SlideShare a Scribd company logo
1 of 27
Download to read offline
n2bio
biodegradáveis
Sobre a PHB S/A - arquivo 1
1. Conceitos básicos
2. Mercado de Bioplásticos
3. PHA’s e PHB’s
4. PHB Industrial S/A – Brasil
5. Súmula de reunião com a PHB S/A
6. Oportunidades e Objetivos
7. Passos, Riscos e Mitigação
2 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
[1] Conceitos básicos: Plásticos
1. Plásticos: materiais orgânicos poliméricos sintéticos. Alto peso molecular (10.000 a 1.000.000 g/mol). São de grande maleabilidade
(plasticidade: propriedade de adaptar-se em distintas formas), facilmente transformável mediante o emprego de calor e pressão.
Os polímeros termoplásticos são compostos de longos fios lineares ou ramificados. A vantagem deste material está na
remodelagem, pois estes plásticos podem ser reciclados várias vezes.
2. Termofixos ou termorrígidos não se alteram com a temperatura. O aumento da temperatura promove a decomposição desses
materiais antes de sua fusão, o que os torna não recicláveis mecanicamente. Isso dificulta a reciclagem destes polímeros. A baquelita
é usada para compor cabos de frigideira por ser dura, resistente e não condutora (o cabo não se aquece no fogo). Poliuretanos (PU),
poliacetato de Etileno Vinil (EVA), resinas poliésteres, resinas epoxi e gelcoat são outros plásticos termofixos. Também são usados
por grifes europeias no acabamento de artigos de luxo de alto valor agregado que demandam alta resistência e durabilidade.
3. Termoplástico é aquele que sob temperaturas relativamente baixas ( 135°C - 250°C) , apresenta alta viscosidade podendo ser
conformado e moldado. Podem ser reprocessados várias vezes, mas obviamente, perdem propriedades a cada reciclagem
podendo também degradar devido ao alto número de re-ciclos. Exemplos de termoplásticos são o polipropileno, o polietileno, o
polimetil-metacrilato (ou acrílico) e o policloreto de vinil (popularmente conhecido como PVC).
4. Polímeros Olefínicos (PO’s) possuem apenas carbono e hidrogênio. São o Polietileno e o Polipropileno. São os mais produzidos
(46%). O PE é dividido em 4 intervalos de densidade g/cm3 (915 < PEBD < 926 < PEMD < 940 < PEAD), que dão aplicações bem
distintas a cada um. Os PE de Baixa Densidade são flexíveis fundem a temperaturas mais baixas. O Polipropileno (910 – 920 g/cm3)
tem alta resistência a fratura (dobradiço), mas fica quebradiço se congelado (Tupperware). Tecido não-tecido, Ráfia (Sacos para
grãos e fertilizantes), Fibras, Cadeiras, Brinquedos, Copos Plásticos, Recipientes para alimentos, remédios e produtos químicos,
Corpo de eletrodomésticos, Carpetes, Seringas de injeção, Material hospitalar esterilizável, Autopartes (parachoque e interiores).
3 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
4 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
polyester, polyamide & acrylic fibers
polyurethane
polyethylene terephthalate
polyvinylchloride
polystyrene
polypropylene
highdensity polyethylene
low-density & linear low-density polyethylene
150/400 = 38%
https://advances.sciencemag.org/content/3/7/e1700782/tab-figures-data
Global Primary Plastics Production in million of tonnes ...
... according to industrial use ... according to type of
polymer
Polyolefines
185/400 = 46%
Growth level in 45 years
World GDP: 4.5x
Ammonia (80% in fertilizers):
3.6x
Cement (construction): 6.6x
Plastics: 10.4x
https://www.iea.org/petrochemicals
IEA forecast for oil demand
growth
2017 – 2030 (M barrels a day)
8,300 Mt of plastics produced from 1905 to 2015
5,000 Mt (60%) discharged in landfills or environment
2,500 Mt (30%) still in use (including 9% recycled)
800 Mt (10%) incinerated
3,800 Mt (45%) made in the last 13 years
Average growth is 8.5% annually
This is higher than cement or steel
[1] Conceitos básicos: Bioplásticos
5. Bioplásticos: Quando é 100% derivado de biomassa (bio-based), e não de petróleo, E/OU quando é biodegradável.
6. Biodegradação: é o reconhecimento (quebra) de substâncias orgânicas por enzimas presentes na natureza. A estrutura molecular é
transformada em OUTRAS substâncias básicas (mineralização), como água, dióxido de carbono e metano, através de processos
metabólicos ou enzimáticos de fungos ou bactérias, que usam essa substância orgânica como fonte de carbono e energia. Tanto a
quebra física em pedaços menores, quanto a degradação química em substancias básicas, em menos de 1 ano, são necessárias para o
processo ser considerado biodegradação. É processo oposto à fotossíntese com metabolismo celular contínuo. Tem 3 etapas:
a) Biodeterioração é a degradação na superfície, quando da exposição a fatores abióticos no ambiente externo (que influenciam a
população de microorganismos). Modifica a natureza mecânica, física e química da matéria e enfraquece a estrutura do material.
Alguns fatores abióticos são a compressão (mecânica), luz (UV), temperatura e estado químico do ambiente (salinidade, pH, etc.).
b) Biofragmentação: quebra do material (degradação física) em pedaços menores, mantendo as polímeros no seu tamanho original.
c) Assimilação: microorganismos excretam enzimas para quebrar os polímeros (degradação química) em partes menores (oligômeros
e monômeros), solúveis em água e que atravessem a parede celular. Dentro delas, eles entram nas vias catabólicas que levam à
produção de energia (ATP) e elementos da estrutura celular. Deste metabolismo resultam CO2 (com ou sem CH4) e H2O.
7. A quebra de materiais por microorganismos com O2 é a digestão aeróbica e sem O2 é a digestão anaeróbica. As reações
anaeróbicas produzem metano e as reações aeróbicas não. Mas ambas produzem CO2, água, algum tipo de resíduo e uma nova
biomassa. A reação aeróbica ocorre mais rápido que a anaeróbica. Mas a anaeróbica reduz mais o volume e a massa do material.
8. Compostagem é o conjunto de técnicas aplicadas para estimular a decomposição de materiais orgânicos por microorganismos
aeróbios para obter, no menor tempo possível, um material estável, rico em húmus e nutrientes minerais com atributos físicos,
químicos e biológicos superiores (sob o aspecto agronômico) àqueles encontrados na matéria-prima. Além de proteger o ambiente
(menos lixo orgânico), a compostagem gera um produto de valor, o composto, que é um ótimo fertilizante natural.
5 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
[1] Conceitos básicos: Bioplásticos
9. As petroquímicas intencionalmente cunharam uma ambiguidade na
definição de “bioplástico” e de “biodegradável”. Isto deu status de
bioplástico para polímeros de petróleo que são compostáveis
(mesmo não sendo naturalmente degradáveis) e polímeros de
biomassa que não são compostáveis (e portanto não são naturalmente
degradáveis). A figura criada pela European Bioplastics (associação
mormente patrocinada por petroquímicas, inclusive Braskem) é
amplamente divulgada, servindo para consolidar a ambiguidade.
10. Uma prova do interesse em reduzir a objetividade da informação ao
público é que, apesar da definição formal de bioplástico exigir que o
material seja OU bioderivado OU compostável (o que NÃO é
degradação natural), a figura de doutrinação traz o termo
biodegradável, em vez do termo compostável. Tal confusão é do
interesse das petroquímicas, pois gera falso apelo de sustentabilidade
a polímeros (de petróleo ou de biomassa) que causarão os mesmos
problemas quando tiverem o mesmo destino que os centenas de
milhões de toneladas de plásticos convencionais anualmente
transferidos ao solo, rios e oceanos.
6 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
[1] Conceitos básicos: Bioplásticos
11. Os regulamentos e leis para produtos e processos industriais se baseiam em normas técnicas, as quais definem limites e métodos
de medição para evitar má conduta ou concorrência desleal. Entretanto, embora seja um processo muito bem conhecido e
previsível, a biodegradação (fungos e bactérias) não é um processo industrial e pode variar com os fatores ambientais que
influenciam a dinâmica dos microorganismos. Apesar de tal variação ser conhecida, isto deu margem a que a indústria petroquímica
se antecipasse e, por meio de sua capacidade de moldar fenômenos institucionais, ela cunhasse as normas técnicas de bioplásticos
retirando biodegradável e colocando compostável como requisito para o termo bioplástico.
12. Aquela que é (por enquanto) a mais difundida é a norma EN 13432: “Requisitos para embalagens recuperáveis através de
compostagem e biodegradação - Esquema de ensaio e critérios de avaliação para a aceitação final da embalagem”. Até o nome
causa confusão, pois sugere que ela certifica polímeros que se biodegradam, gerando falsa noção de degradação no meio ambiente,
quando na verdade ela só trata de polímeros compostáveis, ou seja, que se biodegradam em condições industriais de temperatura
e homogeneidade da massa cozida (degradada) as quais não ocorrem no meio ambiente. A norma em si não é um problema, pois
apenas determina requisitos para a um certo tipo de reciclagem industrial de materiais que ocorre em uma condição restrita. O
problema é o uso intencionalmente errôneo da norma, ao transformá-la na principal referência sobre a sustentabilidade dos
plásticos, por meio da massiva divulgação e da certificação de produtos e embalagens por meio dela, consolidando noções
errôneas no consumidor sobre a sustentabilidade (degradabilidade nas várias condições naturais) dos polímeros abrangidos por ela.
13. Sustentabilidade: Em 1972: atendimento das necessidades presentes sem comprometer a capacidade das gerações futuras de
atender suas necessidades. Em 2002: melhoria da qualidade de vida de todos os habitantes do mundo sem aumentar o uso de
recursos naturais além da capacidade da Terra (em ofertar e recompor).
7 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
[1] Conceitos básicos: Bioplásticos
14. Há uma dificuldade maior em criar normas de padronização para a biodegradação em meio natural, pois, cada bioma tem um grande
número de combinações de variáveis ambientais que afetam o metabolismo microbiano (temperatura, pH, incidência de UV,
salinidade umidade, etc.). Ainda assim, já existem várias normas que estabelecem critérios para definição de degradabilidade de
plásticos em meio natural. Um ponto de partida são as normas para biodegradabilidade de plásticos em esgoto, vistas abaixo:
8 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
Fonte: Harrison, J.P. et al. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. Royal Society Open Science 5 (5), May 2018.
[1] Conceitos importantes : Bioplásticos
9. Há uma dificuldade maior em criar normas de padronização para a biodegradação em meio natural, pois, cada bioma tem um grande
número de combinações de variáveis ambientais que afetam o metabolismo microbiano (temperatura, pH, incidência de UV,
salinidade umidade, etc.). Ainda assim, já existem várias normas que estabelecem critérios para definição de degradabilidade de
plásticos em meio natural. Cada norma ainda foca em uma combinação específica de variáveis ambientais:
9 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
10 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
there are very few industrial composting facilities available. Moreover, as it is difficult and expensive to separate
compostable plastics from other plastics, many industrial composters do not want plastic of any kind in their
feedstock. Home composting of plastic packaging is dangerous and should not be encouraged, as it is often
contaminated with meat, fish, or poultry residues, and temperatures do not rise high enough to kill the pathogens.
is based on measuring the emission of carbon dioxide during degradation. Hydro-biodegradable plastic is compliant
with EN 13432, precisely because it emits CO2 (a greenhouse gas) at a high rate
If a leaf were subjected to the CO2 emission tests included in EN13432 it would not be considered biodegradable or
compostable!
Another problem with EN 13432 is that it requires almost complete conversion of the carbon in the plastic to CO2,
thus depriving the resulting compost of carbon, which is needed for plant growth, and wasting it by emission to
atmosphere
Conversion of organic materials to CO2 at a rapid rate during the composting process is not "recovery" as required
by the European Directive on Packaging and PackagingWaste (94/62/EC as amended), and should not really be part
of a standard for composting. Nature's lignocellulosic wastes do not behave in this way, and if they did the products
would have little value as soil improvers and fertilisers, having lost most of their carbon.
11 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
IUPAC is the universally-recognized authority on chemical nomenclature and
terminology and two IUPAC bodies take leading roles in this activity: Division
VIII – Chemical Nomenclature and Structure Representation and the Inter-
divisional Committee on Terminology, Nomenclature, and Symbols. As one
of its major activities, IUPAC develops Recommendations to establish
unambiguous, uniform, and consistent nomenclature and terminology for
specific scientific fields, usually presented as: glossaries of terms for specific
chemical disciplines; definitions of terms relating to a group of properties;
nomenclature of chemical compounds and their classes; terminology,
symbols, and units in a specific field; classifications and uses of terms in a
specific field; and conventions and standards of practice for presenting data
in a specific field. The Recommendations are published in the IUPAC journal,
Pure and Applied Chemistry (PAC) and journal issues are freely-available in the
year following their publication. They also appear in the IUPAC Standards
Online database one year after publication in PAC. Information on chemical
terminology can also be accessed through the IUPACColor Books.
IUPAC’s webpage
Globally Official Definitions (IUPAC)
“Scientists and users of other fields of application have often developed incoherent terminologies. The aim of the following
recommendations is to provide a terminology usable without any confusion in the various domains dealing with biorelated polymers,
namely, medicine, pharmacology, agriculture, packaging, biotechnology, polymer waste management, etc. This is necessary because:
(i) human health and environmental sustainability are more and more interdependent;
(ii) research, applications, norms, and regulations are still developed independently in each sector;
(iii) nonspecialists like journalists, politicians, and partners of complementary disciplines are more and more implicated and need a
common language. ”
[x] means the source of the doctrine, as numbered in the bibliographic list at the end of the publication.
plastic
Generic term used in the case of polymeric material that may contain other substances to improve performance and/or reduce costs.
Note 1: The use of this term instead of polymer is a source of confusion and thus is not recommended.
Note 2: This term is used in polymer engineering for materials often compounded that can be processed by flow.
biobased
Composed or derived in whole or in part of biological products issued from the biomass (including plant, animal, and marine or forestry materials).
Note: A biobased polymer or polymeric device is not necessarily environmentally friendly nor biocompatible nor biodegradable, especially if it is
similar to a petro-based (oil-based) polymer.
12 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
Michel Vert, Yoshiharu Doi,
Karl-Heinz Hellwich, Michael Hess,
Philip Hodge, Przemyslaw Kubisa,
Marguerite Rinaudo, François Schué
Globally Official Definitions (IUPAC)
environmentally friendly ; ecocompatible
Qualifiers for a substance, device, or process that has minimal deleterious impact on the environment, which is air, water, minerals, living systems,
etc.
Note 1: The assignment of these qualifiers to a polymer must be based on a consistent life cycle assessment.
Note 2: Ecocompatible is introduced to complement biocompatible, whose meaning is limited to living systems.
life cycle assessment
Investigation and valuation of the environmental impacts of a given product or service caused or necessitated by its existence [2].
Note 1: Also known as life cycle analysis, LCA, ecobalance, and cradle-to-grave analysis.
Note 2: Assessing the life cycle of a polymer or a plastic must take into account all the factors that can be identified from the up-stage raw material
to the waste management.
bioplastic
Biobased polymer derived (only) from the biomass or issued from monomers derived from the
biomass and which, at some stage in its processing into finished products, can be shaped by flow.
Note 1: Bioplastic is generally used as the opposite of polymer derived from fossil resources.
Note 2: Bioplastic is misleading because it suggests that any polymer derived from the biomass is environmentally friendly.
Note 3: The use of the term “bioplastic” is discouraged. Use the expression “biobased polymer”.
Note 4: A biobased polymer similar to a petrobased one does not imply any superiority with respect to the environment unless the comparison of
respective life cycle assessments is favourable.
13 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
Michel Vert, Yoshiharu Doi,
Karl-Heinz Hellwich, Michael Hess,
Philip Hodge, Przemyslaw Kubisa,
Marguerite Rinaudo, François Schué
Globally Official Definitions (IUPAC)
composting
Process of biological decomposition of organic matter performed by microorganisms, mostly bacteria and fungi. (See biodegradation.)
Note 1: Modified from [10] to be more general.
Note 2: Composting can be performed industrially under aerobic or anaerobic conditions or individually (home-composting).
Note 3: If present, earthworms also contribute to composting. They are sometimes cultured purposely in industrial composting facilities. One often
talks of lombri-composting.
disintegration
Fragmentation to particles of a defined size [9].
Note: The limiting size is generally defined according to sieving conditions.
fragmentation
Breakdown of a material to particles regardless of the mechanism and the size of fragments.
Note: Modified from [9] in order to remove size limitation. (See disintegration.)
14 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
Michel Vert, Yoshiharu Doi,
Karl-Heinz Hellwich, Michael Hess,
Philip Hodge, Przemyslaw Kubisa,
Marguerite Rinaudo, François Schué
Globally Official Definitions (IUPAC)
deterioration
Deleterious alteration of a material in quality, serviceability, or vigor.
Note 1: Deterioration can result from physical and/or chemical phenomena.
Note 2: Deterioration is connected to a loss of performances and thus to the function, whereas degradation is connected with a loss of properties.
Note 3: Polymer deterioration is more general than polymer degradation, which reflects loss of properties resulting from chemical cleavage of
macromolecules only. (See degradation.)
degradation
Progressive loss of the characteristics of a substance or a device. (See degradable.)
Note: Degradation caused by the action of water is termed “hydrodegradation” or hydrolysis; by visible or ultraviolet light is termed “photo - degradation”; by
the action of oxygen or by the combined action of light and oxygen is termed “oxidative degradation” or “photooxidative degradation”, respectively; by
the action of heat or by the combined effect of chemical agents and heat is termed “thermal degradation” or “thermochemical degradation”,
respectively; by the combined action of heat and oxygen is termed “thermooxidative degradation”.
degradation (biorelated polymer)
Degradation that results in desired changes in the values of in-use properties of the material because of macromolecule cleavage and molar mass decrease.
Note 1: Adapted from [8] where the definition is general. For biorelated polymers, the definition is purposely and specifically limited to the chemical
degradation of macro - molecules in order to make a clear distinction with the physical degradation of the material. (See fragmentation and
disintegration.)
Note 2: In any condition, degradation must be used instead of biodegradation when the mechanism of chain scission is not known or proved as cell-mediated.
Note 3: Degradation can result from action of enzymes (see enzymatic degradation), or from action of organisms, and/or microorganisms. (See
15 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
Michel Vert, Yoshiharu Doi,
Karl-Heinz Hellwich, Michael Hess,
Philip Hodge, Przemyslaw Kubisa,
Marguerite Rinaudo, François Schué
Globally Official Definitions (IUPAC)
erosion
Degradation that occurs at the surface and progresses from it into the bulk.
Note 1: Modified from [9] to be more precise.
Note 2: See enzymatic degradation. In the case of polymers, water-soluble enzymes can hardly diffuse into the macromolecular network, except,
maybe, in some hydrogels. They adhere to surfaces to cause erosion.
Note 3: Erosion can also result from chemical degradation when the degrading reagent reacts faster than it diffuses inside. There is a risk of
confusion that can be eliminated after careful and detailed investigation of the degradation mechanism. (See bioerosion.)
Note 4: The wording bulk erosion is incorrect and its use therefore discouraged.
mineralization
Process through which an organic substance becomes impregnated by or turned into inorganic substances.
Note 1: A particular case is the process by which living organisms produce and structure minerals often to harden or stiffen existing tissues. (See
biomineralization.)
Note 2: In the case of polymer biodegradation, this term is used to reflect conversion to CO2 and H2O and other inorganics. CH4 can be considered as
part of the mineralization process because it comes up in parallel to the minerals in anaerobic composting, also called methanization [9].
16 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
Michel Vert, Yoshiharu Doi,
Karl-Heinz Hellwich, Michael Hess,
Philip Hodge, Przemyslaw Kubisa,
Marguerite Rinaudo, François Schué
Globally Official Definitions (IUPAC)
biodegradable (biorelated polymer)
Qualifier for macromolecules or polymeric substances susceptible to degradation by biological activity by lowering of the molar masses of
macromolecules that form the substances.
Note 1: Adapted from [8] to include the notion of decrease of molar mass in the definition.
Note 2: It is important to note that in the field of biorelated polymers, a biodegradable compound is degradable whereas a degradable polymer is not
necessarily biodegradable.
Note 3: Degradation of a polymer in vivo or in the environment resulting from the sole water without any contribution from living elements is not
biodegradation. The use of hydrolysis is recommended. (See also degradation.)
ultimate biodegradation
Complete breakdown of a compound to either fully oxidized or reduced simple molecules (such as carbon dioxide/methane, nitrate/ammonium, and
water) [2].
Note 1: This term reflects the end-products of biodegradation. As such, it differs from the theoretical degree of biodegradation, which depends on the
presence of non-biodegradable components.
Note 2: The use of this expression is not recommended.
maximum degree of biodegradation
Greater value of the degree of biodegradation that can be reached under selected experimental conditions [9].
Note 1: This expression reflects the fact that some biodegradable parts of a biodegradable material may not be accessible to biodegradation.
Note 2: Not to be confused with ultimate degradation.
17 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
Michel Vert, Yoshiharu Doi,
Karl-Heinz Hellwich, Michael Hess,
Philip Hodge, Przemyslaw Kubisa,
Marguerite Rinaudo, François Schué
Globally Official Definitions (IUPAC)
biodegradation (biorelated polymer)
Degradation of a polymeric item due to cell-mediated phenomena [9].
Note 1: The definition given in [2] is misleading because a substance can be degraded by enzymes in vitro and never be degraded in vivo or in the
environment because of a lack of proper enzyme(s) in situ (or simply a lack of water). This is the reason why biodegradation is referred to as
limited to degradation resulting from cell activity. (See enzymatic degradation.) The definition in [2] is also confusing because a compounded
polymer or a copolymer can include bioresistant additives or moieties, respectively. Theoretical biodegradation should be used to reflect the
sole organic parts that are biodegradable. (See theoretical degree of biodegradation and maximum degree of biodegradation.)
Note 2: In vivo, degradation resulting solely from hydrolysis by the water present in tissues and organs is not biodegradation; it must be referred to
as hydrolysis or hydrolytic degradation.
Note 3: Ultimate biodegradation is often used to indicate complete transformation of organic compounds to either fully oxidized or reduced simple
molecules (such as carbon dioxide/methane, nitrate/ammonium, and water. It should be noted that, in case of partial biodegradation, residual
products can be more harmful than the initial substance.
Note 4: When biodegradation is combined with another degrading phenomenon, a term combining prefixes can be used, such as oxo-biodegradation,
provided that both contributions are demonstrated.
Note 5: Biodegradation should only be used when the mechanism is proved, otherwise degradation is pertinent.
Note 6: Enzymatic degradation processed abiotically in vitro is not biodegradation.
Note 7: Cell-mediated chemical modification without main chain scission is not biodegradation. (See bioalteration.)
18 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
Michel Vert, Yoshiharu Doi,
Karl-Heinz Hellwich, Michael Hess,
Philip Hodge, Przemyslaw Kubisa,
Marguerite Rinaudo, François Schué
Globally Official Definitions (IUPAC)
sustainability
Developments that meet the needs of the present without compromising the ability of future generations to meet their needs [15].
Note: Other definitions are not recommended in the context of biorelated polymers.
green chemistry ; sustainable chemistry
Design of chemical products and processes that reduce or eliminate the use or generation of substances hazardous to humans, animals, plants, and the
environment.
Note 1: Modified from [14] to be more general.
Note 2: Green chemistry discusses the engineering concept of pollution prevention and zero waste both at laboratory and industrial scales. It encourages the
use of economical and ecocompatible techniques that not only improve the yield but also bring down the cost of disposal of wastes at the end of a
chemical process.
green polymer
Polymer that conforms to the concept of green chemistry.
Note: Green polymer does not necessarily mean environmentally friendly polymer or biobased polymer although the confusion is often made in the literature.
environmentally degradable polymer
Polymer that can be degraded by the action of the environment, through, for example, air, light, heat, or microorganisms [8].
Note: When it is to be a source of material, such a polymer must be designed to degrade into products at a predictable rate compatible with the application.
Such products are usually of lower molar mass than the original polymer.
19 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
Michel Vert, Yoshiharu Doi,
Karl-Heinz Hellwich, Michael Hess,
Philip Hodge, Przemyslaw Kubisa,
Marguerite Rinaudo, François Schué
Globally Official Definitions (IUPAC)
litter
Solid waste carelessly discarded outside the regular garbage and trash collection [10].
microparticle
Particle with dimensions between 1 × 10−7 and 1 × 10−4 m.
Note 1: The lower limit between micro- and nano-sizing is still a matter of debate. (See nanoparticle.)
Note 2: To be consistent with the prefix “micro” and the range imposed by the definition, dimensions of microparticles should be expressed in μm.
nanoparticle
Particle of any shape with dimensions in the 1 × 10–9 and 1 × 10–7 m range.
Note 1: Modified from definitions of nanoparticle and nanogel in [2,3].
Note 2: The basis of the 100-nm limit is the fact that novel properties that differentiate particles from the bulk material typically develop at a critical
length scale of under 100 nm.
Note 3: Because other phenomena (transparency or turbidity, ultrafiltration, stable dispersion, etc.) are occasionally considered that extend the
upper limit, the use of the prefix “nano” is accepted for dimensions smaller than 500 nm, provided reference to the definition is indicated.
Note 4: Tubes and fibers with only two dimensions below 100 nm are also nanoparticles.
mulching film
Polymer film aimed at covering seeded area in order to protect the growing plants from weeds and cold and preserve humidity.
Note: Such film acts as a mobile green house.
20 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
Michel Vert, Yoshiharu Doi,
Karl-Heinz Hellwich, Michael Hess,
Philip Hodge, Przemyslaw Kubisa,
Marguerite Rinaudo, François Schué
Globally Official Definitions (IUPAC)
litter
Solid waste carelessly discarded outside the regular garbage and trash collection [10].
microparticle
Particle with dimensions between 1 × 10−7 and 1 × 10−4 m.
Note 1: The lower limit between micro- and nano-sizing is still a matter of debate. (See nanoparticle.)
Note 2: To be consistent with the prefix “micro” and the range imposed by the definition, dimensions of microparticles should be expressed in μm.
nanoparticle
Particle of any shape with dimensions in the 1 × 10–9 and 1 × 10–7 m range.
Note 1: Modified from definitions of nanoparticle and nanogel in [2,3].
Note 2: The basis of the 100-nm limit is the fact that novel properties that differentiate particles from the bulk material typically develop at a critical
length scale of under 100 nm.
Note 3: Because other phenomena (transparency or turbidity, ultrafiltration, stable dispersion, etc.) are occasionally considered that extend the
upper limit, the use of the prefix “nano” is accepted for dimensions smaller than 500 nm, provided reference to the definition is indicated.
Note 4: Tubes and fibers with only two dimensions below 100 nm are also nanoparticles.
mulching film
Polymer film aimed at covering seeded area in order to protect the growing plants from weeds and cold and preserve humidity.
Note: Such film acts as a mobile green house.
21 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
Michel Vert, Yoshiharu Doi,
Karl-Heinz Hellwich, Michael Hess,
Philip Hodge, Przemyslaw Kubisa,
Marguerite Rinaudo, François Schué
22 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
ASTM: American Society for Testing and Materials
23 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
24 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
25 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
26 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021
27 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1
21/07/2021

More Related Content

What's hot

Biodegradation of polyethylenes
Biodegradation of polyethylenesBiodegradation of polyethylenes
Biodegradation of polyethylenesDeepa panwar
 
Bio degradable films for food packaging
Bio degradable films for food packagingBio degradable films for food packaging
Bio degradable films for food packagingharanadhreddy2
 
Biofuels and biodegradable plastics
Biofuels and biodegradable plasticsBiofuels and biodegradable plastics
Biofuels and biodegradable plasticsTyrel998
 
Biological degradation of synthetic polymer
Biological degradation of synthetic polymerBiological degradation of synthetic polymer
Biological degradation of synthetic polymerMd. Mizanur Rahman
 
Gonzalez, 2008, Sulfur Formation And Recovery In A Thiosulfate Oxidizing Bior...
Gonzalez, 2008, Sulfur Formation And Recovery In A Thiosulfate Oxidizing Bior...Gonzalez, 2008, Sulfur Formation And Recovery In A Thiosulfate Oxidizing Bior...
Gonzalez, 2008, Sulfur Formation And Recovery In A Thiosulfate Oxidizing Bior...roelmeulepas
 
Biodegradation of plastics
Biodegradation of plasticsBiodegradation of plastics
Biodegradation of plasticsPoojaVishnoi7
 
Landfill Biodegradation Of Foam Compositions Based On Polymers Not Inherently...
Landfill Biodegradation Of Foam Compositions Based On Polymers Not Inherently...Landfill Biodegradation Of Foam Compositions Based On Polymers Not Inherently...
Landfill Biodegradation Of Foam Compositions Based On Polymers Not Inherently...Jsulano
 
Biodegradation of Plastic by AspergillusSP
Biodegradation of Plastic by AspergillusSPBiodegradation of Plastic by AspergillusSP
Biodegradation of Plastic by AspergillusSPijtsrd
 
RECENT DEVELOPMENT OF BIODEGRADATION TECHNIQUES OF POLYMER
RECENT DEVELOPMENT OF BIODEGRADATION TECHNIQUES OF POLYMERRECENT DEVELOPMENT OF BIODEGRADATION TECHNIQUES OF POLYMER
RECENT DEVELOPMENT OF BIODEGRADATION TECHNIQUES OF POLYMERBBAU Lucknow, India
 
Disposal of Polymers
Disposal of PolymersDisposal of Polymers
Disposal of PolymersKarl Coelho
 
Biodegradable films for Food Packaging
Biodegradable films for Food PackagingBiodegradable films for Food Packaging
Biodegradable films for Food PackagingDr. Malathi A. N.
 
Sustainability in an urban environment through anaerobic digestion
Sustainability in an urban environment through anaerobic digestionSustainability in an urban environment through anaerobic digestion
Sustainability in an urban environment through anaerobic digestioneisenmannusa
 
Biodegradable plastic plant biotech.
Biodegradable plastic plant biotech.Biodegradable plastic plant biotech.
Biodegradable plastic plant biotech.KAUSHAL SAHU
 
Biodegradable plastics
Biodegradable plasticsBiodegradable plastics
Biodegradable plasticsDC Graphics
 
IMPORTANCE AND APPLICATIONS OF BIOPOLYMERS
IMPORTANCE AND APPLICATIONS OF BIOPOLYMERSIMPORTANCE AND APPLICATIONS OF BIOPOLYMERS
IMPORTANCE AND APPLICATIONS OF BIOPOLYMERSArjun K Gopi
 
Biodegradable synthetic fibre from corn
Biodegradable synthetic fibre from cornBiodegradable synthetic fibre from corn
Biodegradable synthetic fibre from cornAdane Nega
 
Plastic waste management
Plastic waste managementPlastic waste management
Plastic waste managementawasthi15
 

What's hot (20)

Biodegradation of polyethylenes
Biodegradation of polyethylenesBiodegradation of polyethylenes
Biodegradation of polyethylenes
 
Bio degradable films for food packaging
Bio degradable films for food packagingBio degradable films for food packaging
Bio degradable films for food packaging
 
Biofuels and biodegradable plastics
Biofuels and biodegradable plasticsBiofuels and biodegradable plastics
Biofuels and biodegradable plastics
 
Biological degradation of synthetic polymer
Biological degradation of synthetic polymerBiological degradation of synthetic polymer
Biological degradation of synthetic polymer
 
Gonzalez, 2008, Sulfur Formation And Recovery In A Thiosulfate Oxidizing Bior...
Gonzalez, 2008, Sulfur Formation And Recovery In A Thiosulfate Oxidizing Bior...Gonzalez, 2008, Sulfur Formation And Recovery In A Thiosulfate Oxidizing Bior...
Gonzalez, 2008, Sulfur Formation And Recovery In A Thiosulfate Oxidizing Bior...
 
Biodegradation of plastics
Biodegradation of plasticsBiodegradation of plastics
Biodegradation of plastics
 
Landfill Biodegradation Of Foam Compositions Based On Polymers Not Inherently...
Landfill Biodegradation Of Foam Compositions Based On Polymers Not Inherently...Landfill Biodegradation Of Foam Compositions Based On Polymers Not Inherently...
Landfill Biodegradation Of Foam Compositions Based On Polymers Not Inherently...
 
Biodegradation of Plastic by AspergillusSP
Biodegradation of Plastic by AspergillusSPBiodegradation of Plastic by AspergillusSP
Biodegradation of Plastic by AspergillusSP
 
polymer poster
polymer posterpolymer poster
polymer poster
 
RECENT DEVELOPMENT OF BIODEGRADATION TECHNIQUES OF POLYMER
RECENT DEVELOPMENT OF BIODEGRADATION TECHNIQUES OF POLYMERRECENT DEVELOPMENT OF BIODEGRADATION TECHNIQUES OF POLYMER
RECENT DEVELOPMENT OF BIODEGRADATION TECHNIQUES OF POLYMER
 
SOIL BURIAL DEGRADATION OF POLYPROPYLENE/ STARCH BLEND
SOIL BURIAL DEGRADATION OF POLYPROPYLENE/ STARCH BLENDSOIL BURIAL DEGRADATION OF POLYPROPYLENE/ STARCH BLEND
SOIL BURIAL DEGRADATION OF POLYPROPYLENE/ STARCH BLEND
 
Disposal of Polymers
Disposal of PolymersDisposal of Polymers
Disposal of Polymers
 
Biodegradable films for Food Packaging
Biodegradable films for Food PackagingBiodegradable films for Food Packaging
Biodegradable films for Food Packaging
 
BIODEGRADATION
BIODEGRADATIONBIODEGRADATION
BIODEGRADATION
 
Sustainability in an urban environment through anaerobic digestion
Sustainability in an urban environment through anaerobic digestionSustainability in an urban environment through anaerobic digestion
Sustainability in an urban environment through anaerobic digestion
 
Biodegradable plastic plant biotech.
Biodegradable plastic plant biotech.Biodegradable plastic plant biotech.
Biodegradable plastic plant biotech.
 
Biodegradable plastics
Biodegradable plasticsBiodegradable plastics
Biodegradable plastics
 
IMPORTANCE AND APPLICATIONS OF BIOPOLYMERS
IMPORTANCE AND APPLICATIONS OF BIOPOLYMERSIMPORTANCE AND APPLICATIONS OF BIOPOLYMERS
IMPORTANCE AND APPLICATIONS OF BIOPOLYMERS
 
Biodegradable synthetic fibre from corn
Biodegradable synthetic fibre from cornBiodegradable synthetic fibre from corn
Biodegradable synthetic fibre from corn
 
Plastic waste management
Plastic waste managementPlastic waste management
Plastic waste management
 

Similar to Bioplásticos PHB S/A: conceitos básicos e desafios

biodegradable plastic.pptx
biodegradable plastic.pptxbiodegradable plastic.pptx
biodegradable plastic.pptxAnilKumarC12
 
Biodegradation
BiodegradationBiodegradation
BiodegradationSona Pari
 
Bioplastics_-_An_Eco-friendly_Alternative_to_Petro.pdf
Bioplastics_-_An_Eco-friendly_Alternative_to_Petro.pdfBioplastics_-_An_Eco-friendly_Alternative_to_Petro.pdf
Bioplastics_-_An_Eco-friendly_Alternative_to_Petro.pdfAMIT820413
 
Biodegradable_Polymers_by_Chitransh_Juneja
Biodegradable_Polymers_by_Chitransh_JunejaBiodegradable_Polymers_by_Chitransh_Juneja
Biodegradable_Polymers_by_Chitransh_JunejaCHITRANSH JUNEJA
 
Biopolymers for Paperboard Extrusion Coating and Converting - SPE FlexPackCon...
Biopolymers for Paperboard Extrusion Coating and Converting - SPE FlexPackCon...Biopolymers for Paperboard Extrusion Coating and Converting - SPE FlexPackCon...
Biopolymers for Paperboard Extrusion Coating and Converting - SPE FlexPackCon...C. Carey Yang, Ph.D.
 
Bioplastics Information
Bioplastics InformationBioplastics Information
Bioplastics Informationinduniva
 
Biopolymers and their Classification, Advantages etc.
Biopolymers and their Classification, Advantages etc.Biopolymers and their Classification, Advantages etc.
Biopolymers and their Classification, Advantages etc.AjinkyaSatdive1
 
bioplastics and biotechnology: Green Plastics.pdf
bioplastics and biotechnology: Green Plastics.pdfbioplastics and biotechnology: Green Plastics.pdf
bioplastics and biotechnology: Green Plastics.pdfRAJESHKUMAR428748
 
Biodegradable Polymers
Biodegradable PolymersBiodegradable Polymers
Biodegradable PolymersSaurabh Shukla
 
THE BEHAVIOUR OF BIOPLASTIC FILMS IN MECHANICAL RECYCLING STREAMS
THE BEHAVIOUR OF BIOPLASTIC  FILMS IN MECHANICAL  RECYCLING STREAMSTHE BEHAVIOUR OF BIOPLASTIC  FILMS IN MECHANICAL  RECYCLING STREAMS
THE BEHAVIOUR OF BIOPLASTIC FILMS IN MECHANICAL RECYCLING STREAMSGreen Chemicals Blog
 
Bio degradable films for food packaging
Bio degradable  films for food packagingBio degradable  films for food packaging
Bio degradable films for food packagingMaya Sharma
 
BIO PLASTIC a green alternative to plastics
BIO PLASTIC a green alternative to plasticsBIO PLASTIC a green alternative to plastics
BIO PLASTIC a green alternative to plasticsMirza Beg
 

Similar to Bioplásticos PHB S/A: conceitos básicos e desafios (20)

biodegradable plastic.pptx
biodegradable plastic.pptxbiodegradable plastic.pptx
biodegradable plastic.pptx
 
Biodegradation
BiodegradationBiodegradation
Biodegradation
 
Biodegradable polymer
Biodegradable polymerBiodegradable polymer
Biodegradable polymer
 
Bioplastic
BioplasticBioplastic
Bioplastic
 
Ac04605194204
Ac04605194204Ac04605194204
Ac04605194204
 
Bioplastics_-_An_Eco-friendly_Alternative_to_Petro.pdf
Bioplastics_-_An_Eco-friendly_Alternative_to_Petro.pdfBioplastics_-_An_Eco-friendly_Alternative_to_Petro.pdf
Bioplastics_-_An_Eco-friendly_Alternative_to_Petro.pdf
 
Biodegradable_Polymers_by_Chitransh_Juneja
Biodegradable_Polymers_by_Chitransh_JunejaBiodegradable_Polymers_by_Chitransh_Juneja
Biodegradable_Polymers_by_Chitransh_Juneja
 
Biopolymers for Paperboard Extrusion Coating and Converting - SPE FlexPackCon...
Biopolymers for Paperboard Extrusion Coating and Converting - SPE FlexPackCon...Biopolymers for Paperboard Extrusion Coating and Converting - SPE FlexPackCon...
Biopolymers for Paperboard Extrusion Coating and Converting - SPE FlexPackCon...
 
Bioplastics Information
Bioplastics InformationBioplastics Information
Bioplastics Information
 
Biopolymers and their Classification, Advantages etc.
Biopolymers and their Classification, Advantages etc.Biopolymers and their Classification, Advantages etc.
Biopolymers and their Classification, Advantages etc.
 
Bioplastics
BioplasticsBioplastics
Bioplastics
 
bioplastics and biotechnology: Green Plastics.pdf
bioplastics and biotechnology: Green Plastics.pdfbioplastics and biotechnology: Green Plastics.pdf
bioplastics and biotechnology: Green Plastics.pdf
 
Biopolymers presentation
Biopolymers presentation Biopolymers presentation
Biopolymers presentation
 
Vat lieu phan huy sinh hoc vat lieu tai tao
Vat lieu phan huy sinh hoc vat lieu tai taoVat lieu phan huy sinh hoc vat lieu tai tao
Vat lieu phan huy sinh hoc vat lieu tai tao
 
Biodegradable Polymers
Biodegradable PolymersBiodegradable Polymers
Biodegradable Polymers
 
THE BEHAVIOUR OF BIOPLASTIC FILMS IN MECHANICAL RECYCLING STREAMS
THE BEHAVIOUR OF BIOPLASTIC  FILMS IN MECHANICAL  RECYCLING STREAMSTHE BEHAVIOUR OF BIOPLASTIC  FILMS IN MECHANICAL  RECYCLING STREAMS
THE BEHAVIOUR OF BIOPLASTIC FILMS IN MECHANICAL RECYCLING STREAMS
 
Bio degradable films for food packaging
Bio degradable  films for food packagingBio degradable  films for food packaging
Bio degradable films for food packaging
 
Modern times and
Modern times andModern times and
Modern times and
 
BIO PLASTIC a green alternative to plastics
BIO PLASTIC a green alternative to plasticsBIO PLASTIC a green alternative to plastics
BIO PLASTIC a green alternative to plastics
 
bioplastic bioplastic
bioplastic bioplasticbioplastic bioplastic
bioplastic bioplastic
 

More from Jean Carlo Viterbo

More from Jean Carlo Viterbo (17)

descriçao equipe finep do projeto USCS .
descriçao equipe finep do projeto USCS .descriçao equipe finep do projeto USCS .
descriçao equipe finep do projeto USCS .
 
UK PACT Applicant Handbook Aug 2023 v4.pdf
UK PACT Applicant Handbook Aug 2023 v4.pdfUK PACT Applicant Handbook Aug 2023 v4.pdf
UK PACT Applicant Handbook Aug 2023 v4.pdf
 
Who occupational-health-health-in-the-green-econmy
Who   occupational-health-health-in-the-green-econmyWho   occupational-health-health-in-the-green-econmy
Who occupational-health-health-in-the-green-econmy
 
Airborne wind - Brazilian Army
Airborne wind - Brazilian ArmyAirborne wind - Brazilian Army
Airborne wind - Brazilian Army
 
Artigo supply boats
Artigo supply boatsArtigo supply boats
Artigo supply boats
 
Viterbo energex norway 2006
Viterbo energex norway 2006Viterbo energex norway 2006
Viterbo energex norway 2006
 
Cellulose in Brazil
Cellulose in BrazilCellulose in Brazil
Cellulose in Brazil
 
N2 bio profile as dec 2019
N2 bio   profile as dec 2019N2 bio   profile as dec 2019
N2 bio profile as dec 2019
 
Airborne wind
Airborne windAirborne wind
Airborne wind
 
Pulses from brazil
Pulses from brazilPulses from brazil
Pulses from brazil
 
Pellets final
Pellets finalPellets final
Pellets final
 
Supply boats
Supply boatsSupply boats
Supply boats
 
Waterways brazil
Waterways brazilWaterways brazil
Waterways brazil
 
Offshore wind 2019
Offshore wind 2019Offshore wind 2019
Offshore wind 2019
 
2nd gen biofuels brazil
2nd gen biofuels brazil2nd gen biofuels brazil
2nd gen biofuels brazil
 
Viterbo - revista o setor eletrico
Viterbo  - revista o setor eletricoViterbo  - revista o setor eletrico
Viterbo - revista o setor eletrico
 
Viterbo e Brinati sinergia eolica offshore petroleo e gas
Viterbo e Brinati  sinergia eolica offshore petroleo e gasViterbo e Brinati  sinergia eolica offshore petroleo e gas
Viterbo e Brinati sinergia eolica offshore petroleo e gas
 

Recently uploaded

Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxAndy Lambert
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communicationskarancommunications
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdfRenandantas16
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...lizamodels9
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst SummitHolger Mueller
 
Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessAggregage
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Serviceritikaroy0888
 
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsCash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsApsara Of India
 
Catalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdf
Catalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdfCatalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdf
Catalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdfOrient Homes
 
Monte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMMonte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMRavindra Nath Shukla
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Dave Litwiller
 
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service DewasVip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewasmakika9823
 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Neil Kimberley
 
Socio-economic-Impact-of-business-consumers-suppliers-and.pptx
Socio-economic-Impact-of-business-consumers-suppliers-and.pptxSocio-economic-Impact-of-business-consumers-suppliers-and.pptx
Socio-economic-Impact-of-business-consumers-suppliers-and.pptxtrishalcan8
 
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999Tina Ji
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayNZSG
 

Recently uploaded (20)

Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptx
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communications
 
KestrelPro Flyer Japan IT Week 2024 (English)
KestrelPro Flyer Japan IT Week 2024 (English)KestrelPro Flyer Japan IT Week 2024 (English)
KestrelPro Flyer Japan IT Week 2024 (English)
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst Summit
 
Nepali Escort Girl Kakori \ 9548273370 Indian Call Girls Service Lucknow ₹,9517
Nepali Escort Girl Kakori \ 9548273370 Indian Call Girls Service Lucknow ₹,9517Nepali Escort Girl Kakori \ 9548273370 Indian Call Girls Service Lucknow ₹,9517
Nepali Escort Girl Kakori \ 9548273370 Indian Call Girls Service Lucknow ₹,9517
 
Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for Success
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Service
 
Forklift Operations: Safety through Cartoons
Forklift Operations: Safety through CartoonsForklift Operations: Safety through Cartoons
Forklift Operations: Safety through Cartoons
 
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsCash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
 
Catalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdf
Catalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdfCatalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdf
Catalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdf
 
Monte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMMonte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSM
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
 
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service DewasVip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023
 
Socio-economic-Impact-of-business-consumers-suppliers-and.pptx
Socio-economic-Impact-of-business-consumers-suppliers-and.pptxSocio-economic-Impact-of-business-consumers-suppliers-and.pptx
Socio-economic-Impact-of-business-consumers-suppliers-and.pptx
 
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
 
Best Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting PartnershipBest Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting Partnership
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 May
 

Bioplásticos PHB S/A: conceitos básicos e desafios

  • 2. Sobre a PHB S/A - arquivo 1 1. Conceitos básicos 2. Mercado de Bioplásticos 3. PHA’s e PHB’s 4. PHB Industrial S/A – Brasil 5. Súmula de reunião com a PHB S/A 6. Oportunidades e Objetivos 7. Passos, Riscos e Mitigação 2 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021
  • 3. [1] Conceitos básicos: Plásticos 1. Plásticos: materiais orgânicos poliméricos sintéticos. Alto peso molecular (10.000 a 1.000.000 g/mol). São de grande maleabilidade (plasticidade: propriedade de adaptar-se em distintas formas), facilmente transformável mediante o emprego de calor e pressão. Os polímeros termoplásticos são compostos de longos fios lineares ou ramificados. A vantagem deste material está na remodelagem, pois estes plásticos podem ser reciclados várias vezes. 2. Termofixos ou termorrígidos não se alteram com a temperatura. O aumento da temperatura promove a decomposição desses materiais antes de sua fusão, o que os torna não recicláveis mecanicamente. Isso dificulta a reciclagem destes polímeros. A baquelita é usada para compor cabos de frigideira por ser dura, resistente e não condutora (o cabo não se aquece no fogo). Poliuretanos (PU), poliacetato de Etileno Vinil (EVA), resinas poliésteres, resinas epoxi e gelcoat são outros plásticos termofixos. Também são usados por grifes europeias no acabamento de artigos de luxo de alto valor agregado que demandam alta resistência e durabilidade. 3. Termoplástico é aquele que sob temperaturas relativamente baixas ( 135°C - 250°C) , apresenta alta viscosidade podendo ser conformado e moldado. Podem ser reprocessados várias vezes, mas obviamente, perdem propriedades a cada reciclagem podendo também degradar devido ao alto número de re-ciclos. Exemplos de termoplásticos são o polipropileno, o polietileno, o polimetil-metacrilato (ou acrílico) e o policloreto de vinil (popularmente conhecido como PVC). 4. Polímeros Olefínicos (PO’s) possuem apenas carbono e hidrogênio. São o Polietileno e o Polipropileno. São os mais produzidos (46%). O PE é dividido em 4 intervalos de densidade g/cm3 (915 < PEBD < 926 < PEMD < 940 < PEAD), que dão aplicações bem distintas a cada um. Os PE de Baixa Densidade são flexíveis fundem a temperaturas mais baixas. O Polipropileno (910 – 920 g/cm3) tem alta resistência a fratura (dobradiço), mas fica quebradiço se congelado (Tupperware). Tecido não-tecido, Ráfia (Sacos para grãos e fertilizantes), Fibras, Cadeiras, Brinquedos, Copos Plásticos, Recipientes para alimentos, remédios e produtos químicos, Corpo de eletrodomésticos, Carpetes, Seringas de injeção, Material hospitalar esterilizável, Autopartes (parachoque e interiores). 3 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021
  • 4. 4 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 polyester, polyamide & acrylic fibers polyurethane polyethylene terephthalate polyvinylchloride polystyrene polypropylene highdensity polyethylene low-density & linear low-density polyethylene 150/400 = 38% https://advances.sciencemag.org/content/3/7/e1700782/tab-figures-data Global Primary Plastics Production in million of tonnes ... ... according to industrial use ... according to type of polymer Polyolefines 185/400 = 46% Growth level in 45 years World GDP: 4.5x Ammonia (80% in fertilizers): 3.6x Cement (construction): 6.6x Plastics: 10.4x https://www.iea.org/petrochemicals IEA forecast for oil demand growth 2017 – 2030 (M barrels a day) 8,300 Mt of plastics produced from 1905 to 2015 5,000 Mt (60%) discharged in landfills or environment 2,500 Mt (30%) still in use (including 9% recycled) 800 Mt (10%) incinerated 3,800 Mt (45%) made in the last 13 years Average growth is 8.5% annually This is higher than cement or steel
  • 5. [1] Conceitos básicos: Bioplásticos 5. Bioplásticos: Quando é 100% derivado de biomassa (bio-based), e não de petróleo, E/OU quando é biodegradável. 6. Biodegradação: é o reconhecimento (quebra) de substâncias orgânicas por enzimas presentes na natureza. A estrutura molecular é transformada em OUTRAS substâncias básicas (mineralização), como água, dióxido de carbono e metano, através de processos metabólicos ou enzimáticos de fungos ou bactérias, que usam essa substância orgânica como fonte de carbono e energia. Tanto a quebra física em pedaços menores, quanto a degradação química em substancias básicas, em menos de 1 ano, são necessárias para o processo ser considerado biodegradação. É processo oposto à fotossíntese com metabolismo celular contínuo. Tem 3 etapas: a) Biodeterioração é a degradação na superfície, quando da exposição a fatores abióticos no ambiente externo (que influenciam a população de microorganismos). Modifica a natureza mecânica, física e química da matéria e enfraquece a estrutura do material. Alguns fatores abióticos são a compressão (mecânica), luz (UV), temperatura e estado químico do ambiente (salinidade, pH, etc.). b) Biofragmentação: quebra do material (degradação física) em pedaços menores, mantendo as polímeros no seu tamanho original. c) Assimilação: microorganismos excretam enzimas para quebrar os polímeros (degradação química) em partes menores (oligômeros e monômeros), solúveis em água e que atravessem a parede celular. Dentro delas, eles entram nas vias catabólicas que levam à produção de energia (ATP) e elementos da estrutura celular. Deste metabolismo resultam CO2 (com ou sem CH4) e H2O. 7. A quebra de materiais por microorganismos com O2 é a digestão aeróbica e sem O2 é a digestão anaeróbica. As reações anaeróbicas produzem metano e as reações aeróbicas não. Mas ambas produzem CO2, água, algum tipo de resíduo e uma nova biomassa. A reação aeróbica ocorre mais rápido que a anaeróbica. Mas a anaeróbica reduz mais o volume e a massa do material. 8. Compostagem é o conjunto de técnicas aplicadas para estimular a decomposição de materiais orgânicos por microorganismos aeróbios para obter, no menor tempo possível, um material estável, rico em húmus e nutrientes minerais com atributos físicos, químicos e biológicos superiores (sob o aspecto agronômico) àqueles encontrados na matéria-prima. Além de proteger o ambiente (menos lixo orgânico), a compostagem gera um produto de valor, o composto, que é um ótimo fertilizante natural. 5 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021
  • 6. [1] Conceitos básicos: Bioplásticos 9. As petroquímicas intencionalmente cunharam uma ambiguidade na definição de “bioplástico” e de “biodegradável”. Isto deu status de bioplástico para polímeros de petróleo que são compostáveis (mesmo não sendo naturalmente degradáveis) e polímeros de biomassa que não são compostáveis (e portanto não são naturalmente degradáveis). A figura criada pela European Bioplastics (associação mormente patrocinada por petroquímicas, inclusive Braskem) é amplamente divulgada, servindo para consolidar a ambiguidade. 10. Uma prova do interesse em reduzir a objetividade da informação ao público é que, apesar da definição formal de bioplástico exigir que o material seja OU bioderivado OU compostável (o que NÃO é degradação natural), a figura de doutrinação traz o termo biodegradável, em vez do termo compostável. Tal confusão é do interesse das petroquímicas, pois gera falso apelo de sustentabilidade a polímeros (de petróleo ou de biomassa) que causarão os mesmos problemas quando tiverem o mesmo destino que os centenas de milhões de toneladas de plásticos convencionais anualmente transferidos ao solo, rios e oceanos. 6 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021
  • 7. [1] Conceitos básicos: Bioplásticos 11. Os regulamentos e leis para produtos e processos industriais se baseiam em normas técnicas, as quais definem limites e métodos de medição para evitar má conduta ou concorrência desleal. Entretanto, embora seja um processo muito bem conhecido e previsível, a biodegradação (fungos e bactérias) não é um processo industrial e pode variar com os fatores ambientais que influenciam a dinâmica dos microorganismos. Apesar de tal variação ser conhecida, isto deu margem a que a indústria petroquímica se antecipasse e, por meio de sua capacidade de moldar fenômenos institucionais, ela cunhasse as normas técnicas de bioplásticos retirando biodegradável e colocando compostável como requisito para o termo bioplástico. 12. Aquela que é (por enquanto) a mais difundida é a norma EN 13432: “Requisitos para embalagens recuperáveis através de compostagem e biodegradação - Esquema de ensaio e critérios de avaliação para a aceitação final da embalagem”. Até o nome causa confusão, pois sugere que ela certifica polímeros que se biodegradam, gerando falsa noção de degradação no meio ambiente, quando na verdade ela só trata de polímeros compostáveis, ou seja, que se biodegradam em condições industriais de temperatura e homogeneidade da massa cozida (degradada) as quais não ocorrem no meio ambiente. A norma em si não é um problema, pois apenas determina requisitos para a um certo tipo de reciclagem industrial de materiais que ocorre em uma condição restrita. O problema é o uso intencionalmente errôneo da norma, ao transformá-la na principal referência sobre a sustentabilidade dos plásticos, por meio da massiva divulgação e da certificação de produtos e embalagens por meio dela, consolidando noções errôneas no consumidor sobre a sustentabilidade (degradabilidade nas várias condições naturais) dos polímeros abrangidos por ela. 13. Sustentabilidade: Em 1972: atendimento das necessidades presentes sem comprometer a capacidade das gerações futuras de atender suas necessidades. Em 2002: melhoria da qualidade de vida de todos os habitantes do mundo sem aumentar o uso de recursos naturais além da capacidade da Terra (em ofertar e recompor). 7 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021
  • 8. [1] Conceitos básicos: Bioplásticos 14. Há uma dificuldade maior em criar normas de padronização para a biodegradação em meio natural, pois, cada bioma tem um grande número de combinações de variáveis ambientais que afetam o metabolismo microbiano (temperatura, pH, incidência de UV, salinidade umidade, etc.). Ainda assim, já existem várias normas que estabelecem critérios para definição de degradabilidade de plásticos em meio natural. Um ponto de partida são as normas para biodegradabilidade de plásticos em esgoto, vistas abaixo: 8 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 Fonte: Harrison, J.P. et al. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. Royal Society Open Science 5 (5), May 2018.
  • 9. [1] Conceitos importantes : Bioplásticos 9. Há uma dificuldade maior em criar normas de padronização para a biodegradação em meio natural, pois, cada bioma tem um grande número de combinações de variáveis ambientais que afetam o metabolismo microbiano (temperatura, pH, incidência de UV, salinidade umidade, etc.). Ainda assim, já existem várias normas que estabelecem critérios para definição de degradabilidade de plásticos em meio natural. Cada norma ainda foca em uma combinação específica de variáveis ambientais: 9 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021
  • 10. 10 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 there are very few industrial composting facilities available. Moreover, as it is difficult and expensive to separate compostable plastics from other plastics, many industrial composters do not want plastic of any kind in their feedstock. Home composting of plastic packaging is dangerous and should not be encouraged, as it is often contaminated with meat, fish, or poultry residues, and temperatures do not rise high enough to kill the pathogens. is based on measuring the emission of carbon dioxide during degradation. Hydro-biodegradable plastic is compliant with EN 13432, precisely because it emits CO2 (a greenhouse gas) at a high rate If a leaf were subjected to the CO2 emission tests included in EN13432 it would not be considered biodegradable or compostable! Another problem with EN 13432 is that it requires almost complete conversion of the carbon in the plastic to CO2, thus depriving the resulting compost of carbon, which is needed for plant growth, and wasting it by emission to atmosphere Conversion of organic materials to CO2 at a rapid rate during the composting process is not "recovery" as required by the European Directive on Packaging and PackagingWaste (94/62/EC as amended), and should not really be part of a standard for composting. Nature's lignocellulosic wastes do not behave in this way, and if they did the products would have little value as soil improvers and fertilisers, having lost most of their carbon.
  • 11. 11 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 IUPAC is the universally-recognized authority on chemical nomenclature and terminology and two IUPAC bodies take leading roles in this activity: Division VIII – Chemical Nomenclature and Structure Representation and the Inter- divisional Committee on Terminology, Nomenclature, and Symbols. As one of its major activities, IUPAC develops Recommendations to establish unambiguous, uniform, and consistent nomenclature and terminology for specific scientific fields, usually presented as: glossaries of terms for specific chemical disciplines; definitions of terms relating to a group of properties; nomenclature of chemical compounds and their classes; terminology, symbols, and units in a specific field; classifications and uses of terms in a specific field; and conventions and standards of practice for presenting data in a specific field. The Recommendations are published in the IUPAC journal, Pure and Applied Chemistry (PAC) and journal issues are freely-available in the year following their publication. They also appear in the IUPAC Standards Online database one year after publication in PAC. Information on chemical terminology can also be accessed through the IUPACColor Books. IUPAC’s webpage
  • 12. Globally Official Definitions (IUPAC) “Scientists and users of other fields of application have often developed incoherent terminologies. The aim of the following recommendations is to provide a terminology usable without any confusion in the various domains dealing with biorelated polymers, namely, medicine, pharmacology, agriculture, packaging, biotechnology, polymer waste management, etc. This is necessary because: (i) human health and environmental sustainability are more and more interdependent; (ii) research, applications, norms, and regulations are still developed independently in each sector; (iii) nonspecialists like journalists, politicians, and partners of complementary disciplines are more and more implicated and need a common language. ” [x] means the source of the doctrine, as numbered in the bibliographic list at the end of the publication. plastic Generic term used in the case of polymeric material that may contain other substances to improve performance and/or reduce costs. Note 1: The use of this term instead of polymer is a source of confusion and thus is not recommended. Note 2: This term is used in polymer engineering for materials often compounded that can be processed by flow. biobased Composed or derived in whole or in part of biological products issued from the biomass (including plant, animal, and marine or forestry materials). Note: A biobased polymer or polymeric device is not necessarily environmentally friendly nor biocompatible nor biodegradable, especially if it is similar to a petro-based (oil-based) polymer. 12 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 Michel Vert, Yoshiharu Doi, Karl-Heinz Hellwich, Michael Hess, Philip Hodge, Przemyslaw Kubisa, Marguerite Rinaudo, François Schué
  • 13. Globally Official Definitions (IUPAC) environmentally friendly ; ecocompatible Qualifiers for a substance, device, or process that has minimal deleterious impact on the environment, which is air, water, minerals, living systems, etc. Note 1: The assignment of these qualifiers to a polymer must be based on a consistent life cycle assessment. Note 2: Ecocompatible is introduced to complement biocompatible, whose meaning is limited to living systems. life cycle assessment Investigation and valuation of the environmental impacts of a given product or service caused or necessitated by its existence [2]. Note 1: Also known as life cycle analysis, LCA, ecobalance, and cradle-to-grave analysis. Note 2: Assessing the life cycle of a polymer or a plastic must take into account all the factors that can be identified from the up-stage raw material to the waste management. bioplastic Biobased polymer derived (only) from the biomass or issued from monomers derived from the biomass and which, at some stage in its processing into finished products, can be shaped by flow. Note 1: Bioplastic is generally used as the opposite of polymer derived from fossil resources. Note 2: Bioplastic is misleading because it suggests that any polymer derived from the biomass is environmentally friendly. Note 3: The use of the term “bioplastic” is discouraged. Use the expression “biobased polymer”. Note 4: A biobased polymer similar to a petrobased one does not imply any superiority with respect to the environment unless the comparison of respective life cycle assessments is favourable. 13 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 Michel Vert, Yoshiharu Doi, Karl-Heinz Hellwich, Michael Hess, Philip Hodge, Przemyslaw Kubisa, Marguerite Rinaudo, François Schué
  • 14. Globally Official Definitions (IUPAC) composting Process of biological decomposition of organic matter performed by microorganisms, mostly bacteria and fungi. (See biodegradation.) Note 1: Modified from [10] to be more general. Note 2: Composting can be performed industrially under aerobic or anaerobic conditions or individually (home-composting). Note 3: If present, earthworms also contribute to composting. They are sometimes cultured purposely in industrial composting facilities. One often talks of lombri-composting. disintegration Fragmentation to particles of a defined size [9]. Note: The limiting size is generally defined according to sieving conditions. fragmentation Breakdown of a material to particles regardless of the mechanism and the size of fragments. Note: Modified from [9] in order to remove size limitation. (See disintegration.) 14 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 Michel Vert, Yoshiharu Doi, Karl-Heinz Hellwich, Michael Hess, Philip Hodge, Przemyslaw Kubisa, Marguerite Rinaudo, François Schué
  • 15. Globally Official Definitions (IUPAC) deterioration Deleterious alteration of a material in quality, serviceability, or vigor. Note 1: Deterioration can result from physical and/or chemical phenomena. Note 2: Deterioration is connected to a loss of performances and thus to the function, whereas degradation is connected with a loss of properties. Note 3: Polymer deterioration is more general than polymer degradation, which reflects loss of properties resulting from chemical cleavage of macromolecules only. (See degradation.) degradation Progressive loss of the characteristics of a substance or a device. (See degradable.) Note: Degradation caused by the action of water is termed “hydrodegradation” or hydrolysis; by visible or ultraviolet light is termed “photo - degradation”; by the action of oxygen or by the combined action of light and oxygen is termed “oxidative degradation” or “photooxidative degradation”, respectively; by the action of heat or by the combined effect of chemical agents and heat is termed “thermal degradation” or “thermochemical degradation”, respectively; by the combined action of heat and oxygen is termed “thermooxidative degradation”. degradation (biorelated polymer) Degradation that results in desired changes in the values of in-use properties of the material because of macromolecule cleavage and molar mass decrease. Note 1: Adapted from [8] where the definition is general. For biorelated polymers, the definition is purposely and specifically limited to the chemical degradation of macro - molecules in order to make a clear distinction with the physical degradation of the material. (See fragmentation and disintegration.) Note 2: In any condition, degradation must be used instead of biodegradation when the mechanism of chain scission is not known or proved as cell-mediated. Note 3: Degradation can result from action of enzymes (see enzymatic degradation), or from action of organisms, and/or microorganisms. (See 15 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 Michel Vert, Yoshiharu Doi, Karl-Heinz Hellwich, Michael Hess, Philip Hodge, Przemyslaw Kubisa, Marguerite Rinaudo, François Schué
  • 16. Globally Official Definitions (IUPAC) erosion Degradation that occurs at the surface and progresses from it into the bulk. Note 1: Modified from [9] to be more precise. Note 2: See enzymatic degradation. In the case of polymers, water-soluble enzymes can hardly diffuse into the macromolecular network, except, maybe, in some hydrogels. They adhere to surfaces to cause erosion. Note 3: Erosion can also result from chemical degradation when the degrading reagent reacts faster than it diffuses inside. There is a risk of confusion that can be eliminated after careful and detailed investigation of the degradation mechanism. (See bioerosion.) Note 4: The wording bulk erosion is incorrect and its use therefore discouraged. mineralization Process through which an organic substance becomes impregnated by or turned into inorganic substances. Note 1: A particular case is the process by which living organisms produce and structure minerals often to harden or stiffen existing tissues. (See biomineralization.) Note 2: In the case of polymer biodegradation, this term is used to reflect conversion to CO2 and H2O and other inorganics. CH4 can be considered as part of the mineralization process because it comes up in parallel to the minerals in anaerobic composting, also called methanization [9]. 16 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 Michel Vert, Yoshiharu Doi, Karl-Heinz Hellwich, Michael Hess, Philip Hodge, Przemyslaw Kubisa, Marguerite Rinaudo, François Schué
  • 17. Globally Official Definitions (IUPAC) biodegradable (biorelated polymer) Qualifier for macromolecules or polymeric substances susceptible to degradation by biological activity by lowering of the molar masses of macromolecules that form the substances. Note 1: Adapted from [8] to include the notion of decrease of molar mass in the definition. Note 2: It is important to note that in the field of biorelated polymers, a biodegradable compound is degradable whereas a degradable polymer is not necessarily biodegradable. Note 3: Degradation of a polymer in vivo or in the environment resulting from the sole water without any contribution from living elements is not biodegradation. The use of hydrolysis is recommended. (See also degradation.) ultimate biodegradation Complete breakdown of a compound to either fully oxidized or reduced simple molecules (such as carbon dioxide/methane, nitrate/ammonium, and water) [2]. Note 1: This term reflects the end-products of biodegradation. As such, it differs from the theoretical degree of biodegradation, which depends on the presence of non-biodegradable components. Note 2: The use of this expression is not recommended. maximum degree of biodegradation Greater value of the degree of biodegradation that can be reached under selected experimental conditions [9]. Note 1: This expression reflects the fact that some biodegradable parts of a biodegradable material may not be accessible to biodegradation. Note 2: Not to be confused with ultimate degradation. 17 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 Michel Vert, Yoshiharu Doi, Karl-Heinz Hellwich, Michael Hess, Philip Hodge, Przemyslaw Kubisa, Marguerite Rinaudo, François Schué
  • 18. Globally Official Definitions (IUPAC) biodegradation (biorelated polymer) Degradation of a polymeric item due to cell-mediated phenomena [9]. Note 1: The definition given in [2] is misleading because a substance can be degraded by enzymes in vitro and never be degraded in vivo or in the environment because of a lack of proper enzyme(s) in situ (or simply a lack of water). This is the reason why biodegradation is referred to as limited to degradation resulting from cell activity. (See enzymatic degradation.) The definition in [2] is also confusing because a compounded polymer or a copolymer can include bioresistant additives or moieties, respectively. Theoretical biodegradation should be used to reflect the sole organic parts that are biodegradable. (See theoretical degree of biodegradation and maximum degree of biodegradation.) Note 2: In vivo, degradation resulting solely from hydrolysis by the water present in tissues and organs is not biodegradation; it must be referred to as hydrolysis or hydrolytic degradation. Note 3: Ultimate biodegradation is often used to indicate complete transformation of organic compounds to either fully oxidized or reduced simple molecules (such as carbon dioxide/methane, nitrate/ammonium, and water. It should be noted that, in case of partial biodegradation, residual products can be more harmful than the initial substance. Note 4: When biodegradation is combined with another degrading phenomenon, a term combining prefixes can be used, such as oxo-biodegradation, provided that both contributions are demonstrated. Note 5: Biodegradation should only be used when the mechanism is proved, otherwise degradation is pertinent. Note 6: Enzymatic degradation processed abiotically in vitro is not biodegradation. Note 7: Cell-mediated chemical modification without main chain scission is not biodegradation. (See bioalteration.) 18 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 Michel Vert, Yoshiharu Doi, Karl-Heinz Hellwich, Michael Hess, Philip Hodge, Przemyslaw Kubisa, Marguerite Rinaudo, François Schué
  • 19. Globally Official Definitions (IUPAC) sustainability Developments that meet the needs of the present without compromising the ability of future generations to meet their needs [15]. Note: Other definitions are not recommended in the context of biorelated polymers. green chemistry ; sustainable chemistry Design of chemical products and processes that reduce or eliminate the use or generation of substances hazardous to humans, animals, plants, and the environment. Note 1: Modified from [14] to be more general. Note 2: Green chemistry discusses the engineering concept of pollution prevention and zero waste both at laboratory and industrial scales. It encourages the use of economical and ecocompatible techniques that not only improve the yield but also bring down the cost of disposal of wastes at the end of a chemical process. green polymer Polymer that conforms to the concept of green chemistry. Note: Green polymer does not necessarily mean environmentally friendly polymer or biobased polymer although the confusion is often made in the literature. environmentally degradable polymer Polymer that can be degraded by the action of the environment, through, for example, air, light, heat, or microorganisms [8]. Note: When it is to be a source of material, such a polymer must be designed to degrade into products at a predictable rate compatible with the application. Such products are usually of lower molar mass than the original polymer. 19 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 Michel Vert, Yoshiharu Doi, Karl-Heinz Hellwich, Michael Hess, Philip Hodge, Przemyslaw Kubisa, Marguerite Rinaudo, François Schué
  • 20. Globally Official Definitions (IUPAC) litter Solid waste carelessly discarded outside the regular garbage and trash collection [10]. microparticle Particle with dimensions between 1 × 10−7 and 1 × 10−4 m. Note 1: The lower limit between micro- and nano-sizing is still a matter of debate. (See nanoparticle.) Note 2: To be consistent with the prefix “micro” and the range imposed by the definition, dimensions of microparticles should be expressed in μm. nanoparticle Particle of any shape with dimensions in the 1 × 10–9 and 1 × 10–7 m range. Note 1: Modified from definitions of nanoparticle and nanogel in [2,3]. Note 2: The basis of the 100-nm limit is the fact that novel properties that differentiate particles from the bulk material typically develop at a critical length scale of under 100 nm. Note 3: Because other phenomena (transparency or turbidity, ultrafiltration, stable dispersion, etc.) are occasionally considered that extend the upper limit, the use of the prefix “nano” is accepted for dimensions smaller than 500 nm, provided reference to the definition is indicated. Note 4: Tubes and fibers with only two dimensions below 100 nm are also nanoparticles. mulching film Polymer film aimed at covering seeded area in order to protect the growing plants from weeds and cold and preserve humidity. Note: Such film acts as a mobile green house. 20 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 Michel Vert, Yoshiharu Doi, Karl-Heinz Hellwich, Michael Hess, Philip Hodge, Przemyslaw Kubisa, Marguerite Rinaudo, François Schué
  • 21. Globally Official Definitions (IUPAC) litter Solid waste carelessly discarded outside the regular garbage and trash collection [10]. microparticle Particle with dimensions between 1 × 10−7 and 1 × 10−4 m. Note 1: The lower limit between micro- and nano-sizing is still a matter of debate. (See nanoparticle.) Note 2: To be consistent with the prefix “micro” and the range imposed by the definition, dimensions of microparticles should be expressed in μm. nanoparticle Particle of any shape with dimensions in the 1 × 10–9 and 1 × 10–7 m range. Note 1: Modified from definitions of nanoparticle and nanogel in [2,3]. Note 2: The basis of the 100-nm limit is the fact that novel properties that differentiate particles from the bulk material typically develop at a critical length scale of under 100 nm. Note 3: Because other phenomena (transparency or turbidity, ultrafiltration, stable dispersion, etc.) are occasionally considered that extend the upper limit, the use of the prefix “nano” is accepted for dimensions smaller than 500 nm, provided reference to the definition is indicated. Note 4: Tubes and fibers with only two dimensions below 100 nm are also nanoparticles. mulching film Polymer film aimed at covering seeded area in order to protect the growing plants from weeds and cold and preserve humidity. Note: Such film acts as a mobile green house. 21 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 Michel Vert, Yoshiharu Doi, Karl-Heinz Hellwich, Michael Hess, Philip Hodge, Przemyslaw Kubisa, Marguerite Rinaudo, François Schué
  • 22. 22 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021 ASTM: American Society for Testing and Materials
  • 23. 23 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021
  • 24. 24 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021
  • 25. 25 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021
  • 26. 26 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021
  • 27. 27 TAO biodegradáveis - Sobre a PHB S/A - arquivo 1 21/07/2021