SlideShare a Scribd company logo
1 of 49
Download to read offline
Electromagnetic Compatibility
Calculation in Decibels
Mathias Magdowski
Chair for Electromagnetic Compatibility
Institute for Medical Engineering
Otto von Guericke University Magdeburg
License: cba CC BY-SA 3.0 (Attribution + ShareAlike)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Measurement quantities
most important measurement quantities are:
current I
voltage U
power P
electric field strength E
magnetic field strength H
frequency f
measurement according to the task in the frequency domain
and/or in time domain
typical f range for EMC measurements: DC to 6 GHz
clear increase of the upper frequency limit to 18 GHz in the next
years
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Source:
Klaus H. Blankenburg: “Standard-compliant usage of quantities, units
and equations”, Application note from Rohde&Schwarz
Standard-
compliant usage
of quantities, units
and equations
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
International system of units and quantities
International system of units or SI:
from french Système international d’unités
defines 7 base units
adopted as the legal units in almost all countries worldwide
editor: International Bureau of Weights and Measures (BIPM)
International system of quantities or ISQ:
defines 7 base quantities
editor: International Organization for Standardization (ISO)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
ISQ base quantities and SI base units
Table: ISQ base quantities and SI base units
ISQ base quantity SI base unit
Name Letter symbol Name Unit symbol
Length l meter m
Mass m kilogram kg
Time t second s
Electric Current I ampere A
Temperature T kelvin K
Amount of substance n mole mol
Luminous intensity Iv candela cd
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Derived electrical quantities and units
Table: Derived electrical quantities and units
ISQ quantity Derived SI unit
Name Letter symbol Name Unit symbol
Voltage U volt V = kg m2
A s3
Charge Q coulomb C = A s
Capacitance C farad F = A s
V
Resistance R ohm Ω = V
A
Conductance G siemens S = A
V
Inductance L henry H = V s
A
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Derived electrical quantities and units
Table: Derived electrical quantities and units
ISQ quantity Derived SI unit
Name Letter symbol Name Unit symbol
Energy W joule J = kg m2
s2
Real power P watt W = J
s
Reactive power Q var var = W
Apparent power S voltampere VA = W
Frequency f hertz Hz = 1
s
Angular frequency ω - 1
s
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Derived electrical quantities and units
Table: Derived electrical quantities and units
ISQ quantity Derived SI unit
Name Letter Symbol Name Unit symbol
Magn. flux Φ weber Wb = V s
Magn. flux density B tesla T = V s
m2
Magn. field strength H - A
m
Elec. flux Ψ - A s
Elec. flux density D - A s
m2
Elec. field strength E - V
m
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Prefixes and prefix symbols
Table: Prefixes and prefix symbols for decimal submultiples and multiples of
units
Prefix Symbol Factor
yocto y 10−24
zepto z 10−21
atto a 10−18
femto f 10−15
pico p 10−12
nano n 10−9
micro µ 10−6
milli m 10−3
centi c 10−2
deci d 10−1
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Prefixes and prefix symbols
Table: Prefixes and prefix symbols for decimal submultiples and multiples of
units
Prefix Symbol Factor
deca da 101
hecto h 102
kilo k 103
mega M 106
giga G 109
tera T 1012
peta P 1015
exa E 1018
zetta Z 1021
yotta Y 1024
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Rules
Special rules for prefixes:
prefixes are always used together with units
notation: prefix without any space before unit, compose a new unit
at potentiation, the exponent is also valid for the prefix
1 mm2
= 1 mm · 1 mm = 10−3
m · 10−3
m = 10−6
m2
= 1 µm2
General rules for SI units:
must be written as stipulated by law or standard
may not be modified by appending additional information such as
indices or superscripts or subscripts
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Quantities
Physical quantities:
to quantitatively describe physical phenomena
product of numerical value and unit
change of the unit ←→ change of the numerical value
U = 0.1 V = 100 mV
Notation:
half space between numerical value and unit
symbols shall have only one letter
indicate a special meaning −→ add indices to symbol
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Equations
Quantity equations:
letter symbols −→ phys. symbols or math. symbols
independent of the selected units
numerical values and units are treated as independent factors
Example
U = R · I (1)
always yields the same result for U
irrespective of the units of R and I
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Equations
Scaled quantity equations:
every quantity appears with its unit in the denominator
advantage −→ units cancel, only numerical values
still irrespective of the choice of units
recommended for representing results
Example
U
kV
= 10−3
·
R
Ω
·
I
A
(2)
derivation by expansion with the units
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Equations
Numerical value equations:
letter symbols −→ numerical values of physical quantities or
mathematical symbols
depend on the choice of units
are considered outdated and should no longer be used
Example
U[kV] = 10−3
· R[Ω] · I[A] wrong! (3)
U = 10−3
· R · I U[kV], R[Ω], I[A] wrong! (4)
U = 10−3
· R · I U in kV, R in Ω, I in A correct (5)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Attenuation and gain figures
Definition:
logarithmic ratio of two electrical quantities
characterizes a two-port or a transmission path
arguments of the logarithm are numerical values
Units:
common (decadic) logarithm lg −→ decibel (dB)
natural logarithm ln −→ neper (Np)
dimensionless pseudounit, no SI unit
should not be modified by appending additional information
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Not to be confused with:
Figure: “Figure” of Otto von Guericke in Magdeburg
source: http://commons.wikimedia.org/wiki/File:Magdeburg_Guericke.jpg#/media/File:
Magdeburg_Guericke.jpg
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Origin of the unit name bel
Alexander Graham Bell
(1847–1922)
speech therapist, engineer
and inventor
made the telephone
commercially successful
after his death all
telephones in the US were
silenced for one minute
Figure: Alexander Graham Bell
(ca. between 1914–1919)
source:
http://commons.wikimedia.org/wiki/File:
Alexander_Graham_Bell.jpg
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Reminder of the logarithmic identities
Preconditions: x, y, b, r > 0 and b = 1
Product:
logb(x · y) = logb x + logb y (6)
Quotient:
logb
x
y
= logb x − logb y (7)
Power:
logb (xr
) = r logb x (8)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Definition for power quantities
Example: real power
P1: input power
P2: output power
Power attenuation figure of a two-port:
AP = 10 · lg
P1
P2
dB (9)
Power gain figure of a two-port:
GP = 10 · lg
P2
P1
dB (10)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Definition for root power quantities
Example: rms-values of alternating voltages
U1: input voltage
U2: output voltage
Voltage attenuation figure of a two-port:
AU = 10 · lg
P1
P2
dB = 10 · lg
U2
1/R
U2
2/R
dB = 20 · lg
U1
U2
dB (11)
Voltage gain figure of a two-port:
GU = 10 · lg
P2
P1
dB = 10 · lg
U2
2/R
U2
1/R
dB = 20 · lg
U2
U1
dB (12)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Discussion of the nomenclature
So far: field quantities
misleading
power and energy density −→ field quantity and power quantity at
the same time
electric voltage and current −→ no field quantity, but integral over
a field quantity
New term: root power quantities
quantities whose square is proportional to a power quantity
introduced in ISO 80000-1, likely to be adapted in the next
versions of IEC 60027 and DIN 5493
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Some numbers to bear in mind
Table: Conversion dB – linear values
Figure Power ratio Voltage ratio
in dB approx. exact approx. exact
0 1 1 1 1
3 2 1.995 1.4 1.412
6 4 3.98 2 1.995
10 10 10 3 3.162
20 100 100 10 10
40 10 000 10 000 100 100
60 1 000 000 1 000 000 1000 1000
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Some numbers to bear in mind
Table: Conversion dB – linear values
Figure Power ratio Voltage ratio
in dB approx. exact approx. exact
0 1 1 1 1
−3 0.5 0.501 0.7 0.798
−6 0.25 0.25 0.5 0.501
−10 0.1 0.1 0.3 0.316
−20 0.01 0.01 0.1 0.1
−40 0.0001 0.0001 0.01 0.01
−60 0.000 001 0.000 001 0.001 0.001
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Level
Definition:
logarithmic ratio of two electrical quantities
denominator −→ fixed value of a reference quantity of the same
dimension as the numerator
Unit:
common (decadic) logarithm lg −→ decibel (dB)
with specification of the reference quantity
short version: reference quantity in parentheses following the dB
with a space between dB and the parentheses
if numerical value of the reference quantity equals 1 −→ omit
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Not to be confused with:
Figure: “Level” of the river Elbe in Magdeburg
source: https://commons.wikimedia.org/wiki/File:Pegelhaus_Magdeburg.jpg
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Definition of levels
Definition for power quantities:
P: power
P0: reference value
LP (re P0) = LP/P0
= 10 · lg
P
P0
dB (13)
Definition for root power quantities:
U: voltage
U0: reference value
LU (re U0) = LU/U0
= 20 · lg
U
U0
dB (14)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Abbreviations introduced by the ITU/UIT
dB is directly followed by a letter or a sequence of characters to
identify the reference value
IEC 60027-3 recommends not to use these abbreviations
Table: Abbreviations introduced by the International Telecommunication
Union (selection)
Quantity Letter symbol Unit, short form
Reference value long short IEC ITU/UIT
Elec. power LP (re 1 mW) LP/mW dB (mW) dBm
reference to 1 mW
Elec. voltage LU (re 1 V) LU/V dB (V) dBV
reference to 1 V
Elec. field strength LE (re 1 µV
m ) LE/µV
m
dB (µV/m) dBµ
reference to 1 µV
m
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Calculating in dB
Example P = I2 · R:
Expand with the reference values:
P ·
P0
P0
= I2
·
I2
0
I2
0
· R ·
R0
R0
(15a)
Order:
P
P0
=
I
I0
2
·
R
R0
·
I2
0R0
P0
(15b)
Logarithmize:
10 · lg
P
P0
= 10 · lg
I
I0
2
·
R
R0
·
I2
0R0
P0
(15c)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Calculating in dB
Example P = I2 · R (continued):
Use of logb(x · y) = logb x + logb y:
10 lg
P
P0
= 10 lg
I2
I2
0
+ 10 lg
R
R0
+ 10 lg
I2
0R0
P0
(16a)
Use of logb (xr) = r logb x:
10 lg
P
P0
= 20 lg
I
I0
+ 10 lg
R
R0
+ 10 lg
I2
0R0
P0
(16b)
Rewrite as levels:
LP/P0
= LI/I0
+ LR/R0
+ 10 lg
I2
0R0
P0
(16c)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Calculating in dB
Example P = I2 · R (continued):
Insert fixed reference values, e. g. P0 = 1 W, I0 = 1 A and R0 = 1 Ω:
LP/W = LI/A + LR/Ω (17a)
Exemplary calculation with I = 10 A and R = 100 Ω:
P = (10 A)2
· 100 Ω = 10 000 W = 10 kW (17b)
Calculation in dB:
LP/W = 20 dB (A) + 20 dB (Ω) = 40 dB (W) (17c)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Calculating in dB
Example U = R · I:
Expand with the reference values:
U ·
U0
U0
= R ·
R0
R0
· I ·
I0
I0
(18a)
Order:
U
U0
=
R
R0
·
I
I0
·
R0I0
U0
(18b)
Logarithmize:
20 · lg
U
U0
= 20 · lg
R
R0
·
I
I0
·
R0I0
U0
(18c)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Calculating in dB
Example U = R · I (continued):
Use of logb(x · y) = logb x + logb y:
20 lg
U
U0
= 20 lg
R
R0
+ 20 lg
I
I0
+ 20 lg
R0I0
U0
(19a)
Rewrite as levels:
LU/U0
= LR/R0
+ LI/I0
+ 20 lg
R0I0
U0
(19b)
Insert fixed reference values, e. g. U0 = 1 V, R0 = 1 Ω and I0 = 1 A:
LU/V = LR/Ω + LI/A (19c)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Calculating in dB
Example U = R · I (continued):
Exemplary calculation R = 100 Ω and I = 10 A:
U = 100 Ω · 10 A = 1000 V = 1 kV (20a)
Calculation in dB:
LU/V = 40 dB (Ω) + 20 dB (A) = 60 dB (V) (20b)
Attention: resistance is here converted with a factor of 20
−→ Resistance is neither a power quantity nor a root power quantity
−→ “impedance conversion figure”
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Calculating in dB
Example P = U · I:
Expand with the reference values:
P ·
P0
P0
= U ·
U0
U0
· I ·
I0
I0
(21a)
Order:
P
P0
=
U
U0
·
I
I0
·
U0I0
P0
(21b)
Logarithmize:
10 · lg
P
P0
= 10 · lg
U
U0
·
I
I0
·
U0I0
P0
(21c)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Calculating in dB
Example P = U · I (continued):
Use of logb(x · y) = logb x + logb y:
10 lg
P
P0
= 10 lg
U
U0
+ 10 lg
I
I0
+ 10 lg
U0I0
P0
(22a)
Rewrite as levels:
LP/P0
= LU/U0
+ LI/I0
+ 10 lg
U0I0
P0
(22b)
Insert fixed reference values, e. g. P0 = 1 W, U0 = 1 V and I0 = 1 A:
LP/W = LU/V + LI/A (22c)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Calculating in dB
Example P = U · I (continued):
Exemplary calculation with U = 100 V and I = 10 A:
P = 100 V · 10 A = 1000 W = 1 kW (23a)
Calculation in dB:
LP/W = 20 dB (V) + 10 dB (A) = 30 dB (W) (23b)
Attention: voltage and current are here converted with a factor of 10
−→ conversion factor of 20 is based on the assumption that P ∼ U2 or
P ∼ I2
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Calculating in dB
Linear scale:
power quantity:
P
1 mW
=
P
1 W
· 1000 (24)
root power quantity:
U
1 mV
=
U
1 V
· 1000 (25)
dB scale:
power quantity:
LP/mW = LP/W + 30 dB (26)
root power quantity:
LU/mV = LU/V + 60 dB (27)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Summary of calculation rules
Sum or difference of two figures is again a figure:
20 dB + 30 dB = 50 dB (28)
Sum of figure and level gives a level:
0 dB (mW) + 50 dB = 50 dB (mW) (29)
Difference of two levels gives a figure:
50 dB (mW) − 0 dB (mW) = 50 dB (30)
Sum of two levels does not make sense:
20 dB (mW) + 30 dB (mW) wrong! (31)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Reconvert into linear values
Use the definition of a level, divide by 10 dB:
LP/mW = 30 dB = 10 · lg
P
1 mW
dB (32a)
30 dB
10 dB
= lg
P
1 mW
(32b)
Delogarithmize, transpose to P:
10
30 dB
10 dB =
P
1 mW
(32c)
P = 1 mW · 10
30 dB
10 dB = 103
mW = 1 W (32d)
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Advantages of the calculation in dB
very small and very large values can be given in terms of handy
numerical values
multiplication on linear scale −→ addition in dB
division on linear scale −→ subtraction in dB
simple calculation of signal chains
corresponds to the human reception of light intensity, loudness,
pressure and taste (but not temperature) −→ Weber Fechner law
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Advantages of a double-logarithmic scale
0 20 40 60 80 100
0
0.5
1
Normalized frequency f/f0
Amplituderesponse
LP of 1. order
LP of 2. order
(a) Linear scaling
10−2
10−1
100
101
102
10−3
10−2
10−1
100
Normalized frequency f/f0Amplituderesponse
LP of 1. order
LP of 2. order
(b) Logarithmic scaling
Figure: Amplitude response of low-pass filters of different order.
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Disadvantage of the calculation in dB
partially conversion necessary
necessary distinction between power quantities, root power
quantities and impedance conversion figures
conversion factors (10 vs. 20) partially not clear
unusual computation of the units
no direct addition or subtraction of values possible
no representation of the value zero in dB
no representation of negative or complex values in dB
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Recommendations
avoid a calculation in dB, if possible
always do a control calculation with linear values
clear statement of the reference values and conversion factors
clear statement of the units and reference units
no statistics with dB values
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Further reading
Products: Signal generators, spectrum analyzers, test receivers, network analyzers, power meters, audio analyzers
dB or not dB?
Everything you ever wanted to know
about decibels but were afraid to ask…
Application Note 1MA98
True or false: 30 dBm + 30 dBm = 60 dBm? Why does 1% work out to be -40 dB one time but
then 0.1 dB or 0.05 dB the next time? These questions sometimes leave even experienced
engineers scratching their heads. Decibels are found everywhere, including power levels,
voltages, reflection coefficients, noise figures, field strengths and more. What is a decibel and
how should we use it in our calculations? This Application Note is intended as a refresher on
the subject of decibels.
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Notation
Italics:
letter symbols for physical quantities, e. g. m (mass), U (electric
voltage)
letter symbols for variables, e. g. x, n
symbols for functions and operators with user-definable meaning,
e. g. f(x)
−→ recommendation of a serif font
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Notation
Roman type:
units and their prefixes, e. g. m, kg, s, pF, V, dB
numerals, e. g. 4.5; 67; 8-fold; 1⁄2
symbols for functions and operators with fixed meaning, e. g. sin,
lg, max
indices with abbreviations, e. g. Uq, Etan, Pout
chemical elements and compounds, e. g. Cu; H2O
−→ recommendation of using a sans serif font
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Labeling of table headers
Table: Labeling of table headers and coordinate systems.
Correct Wronga
U U/V U in V E/V
m
E in V
m U [V] U U in [V]
[V]
0.1 V 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 V 0.2 0.2 0.2 0.2 0.2 0.2 0.2
. . . . . . . . . . . . . . . . . . . . . . . .
a
Do not put units in brackets.
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49
Labeling of table headers
Table: Labeling of table headers and coordinate systems for large value
ranges.
Correct Wronga
P P/W P/W P/W
1 W 1 1 1
1 mW 1 × 10−3 10−3 1 m
1 µW 1 × 10−6 10−6 1 µ
1 nW 1 × 10−9 10−9 1 n
. . . . . . . . . . . .
a
Do not use prefixes alone.
Magdowski (Chair for EMC) Electromagnetic Compatibility
License: cba CC BY-SA 3.0 (Attribution + S
/ 49

More Related Content

What's hot

SPICE MODEL of 2SD985 in SPICE PARK
SPICE MODEL of 2SD985 in SPICE PARKSPICE MODEL of 2SD985 in SPICE PARK
SPICE MODEL of 2SD985 in SPICE PARKTsuyoshi Horigome
 
Electrical engineering formulas
Electrical engineering formulasElectrical engineering formulas
Electrical engineering formulasSouvik Dutta
 
Ece analog-communications
Ece analog-communicationsEce analog-communications
Ece analog-communicationsTeju Kotti
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect TransistorYong Heui Cho
 
SPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARK
SPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARKSPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARK
SPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARKTsuyoshi Horigome
 
Analysis and Comparison of CMOS Comparator At 90 NM Technology
Analysis and Comparison of CMOS Comparator At 90 NM TechnologyAnalysis and Comparison of CMOS Comparator At 90 NM Technology
Analysis and Comparison of CMOS Comparator At 90 NM TechnologyIJERA Editor
 
SPICE MODEL of RF-500TB-0.5V in SPICE PARK
SPICE MODEL of RF-500TB-0.5V in SPICE PARKSPICE MODEL of RF-500TB-0.5V in SPICE PARK
SPICE MODEL of RF-500TB-0.5V in SPICE PARKTsuyoshi Horigome
 

What's hot (7)

SPICE MODEL of 2SD985 in SPICE PARK
SPICE MODEL of 2SD985 in SPICE PARKSPICE MODEL of 2SD985 in SPICE PARK
SPICE MODEL of 2SD985 in SPICE PARK
 
Electrical engineering formulas
Electrical engineering formulasElectrical engineering formulas
Electrical engineering formulas
 
Ece analog-communications
Ece analog-communicationsEce analog-communications
Ece analog-communications
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
SPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARK
SPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARKSPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARK
SPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARK
 
Analysis and Comparison of CMOS Comparator At 90 NM Technology
Analysis and Comparison of CMOS Comparator At 90 NM TechnologyAnalysis and Comparison of CMOS Comparator At 90 NM Technology
Analysis and Comparison of CMOS Comparator At 90 NM Technology
 
SPICE MODEL of RF-500TB-0.5V in SPICE PARK
SPICE MODEL of RF-500TB-0.5V in SPICE PARKSPICE MODEL of RF-500TB-0.5V in SPICE PARK
SPICE MODEL of RF-500TB-0.5V in SPICE PARK
 

Viewers also liked

Screening the score: Decibel's computer controlled performance environment us...
Screening the score: Decibel's computer controlled performance environment us...Screening the score: Decibel's computer controlled performance environment us...
Screening the score: Decibel's computer controlled performance environment us...lindsayvickery
 
Electromagnetic Compatibility
Electromagnetic CompatibilityElectromagnetic Compatibility
Electromagnetic CompatibilityVesa Linja-aho
 
Decibel insight measurefest october2013_external
Decibel insight measurefest october2013_externalDecibel insight measurefest october2013_external
Decibel insight measurefest october2013_externalBenHarrisDecibelInsight
 
LO4: The decibel scale
LO4: The decibel scaleLO4: The decibel scale
LO4: The decibel scaleBrandon Morton
 
Electronics decibel
Electronics   decibelElectronics   decibel
Electronics decibelsld1950
 
Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMC
Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMCElectromagnetic Interference and Electromagnetic Compatibility (EMI/EMC
Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMCAishwary Singh
 
Introduction To Electromagnetic Compatibility
Introduction To Electromagnetic CompatibilityIntroduction To Electromagnetic Compatibility
Introduction To Electromagnetic CompatibilityJim Jenkins
 
Components transistors
Components   transistorsComponents   transistors
Components transistorssld1950
 
SP.Matveev.IComp.Cover.AUG2016
SP.Matveev.IComp.Cover.AUG2016SP.Matveev.IComp.Cover.AUG2016
SP.Matveev.IComp.Cover.AUG2016Alex Matveev
 
Prise en charge du lymphoedème en hospitalisation complète
Prise en charge du lymphoedème en hospitalisation complètePrise en charge du lymphoedème en hospitalisation complète
Prise en charge du lymphoedème en hospitalisation complèteMaxime Blanc-Fontes
 
Pharmaceutical microbiology west coast
Pharmaceutical microbiology west coastPharmaceutical microbiology west coast
Pharmaceutical microbiology west coastAlia Malick
 
Dementia: An Overview
Dementia: An OverviewDementia: An Overview
Dementia: An OverviewIrene Ryan
 
11 flowers gifts which are perfect for allergy sufferers
11 flowers gifts which are perfect for allergy sufferers11 flowers gifts which are perfect for allergy sufferers
11 flowers gifts which are perfect for allergy sufferersCeline Wilson
 
Secret encoder ring
Secret encoder ringSecret encoder ring
Secret encoder ringToby Jaffey
 

Viewers also liked (17)

Screening the score: Decibel's computer controlled performance environment us...
Screening the score: Decibel's computer controlled performance environment us...Screening the score: Decibel's computer controlled performance environment us...
Screening the score: Decibel's computer controlled performance environment us...
 
Electromagnetic Compatibility
Electromagnetic CompatibilityElectromagnetic Compatibility
Electromagnetic Compatibility
 
Decibel insight measurefest october2013_external
Decibel insight measurefest october2013_externalDecibel insight measurefest october2013_external
Decibel insight measurefest october2013_external
 
LO4: The decibel scale
LO4: The decibel scaleLO4: The decibel scale
LO4: The decibel scale
 
Electronics decibel
Electronics   decibelElectronics   decibel
Electronics decibel
 
Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMC
Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMCElectromagnetic Interference and Electromagnetic Compatibility (EMI/EMC
Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMC
 
Introduction To Electromagnetic Compatibility
Introduction To Electromagnetic CompatibilityIntroduction To Electromagnetic Compatibility
Introduction To Electromagnetic Compatibility
 
Components transistors
Components   transistorsComponents   transistors
Components transistors
 
emi/emc
emi/emcemi/emc
emi/emc
 
Espirometria
EspirometriaEspirometria
Espirometria
 
The Crazy Cuban's Secret
The  Crazy Cuban's   SecretThe  Crazy Cuban's   Secret
The Crazy Cuban's Secret
 
SP.Matveev.IComp.Cover.AUG2016
SP.Matveev.IComp.Cover.AUG2016SP.Matveev.IComp.Cover.AUG2016
SP.Matveev.IComp.Cover.AUG2016
 
Prise en charge du lymphoedème en hospitalisation complète
Prise en charge du lymphoedème en hospitalisation complètePrise en charge du lymphoedème en hospitalisation complète
Prise en charge du lymphoedème en hospitalisation complète
 
Pharmaceutical microbiology west coast
Pharmaceutical microbiology west coastPharmaceutical microbiology west coast
Pharmaceutical microbiology west coast
 
Dementia: An Overview
Dementia: An OverviewDementia: An Overview
Dementia: An Overview
 
11 flowers gifts which are perfect for allergy sufferers
11 flowers gifts which are perfect for allergy sufferers11 flowers gifts which are perfect for allergy sufferers
11 flowers gifts which are perfect for allergy sufferers
 
Secret encoder ring
Secret encoder ringSecret encoder ring
Secret encoder ring
 

Similar to Calculation in Decibels in the Scope of Electromagnetic Compatibility

An Improved Direct AC-AC Converter for Voltage Sag Mitigation
An Improved Direct AC-AC Converter for Voltage Sag MitigationAn Improved Direct AC-AC Converter for Voltage Sag Mitigation
An Improved Direct AC-AC Converter for Voltage Sag MitigationAsoka Technologies
 
Electrical engineering basic
Electrical engineering basicElectrical engineering basic
Electrical engineering basicjibril aga
 
mcat (original paper 2013)
mcat (original paper 2013)mcat (original paper 2013)
mcat (original paper 2013)NUST Stuff
 
Electromagnetic Compatibility Measurements in Reverberation Chambers
Electromagnetic Compatibility Measurements in Reverberation ChambersElectromagnetic Compatibility Measurements in Reverberation Chambers
Electromagnetic Compatibility Measurements in Reverberation ChambersMathias Magdowski
 
Electromagnetism ap multiplechoiceanswers2011 _1_
Electromagnetism ap multiplechoiceanswers2011 _1_Electromagnetism ap multiplechoiceanswers2011 _1_
Electromagnetism ap multiplechoiceanswers2011 _1_Vladimir Morote
 
Current Transformer Specs Errors & Solutions
Current Transformer Specs Errors & SolutionsCurrent Transformer Specs Errors & Solutions
Current Transformer Specs Errors & Solutionsasim_jkhan
 
Chapter 02 Fundamentals PS [Autosaved].ppt
Chapter 02 Fundamentals PS [Autosaved].pptChapter 02 Fundamentals PS [Autosaved].ppt
Chapter 02 Fundamentals PS [Autosaved].pptMohd Ishak
 
LowNoiseAmplifierReport
LowNoiseAmplifierReportLowNoiseAmplifierReport
LowNoiseAmplifierReportSyed Kazmi
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutionskhemraj298
 
Electrical Engineering - 2007 Unsolved Paper
Electrical Engineering - 2007 Unsolved PaperElectrical Engineering - 2007 Unsolved Paper
Electrical Engineering - 2007 Unsolved PaperVasista Vinuthan
 
What is electronics
What is electronicsWhat is electronics
What is electronicsMrinal Pal
 
Resonant Response of RLC Circuits
Resonant Response of RLC Circuits Resonant Response of RLC Circuits
Resonant Response of RLC Circuits Sachin Mehta
 
Gate ee 2007 with solutions
Gate ee 2007 with solutionsGate ee 2007 with solutions
Gate ee 2007 with solutionskhemraj298
 
Types of Multistage Transistor Amplifiers
Types of Multistage Transistor AmplifiersTypes of Multistage Transistor Amplifiers
Types of Multistage Transistor Amplifierssherifhanafy4
 
Objectives(antennas and wave propagation)
Objectives(antennas and wave propagation)Objectives(antennas and wave propagation)
Objectives(antennas and wave propagation)Reetika Sehgal
 
Electrical Engineering - 2008 Unsolved Paper
Electrical Engineering - 2008 Unsolved PaperElectrical Engineering - 2008 Unsolved Paper
Electrical Engineering - 2008 Unsolved PaperVasista Vinuthan
 
26b Amplifiers 2.pdf
26b Amplifiers 2.pdf26b Amplifiers 2.pdf
26b Amplifiers 2.pdfivan ion
 

Similar to Calculation in Decibels in the Scope of Electromagnetic Compatibility (20)

Ppt am
Ppt amPpt am
Ppt am
 
An Improved Direct AC-AC Converter for Voltage Sag Mitigation
An Improved Direct AC-AC Converter for Voltage Sag MitigationAn Improved Direct AC-AC Converter for Voltage Sag Mitigation
An Improved Direct AC-AC Converter for Voltage Sag Mitigation
 
Electrical engineering basic
Electrical engineering basicElectrical engineering basic
Electrical engineering basic
 
mcat (original paper 2013)
mcat (original paper 2013)mcat (original paper 2013)
mcat (original paper 2013)
 
Electromagnetic Compatibility Measurements in Reverberation Chambers
Electromagnetic Compatibility Measurements in Reverberation ChambersElectromagnetic Compatibility Measurements in Reverberation Chambers
Electromagnetic Compatibility Measurements in Reverberation Chambers
 
Electromagnetism ap multiplechoiceanswers2011 _1_
Electromagnetism ap multiplechoiceanswers2011 _1_Electromagnetism ap multiplechoiceanswers2011 _1_
Electromagnetism ap multiplechoiceanswers2011 _1_
 
Current Transformer Specs Errors & Solutions
Current Transformer Specs Errors & SolutionsCurrent Transformer Specs Errors & Solutions
Current Transformer Specs Errors & Solutions
 
Chapter 02 Fundamentals PS [Autosaved].ppt
Chapter 02 Fundamentals PS [Autosaved].pptChapter 02 Fundamentals PS [Autosaved].ppt
Chapter 02 Fundamentals PS [Autosaved].ppt
 
LowNoiseAmplifierReport
LowNoiseAmplifierReportLowNoiseAmplifierReport
LowNoiseAmplifierReport
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutions
 
Electrical Engineering - 2007 Unsolved Paper
Electrical Engineering - 2007 Unsolved PaperElectrical Engineering - 2007 Unsolved Paper
Electrical Engineering - 2007 Unsolved Paper
 
What is electronics
What is electronicsWhat is electronics
What is electronics
 
Resonant Response of RLC Circuits
Resonant Response of RLC Circuits Resonant Response of RLC Circuits
Resonant Response of RLC Circuits
 
Gate ee 2007 with solutions
Gate ee 2007 with solutionsGate ee 2007 with solutions
Gate ee 2007 with solutions
 
Types of Multistage Transistor Amplifiers
Types of Multistage Transistor AmplifiersTypes of Multistage Transistor Amplifiers
Types of Multistage Transistor Amplifiers
 
Objectives(antennas and wave propagation)
Objectives(antennas and wave propagation)Objectives(antennas and wave propagation)
Objectives(antennas and wave propagation)
 
DC circuit
DC circuitDC circuit
DC circuit
 
Electrical Engineering - 2008 Unsolved Paper
Electrical Engineering - 2008 Unsolved PaperElectrical Engineering - 2008 Unsolved Paper
Electrical Engineering - 2008 Unsolved Paper
 
26b Amplifiers 2.pdf
26b Amplifiers 2.pdf26b Amplifiers 2.pdf
26b Amplifiers 2.pdf
 
Microelectromechanical Assignment Help
Microelectromechanical Assignment HelpMicroelectromechanical Assignment Help
Microelectromechanical Assignment Help
 

More from Mathias Magdowski

Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...
Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...
Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...Mathias Magdowski
 
MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...
MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...
MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...Mathias Magdowski
 
Kern-Curriculum und Laborversuche für die EMV-Lehre von heute
Kern-Curriculum und Laborversuche für die EMV-Lehre von heuteKern-Curriculum und Laborversuche für die EMV-Lehre von heute
Kern-Curriculum und Laborversuche für die EMV-Lehre von heuteMathias Magdowski
 
Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!
Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!
Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!Mathias Magdowski
 
Wie man ein gutes Paper (für das LEGO-Praktikum) schreibt
Wie man ein gutes Paper (für das LEGO-Praktikum) schreibtWie man ein gutes Paper (für das LEGO-Praktikum) schreibt
Wie man ein gutes Paper (für das LEGO-Praktikum) schreibtMathias Magdowski
 
Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...
Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...
Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...Mathias Magdowski
 
ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...
ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...
ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...Mathias Magdowski
 
Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...
Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...
Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...Mathias Magdowski
 
Well Stirred is Half Measured - EMC Tests in Reverberation Chambers
Well Stirred is Half Measured - EMC Tests in Reverberation ChambersWell Stirred is Half Measured - EMC Tests in Reverberation Chambers
Well Stirred is Half Measured - EMC Tests in Reverberation ChambersMathias Magdowski
 
Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...
Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...
Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...Mathias Magdowski
 
Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...
Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...
Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...Mathias Magdowski
 
Why the Wire is on Fire - Electromagnetic Field Coupling to Transmission Lines
Why the Wire is on Fire - Electromagnetic Field Coupling to Transmission LinesWhy the Wire is on Fire - Electromagnetic Field Coupling to Transmission Lines
Why the Wire is on Fire - Electromagnetic Field Coupling to Transmission LinesMathias Magdowski
 
Calculation of conversion factors for the RVC method in accordance with CISPR...
Calculation of conversion factors for the RVC method in accordance with CISPR...Calculation of conversion factors for the RVC method in accordance with CISPR...
Calculation of conversion factors for the RVC method in accordance with CISPR...Mathias Magdowski
 
Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...
Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...
Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...Mathias Magdowski
 
Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...
Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...
Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...Mathias Magdowski
 
Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?
Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?
Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?Mathias Magdowski
 
Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...
Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...
Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...Mathias Magdowski
 
Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...
Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...
Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...Mathias Magdowski
 
Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...
Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...
Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...Mathias Magdowski
 
Alternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrw
Alternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrwAlternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrw
Alternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrwMathias Magdowski
 

More from Mathias Magdowski (20)

Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...
Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...
Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...
 
MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...
MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...
MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...
 
Kern-Curriculum und Laborversuche für die EMV-Lehre von heute
Kern-Curriculum und Laborversuche für die EMV-Lehre von heuteKern-Curriculum und Laborversuche für die EMV-Lehre von heute
Kern-Curriculum und Laborversuche für die EMV-Lehre von heute
 
Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!
Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!
Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!
 
Wie man ein gutes Paper (für das LEGO-Praktikum) schreibt
Wie man ein gutes Paper (für das LEGO-Praktikum) schreibtWie man ein gutes Paper (für das LEGO-Praktikum) schreibt
Wie man ein gutes Paper (für das LEGO-Praktikum) schreibt
 
Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...
Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...
Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...
 
ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...
ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...
ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...
 
Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...
Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...
Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...
 
Well Stirred is Half Measured - EMC Tests in Reverberation Chambers
Well Stirred is Half Measured - EMC Tests in Reverberation ChambersWell Stirred is Half Measured - EMC Tests in Reverberation Chambers
Well Stirred is Half Measured - EMC Tests in Reverberation Chambers
 
Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...
Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...
Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...
 
Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...
Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...
Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...
 
Why the Wire is on Fire - Electromagnetic Field Coupling to Transmission Lines
Why the Wire is on Fire - Electromagnetic Field Coupling to Transmission LinesWhy the Wire is on Fire - Electromagnetic Field Coupling to Transmission Lines
Why the Wire is on Fire - Electromagnetic Field Coupling to Transmission Lines
 
Calculation of conversion factors for the RVC method in accordance with CISPR...
Calculation of conversion factors for the RVC method in accordance with CISPR...Calculation of conversion factors for the RVC method in accordance with CISPR...
Calculation of conversion factors for the RVC method in accordance with CISPR...
 
Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...
Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...
Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...
 
Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...
Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...
Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...
 
Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?
Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?
Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?
 
Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...
Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...
Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...
 
Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...
Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...
Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...
 
Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...
Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...
Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...
 
Alternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrw
Alternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrwAlternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrw
Alternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrw
 

Recently uploaded

Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...Call Girls in Nagpur High Profile
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 

Recently uploaded (20)

Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 

Calculation in Decibels in the Scope of Electromagnetic Compatibility

  • 1. Electromagnetic Compatibility Calculation in Decibels Mathias Magdowski Chair for Electromagnetic Compatibility Institute for Medical Engineering Otto von Guericke University Magdeburg License: cba CC BY-SA 3.0 (Attribution + ShareAlike) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 2. Measurement quantities most important measurement quantities are: current I voltage U power P electric field strength E magnetic field strength H frequency f measurement according to the task in the frequency domain and/or in time domain typical f range for EMC measurements: DC to 6 GHz clear increase of the upper frequency limit to 18 GHz in the next years Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 3. Source: Klaus H. Blankenburg: “Standard-compliant usage of quantities, units and equations”, Application note from Rohde&Schwarz Standard- compliant usage of quantities, units and equations Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 4. International system of units and quantities International system of units or SI: from french Système international d’unités defines 7 base units adopted as the legal units in almost all countries worldwide editor: International Bureau of Weights and Measures (BIPM) International system of quantities or ISQ: defines 7 base quantities editor: International Organization for Standardization (ISO) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 5. ISQ base quantities and SI base units Table: ISQ base quantities and SI base units ISQ base quantity SI base unit Name Letter symbol Name Unit symbol Length l meter m Mass m kilogram kg Time t second s Electric Current I ampere A Temperature T kelvin K Amount of substance n mole mol Luminous intensity Iv candela cd Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 6. Derived electrical quantities and units Table: Derived electrical quantities and units ISQ quantity Derived SI unit Name Letter symbol Name Unit symbol Voltage U volt V = kg m2 A s3 Charge Q coulomb C = A s Capacitance C farad F = A s V Resistance R ohm Ω = V A Conductance G siemens S = A V Inductance L henry H = V s A Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 7. Derived electrical quantities and units Table: Derived electrical quantities and units ISQ quantity Derived SI unit Name Letter symbol Name Unit symbol Energy W joule J = kg m2 s2 Real power P watt W = J s Reactive power Q var var = W Apparent power S voltampere VA = W Frequency f hertz Hz = 1 s Angular frequency ω - 1 s Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 8. Derived electrical quantities and units Table: Derived electrical quantities and units ISQ quantity Derived SI unit Name Letter Symbol Name Unit symbol Magn. flux Φ weber Wb = V s Magn. flux density B tesla T = V s m2 Magn. field strength H - A m Elec. flux Ψ - A s Elec. flux density D - A s m2 Elec. field strength E - V m Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 9. Prefixes and prefix symbols Table: Prefixes and prefix symbols for decimal submultiples and multiples of units Prefix Symbol Factor yocto y 10−24 zepto z 10−21 atto a 10−18 femto f 10−15 pico p 10−12 nano n 10−9 micro µ 10−6 milli m 10−3 centi c 10−2 deci d 10−1 Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 10. Prefixes and prefix symbols Table: Prefixes and prefix symbols for decimal submultiples and multiples of units Prefix Symbol Factor deca da 101 hecto h 102 kilo k 103 mega M 106 giga G 109 tera T 1012 peta P 1015 exa E 1018 zetta Z 1021 yotta Y 1024 Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 11. Rules Special rules for prefixes: prefixes are always used together with units notation: prefix without any space before unit, compose a new unit at potentiation, the exponent is also valid for the prefix 1 mm2 = 1 mm · 1 mm = 10−3 m · 10−3 m = 10−6 m2 = 1 µm2 General rules for SI units: must be written as stipulated by law or standard may not be modified by appending additional information such as indices or superscripts or subscripts Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 12. Quantities Physical quantities: to quantitatively describe physical phenomena product of numerical value and unit change of the unit ←→ change of the numerical value U = 0.1 V = 100 mV Notation: half space between numerical value and unit symbols shall have only one letter indicate a special meaning −→ add indices to symbol Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 13. Equations Quantity equations: letter symbols −→ phys. symbols or math. symbols independent of the selected units numerical values and units are treated as independent factors Example U = R · I (1) always yields the same result for U irrespective of the units of R and I Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 14. Equations Scaled quantity equations: every quantity appears with its unit in the denominator advantage −→ units cancel, only numerical values still irrespective of the choice of units recommended for representing results Example U kV = 10−3 · R Ω · I A (2) derivation by expansion with the units Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 15. Equations Numerical value equations: letter symbols −→ numerical values of physical quantities or mathematical symbols depend on the choice of units are considered outdated and should no longer be used Example U[kV] = 10−3 · R[Ω] · I[A] wrong! (3) U = 10−3 · R · I U[kV], R[Ω], I[A] wrong! (4) U = 10−3 · R · I U in kV, R in Ω, I in A correct (5) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 16. Attenuation and gain figures Definition: logarithmic ratio of two electrical quantities characterizes a two-port or a transmission path arguments of the logarithm are numerical values Units: common (decadic) logarithm lg −→ decibel (dB) natural logarithm ln −→ neper (Np) dimensionless pseudounit, no SI unit should not be modified by appending additional information Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 17. Not to be confused with: Figure: “Figure” of Otto von Guericke in Magdeburg source: http://commons.wikimedia.org/wiki/File:Magdeburg_Guericke.jpg#/media/File: Magdeburg_Guericke.jpg Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 18. Origin of the unit name bel Alexander Graham Bell (1847–1922) speech therapist, engineer and inventor made the telephone commercially successful after his death all telephones in the US were silenced for one minute Figure: Alexander Graham Bell (ca. between 1914–1919) source: http://commons.wikimedia.org/wiki/File: Alexander_Graham_Bell.jpg Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 19. Reminder of the logarithmic identities Preconditions: x, y, b, r > 0 and b = 1 Product: logb(x · y) = logb x + logb y (6) Quotient: logb x y = logb x − logb y (7) Power: logb (xr ) = r logb x (8) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 20. Definition for power quantities Example: real power P1: input power P2: output power Power attenuation figure of a two-port: AP = 10 · lg P1 P2 dB (9) Power gain figure of a two-port: GP = 10 · lg P2 P1 dB (10) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 21. Definition for root power quantities Example: rms-values of alternating voltages U1: input voltage U2: output voltage Voltage attenuation figure of a two-port: AU = 10 · lg P1 P2 dB = 10 · lg U2 1/R U2 2/R dB = 20 · lg U1 U2 dB (11) Voltage gain figure of a two-port: GU = 10 · lg P2 P1 dB = 10 · lg U2 2/R U2 1/R dB = 20 · lg U2 U1 dB (12) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 22. Discussion of the nomenclature So far: field quantities misleading power and energy density −→ field quantity and power quantity at the same time electric voltage and current −→ no field quantity, but integral over a field quantity New term: root power quantities quantities whose square is proportional to a power quantity introduced in ISO 80000-1, likely to be adapted in the next versions of IEC 60027 and DIN 5493 Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 23. Some numbers to bear in mind Table: Conversion dB – linear values Figure Power ratio Voltage ratio in dB approx. exact approx. exact 0 1 1 1 1 3 2 1.995 1.4 1.412 6 4 3.98 2 1.995 10 10 10 3 3.162 20 100 100 10 10 40 10 000 10 000 100 100 60 1 000 000 1 000 000 1000 1000 Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 24. Some numbers to bear in mind Table: Conversion dB – linear values Figure Power ratio Voltage ratio in dB approx. exact approx. exact 0 1 1 1 1 −3 0.5 0.501 0.7 0.798 −6 0.25 0.25 0.5 0.501 −10 0.1 0.1 0.3 0.316 −20 0.01 0.01 0.1 0.1 −40 0.0001 0.0001 0.01 0.01 −60 0.000 001 0.000 001 0.001 0.001 Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 25. Level Definition: logarithmic ratio of two electrical quantities denominator −→ fixed value of a reference quantity of the same dimension as the numerator Unit: common (decadic) logarithm lg −→ decibel (dB) with specification of the reference quantity short version: reference quantity in parentheses following the dB with a space between dB and the parentheses if numerical value of the reference quantity equals 1 −→ omit Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 26. Not to be confused with: Figure: “Level” of the river Elbe in Magdeburg source: https://commons.wikimedia.org/wiki/File:Pegelhaus_Magdeburg.jpg Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 27. Definition of levels Definition for power quantities: P: power P0: reference value LP (re P0) = LP/P0 = 10 · lg P P0 dB (13) Definition for root power quantities: U: voltage U0: reference value LU (re U0) = LU/U0 = 20 · lg U U0 dB (14) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 28. Abbreviations introduced by the ITU/UIT dB is directly followed by a letter or a sequence of characters to identify the reference value IEC 60027-3 recommends not to use these abbreviations Table: Abbreviations introduced by the International Telecommunication Union (selection) Quantity Letter symbol Unit, short form Reference value long short IEC ITU/UIT Elec. power LP (re 1 mW) LP/mW dB (mW) dBm reference to 1 mW Elec. voltage LU (re 1 V) LU/V dB (V) dBV reference to 1 V Elec. field strength LE (re 1 µV m ) LE/µV m dB (µV/m) dBµ reference to 1 µV m Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 29. Calculating in dB Example P = I2 · R: Expand with the reference values: P · P0 P0 = I2 · I2 0 I2 0 · R · R0 R0 (15a) Order: P P0 = I I0 2 · R R0 · I2 0R0 P0 (15b) Logarithmize: 10 · lg P P0 = 10 · lg I I0 2 · R R0 · I2 0R0 P0 (15c) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 30. Calculating in dB Example P = I2 · R (continued): Use of logb(x · y) = logb x + logb y: 10 lg P P0 = 10 lg I2 I2 0 + 10 lg R R0 + 10 lg I2 0R0 P0 (16a) Use of logb (xr) = r logb x: 10 lg P P0 = 20 lg I I0 + 10 lg R R0 + 10 lg I2 0R0 P0 (16b) Rewrite as levels: LP/P0 = LI/I0 + LR/R0 + 10 lg I2 0R0 P0 (16c) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 31. Calculating in dB Example P = I2 · R (continued): Insert fixed reference values, e. g. P0 = 1 W, I0 = 1 A and R0 = 1 Ω: LP/W = LI/A + LR/Ω (17a) Exemplary calculation with I = 10 A and R = 100 Ω: P = (10 A)2 · 100 Ω = 10 000 W = 10 kW (17b) Calculation in dB: LP/W = 20 dB (A) + 20 dB (Ω) = 40 dB (W) (17c) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 32. Calculating in dB Example U = R · I: Expand with the reference values: U · U0 U0 = R · R0 R0 · I · I0 I0 (18a) Order: U U0 = R R0 · I I0 · R0I0 U0 (18b) Logarithmize: 20 · lg U U0 = 20 · lg R R0 · I I0 · R0I0 U0 (18c) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 33. Calculating in dB Example U = R · I (continued): Use of logb(x · y) = logb x + logb y: 20 lg U U0 = 20 lg R R0 + 20 lg I I0 + 20 lg R0I0 U0 (19a) Rewrite as levels: LU/U0 = LR/R0 + LI/I0 + 20 lg R0I0 U0 (19b) Insert fixed reference values, e. g. U0 = 1 V, R0 = 1 Ω and I0 = 1 A: LU/V = LR/Ω + LI/A (19c) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 34. Calculating in dB Example U = R · I (continued): Exemplary calculation R = 100 Ω and I = 10 A: U = 100 Ω · 10 A = 1000 V = 1 kV (20a) Calculation in dB: LU/V = 40 dB (Ω) + 20 dB (A) = 60 dB (V) (20b) Attention: resistance is here converted with a factor of 20 −→ Resistance is neither a power quantity nor a root power quantity −→ “impedance conversion figure” Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 35. Calculating in dB Example P = U · I: Expand with the reference values: P · P0 P0 = U · U0 U0 · I · I0 I0 (21a) Order: P P0 = U U0 · I I0 · U0I0 P0 (21b) Logarithmize: 10 · lg P P0 = 10 · lg U U0 · I I0 · U0I0 P0 (21c) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 36. Calculating in dB Example P = U · I (continued): Use of logb(x · y) = logb x + logb y: 10 lg P P0 = 10 lg U U0 + 10 lg I I0 + 10 lg U0I0 P0 (22a) Rewrite as levels: LP/P0 = LU/U0 + LI/I0 + 10 lg U0I0 P0 (22b) Insert fixed reference values, e. g. P0 = 1 W, U0 = 1 V and I0 = 1 A: LP/W = LU/V + LI/A (22c) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 37. Calculating in dB Example P = U · I (continued): Exemplary calculation with U = 100 V and I = 10 A: P = 100 V · 10 A = 1000 W = 1 kW (23a) Calculation in dB: LP/W = 20 dB (V) + 10 dB (A) = 30 dB (W) (23b) Attention: voltage and current are here converted with a factor of 10 −→ conversion factor of 20 is based on the assumption that P ∼ U2 or P ∼ I2 Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 38. Calculating in dB Linear scale: power quantity: P 1 mW = P 1 W · 1000 (24) root power quantity: U 1 mV = U 1 V · 1000 (25) dB scale: power quantity: LP/mW = LP/W + 30 dB (26) root power quantity: LU/mV = LU/V + 60 dB (27) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 39. Summary of calculation rules Sum or difference of two figures is again a figure: 20 dB + 30 dB = 50 dB (28) Sum of figure and level gives a level: 0 dB (mW) + 50 dB = 50 dB (mW) (29) Difference of two levels gives a figure: 50 dB (mW) − 0 dB (mW) = 50 dB (30) Sum of two levels does not make sense: 20 dB (mW) + 30 dB (mW) wrong! (31) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 40. Reconvert into linear values Use the definition of a level, divide by 10 dB: LP/mW = 30 dB = 10 · lg P 1 mW dB (32a) 30 dB 10 dB = lg P 1 mW (32b) Delogarithmize, transpose to P: 10 30 dB 10 dB = P 1 mW (32c) P = 1 mW · 10 30 dB 10 dB = 103 mW = 1 W (32d) Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 41. Advantages of the calculation in dB very small and very large values can be given in terms of handy numerical values multiplication on linear scale −→ addition in dB division on linear scale −→ subtraction in dB simple calculation of signal chains corresponds to the human reception of light intensity, loudness, pressure and taste (but not temperature) −→ Weber Fechner law Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 42. Advantages of a double-logarithmic scale 0 20 40 60 80 100 0 0.5 1 Normalized frequency f/f0 Amplituderesponse LP of 1. order LP of 2. order (a) Linear scaling 10−2 10−1 100 101 102 10−3 10−2 10−1 100 Normalized frequency f/f0Amplituderesponse LP of 1. order LP of 2. order (b) Logarithmic scaling Figure: Amplitude response of low-pass filters of different order. Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 43. Disadvantage of the calculation in dB partially conversion necessary necessary distinction between power quantities, root power quantities and impedance conversion figures conversion factors (10 vs. 20) partially not clear unusual computation of the units no direct addition or subtraction of values possible no representation of the value zero in dB no representation of negative or complex values in dB Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 44. Recommendations avoid a calculation in dB, if possible always do a control calculation with linear values clear statement of the reference values and conversion factors clear statement of the units and reference units no statistics with dB values Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 45. Further reading Products: Signal generators, spectrum analyzers, test receivers, network analyzers, power meters, audio analyzers dB or not dB? Everything you ever wanted to know about decibels but were afraid to ask… Application Note 1MA98 True or false: 30 dBm + 30 dBm = 60 dBm? Why does 1% work out to be -40 dB one time but then 0.1 dB or 0.05 dB the next time? These questions sometimes leave even experienced engineers scratching their heads. Decibels are found everywhere, including power levels, voltages, reflection coefficients, noise figures, field strengths and more. What is a decibel and how should we use it in our calculations? This Application Note is intended as a refresher on the subject of decibels. Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 46. Notation Italics: letter symbols for physical quantities, e. g. m (mass), U (electric voltage) letter symbols for variables, e. g. x, n symbols for functions and operators with user-definable meaning, e. g. f(x) −→ recommendation of a serif font Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 47. Notation Roman type: units and their prefixes, e. g. m, kg, s, pF, V, dB numerals, e. g. 4.5; 67; 8-fold; 1⁄2 symbols for functions and operators with fixed meaning, e. g. sin, lg, max indices with abbreviations, e. g. Uq, Etan, Pout chemical elements and compounds, e. g. Cu; H2O −→ recommendation of using a sans serif font Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 48. Labeling of table headers Table: Labeling of table headers and coordinate systems. Correct Wronga U U/V U in V E/V m E in V m U [V] U U in [V] [V] 0.1 V 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 V 0.2 0.2 0.2 0.2 0.2 0.2 0.2 . . . . . . . . . . . . . . . . . . . . . . . . a Do not put units in brackets. Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49
  • 49. Labeling of table headers Table: Labeling of table headers and coordinate systems for large value ranges. Correct Wronga P P/W P/W P/W 1 W 1 1 1 1 mW 1 × 10−3 10−3 1 m 1 µW 1 × 10−6 10−6 1 µ 1 nW 1 × 10−9 10−9 1 n . . . . . . . . . . . . a Do not use prefixes alone. Magdowski (Chair for EMC) Electromagnetic Compatibility License: cba CC BY-SA 3.0 (Attribution + S / 49