2 ln : , ln , ln ln ln 1 . ln 2 2 n 4. l 1 . y x x Given that y x x Differentiating with respect to x w dy e get d x x dx d d x x x x dx dx x x x x dx Ans x x x          Sol               sin : , sin , sin sin sin cos sin cos sin cos sin n 1 . s . i 5 x x x x x x x x x x x x x x y xe x Given that y xe x Differentiating with respect to x we get d xe x dx d d xe x x xe dx dx d d xe x x x e e x dx dx xe x x xe e xe x xe x e x dy dx Ans                     Sol             cos : , cos , cos cos cos sin cos cos sin 16. . ax ax ax ax ax ax ax ax ax dy dx y e bx Given that y e bx Differentiating with respect to x we get d e bx dx d d e bx bx e dx dx e b bx bx ae ae bx A b ns e bx           Sol                   2 2 2 2 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 2 1 1 2 1 sin : , 1 sin , 1 sin 1 sin 1 1 1 . sin . 2 . .2 1 2 1 1 2 i 1 . s n 1 7 x x x x x y x x e Given that y x x e Differentiating with respect to x we get d x x e d dy dx x d d x x e dx dx x x x e x x x x xe x x x                                   Sol   2 2 . 1 x x Ans                             sin sin sin sin sin sin sin sin sin sin : , sin , sin sin sin .cos . sin . .cos .cos . l 1 n sin . .co 8. s x x x x x x x x x x x x x x x x x x x x y e a Given that y e a Differentiating with respect to x we get d e a dx d d e a a e dx dx d e a a a e x dx e a a a a e x dy dx An          Sol   . s
  • 5. 5 1 2 1 2 1 1 2 1 2 1 1 1 tan 1 : , tan 1 , sin sin sin , tan 1 sin sin tan cos sin tan cos tan .tan sin 21. x y x x Given that y x put x x Now y x Differentiating with respect to x we ge                                                               Sol     1 2 , sin . 1 1 t dy dx Ans d x dx x                   2 2 2 2 2 2 2 cos 1 sin cos : , 1 sin , cos 1 sin 1 sin cos 1 sin 1 sin cos 1 sin c 19. cos sin sin sin sin sin 1 os 1 sin 1 dy d dx x y x x Given that y x Differentiat dx d d x dx dx x ing with respect to x we get x x x x x x x x x x x x x x                               Sol     2 1 1 s sin in . x x Ans                 2 cos sin cos sin cos sin : , cos sin , cos sin cos sin cos sin cos sin cos sin cos sin cos sin cos sin sin 20. dy d d x x y x x x x Given that y x x Differentiating with respect to x we get x x x x x x x x dx d d dx dx x x x x x x x x x x                           Sol                2 2 2 2 cos cos sin sin cos cos sin 2sin cos cos sin cos sin 1 sin2 1 sin2 1 sin2 1 sin2 1 sin 2 2 . x x x x x x x x x x x x x x x x x x Ans                          2 1 2 2 1 2 1 2 1 2 1 1 1 2 1 cos 1 1 : , cos 1 , tan tan 1 tan , cos 1 tan cos .cos2 2 2tan , 2 22 tan 1 . 2 . x y x x Given that y x put x x Now y x Differentiating with respect to x we get x x dy d dx dx Ans                                                  Sol
  • 6. 6       2 1 2 1 1 2 1 2 1 1 1 1 1 tan 1 1 : , tan , tan tan 1 tan 1 , tan tan sec 1 tan tan sec 1 tan tan 1 cos cos tan . cos 2 s n 3 t . i x y x x Given that y x put x x Now y                                                                                         Sol       1 1 2 1 1 1 1 1 2 1 cos an sin 1 cos tan sin 2sin 2 tan 2sin cos 2 2 sin 2 tan cos 2 tan .tan 2 2 1 tan 2 , 1 tan 2 1 2 1 . x Differentiating with respect to dy dx Ans x we get d x dx x                                                         
  • 7. 7 Homework:-Find dy dx of the following functions: 1.   ln y x a x b     Ans:    1 2 x a x b   2.     cos ln ln tan y x x   Ans:   sin ln 2cos 2 x ec x x  3. 𝑦 = 𝑠𝑖𝑛−1 (𝑒𝑡𝑎𝑛−1𝑥 ) 4. sin ax m y e rx  Ans:   sin cot ax m e rx a mr rx  5. 2 1 2 sin x y x xe    Ans:   2 2 4 2 2 1 1 x x x e x    6. 1 2 tan 1 x y x          Ans: 2 1 1 x  7. 1 4 tan 1 4 x y x            Ans:   2 1 4 x x  8. 1 cos tan 1 sin x y x          Ans: 1 2  Logarithmic differentiation: If we have functions that are composed of products, quotients and powers, to differentiate such functions it would be convenient first to take logarithm of the function and then differentiate. Such a technique is called the logarithmic differentiation.                               ln ln ln ln ln ln ln : , 1. sin sin sin sin ln ln sin sin ln . sin sin . sin ln . sin . sin co , ln ln ln 1 1 .cos ln sin t x x x x x x x Given that y Differentiating with respect to x we get d dx d dx y x x dy x dx x x x x x x d d x dx dx x x x x x x x x                      Sol     in ln . ln s x x x x Ans                          2 2 2 2 2 2 2 1 1 1 1 2 1 2 2 1 2 1 2. : , , 1 ln ln 1 1 l . . ln . . ln n 1 0 1 2 1 2 1 x x x x x x x x x x x x x x y x Given that y x Differentiating with respect to x we get d x dx d x x x x dx d d x x x x x x dx d dy dx x x x x x x x x x x x                                               Sol     2 1 . x x A s x n           
  • 8. 8                           sin cos 1 sin cos 1 sin cos 1 sin cos 1 1 sin cos 1 1 1 3. tan tan tan tan sin cos .ln tan tan sin cos tan tan : , , ln ln . x x x x x x x x x x y x x dy x dx x x x x x Given that y Differentiating with respect to x we get d dx d dx d d dx d x x x x x                      Sol               sin cos 1 2 1 1 sin cos sin cos tan tan . cos sin ta . ln 1 n . 1 x x x x x x x x x x x Ans x                                                   ln ln l n ln ln n l 4. sin sin sin sin sin sin sin s : , , ln ln ln ln 1 1 . ln ln . .co s n in s i x x x x x x x x x x x x Given that y Differentiating with respect to x we get d dx d d x dx dx d d x x x x dx dx x x x x x x y x x x x dy x x dx x x x x x x x                            Sol       ln ln 1 ln ln .co sin sin t . x x x x x x x Ans x x                                              cos sin cos sin cos cos sin cos sin cos sin : , , sin sin cos ln sin 5. sin cos sin cos sin cos c si os cos co n ln sin cos s x x x x x x x x x x x Given that y Differentiating with respect to x we get d dx d d x dx dx d d x x x x dx d y x x x x dy x x dx x x x x x            Sol                 sin cos sin 1 1 . .cos sin ln sin sin . . sin cos ln cos sin cos sin cos .cot sin ln sin cos ln cos sin .ta cos cos n . x x x x x x x x x x x x x x x x x x x x x x x x Ans                            
  • 9. 9 9. (𝑐𝑜𝑠𝑥)𝑦 = (𝑠𝑖𝑛𝑦)𝑥 Sol: Taking 𝑙𝑛 in both sides we get 𝑦𝑙𝑛𝑐𝑜𝑠𝑥 = 𝑥𝑙𝑛𝑠𝑖𝑛𝑦 Differentiating w.r.to 𝑥 we get (𝑙𝑛𝑐𝑜𝑠𝑥) 𝑑𝑦 𝑑𝑥 + 𝑦 1 𝑐𝑜𝑠𝑥 (−𝑠𝑖𝑛𝑥) = 1. 𝑙𝑛𝑠𝑖𝑛𝑦 + 𝑥 1 𝑠𝑖𝑛𝑦 𝑐𝑜𝑠𝑦 𝑑𝑦 𝑑𝑥 ⟹ (𝑙𝑛𝑐𝑜𝑠𝑥 − 𝑥𝑐𝑜𝑡𝑦) 𝑑𝑦 𝑑𝑥 = (𝑙𝑛𝑠𝑖𝑛𝑦 + 𝑦𝑡𝑎𝑛𝑥) or 𝑑𝑦 𝑑𝑥 = (𝒍𝒏𝒔𝒊𝒏𝒚+𝒚𝒕𝒂𝒏𝒙) (𝒍𝒏𝒄𝒐𝒔𝒙−𝒙𝒄𝒐𝒕𝒚) Ans Homework:-Find dy dx of the following functions: 1. 1 sin x y x   Ans: 1 1 sin 2 sin ln 1 x x x x x x           2.   1 cos sin x y x   Ans:   1 cos 1 2 lnsin sin cot cos 1 x x x x x x                   1 1 1 1 1 1 cos cos cos cos cos 1 cos 1 2 : 6. sin ln sin ln sin ln sin ln sin c , os cos ln , ln cos ln 1 x x x x x x Given that y Differentiating with respect to x we get d dx d d x dx dx y x x x x x x dy x x x dx x x x x x x d x x x dx x x x x x                             Sol sin cos ln . x x x A x ns                                                 tan ln 2 tan ln 2 tan ln 2 tan ln 2 tan ln 2 2 t 2 7. 1 2 sin 1 2 sin 1 2 sin 1 2 s : , in 1 tan 1 2 sin ln 2 si , ln l n n 1 x x x x x x x x x x y x x x x dy x x dx Given that y Differentiating with respect to x we get d dx d dx d d x dx d d x x dx x x x x x x x                         Sol         an ln 2 2 2 2 sin 1 ln 2 tan cos ln sec ln 2 si 2 sin . n 1 x x x x x x x x x x x A s x n x                    
  • 10. 10 3. x x y x  Ans: 1 1 ln x x x x x x x         4.   1 ln cos sin x x y x x    Ans:   1 1 ln cos 2 cos ln lnsin sin ln cot 1 x x x x x x x x x x x x                   5.     cot tan tan cot x x y x x   Ans:         cot tan 2 2 cos 1 lntan cot s lncot 1 x x tanx ec x x x ec x x    6. 𝑥 + 𝑦 = tan(𝑥𝑦) 7. √ 𝑦 𝑥 + √ 𝑥 𝑦 = 6 Parametric Equation: If in the equation of a curve   y f x  , x and y are expressed in terms of a third variable known as parameter i.e,     , x t y t     then the equations are called a parametric equation.               2 1. sin , 1 cos : , sin (1) 1 cos (2) (1) (2) , 1 cos sin , sin 1 cos 2sin cos 2 2 2 cos 2 tan . 2 x a t t y a t sol Given that x a t t and y a t Differentiating and with respect to t we get dx a t dt dy and a t dt dy dy dt Now dx dx dt a t a t t t t t Ans                             2. cos sin , sin cos : , cos sin (1) sin cos (2) (1) (2) , sin cos sin cos cos sin cos sin , x a t t t y a t t t sol Given that x a t t t and y a t t t Differentiating and with respect to t we get dx a t t t t dt at t dy and a t t t t dt at t dy dy dt Now d dx                     sin cos tan . x dt at t at t t Ans  
  • 11. 11   1 1 1 1 2 sin 2 sin 2 2 2 2 sin 2 sin 2 sin 3. 1 , : , 1 (1) (2) (1) (2) , 1 1 . 2 2 1 1 1 1 1 1 . 1 1 , t t t t x t t y e sol Giventhat x t t and y e Differentiating and with respect tot we get dx t dt t t t t t t dy and e dt t e t dy dy dt Now dx dx dt e                                 1 1 2 2 2 sin 2 1 . 1 1 . 1 t t t t t t e Ans t t         1 1 2 2 1 2 1 2 1 1 1 1 2 1 2 2 4. tan sin . 1 1 2 : , tan 1 tan 2 tan tan ; 1 tan tan tan .tan 2 2 2 tan (1) 2 sin 1 2 sin x x Differentiate with respect to x x x sol Let y x putting x x x x and z x                                                                     2 1 1 1 2 2 2 2 tan tan ; 1 tan tan sin .sin 2 2 2 tan (2) (1) (2) , 2 2 1 1 , 2 1 2 1 1 . putting x x x Differentiating and with respect to x we get dy dz and dx x dx x dy dy dx Now dz dz dx x x Ans                                     
  • 12. 12       1 1 1 1 sin 1 sin 1 sin 1 1 sin 2 6. sin . : , (1) sin (2) (1) (2) , sin ln ; ln sin ln 1 x x x v v x Differentiate x withrespect to x sol Let y x and z x Differentiating and withrespect to x we get dy d d d x x x u u v u dx dx dx dx x x x x x                              1 1 2 1 sin 2 2 2 1 sin 1 1 , sin ln 1 1 1 1 .sin ln . x x dz and dx x dy dy dx Now dz dz dx x x x x x x x x x x Ans x                             2 1 1 2 1 2 1 1 2 1 1 1 1 1 7. tan tan . 1 1 : , tan sin 1 sin 1 tan ; sin sin cos 1 tan sin cos 1 tan sin 1 cos tan x Differentiate withrespect to x x x sol Let y x putting x x                                                                                 2 1 1 1 1 1 1 sin 2sin 2 tan 2sin cos 2 2 sin 2 tan cos 2 tan tan 2 tan tan 2 2 1 sin (1) 2 tan (2) (1) (2) , x and z x Differentiating and withrespect to x we get dy d                                                                               2 2 2 2 2 2 1 1 1 2 1 , 1 2 1 1 1 1 . 2 1 dz and x dx x x dy dy dx Now dz dz dx x x x Ans x              
  • 13. 13   1 1 2 2 1 2 1 2 1 1 1 1 1 2 1 8. sec tan . 2 1 1 1 : , sec 2 1 cos 1 sec ; 2cos 1 cos 1 sec cos2 sec sec2 2 2cos (1) tan 1 x Differentiate withrespectto x x sol Let y x putting x x x x and z x                                                                    1 1 2 1 2 1 1 1 2 2 sin sin tan ; sin 1 sin sin tan cos sin tan cos tan .tan sin (2) (1) (2) , 2 1 1 1 , putting x x x Differentiating and withrespectto x we get dy dz and dx dx x x dy Now dz                                                                2 2 2 1 1 1 2 . dy dx dz dx x x Ans      
  • 14. 14 Homework:- 1. 2 1 1 1 1 tan tan . x Differentiate withrespect to x x             Ans: 1 2 2. 1 sin cos3 . x Differentiate e withrespectto x  Ans: 1 sin 2 3 1 .sin3 x e x x    3. 2 1 1 2 2 1 2 cos tan . 1 1 x x Differentiate withrespectto x x                  Ans: 1 Successive derivative Successive derivative: If   y f x  be a function of x then the first order derivative of y with respect to x is denoted by           1 1 ' ' 1 , , , , , . x dy f x y y f x f x etc dx Again the derivative of first ordered derivative of y with respect to x is called second order derivative and is denoted by           2 2 2 '' '' 2 2 , , , , , . x d y f x y y f x f x etc dx Similarly, the nth derivative of y with respect to x is denoted by           , , , , , . n n n n n n x n d y f x y y f x f x etc dx  Find the nth derivative of the following functions:                       1 1 2 2 3 3 1. : , , 1 1 2 , 1 2 1 ; , 1 2 1 1 2 3.2.1 ! . n n n n n n r r n n n y x sol Giventhat y x Differentiating withrespectto xwe get y nx y n n x y n n n x Similarly y n n n n r x where r n y n n n n n x n n n n Ans                                1 2 2 3 3 2. : , , , ; , . ax ax ax ax ax r ax r n ax n y e sol Giventhat y e Differentiating withrespectto x we get y ae y a e y a e Similarly y a e where r n y a e Ans           
  • 15. 15                                  1 1 2 2 2 3 3 3 3. : , , 1 1 2 , 1 2 1 ; , 1 2 1 ! ! m m m m m m r r r m n n n n y ax b sol Giventhat y ax b Differentiating withrespect to x we get y am ax b y a m m ax b y a m m m ax b Similarly y a m m m m r ax b where r n y a m m m m n ax b m a ax b m n                                      . m n Ans                  1 2 2 2 2 3 3 3 4. sin : , sin , cos sin 2 cos 2 sin 2 2 2 sin 2 2 cos 2 2 sin 2 2 y ax b sol Giventhat y ax b Differentiating withrespect to x we get y a ax b a ax b y a ax b a ax b a ax b y a ax b a ax                                                                          3 3 sin 2 , sin ; , 2 sin . 2 r r n n b a ax b Similarly r y a ax b where r n n y a ax b Ans                                                        1 2 2 2 2 3 3 3 5. cos : , cos , sin cos 2 sin 2 cos 2 2 2 cos 2 2 sin 2 2 cos 2 2 y ax b sol Giventhat y ax b Differentiating withrespect to x we get y a ax b a ax b y a ax b a ax b a ax b y a ax b a                                                                            3 3 cos 2 , cos ; , 2 cos . 2 r r n n ax b a ax b Similarly r y a ax b where r n n y a ax b Ans                                        
  • 16. 16                 1 2 2 1 1 6. sin : , sin , sin cos sin cos cos sin tan , cos sin sin cos ax ax ax ax ax ax y e bx c sol Giventhat y e bx c Differentiating withrespect to x we get y ae bx c be bx c e a bx c b bx c put a r and b r b r a b and a Now y e r bx c r b                                                            2 2 3 3 2 2 1 sin sin cos cos sin sin cos sin 2 sin 3 , sin sin tan . ax ax ax ax ax n ax n n ax x c re bx c y re a bx c b bx c re r bx c r bx c r e bx c y r e bx c Similarly y r e bx c n b a b e bx c n Ans a                                                                         1 2 2 2 3 3 3 4 4 4 1 7. ln : , ln , 1. 1.2 1.2.3 , 1 1 ! . n n n n y ax b sol Giventhat y ax b Differentiating withrespect to x we get a y ax b a y ax b a y ax b a y ax b Similarly n a y Ans ax b                          1 2 1 2 2 2 8. sin cos 1 1 sin 2 . : , sin cos , cos sin sin cos 2 2 cos sin 2 2 r r r If y nx nx then showthat y n nx sol Giventhat y nx nx Differentiating with respect to x we get y n nx n nx n nx n nx y n nx n nx                                                    2 2 3 3 3 3 3 3 2 2 2 sin cos 2 2 2 2 cos sin 2 2 3 3 sin cos 2 2 , sin cos 2 2 sin cos 2 2 r r r n nx n nx y n nx n nx n nx n nx Similarly r r y n nx n nx r r n nx nx                                                                                                     1 2 1 2 2 2 1 2 1 2 1 2 sin cos 2sin cos 2 2 2 2 1 sin 2 2 1 sin 2 1 1 sin 2 . r r r r r r r r r n nx nx nx nx r n nx n r nx n nx showed                                                                               
  • 17. 17 Homework:- 1. Find the nth derivative of the following functions: a. 2 1 5 6 y x x    Ans:       1 1 1 1 1 ! 2 3 n n n n y n x x                b. 2 2 3 . 3 2 x y x x     Ans:       1 1 1 1 1 ! 1 2 n n n n y n x x                    2 2 1 1 2 2 1 3 3 2 2 3 2 3 1 9. 3 2 1 : , 3 2 1 1 2 1 ( 2) ( 1) , ( 1)( 2) ( 1)( 1) ( 1)( 2)( 2) ( 1)( 2)( 1) ( 1) 2!( 2) ( 1) 2!( 1) , y x x sol Giventhat y x x x x x x Differentiating withrespect to x we get y x x y x x x x Similarly y                                                       ( 1) ( 1) 1 1 1 !( 2) 1 !( 1) 1 1 1 ! 2 1 n n n n n n n n n x n x n Ans x x                           