SlideShare a Scribd company logo
1 of 101
1
KULIAH STATISTIK
TERAPAN
2013
2
What do you think about statistic ?
 Statistic is easy ----- yes/no
 Statistic is difficult ---- yes/ no
 Statistic is very difficult--- yes/no
 Statistic made you nervous --- yes/no
 Statistic is very useful to make decision of research---
yes / no
 All research need statistic --- yes/no
 There is no statistic in Qualitative research --- yes/no
 Quantitative research need statistic ---- yes/no
 There are not something in the world without statistic
--yes/no
3
What is the crucial problem of
statistics?
Now, a complex computation can be solved by
computer , so don’ t worry with statistics
The crucial problem is, how to choose
statistical tehnique.
Remember that statistics is only a tools.
Don’t cut the cake by a saw, but use a stainless
steel knife
4
SUMBER BACAAN
 Budiono.2004. Statistika Untuk Penelitian. Surakarta:
Sebelas Maret University Press.
 Guilford, J.P. and Fruchter, B. 1978. Fundamental
Statistics in Psychology and Education. Tokyo:
McGraw-Hill Kokhagusa Ltd.
 Kerlinger, F. N. And Pedhazur, E. J. 1973. Multiple
Regression in Behavioral Research. New York: Holt
Rinehart and Winston Inc.
 Roscoe, J.T. 1969. Fundamental Research Statistic
For The Behavioral Sciences. New York: Holt Rinehart
and Winston Inc
 Tuckman, B.W. Conducting Educational Research.
New York: Harcourt Brace Javanovich, Inc.
 Sudjana. 1992. Metode Statistika. Bandung; Tarsito
 Sudjana, 2003, Teknik Analisis Korelasi dan Regresi.
Bandung: Tarsito
 Wright, R.L.D. 1976. Understanding Statistics. New
York: Haecourt Brace Javanovich Inc.
5
Langkah-langkah penelitian
 Perumusan Masalah
 Penyusunan Kerangka Berpikir
 Perumusan Hipotesis
 Pengujian Hipotesis
 Penarikan kesimpulan
Apakah setiap penelitian harus
menggunakan statistik ?
6
Apakah statistika itu?
 Statistik sebagai disiplin akademik memberikan
prosedur ilmiah untuk pengumpulan,
pengorganisasian, peringkasan dan
penganalisaan informasi-informasi kuantitatif.
 Statistik hanyalah alat bantu. Kita harus pandai-
pandai memilih alat bantu yang sesuai.
Kapan statistik digunakan ?
 Jika menghadapi data yang komplek
 Jika ingin melakukan generalisasi (meneliti
sedikit kesimpulannya untuk yang banyak)
7
Dalam bidang apa saja statistik digunakan ?
 Behavioral Sciences (education, psychology,
sociology)
 Bidang yang lain (Chemistry, biology, agriculture,
physics, economic, medicine, dll.
Guru ingin menarik kesimpulan manakah metode
pengajaran yang lebih unggul dari beberapa metode
Psikolog ingin menentukan ketepatan
pengukurannya tentang kecenderungan tertentu
Sosiolog ingin meyakinkan tentang peristiwa-
peristiwa anti sosial.
Ahli medis ingin menentukan obat yang paling
efektif
Ahli pertanian ingin mengetahui pupuk yang paling
efektif untuk jenis tanaman tertentu
Statistik Deskriptif
 Mempelajari cara penyusunan dan penyajian data
yang dikumpulkan. Teknik ini memungkinkan kita
untuk menggambarkan dengan tepat suatu
kumpulan informasi kuantitatif, menyajikannya
dalam bentuk yang lebih ringkas dan menyenangkan
daripada kumpulan data aslinya, memfasilitasi kita
yang ingin mengkomunikasikan dan memberikan
interpretasi secara rapi daripada menyajikannya
dalam bentuk data yang tak terorganisir.
 Sebagai contoh skore hasil suatu tes terhadap
sejumlah besar siswa dapat diringkaskan dengan
menunjukkan rata-rata, distribusi frekuensi, grafik
distribusi tersebut.
 Termasuk dalam statistik deskriptif a.l. rata-rata,
simpangan baku, median dsb.
8
Statistik Inference (inferensial)/
Statistik induktif
 Mempelajari tata cara penarikan kesimpulan mengenai
populasi berdasarkan data yang ada pada sampel.
 Teknik ini memungkinkan peneliti untuk
menggambarkan kesimpulan dan generalisasi dari
sampel ke populasi, dari individu-individu yang
berpartisipasi langsung dalam penelitian kepada
individu-individu yang tidak terlibat langsung dalam
penelitian. Yang ingin diteliti sebenarnya populasi,
namun karena berbagai alasan maka yang diteliti
sampel.
 Statistik inference telah digambarkan sebagai “ a
collection of tools for making the possible decisions in
the face of uncertainty”
 Termasuk di sini a.l. Uji t, anava, regresi dan korelasi
sederhana, regresi dan korelasi multiple, anacova dan
analisis multivariat
9
Apakah Variabel itu ?
 Diartikan sebagai konstruk atau sifat-sifat yag
diteliti.
 Sesuatu yang menggolongkan anggota ke dalam
beberapa golongan.
 Sesuatu yang memiliki beberapa nilai. Jika hanya
memilki satu nilai maka disebut konstanta.
 Traits, which are capable of variation from person
to person a called variable
 Ada dua golongan besar: variabel kualitatif (jenis
kelamin, anak minum asi dan tak minum asi, kidal
dan tidak kidal, kawin tak kawin) and variabel
kuantitatif (IQ, EQ, Keingintahuan, memori,
prestasi belajar, kelancaran berbahasa inggris)
10
Variabel dapat digolongkan menjadi
diskrit dan kontinu
 Variabel deskrit: hanya ada satu nilai, tidak
fraksional, datanya diperoleh dengan mencacah.
Contoh jenis kelamin, afiliasi politik, jumlah anak
dalam kelas, agama. Data yang
menggambarkan variabel deskrit disebut data
deskrit.
 Variabel kontinu: dapat mempunyai nilai
fraksional, diperoleh melalui suatu pengukuran.
Contoh: tinggi badan, kecakapan berbicara, IQ.
Hasil pengukuran var. Kontinu kadang
dinyatakan dalam angka bulat, IQ seseorang =
115, sebenarnya antara 114.5 s/d 115.5. 11
Adakah kaitan deskrit-kontinu dan
kualitatif-kuantitatif?
 Variabel kontinu selalu kuantitatif
 Variabel deskrit dapat berbentuk kualitatif
(afiliasi politik, agama, ) atau berbentuk
kuantitatif (jumlah siswa dalam kelas, jumlah
siswa yang lulus EBTA)
 Variabel kontinu kadang-kadang dinyatakan
dalam deskrit, contoh: IQ dikelompokkan
menjadi gifted, normal dan retarded; kreativitas
dikelompokkan menjadi tinggi, sedang, rendah;
motivasi berprestasi dikelompokkan menjadi
tinggi dan rendah
12
Skala pengukuran
Skala nominal:
 skala pengukuran paling rendah, menggolongkan
hasil pengamatan ke dalam kategori. Contoh: jenis
kelamin (laki-laki dan perempuan), mahasiswa dan
bukan mahasiswa; suatu populasi guru SMA dapat
digolongkan menjadi guru matematik, guru IPA dsb.
 Skala noninal sifatnya deskrit dan kualitatif.
13
Skala ordinal:
► skala yang mempunyai dua karakteristik yaitu 1)
dapat dilakukan klasifikasi pengamatan dan 2) dapat
dilakukan pengurutan.
► Skala ini sering disebut juga rank order
 Contoh variabel yang skalanya ordinal:ranking
dalam memainkan piano. Seorang musisi profesional
dapat menyusun ranking terhadap 3 orang pemain
piano walaupun tidak dapat menjelaskan seberapa
lebih baik satu dengan yang lain. Contoh lain:
tingkat pendidikan dosen, pangkat dan golongan
pegawai negeri.
 Skala ordinal mungkin deskrit , contoh variabel
tingkat pendidikan (SD, SMP, SMA, PT), atau
kontinu, contoh ranking guru atas dasar besarnya
kontribusi terhadap profesinya( kurang, cukup, baik,
sangat baik).
 Teknik statistik yang disusun untuk skala nominal
dan ordinal disebut statistik nonparametrik. 14
Skala interval:
 skala ini mempunyai karakteristik 1) dapat
dilakukan klasifikasi pengamatan, 2) dapat
dilakukan pengurutan pengamatan, 3) terdapat-
nya satuan pengukuran.
 Skala interval benar-benar kuantitatif.
 Tidak ada hasil pengukuran yang berskala interval
yang hasilnya benar-benar 0. Contoh skala interval
adalah IQ, tidak ada orang yang IQ nya = 0.
Orang dengan IQ= 100 tidak dapat diartikan
kemampuannya 2 kali orang yang mempunyai IQ=
50.
 Sebagian besar tes psikologi hasil pengukurannya
berskala interval, seperti achivement motivation,
spatial ability, numerical ability, curiousity,
creativity, attitude toward matematic dll.
15
Skala rasio:
 Skala ini mempunyai semua sifat skala interval
ditambah satu sifat adanya pengukuran yang
nilainya zero.
 Contoh: tinggi, berat badan, umur, besarnya kuat
arus, besarnya tahanan listrik.
 Teknik statistik yang dikembangkan untuk data
yang skalanya interval dan rasio disebut statistik
parametrik.
16
Soal:
Golongkan hasil pengukuran variabel berikut ke
dalam jenis skala: prestasi belajar statistik,
kemampuan memahami bacaan, SQ, perilaku sehat.
Statistik inferensial
 Secara umum hanya ada dua, yaitu uji beda dan
uji hubungan.
 Contoh Uji beda: studi komparasi, studi
efektivitas, studi pengaruh.
 Contoh uji hubungan: studi korelasi, studi
hubungan, studi sumbangan, studi kontribusi.
 Hampir semua teknik statistik dalam penelitian
kuantitatif dapat dikelompokkan ke dalam kedua
uji tersebut.
 Bagaimana memilih teknik statistik yang sesuai?
Untuk uji rataan lihat Budiono, hal 151. Roscoe,
hal 159-283, Tuckman, hal 254-257
17
Menentukan taraf signifikansi ()
 Sebagian besar behavioral research dilakukan
dengan taraf signifikansi 0.05 dan 0.01. Untuk
exploratory research digunakan taraf signifikansi
0.10 dan 0.20. Dalam pengujian obat digunakan
taraf signifikansi yang sangat kecil, misal 0.0001.
Demikian juga pengujian atas ketepatan stir
pesawat terbang digunakan  yang sangat kecil.
 Bila kita mengambil taraf signifikansi 5 % artinya
kita sudah mengantisipasi bahwa kita akan 5 kali
menolak hipotesis yang sebenarnya benar dari 100
kali pengujian
 Apa yang mendasari pemilihan angka taraf
signifikansi tersebut?
18
Uji t dan Uji Z
 Uji t digunakan bila berhadapan dengan
pengujian dua rataan, yang simpangan
baku populasinya tak diketahui.
 Uji Z digunakan bila berhadapan dengan
pengujian dua rataan, yang simpangan
baku populasinya diketahui.
 Dalam kedua uji tersebut ada uji dua
pihak dan uji satu pihak (pihak kanan atau
pihak kiri)
19
Pengujian kesamaan dua rataan (Uji dua pihak)
Ho: 1 =  2
H1: 1 ≠  2
Kedua populasi
normal,
1=2= dan
diketahui
Uji Z
Daerah penerimaan
Z½(1-)<Z< Z ½(1-)
Ho: 1 =  2
H1: 1 ≠  2
Kedua populasi
normal,
1=2= dan
tak diketahui
Uji t
Daerah penerimaan
t (1- ½ )<t< t (1- ½ )
Ho: 1 =  2
H1: 1 ≠  2
Kedua populasi
normal,
1 ≠ 2 dan 
tak diketahui
Uji t’ , Daerah
penerimaanLihat
sudjana 1982:233,
Budiono, 2004:15920
Pengujian perbedaan dua rataan (Uji satu pihak)
Ho: 1 ≤  2
H1: 1 >  2
Kedua populasi
normal,
1=2= dan
diketahui
Uji Z
Daerah penerimaan
Z < Z (1- )
Ho: 1 ≤  2
H1: 1 >  2
Kedua populasi
normal,
1=2= dan
tak diketahui
Uji t
Daerah penerimaan
t< t (1- ½ )
Ho: 1 ≤  2
H1: 1 >  2
Kedua populasi
normal,
1 ≠ 2 dan 
tak diketahui
Uji t’ , Daerah
penerimaanLihat
sudjana 1982:235,
Budiono, 2004:15921
Sampel besar (>30) pakai uji t apa
uji Z
 Ada yg berpendapat bahwa untuk sampel besar
diasumsikan simpangan baku sampel mewakili
simpangan baku populasi, maka digunakan uji Z.
22
Apakah rumus untuk uji t bagi
“independent samples” dan related
samples berbeda?
► Rumusnya berbeda, namun persyaratannya sama,
yaitu populasi-populasi harus normal.
Contoh penelitian dengan
“independent samples”
 Seorang guru mendesain dua metode mengajar
dan ingin mengetahui mana yang lebih efektif,
diambil dua kelas yang berbeda untuk penerapan
kedua metode tersebut, kemudian mengetes
hasilnya dengan instrumen yang sama.
 Seorang dosen ingin melihat apakah hasil belajar
statistika mahasiswa prodi matematika berbeda
dengan mahasiswa prodi fisika. PBM dan intrumen
tesnya sama.
 Seorang guru ingin mengetahui mana pendekatan
belajar yang lebih baik antara yang langsung
melihat lingkungan dengan yang hanya melihat
rekaman lingkungan untuk materi pencemaran
lingkungan 23
Contoh penelitian dengan “related
samples”
 Seorang guru telah menyelesaikan pokok bahasan
tertentu, dia tidak puas lalu menambah materi
dalam bentuk media interaktif dalam komputer,
kemudian mengetes hasilnya dengan instrumen
yang sama.
 Seorang dosen ingin melihat apakah ada
peningkatan kemampuan penalaran formal pada
sekelompok siswa setelah diberi pelatihan berpikir
abstrak. Intrumen tes penalaran formal yang
digunakan sama.
 Seorang guru ingin mengetahui pengaruh
pemutaran film tentang penerapan berbagai
bioteknologi terhadap perubahan sikap siswa
terhadap pelajaran biologi. 24
Uji normalitas populasi sebagai
syarat uji t
 Dengan chi kwadrat (lihat Budiono, 2004:168-170;
sudjana 1982:189).
• Cara ini digunakan untuk data yang berupa distribusi
frekuensi. Buat tabel kerja untuk menghitung rataan
dan simpangan baku.
• Buat tabel kerja untuk menghitung frekuensi
harapan.
• Hitung harga 2.
• Lihat daerah penerimaan (Tabel)
• Jika 2 (obsevasi/ hitung)> 2 tabel berarti populasi
berdistribusi normal.
25
 Dengan metode Lilliefors (lihat Budiono, 2004:
170-172; sudjana 1982:450).
• Digunakan untuk data yang tidak berbentuk
distribusi frekuensi.
• Buat tabel untuk mencari L maks.
• Hitung (angka baku, zi) untuk masing-masing nilai
• Hitung peluang F(zi ) dgn rumus F(zi )=(0.5  luas
untuk harga zi yang bersangkutan-untuk z negatif).
Jika z positif, maka F(zi )=(0.5 + luas untuk harga zi
• Hitung S(zi ) dengan rumus S(zi ) = banyaknya
cacah nilai dibagi n
• Hitung harga F(zi )  S(zi ), lihat harga
maksimumnya (inilah harga L maks hitung/
observasi. Cocokkan dengan harga L tabel
• Jika L hitung > L , n maka populasi berdist. normal 26
Example of t test
 A reseacher is studying the effects of two different
methods of instruction. Two random samples of
size ten each are chosen from available student.
The achievement test is given at the end of
experiment .
 Sample A: 1, 2, 3, 4, 4,5, 5, 8, 9, 9 (nA = 10,
MA= 5, SSA =72. Sample B: 4, 6, 7, 7, 8, 8, 9,
10, 10, 11 (nB= 10, MB=8, SSB = 40. = 0.05, df
= 18
Reject Ho, t -2.101, t  2.101 tobs = 2.67
So, method of B is better than method of A.
27
SS1 = Xi
2 ( Xi)2/N
Contoh lain (lihat Budiono 2004: 156) tentang
perbandingan. met. mengajar lama dengan met. baru.
 Lihat tabel 12.2. yg berisi banyaknya sampel, rataan
dan deviasi baku.
 Ho : 1  2 (met. baru tidak lebih baik dari met. lama)
H1 : 1  2 (met. baru lebih baik dari met. lama)
Kriteria: tolak H0 jika Z obs > Z tabel
 = 0.01-- Z (0,5  ) -- Z (0.49) = 2.327 (dicari dari
tabel 3 hal 312 Budiono, 2004)
yang ada untuk angka 0.4898 --- Z = 2.32
untuk angka 0.4901 --- Z = 2.33
untuk angka 0.49 -- Z = ?
Untuk angka 0.49 Z = 2.33  (0.0001/0.0003)x 0.01
= 2.33  0.00333 = 2.32667, dibulatkan menjadi
2.327
28
 Z obs (Z (hitung) = 2.491 (lihat perhitungan)
Harga Z obs > Z tabel , berarti Ho ditolak
 Jadi metode baru lebih baik dari metode lama.
Contoh lain ( lihat Budiono,2004 hal 156-158)
 Ingin menunjukkan apakah siswa pria dan wanita
berbeda kemampuannya dalam matematika.
 Diasumsikan populasi-populasi normal, variansi-
variansinya sama tetapi besarnya tak diketahui.
 Uji yang digunakan : Uji t dua pihak
 Kriteria: tolak Ho jika t obs < t tabel atau t obs> t tabel
(t tabel adalah t (½ , (n1 + n2 -2)) 29
Contoh lain ( lihat Budiono , 2004: hal 160-161)
 Contoh ini merupakan contoh untuk “related sample”.
 Peneliti ingin mengetahui apakah suatu stimulan dapat
meningkatkan tekanan darah.
 Sejumlah responden diambil, diukur tekanan darahnya
sebelum diberi stimulan dan sesudah diberi stimulan.
 Uji t yang digunakan : Uji t satu pihak
 Kriteria : tolak Ho jika t obs> t tabel
t tabel adalah t  , (n - 1)
Contoh uji ini dapat diterapkan misalnya untuk
mengetahui apakah pengajaran remidial dapat
menaikkan hasil belajar, tapi sebaiknya gunakan
kelompok kontrol yang tak diremidiasi. 30
Contoh lain ( lihat Roscoe, 1969 hal 172-173) untuk
“related sample”.
 Dua metode diterapkan pada anak cacat mental,
dilihat pengaruhnya terhadap kemampuan
memecahkan masalah sederhana. Peneliti menyusun
dua kelompok berpasangan dengan karakteristik yang
sama.
 Uji yang digunakan : Uji t dua pihak (Ho : metode A
tidak berbeda dengan metode B)
 kriteria : tolak Ho
jika t obs<t tabel ½ , (n - 1) atau t obs>t tabel ½  , (n - 1)
 Dari perhitungan disimpulkan bahwa perbedaan
pengaruh dua metode tersebut tidak signifikan.
31
Contoh lain ( lihat Sudjana, 1982: hal 235-237)
 Ada dugaan bahwa pemuda yang suka berenang rata-
rata lebih tinggi dari yang bukan perenang. Diambil
sampel 15 pemuda yang suka berenang dan 20 yang
tak suka berenang .
 Uji yang digunakan : Uji t satu pihak (Ho : pemuda
perenang lebih tinggi daripada bukan perenang )
 kriteria : tolak Ho jika t obs>t tabel (1-) , (n1+n2 - 2)
 Dari perhitungan disimpulkan bahwa pemuda
perenang lebih tinggi dari pemuda yang bukan
perenang.
32
Soal-soal: Tentukan teknik analisis statistik
yang sesuai
1. Seorang guru mengembangkan cara praktikum IPA
dengan menggunakan alat-alat sederhana dan bahan-
bahan yang ada disekitarnya. Cara ini diharapkan
dapat menggantikan praktikum yang sudah biasa
dilakukan dengan hasil yang sama baiknya.
2. Seorang guru matematik menerapkan dua metode
baru untuk pokok bahasan tertentu, setelah selesai
dilakukan tes. Salah satu metode yang digunakan
diharapkan lebih unggul dari yang lain.
3. Seorang peneliti ingin mengetahui apakah
kemampuan belajar biologi antara siswa dan siswi
SMA berbeda. 33
4. Seorang peneliti ingin menguji apakah prestasi belajar
Kimia semester 1 untuk siswa-siswa yang diseleksi
lewat PMDK lebih baik daripada yang diseleksi lewat
UMPTN
5. Seorang guru menambah materi pelajaran dengan
menaruhnya dalam Web di komputer sekolah. Dia
ingin mengetahui apakah siswa yang lebih sering
mengunjungi web nya akan memperoleh prestasi
belajar yang lebih baik.
6. Dua orang guru dilatih dengan suatu metode baru,
kemudian keduanya mengajar di dua kelas yang
berbeda dengan materi yang sama. Selanjutnya
Kepala sekolah melihat hasil belajar siswa untuk
mengetahui mana guru yang lebih menguasai
metode baru tersebut . Contoh hitungan lihat Roscoe.
1969: 86-87
34
35
Anava (Analisis Variansi)
Anova (Analysis of Variance)
 Teknik analisis ini digunakan jika berhadapan dengan
pengujian kesamaan beberapa rataan (lebih dari dua).
Untuk menguji dua rataan cukup dengan uji t. Namun
demikian Anava dapat juga digunakan untuk menguji
dua rataan.
 Teknik ini dapat digunakan untuk melihat pengaruh
satu variabel bebas terhadap suatu variabel terikat.
Teknik analisis disini disebui Anava satu jalan (one
way classification). Disebut juga the simple analysis of
variance. (Variabel bebas terdiri dari beberapa
kategori ).
Contoh peneliti ingin mengetahui apakah ada
pengaruh waktu belajar (pagi, siang dan sore)
terhadap prestasi belajar.
36
Data prestasi belajar
 Teknik ini dapat digunakan untuk melihat pengaruh
dua variabel bebas terhadap suatu variabel terikat.
Teknik anava untuk ini disebut Anava dua jalan (two
way analysis of Variance). Jika masing-masing variabel
bebas terdiri dari dua dan tiga kategori, maka disebut
Anava dua jalan 2 x 3.
Contoh: Studi pengaruh penggunaan metode
kooperatif (Jigsaw dan STAD) dan keingintahuan
(tinggi, sedang, rendah) terhadap prestasi belajar
fisika Siswa SMA kelas X
Pagi Siang Sore












37
Data prestasi belajar
 Teknik ini dapat digunakan untuk melihat pengaruh
tiga variabel bebas terhadap suatu variabel terikat.
Teknik anava untuk ini disebut Anava tiga jalan (Three
way analysis of Variance). Jika masing-masing variabel
bebas terdiri dari dua kategori, maka disebut Anava
tiga jalan 2 x 2 x 2.
Metode
koopereatif
Jigsaw STAD
Keingin-
tahuan
Tinggi
Sedang
Rendah
38
Contoh: Studi pengaruh penggunaan metode
kooperatif (Jigsaw dan STAD) , jenis kelamin (laki-laki,
perempuan) dan keingintahuan (tinggi, sedang,
rendah) terhadap prestasi belajar fisika Siswa SMA
kelas X
 Anava tidak hanya terbatas tiga jalan tetapi dapat
lebih banyak lagi
Metode koopreatif
Jigsaw STAD
Jenis kelamin Pria Wanita Pria Wanita
Keingin-
tahuan
Tinggi
Sedang
Rendah
39
Persyaratan Analisis variansi
 Setiap sampel diambil secara random dari
populasinya.
 Masing-masing populasi saling independen dan
masing-masing data amatan saling independen
dalam satu kelompoknya
Jika ingin melihat pengaruh waktu mengajar(pagi,
siang dan sore), maka harus dijaga agar tidak ada
saling mempengaruhi antara siswa yang diajar pagi,
siang dan sore. Data amatan hasil belajar harus
diperoleh masing-masing siswa secara independen,
bukan saling mencontek.
40
 Setiap populasi berdistribusi normal
Dalam konteks analisis variansi, masing-masing
kelompok merupakan sampel dari populasinya
sendiri-sendiri. Uji normalitas dilakukan terhadap
masing-masing kelompok data (sel).
 Populasi-populasi mempunyai variansi yang sama.
(diuji dengan uji homogenitas varians). Uji
homogenitas varians dilakukan dengan uji BartLet.
Contoh uji homogenitas varians dapat dilihat pada
Budiono, 2004 hal 175-178
 Untuk Anava dua jalan dan seterusnya, dikenal
istilah interaksi. Pengertian interaksi (profil efek
bersama akan dijelaskan dengan contoh penelitian.
41
Contoh Anava satu jalan
Contoh untuk sel sama, Lihat Budiyono, 2004:
hal 193.
 Ada 5 obat sakit kepala (A, B, C , D dan E),
diberikan kepada lima kelompok yang berbeda
(tentu saja lima kelompok ini harus setara). Lama
waktu hilangnya rasa sakit dicatat dalam tabel
13.5.
 Notasi-notasi: T = total skore dari masing-masing
kelompok. G= jumlah skore total (grand total).
JKA= jumlah kuadrat amatan (Treatment sum of
square atau sum of square for column mean).
JKG= jumlah kuadrat galat (error sum of square)
 Ho : 1= 2 = 3 = 4
H1 : paling sedikit ada satu rataan yang tidak
sama
42
 Cara menghitung lihat hal 194.
Diperoleh Fobs = 6.90, sedangkan F 0.05, 4, 20 = 2.87
sehingga Ho ditolak, artinya keempat obat tersebut
tidak memberi efek yang sama.
Contoh untuk sel tak sama, Lihat Budiono, 2004: hal
198-200.
 Ada 3 metode pembelajaran (A, B dan C) ingin
diketahui perbedaan efeknya terhadap hasil belajar
 Cara menghitung, lihat hal 199. perhatikan angka
dan notasi dalam tabel 13.9 dan tabel 13.10
Diperoleh Fobs = 8.49, sedangkan F 0.05, 2, 12 = 3.89,
sehingga Ho ditolak, artinya ketiga metode tidak
memberikan efek yang sama, atau metode mengajar
berpengaruh terhadap hasil belajar
43
Uji lanjut pasca anava
 Jika dari pengujian diperoleh bahwa ada efek
perlakuan, maka dilanjutkan untuk mencari mana
yang paling baik, apakah ada yang sama, digunakan
uji Scheffe. Uji ini menggunakan tabel F. Uji lain dapat
digunakan seperti uji Dunnett yang menggunakan
tabel t.
 Contoh pengujian (lihat Budiono, 2004; hal 204,
Tampak dari uji Scheffe bahwa bahan belajar A sama
baiknya dengan bahan belajar C, bahan belajar B
sama baiknya dengan bahan belajar C, tetapi bahan
belajar A lebih baik dari bahan belajar B.
Contoh uji lanjut Anava dengan Dunnet dapat dilihat
Roscoe , 1969: 239-242)
44
Anava dua jalan
Lihat Budiono, 2004: 215-220.
 Seorang peneliti ingin melihat manakah diantara
tiga strategi pembelajaran (A, B dan C) yang
paling efektif, dilihat dari rataan prestasi
belajarnya.
 Peneliti juga ingin melihat apakah rataan prestasi
belajar siswa (pria atau wanita) yang lebih baik.
 Peneliti juga sekaligus ingin melihat apakah
terdapat perbedaan rataan prestasi belajar siswa
(pria atau wanita) pada masing-masing strategi
pembelajaran. Dalam hal ini peneliti berhadapan
dengan anava dua jalan (3 x 2)
 Perhatikan notasi dan tahap perhitungannya
Konsep Interaksi dalam Anava
 Dari penerapan 3 strategi pembelajaran, rataan
hasil belajar siswa pria dan wanita dapat
digambarkan dalam bentuk profil sbb:
 Tampak bahwa rataan hasil belajar wanita
selalu lebih tinggi daripada pria baik dengan
strategi A, B maupun C.
45
8.3
6.7
5.3
5.0
2.3
A B C
Wanita
Pria
 Profil tersebut dapat untuk menduga ada tidaknya
interaksi antara variabel independet strategi
pembelajaran dengan variabel independen jenis
kelamin. Jika tidak berpotongan maka diduga tidak
ada interaksi. Jika berpotongan mungkin ada
interaksi, namun demikian yang dipegang tetap
hasil pengujian.
46
Score
Normal
motivational
Hyper
motivational
Complex
Skill
Simple
Skill
Apakah gambar di
samping ini
menunjukkan
adanya interaksi
antara pemberian
motivasi dengan
jenis skill terhadap
prestasi olah raga
47
 Contoh lain analisis anava dua jalan (lihat
Roscoe, 1969: 251.
Seorang psikhiatri melakukan terapi dengan Drug
dan dengan Electroshock . Tingkat kesembuhan
dinyatakan dengan skor 0, 1, 2,3 dan 4. Data
penelitian dicatat dalam tabel berikut:
Hasil menunjukkan bahwa: tak ada interaksi
antara drug dan electroshock, drug tak memberi
pengaruh yang signifikan, electroshock memberi
pengaruh yang signifikan.
Drug No drug
Electroshock 2, 3, 3, 4 1, 2, 2, 3
No shock 0, 1, 2, 3 0, 1, 1, 2
48
Metode A Metode B
Nilai Smt
seblmnya
frek dipilih Nilai Smt
seblmnya
frek dipilih
9 3 org 2 org 9 4 org 2 org
8 10 org 8 org 8 9 org 8 org
7 15 13 7 14 13
6
Rata-2 Rata-2
49
Anacova (Analysis of covariance)
 Keberhasilan peneliti dalam membandingkan
beberapa perlakuan sangat bergantung
bagaimana peneliti mengontrol penelitiannya.
 Pengontrolan dilakukan terhadap variabel-variabel
yang diperkirakan akan mempengaruhi hasil
perlakuan.
 Pengontrolan dapat dilakukan dengan mengatur
desain penelitian, seperti menyamakan
menyamakan subyek-subyek penelitian atas dasar
NEM, nilai cawu sebelumnya, IQ dll.
 Anacova adalah teknik pengontrolan non
eksperimen, atau disebut pengontrolan secara
statistik.
50
 Seorang peneliti ingin membandingkan dua metode
pembelajaran di SMA. Dia yakin bahwa materi yang
akan dipelajari sangat terkait dengan pemahaman
IPA di SMP (yang diwakili nilai NEM), oleh karena itu
peneliti menempatkan NEM sebagai kovarian.
Nilai NEM dibiarkan apa adanya tanpa digolongkan
tinggi rendah, dimasukkan dalam perhitungan. Jika
NEM dijadikan pengontrol tetapi digolongkan
menjadi tinggi rendah, maka peneliti menggunakan
desain Anava.
Dengan memasukkan NEM sebagai kovarian
diharapkan perbedaan hasil benar-benar karena
perbedaan metode pembelajaran, bukan karena
pengaruh pengetahuan IPA di SMP (NEM).
51
 Contoh Anacova lihat Roscoe, 1969: hal 254-263
Y adalah skore hasil belajar dan X adalah skore
variabel pengontrol (misal NEM
 Ho : dua rata-rata populasi sama bila pengaruh
variabel x dikontrol.
 Dengan rumus-rumus yang ada, diperoleh F obs =
22.6, sedangkan F , (k1), (n-k-1) - F 0.05, 1, 9
=5.12. Jadi tolak Ho. Artinya rataan kelompok 2 yang
sudah disesuaikan (adjusted mean) lebih besar
daripada rataan kelompok 1.
 Jika penelitian ini tak dikontrol dengan nilai X, dihitung
dengan simple analysis of variance maka harga F obs
= 0.6 Jadi rataan kelompok 2 tidak lebih baik dari
rataan kelompok 1
52
Korelasi
• Jika peneliti memasangkan dua hasil pengamatan
terhadap suatu obyek, maka peneliti berhadapan
dengan masalah korelasi. Seorang peneliti
mengukur IQ dan prestasi belajar siswanya. Data
IQ dan Prestasi belajar dipasangkan kemudian
dihitung koefisien korelasinya.
• Ada beberapa macam cara menghitung korelasi
bergantung pada jenis datanya.
• Korelasi menunjukkan derajat hubungan dua
variabel. Besarnya korelasi dinyatakan sebagai
koefisien korelasi.
• Harga koef. Korelasi: dari  1 s/d + 1 Harga +1
menunjukan hubungan positif sempurna. Harga 0
menunjukan tidak ada hubungan. Lihat Roscoe 73-
75)
53
1. Pearson Product Moment Correation :
Rumus-rumus
Dari perhitungan diperoleh r = 0.85
Koefisien korelasi ini menunjukkan bahwa
harga X makin tinggi maka harga Y makin
kecil.
Rumus ini digunakan untuk data interval.
X Y
2
3
3
4
5
5
5
7
8
8
8
7
8
5
4
5
3
5
3
2
SS =
Sum of
Square
SP =
Sum of
Product
54
• Interpretasi koef. Korelasi product moment:
• Biasanya harga koef. korelasi antara 0.30 s/d
0.70 dikatakan korelasi moderat, di bawah 0.30
dikatakan korelasi rendah, di atas 0.70 dikatakan
tinggi. Pernyataan tersebut tidak benar, sebab
koef. korelasi adalah fungsi dari ukuran sampel.
Mana yang lebih baik korelasinya antara koef.
Korelasi tinggi tetapi sampelnya sedikit dengan
koef. Korelasi rendah tetapi sampelnya banyak.
• Cara yang benar untuk menilai koef. Korelasi
yang benar adalah dengan menguji signifikan
tidaknya harga r, atau melihat harga krtitik r
product moment.
55
KOfisien Determinasi:- dinyatakan dengan r2
Jika diperoleh koef. Korelasi antara IQ dengan prestasi
belajar sebesar 0.50 artinya 25 prosen variasi skore
prestasi belajar disumbang oleh IQ. Sumbangan 75
prosen diberikan oleh variabel-bariabel lain.
2. Sperman Rank Correlation Coefficient
Korelasi ini digunakan untuk dua data yang berskala
ordinal. Data diurutkan atas dasar ranking.
rs =
6 di2
--------
N3 - N
di = perbedaan ranking pada
dua variabel untuk masing-
masing individu.
56
• Contoh penggunaan korelasi Spearman Rank:
hubungan antara tingkat kecantikan dengan
kemampuan bekerjasama; hubungan antara sifat
toleransi dengan tingkat kesadaran terhadap hak
azazi.
• Contoh hitungan lihat Roscoe, 1969: hal 82-83.
3. Point Biserial Correlation Coefficient
Korelasi ini digunakan untuk dua data, yang satu
kontinyu dan yang satu lagi dikotomi. Data dikotomi
diasumsikan diskrit. Contoh hitungan lihat Roscoe, 85
rphi =
M1  M0
----------- pq
x
Contoh dikotomi: succesful
or unseccessful, graduates
or ungraduates, kawin atau
tidak kawin
57
4. Phi Coefficient.
Korelasi ini digunakan untuk dua data, yang kedua-
duanya dikotomi. Contoh hitungan lihat Roscoe. 1969:
86-87
5. Biserial Coefficient Correlation
Korelasi ini digunakan untuk dua data, keduanya
kontinyu namun yang satu diperlakukan dikotomi.
Contoh hitungan lihat Roscoe. 1969: 87-88
Masih ada korelasi lain seperti tetrachoric correlation
coefficient , contingensi coefficient.
 =
bc - ad
------------------------------
(a+b)(c+d)(a+c)(b+d)
58
Data apa yang harus dikumpulkan, apa
instrumennya dan apa teknik analisis datanya?
1. Hubungan antara sikap terhadap mata pelajaran IPA
dengan perilaku sehat siswa SMP ...
2. Hubungan antara performance guru dengan prestasi
belajar siswanya di Kodya ...
3. Hubungan antara lama waktu menghafal anatomi
tubuh dalam bahasa latin dengan prestasi belajar
anatomi
4. Hubungan antara tingkat penalaran formal dengan
kemampuan problem solving
5. Hubungan antara latar belakang pekerjaan orang
tua (swasta , negeri) dengan tingkat keberanian
memilih pekerjaan beresiko tinggi
59
REGRESI DAN
KORELASI
60
Pengertian Regresi dan Korelasi
Regresi menunjukkan bentuk hubungan antara
variabel bebas dan variabel terikat. Bentuk
hubungan bisa linear, kuadratik atau lainnya.
Bentuk hubungan dinyatakan dalam bentuk
persamaan regresi (contoh Y = a + bx, Y = bo
+b1X1 + b2X2+ b3X3+ ….. )
Korelasi menunjukkan besarnya hubungan
antara variabel bebas dengan variabel terikat.
Besarnya hubungan dinyatakan dengan
koefisien korelasi (contoh ryx = 0.80, RY.12 = 0.6)
61
sehat
sakit
Kadar besi
PADA SAAT KADAR BESI RENDAH ORANGTIDAK SEHAT (KEKURANGAN
ZAT BESI,
PADA SAAT BESI CUKUP ORANG SEHAT,
PADA SAAT KELEBIHAN KADAR BESI ORANG SAKIT(KERACUNAN)
62
Regresi dan korelasi sederhana
Jika kita hanya memperhatikan hubungan
antara satu variabel bebas dengan satu variabel
terikat maka kita berbicara tentang regresi dan
korelasi sederhana.
Variabel sering disebut juga peubah. Variabel
terikat disebut juga variabel respon atau variabel
tergantung, sedang variabel bebas disebut juga
variabel prediktor atau variabel pendahulu.
Regresi (bentuk hubungan) antara dua variabel
bisa berbentuk linear atau non linear. Regresi
sederhana yang biasa dibicarakan adalah
regresi linear sederhana.
63
REGRESI LINEAR SEDERHANA Y ATAS X
Jika variabel bebas dilambangkan dengan X dan
variabel terikat dilambangkan denga Y, maka regresi
linear sederhana Y atas X dituliskan:
Y = a + bX
Persamaan regresi ini diperoleh dari data
pengamatan, yaitu pasangan data Xi dengan Yi
Jika pasangan data Xi dan Yi didgambarkan dalam
bentuk grafik, Y sebagai sumbu tegak, X sebagai
sumbu datar, maka akan tampak kumpulan titik-titik.
Sehingga grafik ini sering disebut diagram pencar.
^
64
Selanjutnya akan dibicarakan regresi linear saja.
Y = a + bX
Bagaimana menghitung a dan b dapat digunakan
rumus berikut:
^
65
Rumus
Tabel yang diperlukan untuk menghitung a dan b
66
Contoh: lihat Sudjana, Teknik Analisis Regresi
dan Korelasi, 2003, hal 10-15.
Diperoleh = 8.24 + 0.68 X
a = 8.24 disebut konstanta regresi
b = 0.68 disebut bobot regresi, yang
menyebabkan apakah garis regresi sejajar
sumbu atau miring tajam atau landai.
Jika populasi mempunyai bentuk regresi :
= α + β X maka β dapat ditaksir dari b,
sX
dengan rumus bobot regresi β = b ----
sy
^
Y
^
Y
67
Dari tabel1.3. dapat dihitung
sX = 3.3639 dan sy = 2.6193
Sehingga 3.3639
β = 0.68 --------- = 0.8757
2.6193
β Dapat dihitung dengan cara lain (lihat hal 15)
Selanjutnya perlu di cek apakah data-data tabel 1.3
memang mendukung bahwa bentuk regresinya linear
dan koefisien arahnya berarti.
68
Uji linearitas regresi dan uji keberartian
regresi
Susunlah data seperti tabel 1.5. hal 16, contoh
riil di hal 21.
Gunakan rumus-rumus di hal 17. Contoh riil di
hal 20 dan 22.
Susunlah hasil hitungan seperti tabel 1.8 hal 22.
Perhatikan baris ke 3 dalam tabel, F = 91.14
(hitung), sedang F tabel (1,28) = 4.20, jadi Ho
ditolak artinya koef regresi berarti.
Perhatikan baris ke 4 dalam tabel F = 0,44
(hitung), sedang F tabel (10,18) = 2.41. Jadi Ho
diterima artinya regresi linear.
69
Persyaratan-persyaratan untuk
Korelasi dan Regresi
1. Linearitas regresi
2. Keberartian regresi / koefisien arah regresi
Syarat lain:
a. Sampel diambil secara acak
b. Untuk setiap kelompok harga prediktor X yang
diberikan, respon-respon Y independen dan
berdistribusi normal
c. Untuk setiap kelompok X yang diketahui,
varians σ2
y.x sama.
d. Galat taksiran (Y - )berdistribusi normal
dengan rata-rata sama dengan nol.
^
Y
70
Regresi dengan prediktor data kategori
Contoh ingin memprediksi lama waktu
menunggu memberikan respon setelah diberi
pertanyaan diprediksi dari jenis kelamin. Lihat
Sudjana hal 38-39.
Siswa laki-laki diberi kode X= 1, siswa
perempuan diberi kode X = 0.
Dari tabel 1.10 hal 39 diperoleh a= 56.57 dan b
= 9.35. Rumus yang digunakan sama.
= 56.57 9.35 X
^
Y
71
Korelasi dalam regresi linear sederhana
Korelasi hanya dihitung setelah regresi teruji
linear dan berarti.
Ada beberapa rumus untuk menghitung harga
koefisien korelasi (r).
∑( Y )2
r2 = 1 --------------------
∑( Y )2
^
Y
∑( Y )2 ∑( Y )2
r2 = -----------------------------------------
∑ (Y )2
Y
Y
Y
^
Y
72
Dari data dalam tabel 1.3. dihitung harga koef
korelasi menggunakan rumus yang terakhir
diperoleh r = + 0.8759.
JK(TD) JK(S)
r2 = -------------------------
JK(TD)
n ∑ XY (∑X)(∑Y)
r2 = ---------------------------------------------
{ n∑ X2 – (∑x)2} {n ∑Y2 (∑Y)2}
73
Pengujian Koefisien Korelasi
Koefisien korelasi juga harus diuji keberartiannya.
Rumus : r √ (n – 2)
t = -----------------
√ 1 – r2
Jika diperoleh r = 0.8759 (atau dibulatkan 0.88) maka
0.88 √ (30 – 2)
t = ---------------------- = 9.80.
√ 1 – (0.88)2
t tabel untuk α =0.05 dan dk = 28 adalah 2.05.
Dengan demikian hipotesis nol r = 0 ditolak,
Kesimpulan : koef. korelasi berarti.
74
Penafsiran koefisien korelasi
Penafsiran dilakukan apabila telah dilakukan
pengujian keberartian regresi dan koef. korelasi.
Jika regresi Y (prestasi belajar) atas X (motivasi)
adalah = 8.24 + 0.68 X dan harga koefisien
korelasinya adalah r = 0.8759 , maka apa arti koef.
korelasi tersebut ?
Koef. korelasi dikuadratkan  diperoleh koefisien
determinasi sebesar 0,7674.
Jadi r = 0.8749 artinya sebesar 76.74 % variasi
yang terjadi dalam kecenderungan berprestasi (Y)
terjelaskan oleh motivasi (X) melalui regresi
= 8.24 + 0.68 X
^
Y
^
Y
75
REGRESI LINEAR GANDA
Jika beberapa variabel bebas dihubungkan dengan
satu variabel terikat, maka kita menggunakan
regresi ganda. Persamaan regresinya ditulis:
= bo + b1 x1 + b2 x2 …..bk Xk
Untuk dua variabel bebas, harga bo , b1 , b2 :
bo = – b1 + b2
(∑x2
2 ) (∑x1y) – ((∑x1x2)(x2y)
b1 = -----------------------------------------------
(∑x1
2 ) (∑x2
2 ) – (∑x1x2) 2
(∑x1
2 ) (∑x2y) – ((∑x1x2)(x1y)
b2 = -----------------------------------------------
(∑x1
2 ) (∑x2
2 ) – (∑x1x2) 2
^
Y
_
Y
_
X2
_
X1
76
Dengan ketentuan:
∑y2 = ∑ Y2
∑x 2 = ∑X2
∑x i y = (∑XiY)
∑x i xy = ∑ XiXj
Contoh perhitungan lihat tabel III.3 hal 73 ,
gunakan persamaan III.(7) hal 76 dan hal 78.
(∑X)2
-------
n
(∑Xi) (∑Y)
-------------
n
(∑Xi) (∑Xj)
-------------
n
(∑Y)2
-------
n
77
UJI KELINEARAN REGRESI LINEAR GANDA
Gunakan rumus-rumus di hal 91.
JK (Reg) = b1∑ x 1y + b2 ∑ x 2 y + ….. + bk ∑ x k y
JK (S) = (Y )2 atau JK (S) = ∑ y2 JK(Reg)
JK(Reg)/k
Uji keberartian regresi F = -----------------
JK(S)/(n-k-1)
Jika Fhitung > F tabel, maka regresi berarti.
Dari perhit. hal 92, diperoleh: JK(Reg) = 348.73 dan
JK(S) = 54.74. Karena k = 2 dan n = 30, maka diperoleh:
348.73/2
F = ------------ = 86.00 F (2,27; 0.05) = 3.35.
54.74/27
F hittung > F tabel, jadi Regresi = 24.70+ 0.343X1 +
0.270 X2 berarti (artinya dapat digunakan untuk membuat
kesimpulan mengenai pertautan antara Y dengan X1 dab X2
^
Y
^
Y
78
PENAFSIRAN REGRESI LINEAR GANDA
Ambil contoh regresi Y (prestasi belajar) atas X1
(Ujian masuk) dan X2 (Kecerdasan).
Jika Y dibahas secara serempak dengan prestasi
kerja, X1 skor tes masuk mengenai kemampuan
teoritis dan X2 skor masuk menganai ketrampilan.
Karena regresi berarti maka prestasi kerja dapat
diramalkan dari skor X1 dan X2. Untuk X1 = 90 dan
X2 = 55, maka diperoleh = 21.02
Jadi kelompok pegawai yang pada saat masuk
memperoleh skor X1 = 90 dan X2 = 55 diharapkan
akan memperoleh skor prestasi kerja = 21.02.
^
Y
^
Y
79
REGRESI LINEAR GANDA DENGAN PEUBAH
BONEKA
Lihat Tabel III.4 hal 100. Gaya kepemipinan (Y) ditinjau
dari sifat otoriter (X1), dogmatisme (X2) bagi
pemimpin-pemimpin yang berasal dari kelas sosial
tinggi dan menengah. Kelas sosial tinggi diberi sandi
X3 = 1, dan kelas sosial menengahdiberi sandi X3 = 0.
Dari perhitungan-perhitungan di hal.99 diperoleh:
= 5.19 + 0.37 X1 + 0.49 X2 0.60 X3.
Jika regresi itu berarti, maka kita dapat meramalkan skor
gaya kepemimpinan atas dasar skor sifat otoriter dan
dogmatismenya serta asal golongan sosialnya.
Lihat hal 101. jelaskan maksud tabel di halaman
tersebut.
^
Y
80
UJI KEBERARTIAN KOEFISIEN KORELASI
GANDA
Rumus: R2/k
F = --------------------------
(1 – R2)/(n k 1)
Kriteria : Fhitung > F tabel , koefisien korelasi berarti.
Untuk contoh R= 0.9297, n = 30, k =2 diperoleh F =
85.98 (hal 108-109), koefisien korelasi berarti.
Jika harga R dikuadratkan diperoleh R2 = 0.8642.
Dari sini dapat dibuat kesimpulan bahwa 86 %
variasi yang terjadi pada Y (prestasi kerja)dapat
dijelaskan oleh X1(skor tes teori) dan X2(skor tes
ketrampilan), melalui regresi = 24.70 + 0.343X1 +
0.270X2
^
Y
81
KORELASI PARSIL DAN SEMI PARSIL
Hubungan peubah bebas X1, X2, …..Xk dengan
peubah terikat Y yang sudah dipelajari adalah
regresi dan korelasi ganda.
Bila dalam hubungan ini hanya dipelajari hubungan Y
dengan salah satu X dan X lainnya tetap atau
dikontrol maka hubungan ini disebut korelasi parsil.
Contoh: korelasi antara hasil ujian masuk (X1) dan
skor kecerdasan (X2) dengan Prestasi belajar (Y).
Jika Prestasi belajar (Y) hanya ditinjau dari hasil tes
masuk saja (X1) dan dalam hal ini X2 (kecerdasan)
dikontrol. Dikontrol artinya dihilangkan pengaruhnya,
dengan cara hanya mengambil yang memiliki IQ
tertentu, misal yang IQ nya 100.
82
Bila selama proses belajar terjadi , kecerdasan(X2)
diyakini berpengaruh terhadap prestasi belajar (Y),
tetapi tidak berpengaruh terhadap hasil tes masuk
maka tinjauan terhadap Y atas X1 di sini adalah
korelasi semi parsil. Kecerdasan (X2) di sini bersifat
tetap terhadap (X1) tetapi berubah terhadap
prestasi belajar (Y).
Rumus koef. Korelasi parsil:
ry1 ry2r12
ry1.2 = -----------------------
√(1 r2
y2)(1 r2
12)
ry2 ry1r12
ry2.1 = -----------------------
√(1 r2
y1)(1
r2
12)
Jika rumus ini diterapkan ke data III.3 hal 73,
diperoleh ry1.2 = 0.8201 dan ry2.1 = 0.5882
83
Rumus koef, korelasi semi parsil hal 132 dan 133:
ry1 ry2r12
r1(y.2) = -----------------
√(1 r2
y2)
ry2 ry1r12
r2(y.1) = --------------
√(1 r2
y1)
Uji keberartian kof. Korelasi parsil dan semi parsil hal
130:
ry1.2 √n 3 ry2.1 √n 3
t = ------------------- t = ------------------
√ 1 r2y1.2 √ 1 r2y2.1
Dari perhit. Hal 131, diperoleh t = 7.45 dan t = 3.78.
Harga t tabel untuk dk = 27 dan α= 0.05 adalah 2.05
Jadi t hitung > t tabel, berarti koef korelasi parsil
keduanya tak dapat diabaikan.
84
ANALISIS JALUR
Korelasi dan regresi yang telah dipelajari tidak
membicarakan hubungan kausal.
Tidak ada teknik statistik yang dapat digunakan
untuk menjelaskan arah hubungan kausal.
Analisis jalur tidak digunakan untuk menentukan
mana variabel penyebabnya.
Analisis jalur digunakan untuk mencek model
kausal yang sudah disusun oleh peneliti atas dasar
teori-teori yang telah dipelajarinya.
Jika data konsisten dengan model yang diusulkan
bukan berarti teori telah dibuktikan, namun
hanyalah bahwa data tersebut bersifat mendukung
model yang diturunkan dari teori-teori yang
digunakan.
85
DIAGRAM JALUR
Secara grafis sangat membantu untuk melukiskan
pola hubungan kausal antara peubah.
Peubah eksogenus: peubah yang variabilitasnya
diasumsikan terjadi oleh karena penyebab-
penyebab di luar model kausal. Konsekwensinya
penentuan peubah eksogenus tidak termasuk
dalam model, tidak ada maksud peneliti untuk
menjelaskan hubungan antara peubah eksogenus.
Peubah endogenus: peubah yang variasinya
terjelaskan oleh variabel eksogenus atau variabel
endogenus lainnya dalam sistem.
86
 X1 dan X2 merupakan peubah eksogenus Korelasi
antara kedua eksogenus ini dilukiskan oleh busur
beranak panah pada kedua ujungnya. Busur demikian
memberi petunjuk bahwa peneliti tidak membayangkan
peubah yang satu disebabkan atau penyebab peubah
lain.
87
Peubah-peubah X3 dan X4 adalah peubah
endogenus. Jalur berupa garis beranak panah tunggal
pada ujungnya. Kedua jalur yang ditarik dari X1 dan
X2 kepada X3 menyatakan bahwa X3 merupakan
peubah tak bebas bagi peubah-peubah X1 dan X2
Sementara itu peubah X3 bersama-sama dengan
peubah X1dan X2, nampak pula menjadi peubah
bebas bagi peubah X4.
Model dalam diagram jalur di atas disebut model
rekursif; artinya adalah bahwa arus kausal dalam
model bersifat eka-arah. Dikatakan dengan cara lain,
berarti bahwa pada saat yang sama sebuah peubah
tidak dapat menjadi penyebab bagi dan akibat dari
peubah lain
88
Ada peubah residual, R1 dan R2 untuk
menunjukkan peubah-peubah yang tidak
masuk dalam model.
Asumsi-asumsi dalam analisis jalur:
Hubungan antara peubah-peubah dalam
model adalah linear, aditif dan kausal
Peubah-peubah residual dalam model tidak
berkorelasi dengan peubah-peubah yang
mendahuluinya
Dalam sistem hanya terjadi arus kausal
searah
Peubah-peubah diukur dalam skala interval.
89
Koefisien jalur:
 Koefisien jalur menunjukkan akibat langsung
dari sebuah peubah yang diambil sebagai
penyebab terhadap peubah lain yang diambil
sebagai akibat.
 Koef. Jalur disimbulkan Pij, dalam pengertian i
menyatakan peubah tak bebas (terikat) dan j
menyatakan peubah bebas. P32 artinya
koefisien jalur dari X2 ke X3.
 Koefien jalur dihitung dari harga-harga koef.
Korelasi yang diketahui dari variabel-variabel
yang dipelajari dan model yang disusun oleh
peneliti
90
Misalkan elah dihitung koef korelasi r12 = 0.50 . r23 =
0.50 , r 13 = 0.25 , sehingga dapat dibuat matrik
korelasi sbb: X1 X2 X3
X1 1 0.50 0.25
X2 1 0.50
X3 1
Contoh: Lihat sudjana Teknik Analisis ..2003:304.
Seorang peneliti menyusun suatu model sbb:
X2 X3
X1
P21
P31
P32
R

91
Dari model dapat disusun persamaan-persamaan:
r12 = P21
r13 = P31 + P32r12
r23 = P32+ P31r12
Jika harga-harga koef. Korelasi dimasukkan,
diperoleh P21 = 0.50 ; P31= 0 ; P32 = 0.50 , karena
P31= 0 , jalur langsung dari X1 ke X3 dapat
dihilangkan sehingga diperoleh modelmodel yang
lebih sederhana sbb:
X2 X3
X1
Gb.XIII.4
P21
P
92
Dalam model ini tampak bahwa tidak ada efek
langsung dari X1 ke X3 . Apakah dengan model ini
telah dihasilkan matriks korelasi yang sama
dengan: X1 X2 X3
X1 1 0.50 0.25
X2 1 0.50
X3 1
Dari model yang baru kita buat persamaan:
r12 = P21 r13 = P32r12 r23 = P32+ P31r12
Dengan memasukkan koef jalur kita peroleh: r12 =
0.50 : r13 = (0.50)(0.50) = 0.25 ; r 23 = 0.50. Semua
korelasi ini menghasilkan matrik yang sama
dengan Jadi model sederhana tersebut
didukung oleh data.
R

R

93
Adakah model lain yang bisa menjadi tandingan
model yang sudah diambil?
X2 X3
X1
P32
P21
Dari model XIII.5 tampak bahwa X2 merupakan
penyebab baik bagi X2 maupun X3. Dari model ini
dapat dibuat persamaan:
r12 = P21 r13 = P32r12 r23 = P32
Jika harga-harga koef. Jalur dimasukkan maka r12 =
0.5 ; r13 = (0.5)(0.5) = 0.25; r23 = 0.5
Gb. XIII.5
94
Koefisien korelasi tersebut menghasilkan
matriks yang sama dengan model sebelumnya.
Mana model yang akan dipilih?
Jika dua model atau lebih semuanya didukung
oleh data, maka pilihan dikembalikan kepada
teori-teori yang digunakan untuk menyusun
model tersebut. Sudah tentu peneliti akan
memilih model yang menurut keyakinannya
paling sesuai dengan teori yang dianutnya.
Contoh selanjutnya lihat hal 307-311.
Mann-Whitney U-Test
(Contoh Statistik Non Parametrik)
Tes ini merupakan analisis non parametrik sebagai
alternatif dari t test untuk dua sampel independen.
Data untuk tes ini minimal ordinal.
Data tidak berdistribusi normal dan variannya tidak
homogen.
Sangat berguna untuk sampel kecil yang pada
umumnya persyaratan normal dan homogen sulit
terpenuhi.
Pengukuran terhadap dua sampel harus
menggunakan instrumen yang sama.
Contoh penggunaan Mann-Whitney U-Test:
Dua sampel dari suatu polulasi tikus diberi perlakuan
masing-masing diet A dan diet B.
Data pertambahan berat yang diperoleh Sampel A:
1, 2, 3, 4, 4, 5, 5, 8, 9, 9 ; sampel B: 4, 6, 7, 7, 8, 8,
9, 10, 10, 11. Data ini tidak berdistribusi normal dan
variannya tidak homogen
Perhitungan lihat Roscoe,hal 177-179
Perhatikan penulisan ranking (all rank), 5a, 5b, 5c ---
karena ada 3 buah angka 4. sedangkan 7.5a dan
7.5 b karena ada dua buah angka 5.
Kriteria; tolak Ho jika U hitung ≤ U tabel.
Kesimpulan : Data menyarankan bahwa diet B
menunjukkan pertambahan berat yang lebih besar
daripada diet A,
Wilcoxon Mathed-pairs Sign – Rank
Test
Tes ini digunakan untuk dua sampel berpasangan,
normalitas distribusi dan homogenitas varians tak
terpenuhi. Cara ini merupaka alternatif untuk t-tes
data berpasangan atau related sample
Contoh lihat Roscoe hal 183.
Penelitian menyimpulkan bahwa tak ada perbedaan
yang signifikan hasil perlakuan dua metode.
Kesimpulan ini sesuai dengan analisis mengunakan
uji t (bila data berdistribusi normal dan homogen)
Mana analisis yang sesuai sebenarnya harus diuji
dulu normalitas distribusi data dan homogenitas
variannya lebih dulu. Jika tidak berdistribusi normal
dan variannya tak homogen maka tidak bisa
menggunakan uji t.
Chi-square Tests of Independence.
Tes ini digunakan untuk menguji apakah dua
data nominal (atau yang levelnya lebih tinggi)
mempunyai hubungan (tidak independent).
Contoh lihat Roscoe hal 199-200. Apakah
respon terhadap pertanyaan tentang hakekat
Tuhan berhubungan dengan jenis kelamin.
Angka 18, 40 dst adalah jumlah responden yang
memberi respon 1, 2 dst.
Kesimpulan ada hubungan antara jenis kelamin
dengan respon yang diberikan terhadap
pertanyaan. Wanita lebih percaya terhadap
Tuhan daripada laki-laki.
Kolmogorov-Smirnov Two Sample Test
(statistik non parametrik)
Tes ini digunakan untuk dua sampel independen
Lebih sesuai dari chi square bila digunakan untuk
sampel yang lebih kecil.
Contoh lihat Roscoe hal 216-217
Cf = cumulative frequency, Kp = perbedaan cf yang
paling besar.
Kesimpulan: terima Ho.Tak ada perbedaan yang
signifikan pemberian diet A dan diet B., sedangkan
t-test dan Mann-whitney u-tes memberikan
perbedaan yang signifikan (untuk data yang sama).
Kruskal-Wallis one way analysis of
variance
Tes ini digunakan jika berhadapan dengan uji
beda rerata beberapa sampel, dimana syarat-
berdistribusi normal dan varian homogen tak
terpenuhi dan lebih dari dua perlakuan.
Data minimal ordinal.
Banyaknya sampel tiap kelompok perlakuan jika
kurang dari 5 maka tes ini unsatisfactory
Contoh lihat Wright, hal 445.
Pelakuan terhadap ke 5 kelompok tersebut tidak
berbeda hasilnya.
101

More Related Content

Similar to kuliah statistik terapan 2013.ppt

Nominal nombor
Nominal nomborNominal nombor
Nominal nomborngasi
 
Skala pengukuran
Skala pengukuran Skala pengukuran
Skala pengukuran Lili Lulu
 
Materi 8 - Teknik Sampling 2.pdf
Materi 8 - Teknik Sampling 2.pdfMateri 8 - Teknik Sampling 2.pdf
Materi 8 - Teknik Sampling 2.pdfMahesaRioAditya
 
Tugas semester skala pengukuran
Tugas semester skala pengukuranTugas semester skala pengukuran
Tugas semester skala pengukurananihdx
 
Tugas bahasa indonesia makalah
Tugas bahasa indonesia makalahTugas bahasa indonesia makalah
Tugas bahasa indonesia makalahNurdiana Diana
 
Tugas bahasa indonesia makalah
Tugas bahasa indonesia makalahTugas bahasa indonesia makalah
Tugas bahasa indonesia makalahNurdiana Diana
 
Ade heryana informandanpemilihaninforman
Ade heryana informandanpemilihaninformanAde heryana informandanpemilihaninforman
Ade heryana informandanpemilihaninformanBifiSafa
 
Tugas bahasa indonesia makalah
Tugas bahasa indonesia makalahTugas bahasa indonesia makalah
Tugas bahasa indonesia makalahNurdiana Diana
 
J1 f111019 abdul hadi asli
J1 f111019 abdul hadi asliJ1 f111019 abdul hadi asli
J1 f111019 abdul hadi aslibankir212
 
Ringkasan Penelitian Gaya Belajar Mahasiswa FMIPA Universitas Lambung Mangkurat
Ringkasan Penelitian Gaya Belajar Mahasiswa FMIPA Universitas Lambung MangkuratRingkasan Penelitian Gaya Belajar Mahasiswa FMIPA Universitas Lambung Mangkurat
Ringkasan Penelitian Gaya Belajar Mahasiswa FMIPA Universitas Lambung MangkuratIndah Ayu Septriyaningrum
 

Similar to kuliah statistik terapan 2013.ppt (20)

3 biostatistik
3 biostatistik3 biostatistik
3 biostatistik
 
Biostatistik
BiostatistikBiostatistik
Biostatistik
 
Nominal nombor
Nominal nomborNominal nombor
Nominal nombor
 
05 bab 3_sampel
05 bab 3_sampel05 bab 3_sampel
05 bab 3_sampel
 
Peneliian
PeneliianPeneliian
Peneliian
 
Peneliian
PeneliianPeneliian
Peneliian
 
Peneliian
PeneliianPeneliian
Peneliian
 
Peneliian
PeneliianPeneliian
Peneliian
 
Skala pengukuran
Skala pengukuran Skala pengukuran
Skala pengukuran
 
Materi 8 - Teknik Sampling 2.pdf
Materi 8 - Teknik Sampling 2.pdfMateri 8 - Teknik Sampling 2.pdf
Materi 8 - Teknik Sampling 2.pdf
 
Bab ii
Bab iiBab ii
Bab ii
 
Materi Statistika
Materi Statistika Materi Statistika
Materi Statistika
 
Tugas semester skala pengukuran
Tugas semester skala pengukuranTugas semester skala pengukuran
Tugas semester skala pengukuran
 
Tugas bahasa indonesia makalah
Tugas bahasa indonesia makalahTugas bahasa indonesia makalah
Tugas bahasa indonesia makalah
 
Tugas bahasa indonesia makalah
Tugas bahasa indonesia makalahTugas bahasa indonesia makalah
Tugas bahasa indonesia makalah
 
Makalah statistik
Makalah statistikMakalah statistik
Makalah statistik
 
Ade heryana informandanpemilihaninforman
Ade heryana informandanpemilihaninformanAde heryana informandanpemilihaninforman
Ade heryana informandanpemilihaninforman
 
Tugas bahasa indonesia makalah
Tugas bahasa indonesia makalahTugas bahasa indonesia makalah
Tugas bahasa indonesia makalah
 
J1 f111019 abdul hadi asli
J1 f111019 abdul hadi asliJ1 f111019 abdul hadi asli
J1 f111019 abdul hadi asli
 
Ringkasan Penelitian Gaya Belajar Mahasiswa FMIPA Universitas Lambung Mangkurat
Ringkasan Penelitian Gaya Belajar Mahasiswa FMIPA Universitas Lambung MangkuratRingkasan Penelitian Gaya Belajar Mahasiswa FMIPA Universitas Lambung Mangkurat
Ringkasan Penelitian Gaya Belajar Mahasiswa FMIPA Universitas Lambung Mangkurat
 

Recently uploaded

PPT Integrasi Islam & Ilmu Pengetahuan.pptx
PPT Integrasi Islam & Ilmu Pengetahuan.pptxPPT Integrasi Islam & Ilmu Pengetahuan.pptx
PPT Integrasi Islam & Ilmu Pengetahuan.pptxnerow98
 
LAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdf
LAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdfLAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdf
LAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdfChrodtianTian
 
PPT Materi Jenis - Jenis Alat Pembayaran Tunai dan Non-tunai.pptx
PPT Materi Jenis - Jenis Alat Pembayaran Tunai dan Non-tunai.pptxPPT Materi Jenis - Jenis Alat Pembayaran Tunai dan Non-tunai.pptx
PPT Materi Jenis - Jenis Alat Pembayaran Tunai dan Non-tunai.pptxHeruFebrianto3
 
Kesebangunan Segitiga matematika kelas 7 kurikulum merdeka.pptx
Kesebangunan Segitiga matematika kelas 7 kurikulum merdeka.pptxKesebangunan Segitiga matematika kelas 7 kurikulum merdeka.pptx
Kesebangunan Segitiga matematika kelas 7 kurikulum merdeka.pptxDwiYuniarti14
 
Materi Bimbingan Manasik Haji Tarwiyah.pptx
Materi Bimbingan Manasik Haji Tarwiyah.pptxMateri Bimbingan Manasik Haji Tarwiyah.pptx
Materi Bimbingan Manasik Haji Tarwiyah.pptxc9fhbm7gzj
 
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptxBAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptxJamhuriIshak
 
adap penggunaan media sosial dalam kehidupan sehari-hari.pptx
adap penggunaan media sosial dalam kehidupan sehari-hari.pptxadap penggunaan media sosial dalam kehidupan sehari-hari.pptx
adap penggunaan media sosial dalam kehidupan sehari-hari.pptxmtsmampunbarub4
 
Jurnal Dwi mingguan modul 1.2-gurupenggerak.pptx
Jurnal Dwi mingguan modul 1.2-gurupenggerak.pptxJurnal Dwi mingguan modul 1.2-gurupenggerak.pptx
Jurnal Dwi mingguan modul 1.2-gurupenggerak.pptxBambang440423
 
PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...
PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...
PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...Kanaidi ken
 
Lembar Observasi Pembelajaran di Kelas.docx
Lembar Observasi Pembelajaran di  Kelas.docxLembar Observasi Pembelajaran di  Kelas.docx
Lembar Observasi Pembelajaran di Kelas.docxbkandrisaputra
 
DESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptx
DESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptxDESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptx
DESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptxFuzaAnggriana
 
Topik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptx
Topik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptxTopik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptx
Topik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptxsyafnasir
 
Demonstrasi Kontekstual Modul 1.2. pdf
Demonstrasi Kontekstual  Modul 1.2.  pdfDemonstrasi Kontekstual  Modul 1.2.  pdf
Demonstrasi Kontekstual Modul 1.2. pdfvebronialite32
 
PELAKSANAAN + Link2 Materi TRAINING "Effective SUPERVISORY & LEADERSHIP Sk...
PELAKSANAAN  + Link2 Materi TRAINING "Effective  SUPERVISORY &  LEADERSHIP Sk...PELAKSANAAN  + Link2 Materi TRAINING "Effective  SUPERVISORY &  LEADERSHIP Sk...
PELAKSANAAN + Link2 Materi TRAINING "Effective SUPERVISORY & LEADERSHIP Sk...Kanaidi ken
 
polinomial dan suku banyak kelas 11..ppt
polinomial dan suku banyak kelas 11..pptpolinomial dan suku banyak kelas 11..ppt
polinomial dan suku banyak kelas 11..pptGirl38
 
PPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptx
PPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptxPPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptx
PPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptxalalfardilah
 
04-Gemelli.- kehamilan ganda- duo atau triplet
04-Gemelli.- kehamilan ganda- duo atau triplet04-Gemelli.- kehamilan ganda- duo atau triplet
04-Gemelli.- kehamilan ganda- duo atau tripletMelianaJayasaputra
 
Materi Pertemuan 6 Materi Pertemuan 6.pptx
Materi Pertemuan 6 Materi Pertemuan 6.pptxMateri Pertemuan 6 Materi Pertemuan 6.pptx
Materi Pertemuan 6 Materi Pertemuan 6.pptxRezaWahyuni6
 
IPA Kelas 9 BAB 10 - www.ilmuguru.org.pptx
IPA Kelas 9 BAB 10 - www.ilmuguru.org.pptxIPA Kelas 9 BAB 10 - www.ilmuguru.org.pptx
IPA Kelas 9 BAB 10 - www.ilmuguru.org.pptxErikaPuspita10
 
PEMIKIRAN POLITIK Jean Jacques Rousseau.pdf
PEMIKIRAN POLITIK Jean Jacques  Rousseau.pdfPEMIKIRAN POLITIK Jean Jacques  Rousseau.pdf
PEMIKIRAN POLITIK Jean Jacques Rousseau.pdfMMeizaFachri
 

Recently uploaded (20)

PPT Integrasi Islam & Ilmu Pengetahuan.pptx
PPT Integrasi Islam & Ilmu Pengetahuan.pptxPPT Integrasi Islam & Ilmu Pengetahuan.pptx
PPT Integrasi Islam & Ilmu Pengetahuan.pptx
 
LAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdf
LAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdfLAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdf
LAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdf
 
PPT Materi Jenis - Jenis Alat Pembayaran Tunai dan Non-tunai.pptx
PPT Materi Jenis - Jenis Alat Pembayaran Tunai dan Non-tunai.pptxPPT Materi Jenis - Jenis Alat Pembayaran Tunai dan Non-tunai.pptx
PPT Materi Jenis - Jenis Alat Pembayaran Tunai dan Non-tunai.pptx
 
Kesebangunan Segitiga matematika kelas 7 kurikulum merdeka.pptx
Kesebangunan Segitiga matematika kelas 7 kurikulum merdeka.pptxKesebangunan Segitiga matematika kelas 7 kurikulum merdeka.pptx
Kesebangunan Segitiga matematika kelas 7 kurikulum merdeka.pptx
 
Materi Bimbingan Manasik Haji Tarwiyah.pptx
Materi Bimbingan Manasik Haji Tarwiyah.pptxMateri Bimbingan Manasik Haji Tarwiyah.pptx
Materi Bimbingan Manasik Haji Tarwiyah.pptx
 
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptxBAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
 
adap penggunaan media sosial dalam kehidupan sehari-hari.pptx
adap penggunaan media sosial dalam kehidupan sehari-hari.pptxadap penggunaan media sosial dalam kehidupan sehari-hari.pptx
adap penggunaan media sosial dalam kehidupan sehari-hari.pptx
 
Jurnal Dwi mingguan modul 1.2-gurupenggerak.pptx
Jurnal Dwi mingguan modul 1.2-gurupenggerak.pptxJurnal Dwi mingguan modul 1.2-gurupenggerak.pptx
Jurnal Dwi mingguan modul 1.2-gurupenggerak.pptx
 
PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...
PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...
PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...
 
Lembar Observasi Pembelajaran di Kelas.docx
Lembar Observasi Pembelajaran di  Kelas.docxLembar Observasi Pembelajaran di  Kelas.docx
Lembar Observasi Pembelajaran di Kelas.docx
 
DESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptx
DESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptxDESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptx
DESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptx
 
Topik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptx
Topik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptxTopik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptx
Topik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptx
 
Demonstrasi Kontekstual Modul 1.2. pdf
Demonstrasi Kontekstual  Modul 1.2.  pdfDemonstrasi Kontekstual  Modul 1.2.  pdf
Demonstrasi Kontekstual Modul 1.2. pdf
 
PELAKSANAAN + Link2 Materi TRAINING "Effective SUPERVISORY & LEADERSHIP Sk...
PELAKSANAAN  + Link2 Materi TRAINING "Effective  SUPERVISORY &  LEADERSHIP Sk...PELAKSANAAN  + Link2 Materi TRAINING "Effective  SUPERVISORY &  LEADERSHIP Sk...
PELAKSANAAN + Link2 Materi TRAINING "Effective SUPERVISORY & LEADERSHIP Sk...
 
polinomial dan suku banyak kelas 11..ppt
polinomial dan suku banyak kelas 11..pptpolinomial dan suku banyak kelas 11..ppt
polinomial dan suku banyak kelas 11..ppt
 
PPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptx
PPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptxPPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptx
PPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptx
 
04-Gemelli.- kehamilan ganda- duo atau triplet
04-Gemelli.- kehamilan ganda- duo atau triplet04-Gemelli.- kehamilan ganda- duo atau triplet
04-Gemelli.- kehamilan ganda- duo atau triplet
 
Materi Pertemuan 6 Materi Pertemuan 6.pptx
Materi Pertemuan 6 Materi Pertemuan 6.pptxMateri Pertemuan 6 Materi Pertemuan 6.pptx
Materi Pertemuan 6 Materi Pertemuan 6.pptx
 
IPA Kelas 9 BAB 10 - www.ilmuguru.org.pptx
IPA Kelas 9 BAB 10 - www.ilmuguru.org.pptxIPA Kelas 9 BAB 10 - www.ilmuguru.org.pptx
IPA Kelas 9 BAB 10 - www.ilmuguru.org.pptx
 
PEMIKIRAN POLITIK Jean Jacques Rousseau.pdf
PEMIKIRAN POLITIK Jean Jacques  Rousseau.pdfPEMIKIRAN POLITIK Jean Jacques  Rousseau.pdf
PEMIKIRAN POLITIK Jean Jacques Rousseau.pdf
 

kuliah statistik terapan 2013.ppt

  • 2. 2 What do you think about statistic ?  Statistic is easy ----- yes/no  Statistic is difficult ---- yes/ no  Statistic is very difficult--- yes/no  Statistic made you nervous --- yes/no  Statistic is very useful to make decision of research--- yes / no  All research need statistic --- yes/no  There is no statistic in Qualitative research --- yes/no  Quantitative research need statistic ---- yes/no  There are not something in the world without statistic --yes/no
  • 3. 3 What is the crucial problem of statistics? Now, a complex computation can be solved by computer , so don’ t worry with statistics The crucial problem is, how to choose statistical tehnique. Remember that statistics is only a tools. Don’t cut the cake by a saw, but use a stainless steel knife
  • 4. 4 SUMBER BACAAN  Budiono.2004. Statistika Untuk Penelitian. Surakarta: Sebelas Maret University Press.  Guilford, J.P. and Fruchter, B. 1978. Fundamental Statistics in Psychology and Education. Tokyo: McGraw-Hill Kokhagusa Ltd.  Kerlinger, F. N. And Pedhazur, E. J. 1973. Multiple Regression in Behavioral Research. New York: Holt Rinehart and Winston Inc.  Roscoe, J.T. 1969. Fundamental Research Statistic For The Behavioral Sciences. New York: Holt Rinehart and Winston Inc  Tuckman, B.W. Conducting Educational Research. New York: Harcourt Brace Javanovich, Inc.  Sudjana. 1992. Metode Statistika. Bandung; Tarsito  Sudjana, 2003, Teknik Analisis Korelasi dan Regresi. Bandung: Tarsito  Wright, R.L.D. 1976. Understanding Statistics. New York: Haecourt Brace Javanovich Inc.
  • 5. 5 Langkah-langkah penelitian  Perumusan Masalah  Penyusunan Kerangka Berpikir  Perumusan Hipotesis  Pengujian Hipotesis  Penarikan kesimpulan Apakah setiap penelitian harus menggunakan statistik ?
  • 6. 6 Apakah statistika itu?  Statistik sebagai disiplin akademik memberikan prosedur ilmiah untuk pengumpulan, pengorganisasian, peringkasan dan penganalisaan informasi-informasi kuantitatif.  Statistik hanyalah alat bantu. Kita harus pandai- pandai memilih alat bantu yang sesuai. Kapan statistik digunakan ?  Jika menghadapi data yang komplek  Jika ingin melakukan generalisasi (meneliti sedikit kesimpulannya untuk yang banyak)
  • 7. 7 Dalam bidang apa saja statistik digunakan ?  Behavioral Sciences (education, psychology, sociology)  Bidang yang lain (Chemistry, biology, agriculture, physics, economic, medicine, dll. Guru ingin menarik kesimpulan manakah metode pengajaran yang lebih unggul dari beberapa metode Psikolog ingin menentukan ketepatan pengukurannya tentang kecenderungan tertentu Sosiolog ingin meyakinkan tentang peristiwa- peristiwa anti sosial. Ahli medis ingin menentukan obat yang paling efektif Ahli pertanian ingin mengetahui pupuk yang paling efektif untuk jenis tanaman tertentu
  • 8. Statistik Deskriptif  Mempelajari cara penyusunan dan penyajian data yang dikumpulkan. Teknik ini memungkinkan kita untuk menggambarkan dengan tepat suatu kumpulan informasi kuantitatif, menyajikannya dalam bentuk yang lebih ringkas dan menyenangkan daripada kumpulan data aslinya, memfasilitasi kita yang ingin mengkomunikasikan dan memberikan interpretasi secara rapi daripada menyajikannya dalam bentuk data yang tak terorganisir.  Sebagai contoh skore hasil suatu tes terhadap sejumlah besar siswa dapat diringkaskan dengan menunjukkan rata-rata, distribusi frekuensi, grafik distribusi tersebut.  Termasuk dalam statistik deskriptif a.l. rata-rata, simpangan baku, median dsb. 8
  • 9. Statistik Inference (inferensial)/ Statistik induktif  Mempelajari tata cara penarikan kesimpulan mengenai populasi berdasarkan data yang ada pada sampel.  Teknik ini memungkinkan peneliti untuk menggambarkan kesimpulan dan generalisasi dari sampel ke populasi, dari individu-individu yang berpartisipasi langsung dalam penelitian kepada individu-individu yang tidak terlibat langsung dalam penelitian. Yang ingin diteliti sebenarnya populasi, namun karena berbagai alasan maka yang diteliti sampel.  Statistik inference telah digambarkan sebagai “ a collection of tools for making the possible decisions in the face of uncertainty”  Termasuk di sini a.l. Uji t, anava, regresi dan korelasi sederhana, regresi dan korelasi multiple, anacova dan analisis multivariat 9
  • 10. Apakah Variabel itu ?  Diartikan sebagai konstruk atau sifat-sifat yag diteliti.  Sesuatu yang menggolongkan anggota ke dalam beberapa golongan.  Sesuatu yang memiliki beberapa nilai. Jika hanya memilki satu nilai maka disebut konstanta.  Traits, which are capable of variation from person to person a called variable  Ada dua golongan besar: variabel kualitatif (jenis kelamin, anak minum asi dan tak minum asi, kidal dan tidak kidal, kawin tak kawin) and variabel kuantitatif (IQ, EQ, Keingintahuan, memori, prestasi belajar, kelancaran berbahasa inggris) 10
  • 11. Variabel dapat digolongkan menjadi diskrit dan kontinu  Variabel deskrit: hanya ada satu nilai, tidak fraksional, datanya diperoleh dengan mencacah. Contoh jenis kelamin, afiliasi politik, jumlah anak dalam kelas, agama. Data yang menggambarkan variabel deskrit disebut data deskrit.  Variabel kontinu: dapat mempunyai nilai fraksional, diperoleh melalui suatu pengukuran. Contoh: tinggi badan, kecakapan berbicara, IQ. Hasil pengukuran var. Kontinu kadang dinyatakan dalam angka bulat, IQ seseorang = 115, sebenarnya antara 114.5 s/d 115.5. 11
  • 12. Adakah kaitan deskrit-kontinu dan kualitatif-kuantitatif?  Variabel kontinu selalu kuantitatif  Variabel deskrit dapat berbentuk kualitatif (afiliasi politik, agama, ) atau berbentuk kuantitatif (jumlah siswa dalam kelas, jumlah siswa yang lulus EBTA)  Variabel kontinu kadang-kadang dinyatakan dalam deskrit, contoh: IQ dikelompokkan menjadi gifted, normal dan retarded; kreativitas dikelompokkan menjadi tinggi, sedang, rendah; motivasi berprestasi dikelompokkan menjadi tinggi dan rendah 12
  • 13. Skala pengukuran Skala nominal:  skala pengukuran paling rendah, menggolongkan hasil pengamatan ke dalam kategori. Contoh: jenis kelamin (laki-laki dan perempuan), mahasiswa dan bukan mahasiswa; suatu populasi guru SMA dapat digolongkan menjadi guru matematik, guru IPA dsb.  Skala noninal sifatnya deskrit dan kualitatif. 13 Skala ordinal: ► skala yang mempunyai dua karakteristik yaitu 1) dapat dilakukan klasifikasi pengamatan dan 2) dapat dilakukan pengurutan. ► Skala ini sering disebut juga rank order
  • 14.  Contoh variabel yang skalanya ordinal:ranking dalam memainkan piano. Seorang musisi profesional dapat menyusun ranking terhadap 3 orang pemain piano walaupun tidak dapat menjelaskan seberapa lebih baik satu dengan yang lain. Contoh lain: tingkat pendidikan dosen, pangkat dan golongan pegawai negeri.  Skala ordinal mungkin deskrit , contoh variabel tingkat pendidikan (SD, SMP, SMA, PT), atau kontinu, contoh ranking guru atas dasar besarnya kontribusi terhadap profesinya( kurang, cukup, baik, sangat baik).  Teknik statistik yang disusun untuk skala nominal dan ordinal disebut statistik nonparametrik. 14
  • 15. Skala interval:  skala ini mempunyai karakteristik 1) dapat dilakukan klasifikasi pengamatan, 2) dapat dilakukan pengurutan pengamatan, 3) terdapat- nya satuan pengukuran.  Skala interval benar-benar kuantitatif.  Tidak ada hasil pengukuran yang berskala interval yang hasilnya benar-benar 0. Contoh skala interval adalah IQ, tidak ada orang yang IQ nya = 0. Orang dengan IQ= 100 tidak dapat diartikan kemampuannya 2 kali orang yang mempunyai IQ= 50.  Sebagian besar tes psikologi hasil pengukurannya berskala interval, seperti achivement motivation, spatial ability, numerical ability, curiousity, creativity, attitude toward matematic dll. 15
  • 16. Skala rasio:  Skala ini mempunyai semua sifat skala interval ditambah satu sifat adanya pengukuran yang nilainya zero.  Contoh: tinggi, berat badan, umur, besarnya kuat arus, besarnya tahanan listrik.  Teknik statistik yang dikembangkan untuk data yang skalanya interval dan rasio disebut statistik parametrik. 16 Soal: Golongkan hasil pengukuran variabel berikut ke dalam jenis skala: prestasi belajar statistik, kemampuan memahami bacaan, SQ, perilaku sehat.
  • 17. Statistik inferensial  Secara umum hanya ada dua, yaitu uji beda dan uji hubungan.  Contoh Uji beda: studi komparasi, studi efektivitas, studi pengaruh.  Contoh uji hubungan: studi korelasi, studi hubungan, studi sumbangan, studi kontribusi.  Hampir semua teknik statistik dalam penelitian kuantitatif dapat dikelompokkan ke dalam kedua uji tersebut.  Bagaimana memilih teknik statistik yang sesuai? Untuk uji rataan lihat Budiono, hal 151. Roscoe, hal 159-283, Tuckman, hal 254-257 17
  • 18. Menentukan taraf signifikansi ()  Sebagian besar behavioral research dilakukan dengan taraf signifikansi 0.05 dan 0.01. Untuk exploratory research digunakan taraf signifikansi 0.10 dan 0.20. Dalam pengujian obat digunakan taraf signifikansi yang sangat kecil, misal 0.0001. Demikian juga pengujian atas ketepatan stir pesawat terbang digunakan  yang sangat kecil.  Bila kita mengambil taraf signifikansi 5 % artinya kita sudah mengantisipasi bahwa kita akan 5 kali menolak hipotesis yang sebenarnya benar dari 100 kali pengujian  Apa yang mendasari pemilihan angka taraf signifikansi tersebut? 18
  • 19. Uji t dan Uji Z  Uji t digunakan bila berhadapan dengan pengujian dua rataan, yang simpangan baku populasinya tak diketahui.  Uji Z digunakan bila berhadapan dengan pengujian dua rataan, yang simpangan baku populasinya diketahui.  Dalam kedua uji tersebut ada uji dua pihak dan uji satu pihak (pihak kanan atau pihak kiri) 19
  • 20. Pengujian kesamaan dua rataan (Uji dua pihak) Ho: 1 =  2 H1: 1 ≠  2 Kedua populasi normal, 1=2= dan diketahui Uji Z Daerah penerimaan Z½(1-)<Z< Z ½(1-) Ho: 1 =  2 H1: 1 ≠  2 Kedua populasi normal, 1=2= dan tak diketahui Uji t Daerah penerimaan t (1- ½ )<t< t (1- ½ ) Ho: 1 =  2 H1: 1 ≠  2 Kedua populasi normal, 1 ≠ 2 dan  tak diketahui Uji t’ , Daerah penerimaanLihat sudjana 1982:233, Budiono, 2004:15920
  • 21. Pengujian perbedaan dua rataan (Uji satu pihak) Ho: 1 ≤  2 H1: 1 >  2 Kedua populasi normal, 1=2= dan diketahui Uji Z Daerah penerimaan Z < Z (1- ) Ho: 1 ≤  2 H1: 1 >  2 Kedua populasi normal, 1=2= dan tak diketahui Uji t Daerah penerimaan t< t (1- ½ ) Ho: 1 ≤  2 H1: 1 >  2 Kedua populasi normal, 1 ≠ 2 dan  tak diketahui Uji t’ , Daerah penerimaanLihat sudjana 1982:235, Budiono, 2004:15921
  • 22. Sampel besar (>30) pakai uji t apa uji Z  Ada yg berpendapat bahwa untuk sampel besar diasumsikan simpangan baku sampel mewakili simpangan baku populasi, maka digunakan uji Z. 22 Apakah rumus untuk uji t bagi “independent samples” dan related samples berbeda? ► Rumusnya berbeda, namun persyaratannya sama, yaitu populasi-populasi harus normal.
  • 23. Contoh penelitian dengan “independent samples”  Seorang guru mendesain dua metode mengajar dan ingin mengetahui mana yang lebih efektif, diambil dua kelas yang berbeda untuk penerapan kedua metode tersebut, kemudian mengetes hasilnya dengan instrumen yang sama.  Seorang dosen ingin melihat apakah hasil belajar statistika mahasiswa prodi matematika berbeda dengan mahasiswa prodi fisika. PBM dan intrumen tesnya sama.  Seorang guru ingin mengetahui mana pendekatan belajar yang lebih baik antara yang langsung melihat lingkungan dengan yang hanya melihat rekaman lingkungan untuk materi pencemaran lingkungan 23
  • 24. Contoh penelitian dengan “related samples”  Seorang guru telah menyelesaikan pokok bahasan tertentu, dia tidak puas lalu menambah materi dalam bentuk media interaktif dalam komputer, kemudian mengetes hasilnya dengan instrumen yang sama.  Seorang dosen ingin melihat apakah ada peningkatan kemampuan penalaran formal pada sekelompok siswa setelah diberi pelatihan berpikir abstrak. Intrumen tes penalaran formal yang digunakan sama.  Seorang guru ingin mengetahui pengaruh pemutaran film tentang penerapan berbagai bioteknologi terhadap perubahan sikap siswa terhadap pelajaran biologi. 24
  • 25. Uji normalitas populasi sebagai syarat uji t  Dengan chi kwadrat (lihat Budiono, 2004:168-170; sudjana 1982:189). • Cara ini digunakan untuk data yang berupa distribusi frekuensi. Buat tabel kerja untuk menghitung rataan dan simpangan baku. • Buat tabel kerja untuk menghitung frekuensi harapan. • Hitung harga 2. • Lihat daerah penerimaan (Tabel) • Jika 2 (obsevasi/ hitung)> 2 tabel berarti populasi berdistribusi normal. 25
  • 26.  Dengan metode Lilliefors (lihat Budiono, 2004: 170-172; sudjana 1982:450). • Digunakan untuk data yang tidak berbentuk distribusi frekuensi. • Buat tabel untuk mencari L maks. • Hitung (angka baku, zi) untuk masing-masing nilai • Hitung peluang F(zi ) dgn rumus F(zi )=(0.5  luas untuk harga zi yang bersangkutan-untuk z negatif). Jika z positif, maka F(zi )=(0.5 + luas untuk harga zi • Hitung S(zi ) dengan rumus S(zi ) = banyaknya cacah nilai dibagi n • Hitung harga F(zi )  S(zi ), lihat harga maksimumnya (inilah harga L maks hitung/ observasi. Cocokkan dengan harga L tabel • Jika L hitung > L , n maka populasi berdist. normal 26
  • 27. Example of t test  A reseacher is studying the effects of two different methods of instruction. Two random samples of size ten each are chosen from available student. The achievement test is given at the end of experiment .  Sample A: 1, 2, 3, 4, 4,5, 5, 8, 9, 9 (nA = 10, MA= 5, SSA =72. Sample B: 4, 6, 7, 7, 8, 8, 9, 10, 10, 11 (nB= 10, MB=8, SSB = 40. = 0.05, df = 18 Reject Ho, t -2.101, t  2.101 tobs = 2.67 So, method of B is better than method of A. 27 SS1 = Xi 2 ( Xi)2/N
  • 28. Contoh lain (lihat Budiono 2004: 156) tentang perbandingan. met. mengajar lama dengan met. baru.  Lihat tabel 12.2. yg berisi banyaknya sampel, rataan dan deviasi baku.  Ho : 1  2 (met. baru tidak lebih baik dari met. lama) H1 : 1  2 (met. baru lebih baik dari met. lama) Kriteria: tolak H0 jika Z obs > Z tabel  = 0.01-- Z (0,5  ) -- Z (0.49) = 2.327 (dicari dari tabel 3 hal 312 Budiono, 2004) yang ada untuk angka 0.4898 --- Z = 2.32 untuk angka 0.4901 --- Z = 2.33 untuk angka 0.49 -- Z = ? Untuk angka 0.49 Z = 2.33  (0.0001/0.0003)x 0.01 = 2.33  0.00333 = 2.32667, dibulatkan menjadi 2.327 28
  • 29.  Z obs (Z (hitung) = 2.491 (lihat perhitungan) Harga Z obs > Z tabel , berarti Ho ditolak  Jadi metode baru lebih baik dari metode lama. Contoh lain ( lihat Budiono,2004 hal 156-158)  Ingin menunjukkan apakah siswa pria dan wanita berbeda kemampuannya dalam matematika.  Diasumsikan populasi-populasi normal, variansi- variansinya sama tetapi besarnya tak diketahui.  Uji yang digunakan : Uji t dua pihak  Kriteria: tolak Ho jika t obs < t tabel atau t obs> t tabel (t tabel adalah t (½ , (n1 + n2 -2)) 29
  • 30. Contoh lain ( lihat Budiono , 2004: hal 160-161)  Contoh ini merupakan contoh untuk “related sample”.  Peneliti ingin mengetahui apakah suatu stimulan dapat meningkatkan tekanan darah.  Sejumlah responden diambil, diukur tekanan darahnya sebelum diberi stimulan dan sesudah diberi stimulan.  Uji t yang digunakan : Uji t satu pihak  Kriteria : tolak Ho jika t obs> t tabel t tabel adalah t  , (n - 1) Contoh uji ini dapat diterapkan misalnya untuk mengetahui apakah pengajaran remidial dapat menaikkan hasil belajar, tapi sebaiknya gunakan kelompok kontrol yang tak diremidiasi. 30
  • 31. Contoh lain ( lihat Roscoe, 1969 hal 172-173) untuk “related sample”.  Dua metode diterapkan pada anak cacat mental, dilihat pengaruhnya terhadap kemampuan memecahkan masalah sederhana. Peneliti menyusun dua kelompok berpasangan dengan karakteristik yang sama.  Uji yang digunakan : Uji t dua pihak (Ho : metode A tidak berbeda dengan metode B)  kriteria : tolak Ho jika t obs<t tabel ½ , (n - 1) atau t obs>t tabel ½  , (n - 1)  Dari perhitungan disimpulkan bahwa perbedaan pengaruh dua metode tersebut tidak signifikan. 31
  • 32. Contoh lain ( lihat Sudjana, 1982: hal 235-237)  Ada dugaan bahwa pemuda yang suka berenang rata- rata lebih tinggi dari yang bukan perenang. Diambil sampel 15 pemuda yang suka berenang dan 20 yang tak suka berenang .  Uji yang digunakan : Uji t satu pihak (Ho : pemuda perenang lebih tinggi daripada bukan perenang )  kriteria : tolak Ho jika t obs>t tabel (1-) , (n1+n2 - 2)  Dari perhitungan disimpulkan bahwa pemuda perenang lebih tinggi dari pemuda yang bukan perenang. 32
  • 33. Soal-soal: Tentukan teknik analisis statistik yang sesuai 1. Seorang guru mengembangkan cara praktikum IPA dengan menggunakan alat-alat sederhana dan bahan- bahan yang ada disekitarnya. Cara ini diharapkan dapat menggantikan praktikum yang sudah biasa dilakukan dengan hasil yang sama baiknya. 2. Seorang guru matematik menerapkan dua metode baru untuk pokok bahasan tertentu, setelah selesai dilakukan tes. Salah satu metode yang digunakan diharapkan lebih unggul dari yang lain. 3. Seorang peneliti ingin mengetahui apakah kemampuan belajar biologi antara siswa dan siswi SMA berbeda. 33
  • 34. 4. Seorang peneliti ingin menguji apakah prestasi belajar Kimia semester 1 untuk siswa-siswa yang diseleksi lewat PMDK lebih baik daripada yang diseleksi lewat UMPTN 5. Seorang guru menambah materi pelajaran dengan menaruhnya dalam Web di komputer sekolah. Dia ingin mengetahui apakah siswa yang lebih sering mengunjungi web nya akan memperoleh prestasi belajar yang lebih baik. 6. Dua orang guru dilatih dengan suatu metode baru, kemudian keduanya mengajar di dua kelas yang berbeda dengan materi yang sama. Selanjutnya Kepala sekolah melihat hasil belajar siswa untuk mengetahui mana guru yang lebih menguasai metode baru tersebut . Contoh hitungan lihat Roscoe. 1969: 86-87 34
  • 35. 35 Anava (Analisis Variansi) Anova (Analysis of Variance)  Teknik analisis ini digunakan jika berhadapan dengan pengujian kesamaan beberapa rataan (lebih dari dua). Untuk menguji dua rataan cukup dengan uji t. Namun demikian Anava dapat juga digunakan untuk menguji dua rataan.  Teknik ini dapat digunakan untuk melihat pengaruh satu variabel bebas terhadap suatu variabel terikat. Teknik analisis disini disebui Anava satu jalan (one way classification). Disebut juga the simple analysis of variance. (Variabel bebas terdiri dari beberapa kategori ). Contoh peneliti ingin mengetahui apakah ada pengaruh waktu belajar (pagi, siang dan sore) terhadap prestasi belajar.
  • 36. 36 Data prestasi belajar  Teknik ini dapat digunakan untuk melihat pengaruh dua variabel bebas terhadap suatu variabel terikat. Teknik anava untuk ini disebut Anava dua jalan (two way analysis of Variance). Jika masing-masing variabel bebas terdiri dari dua dan tiga kategori, maka disebut Anava dua jalan 2 x 3. Contoh: Studi pengaruh penggunaan metode kooperatif (Jigsaw dan STAD) dan keingintahuan (tinggi, sedang, rendah) terhadap prestasi belajar fisika Siswa SMA kelas X Pagi Siang Sore            
  • 37. 37 Data prestasi belajar  Teknik ini dapat digunakan untuk melihat pengaruh tiga variabel bebas terhadap suatu variabel terikat. Teknik anava untuk ini disebut Anava tiga jalan (Three way analysis of Variance). Jika masing-masing variabel bebas terdiri dari dua kategori, maka disebut Anava tiga jalan 2 x 2 x 2. Metode koopereatif Jigsaw STAD Keingin- tahuan Tinggi Sedang Rendah
  • 38. 38 Contoh: Studi pengaruh penggunaan metode kooperatif (Jigsaw dan STAD) , jenis kelamin (laki-laki, perempuan) dan keingintahuan (tinggi, sedang, rendah) terhadap prestasi belajar fisika Siswa SMA kelas X  Anava tidak hanya terbatas tiga jalan tetapi dapat lebih banyak lagi Metode koopreatif Jigsaw STAD Jenis kelamin Pria Wanita Pria Wanita Keingin- tahuan Tinggi Sedang Rendah
  • 39. 39 Persyaratan Analisis variansi  Setiap sampel diambil secara random dari populasinya.  Masing-masing populasi saling independen dan masing-masing data amatan saling independen dalam satu kelompoknya Jika ingin melihat pengaruh waktu mengajar(pagi, siang dan sore), maka harus dijaga agar tidak ada saling mempengaruhi antara siswa yang diajar pagi, siang dan sore. Data amatan hasil belajar harus diperoleh masing-masing siswa secara independen, bukan saling mencontek.
  • 40. 40  Setiap populasi berdistribusi normal Dalam konteks analisis variansi, masing-masing kelompok merupakan sampel dari populasinya sendiri-sendiri. Uji normalitas dilakukan terhadap masing-masing kelompok data (sel).  Populasi-populasi mempunyai variansi yang sama. (diuji dengan uji homogenitas varians). Uji homogenitas varians dilakukan dengan uji BartLet. Contoh uji homogenitas varians dapat dilihat pada Budiono, 2004 hal 175-178  Untuk Anava dua jalan dan seterusnya, dikenal istilah interaksi. Pengertian interaksi (profil efek bersama akan dijelaskan dengan contoh penelitian.
  • 41. 41 Contoh Anava satu jalan Contoh untuk sel sama, Lihat Budiyono, 2004: hal 193.  Ada 5 obat sakit kepala (A, B, C , D dan E), diberikan kepada lima kelompok yang berbeda (tentu saja lima kelompok ini harus setara). Lama waktu hilangnya rasa sakit dicatat dalam tabel 13.5.  Notasi-notasi: T = total skore dari masing-masing kelompok. G= jumlah skore total (grand total). JKA= jumlah kuadrat amatan (Treatment sum of square atau sum of square for column mean). JKG= jumlah kuadrat galat (error sum of square)  Ho : 1= 2 = 3 = 4 H1 : paling sedikit ada satu rataan yang tidak sama
  • 42. 42  Cara menghitung lihat hal 194. Diperoleh Fobs = 6.90, sedangkan F 0.05, 4, 20 = 2.87 sehingga Ho ditolak, artinya keempat obat tersebut tidak memberi efek yang sama. Contoh untuk sel tak sama, Lihat Budiono, 2004: hal 198-200.  Ada 3 metode pembelajaran (A, B dan C) ingin diketahui perbedaan efeknya terhadap hasil belajar  Cara menghitung, lihat hal 199. perhatikan angka dan notasi dalam tabel 13.9 dan tabel 13.10 Diperoleh Fobs = 8.49, sedangkan F 0.05, 2, 12 = 3.89, sehingga Ho ditolak, artinya ketiga metode tidak memberikan efek yang sama, atau metode mengajar berpengaruh terhadap hasil belajar
  • 43. 43 Uji lanjut pasca anava  Jika dari pengujian diperoleh bahwa ada efek perlakuan, maka dilanjutkan untuk mencari mana yang paling baik, apakah ada yang sama, digunakan uji Scheffe. Uji ini menggunakan tabel F. Uji lain dapat digunakan seperti uji Dunnett yang menggunakan tabel t.  Contoh pengujian (lihat Budiono, 2004; hal 204, Tampak dari uji Scheffe bahwa bahan belajar A sama baiknya dengan bahan belajar C, bahan belajar B sama baiknya dengan bahan belajar C, tetapi bahan belajar A lebih baik dari bahan belajar B. Contoh uji lanjut Anava dengan Dunnet dapat dilihat Roscoe , 1969: 239-242)
  • 44. 44 Anava dua jalan Lihat Budiono, 2004: 215-220.  Seorang peneliti ingin melihat manakah diantara tiga strategi pembelajaran (A, B dan C) yang paling efektif, dilihat dari rataan prestasi belajarnya.  Peneliti juga ingin melihat apakah rataan prestasi belajar siswa (pria atau wanita) yang lebih baik.  Peneliti juga sekaligus ingin melihat apakah terdapat perbedaan rataan prestasi belajar siswa (pria atau wanita) pada masing-masing strategi pembelajaran. Dalam hal ini peneliti berhadapan dengan anava dua jalan (3 x 2)  Perhatikan notasi dan tahap perhitungannya
  • 45. Konsep Interaksi dalam Anava  Dari penerapan 3 strategi pembelajaran, rataan hasil belajar siswa pria dan wanita dapat digambarkan dalam bentuk profil sbb:  Tampak bahwa rataan hasil belajar wanita selalu lebih tinggi daripada pria baik dengan strategi A, B maupun C. 45 8.3 6.7 5.3 5.0 2.3 A B C Wanita Pria
  • 46.  Profil tersebut dapat untuk menduga ada tidaknya interaksi antara variabel independet strategi pembelajaran dengan variabel independen jenis kelamin. Jika tidak berpotongan maka diduga tidak ada interaksi. Jika berpotongan mungkin ada interaksi, namun demikian yang dipegang tetap hasil pengujian. 46 Score Normal motivational Hyper motivational Complex Skill Simple Skill Apakah gambar di samping ini menunjukkan adanya interaksi antara pemberian motivasi dengan jenis skill terhadap prestasi olah raga
  • 47. 47  Contoh lain analisis anava dua jalan (lihat Roscoe, 1969: 251. Seorang psikhiatri melakukan terapi dengan Drug dan dengan Electroshock . Tingkat kesembuhan dinyatakan dengan skor 0, 1, 2,3 dan 4. Data penelitian dicatat dalam tabel berikut: Hasil menunjukkan bahwa: tak ada interaksi antara drug dan electroshock, drug tak memberi pengaruh yang signifikan, electroshock memberi pengaruh yang signifikan. Drug No drug Electroshock 2, 3, 3, 4 1, 2, 2, 3 No shock 0, 1, 2, 3 0, 1, 1, 2
  • 48. 48 Metode A Metode B Nilai Smt seblmnya frek dipilih Nilai Smt seblmnya frek dipilih 9 3 org 2 org 9 4 org 2 org 8 10 org 8 org 8 9 org 8 org 7 15 13 7 14 13 6 Rata-2 Rata-2
  • 49. 49 Anacova (Analysis of covariance)  Keberhasilan peneliti dalam membandingkan beberapa perlakuan sangat bergantung bagaimana peneliti mengontrol penelitiannya.  Pengontrolan dilakukan terhadap variabel-variabel yang diperkirakan akan mempengaruhi hasil perlakuan.  Pengontrolan dapat dilakukan dengan mengatur desain penelitian, seperti menyamakan menyamakan subyek-subyek penelitian atas dasar NEM, nilai cawu sebelumnya, IQ dll.  Anacova adalah teknik pengontrolan non eksperimen, atau disebut pengontrolan secara statistik.
  • 50. 50  Seorang peneliti ingin membandingkan dua metode pembelajaran di SMA. Dia yakin bahwa materi yang akan dipelajari sangat terkait dengan pemahaman IPA di SMP (yang diwakili nilai NEM), oleh karena itu peneliti menempatkan NEM sebagai kovarian. Nilai NEM dibiarkan apa adanya tanpa digolongkan tinggi rendah, dimasukkan dalam perhitungan. Jika NEM dijadikan pengontrol tetapi digolongkan menjadi tinggi rendah, maka peneliti menggunakan desain Anava. Dengan memasukkan NEM sebagai kovarian diharapkan perbedaan hasil benar-benar karena perbedaan metode pembelajaran, bukan karena pengaruh pengetahuan IPA di SMP (NEM).
  • 51. 51  Contoh Anacova lihat Roscoe, 1969: hal 254-263 Y adalah skore hasil belajar dan X adalah skore variabel pengontrol (misal NEM  Ho : dua rata-rata populasi sama bila pengaruh variabel x dikontrol.  Dengan rumus-rumus yang ada, diperoleh F obs = 22.6, sedangkan F , (k1), (n-k-1) - F 0.05, 1, 9 =5.12. Jadi tolak Ho. Artinya rataan kelompok 2 yang sudah disesuaikan (adjusted mean) lebih besar daripada rataan kelompok 1.  Jika penelitian ini tak dikontrol dengan nilai X, dihitung dengan simple analysis of variance maka harga F obs = 0.6 Jadi rataan kelompok 2 tidak lebih baik dari rataan kelompok 1
  • 52. 52 Korelasi • Jika peneliti memasangkan dua hasil pengamatan terhadap suatu obyek, maka peneliti berhadapan dengan masalah korelasi. Seorang peneliti mengukur IQ dan prestasi belajar siswanya. Data IQ dan Prestasi belajar dipasangkan kemudian dihitung koefisien korelasinya. • Ada beberapa macam cara menghitung korelasi bergantung pada jenis datanya. • Korelasi menunjukkan derajat hubungan dua variabel. Besarnya korelasi dinyatakan sebagai koefisien korelasi. • Harga koef. Korelasi: dari  1 s/d + 1 Harga +1 menunjukan hubungan positif sempurna. Harga 0 menunjukan tidak ada hubungan. Lihat Roscoe 73- 75)
  • 53. 53 1. Pearson Product Moment Correation : Rumus-rumus Dari perhitungan diperoleh r = 0.85 Koefisien korelasi ini menunjukkan bahwa harga X makin tinggi maka harga Y makin kecil. Rumus ini digunakan untuk data interval. X Y 2 3 3 4 5 5 5 7 8 8 8 7 8 5 4 5 3 5 3 2 SS = Sum of Square SP = Sum of Product
  • 54. 54 • Interpretasi koef. Korelasi product moment: • Biasanya harga koef. korelasi antara 0.30 s/d 0.70 dikatakan korelasi moderat, di bawah 0.30 dikatakan korelasi rendah, di atas 0.70 dikatakan tinggi. Pernyataan tersebut tidak benar, sebab koef. korelasi adalah fungsi dari ukuran sampel. Mana yang lebih baik korelasinya antara koef. Korelasi tinggi tetapi sampelnya sedikit dengan koef. Korelasi rendah tetapi sampelnya banyak. • Cara yang benar untuk menilai koef. Korelasi yang benar adalah dengan menguji signifikan tidaknya harga r, atau melihat harga krtitik r product moment.
  • 55. 55 KOfisien Determinasi:- dinyatakan dengan r2 Jika diperoleh koef. Korelasi antara IQ dengan prestasi belajar sebesar 0.50 artinya 25 prosen variasi skore prestasi belajar disumbang oleh IQ. Sumbangan 75 prosen diberikan oleh variabel-bariabel lain. 2. Sperman Rank Correlation Coefficient Korelasi ini digunakan untuk dua data yang berskala ordinal. Data diurutkan atas dasar ranking. rs = 6 di2 -------- N3 - N di = perbedaan ranking pada dua variabel untuk masing- masing individu.
  • 56. 56 • Contoh penggunaan korelasi Spearman Rank: hubungan antara tingkat kecantikan dengan kemampuan bekerjasama; hubungan antara sifat toleransi dengan tingkat kesadaran terhadap hak azazi. • Contoh hitungan lihat Roscoe, 1969: hal 82-83. 3. Point Biserial Correlation Coefficient Korelasi ini digunakan untuk dua data, yang satu kontinyu dan yang satu lagi dikotomi. Data dikotomi diasumsikan diskrit. Contoh hitungan lihat Roscoe, 85 rphi = M1  M0 ----------- pq x Contoh dikotomi: succesful or unseccessful, graduates or ungraduates, kawin atau tidak kawin
  • 57. 57 4. Phi Coefficient. Korelasi ini digunakan untuk dua data, yang kedua- duanya dikotomi. Contoh hitungan lihat Roscoe. 1969: 86-87 5. Biserial Coefficient Correlation Korelasi ini digunakan untuk dua data, keduanya kontinyu namun yang satu diperlakukan dikotomi. Contoh hitungan lihat Roscoe. 1969: 87-88 Masih ada korelasi lain seperti tetrachoric correlation coefficient , contingensi coefficient.  = bc - ad ------------------------------ (a+b)(c+d)(a+c)(b+d)
  • 58. 58 Data apa yang harus dikumpulkan, apa instrumennya dan apa teknik analisis datanya? 1. Hubungan antara sikap terhadap mata pelajaran IPA dengan perilaku sehat siswa SMP ... 2. Hubungan antara performance guru dengan prestasi belajar siswanya di Kodya ... 3. Hubungan antara lama waktu menghafal anatomi tubuh dalam bahasa latin dengan prestasi belajar anatomi 4. Hubungan antara tingkat penalaran formal dengan kemampuan problem solving 5. Hubungan antara latar belakang pekerjaan orang tua (swasta , negeri) dengan tingkat keberanian memilih pekerjaan beresiko tinggi
  • 60. 60 Pengertian Regresi dan Korelasi Regresi menunjukkan bentuk hubungan antara variabel bebas dan variabel terikat. Bentuk hubungan bisa linear, kuadratik atau lainnya. Bentuk hubungan dinyatakan dalam bentuk persamaan regresi (contoh Y = a + bx, Y = bo +b1X1 + b2X2+ b3X3+ ….. ) Korelasi menunjukkan besarnya hubungan antara variabel bebas dengan variabel terikat. Besarnya hubungan dinyatakan dengan koefisien korelasi (contoh ryx = 0.80, RY.12 = 0.6)
  • 61. 61 sehat sakit Kadar besi PADA SAAT KADAR BESI RENDAH ORANGTIDAK SEHAT (KEKURANGAN ZAT BESI, PADA SAAT BESI CUKUP ORANG SEHAT, PADA SAAT KELEBIHAN KADAR BESI ORANG SAKIT(KERACUNAN)
  • 62. 62 Regresi dan korelasi sederhana Jika kita hanya memperhatikan hubungan antara satu variabel bebas dengan satu variabel terikat maka kita berbicara tentang regresi dan korelasi sederhana. Variabel sering disebut juga peubah. Variabel terikat disebut juga variabel respon atau variabel tergantung, sedang variabel bebas disebut juga variabel prediktor atau variabel pendahulu. Regresi (bentuk hubungan) antara dua variabel bisa berbentuk linear atau non linear. Regresi sederhana yang biasa dibicarakan adalah regresi linear sederhana.
  • 63. 63 REGRESI LINEAR SEDERHANA Y ATAS X Jika variabel bebas dilambangkan dengan X dan variabel terikat dilambangkan denga Y, maka regresi linear sederhana Y atas X dituliskan: Y = a + bX Persamaan regresi ini diperoleh dari data pengamatan, yaitu pasangan data Xi dengan Yi Jika pasangan data Xi dan Yi didgambarkan dalam bentuk grafik, Y sebagai sumbu tegak, X sebagai sumbu datar, maka akan tampak kumpulan titik-titik. Sehingga grafik ini sering disebut diagram pencar. ^
  • 64. 64 Selanjutnya akan dibicarakan regresi linear saja. Y = a + bX Bagaimana menghitung a dan b dapat digunakan rumus berikut: ^
  • 65. 65 Rumus Tabel yang diperlukan untuk menghitung a dan b
  • 66. 66 Contoh: lihat Sudjana, Teknik Analisis Regresi dan Korelasi, 2003, hal 10-15. Diperoleh = 8.24 + 0.68 X a = 8.24 disebut konstanta regresi b = 0.68 disebut bobot regresi, yang menyebabkan apakah garis regresi sejajar sumbu atau miring tajam atau landai. Jika populasi mempunyai bentuk regresi : = α + β X maka β dapat ditaksir dari b, sX dengan rumus bobot regresi β = b ---- sy ^ Y ^ Y
  • 67. 67 Dari tabel1.3. dapat dihitung sX = 3.3639 dan sy = 2.6193 Sehingga 3.3639 β = 0.68 --------- = 0.8757 2.6193 β Dapat dihitung dengan cara lain (lihat hal 15) Selanjutnya perlu di cek apakah data-data tabel 1.3 memang mendukung bahwa bentuk regresinya linear dan koefisien arahnya berarti.
  • 68. 68 Uji linearitas regresi dan uji keberartian regresi Susunlah data seperti tabel 1.5. hal 16, contoh riil di hal 21. Gunakan rumus-rumus di hal 17. Contoh riil di hal 20 dan 22. Susunlah hasil hitungan seperti tabel 1.8 hal 22. Perhatikan baris ke 3 dalam tabel, F = 91.14 (hitung), sedang F tabel (1,28) = 4.20, jadi Ho ditolak artinya koef regresi berarti. Perhatikan baris ke 4 dalam tabel F = 0,44 (hitung), sedang F tabel (10,18) = 2.41. Jadi Ho diterima artinya regresi linear.
  • 69. 69 Persyaratan-persyaratan untuk Korelasi dan Regresi 1. Linearitas regresi 2. Keberartian regresi / koefisien arah regresi Syarat lain: a. Sampel diambil secara acak b. Untuk setiap kelompok harga prediktor X yang diberikan, respon-respon Y independen dan berdistribusi normal c. Untuk setiap kelompok X yang diketahui, varians σ2 y.x sama. d. Galat taksiran (Y - )berdistribusi normal dengan rata-rata sama dengan nol. ^ Y
  • 70. 70 Regresi dengan prediktor data kategori Contoh ingin memprediksi lama waktu menunggu memberikan respon setelah diberi pertanyaan diprediksi dari jenis kelamin. Lihat Sudjana hal 38-39. Siswa laki-laki diberi kode X= 1, siswa perempuan diberi kode X = 0. Dari tabel 1.10 hal 39 diperoleh a= 56.57 dan b = 9.35. Rumus yang digunakan sama. = 56.57 9.35 X ^ Y
  • 71. 71 Korelasi dalam regresi linear sederhana Korelasi hanya dihitung setelah regresi teruji linear dan berarti. Ada beberapa rumus untuk menghitung harga koefisien korelasi (r). ∑( Y )2 r2 = 1 -------------------- ∑( Y )2 ^ Y ∑( Y )2 ∑( Y )2 r2 = ----------------------------------------- ∑ (Y )2 Y Y Y ^ Y
  • 72. 72 Dari data dalam tabel 1.3. dihitung harga koef korelasi menggunakan rumus yang terakhir diperoleh r = + 0.8759. JK(TD) JK(S) r2 = ------------------------- JK(TD) n ∑ XY (∑X)(∑Y) r2 = --------------------------------------------- { n∑ X2 – (∑x)2} {n ∑Y2 (∑Y)2}
  • 73. 73 Pengujian Koefisien Korelasi Koefisien korelasi juga harus diuji keberartiannya. Rumus : r √ (n – 2) t = ----------------- √ 1 – r2 Jika diperoleh r = 0.8759 (atau dibulatkan 0.88) maka 0.88 √ (30 – 2) t = ---------------------- = 9.80. √ 1 – (0.88)2 t tabel untuk α =0.05 dan dk = 28 adalah 2.05. Dengan demikian hipotesis nol r = 0 ditolak, Kesimpulan : koef. korelasi berarti.
  • 74. 74 Penafsiran koefisien korelasi Penafsiran dilakukan apabila telah dilakukan pengujian keberartian regresi dan koef. korelasi. Jika regresi Y (prestasi belajar) atas X (motivasi) adalah = 8.24 + 0.68 X dan harga koefisien korelasinya adalah r = 0.8759 , maka apa arti koef. korelasi tersebut ? Koef. korelasi dikuadratkan  diperoleh koefisien determinasi sebesar 0,7674. Jadi r = 0.8749 artinya sebesar 76.74 % variasi yang terjadi dalam kecenderungan berprestasi (Y) terjelaskan oleh motivasi (X) melalui regresi = 8.24 + 0.68 X ^ Y ^ Y
  • 75. 75 REGRESI LINEAR GANDA Jika beberapa variabel bebas dihubungkan dengan satu variabel terikat, maka kita menggunakan regresi ganda. Persamaan regresinya ditulis: = bo + b1 x1 + b2 x2 …..bk Xk Untuk dua variabel bebas, harga bo , b1 , b2 : bo = – b1 + b2 (∑x2 2 ) (∑x1y) – ((∑x1x2)(x2y) b1 = ----------------------------------------------- (∑x1 2 ) (∑x2 2 ) – (∑x1x2) 2 (∑x1 2 ) (∑x2y) – ((∑x1x2)(x1y) b2 = ----------------------------------------------- (∑x1 2 ) (∑x2 2 ) – (∑x1x2) 2 ^ Y _ Y _ X2 _ X1
  • 76. 76 Dengan ketentuan: ∑y2 = ∑ Y2 ∑x 2 = ∑X2 ∑x i y = (∑XiY) ∑x i xy = ∑ XiXj Contoh perhitungan lihat tabel III.3 hal 73 , gunakan persamaan III.(7) hal 76 dan hal 78. (∑X)2 ------- n (∑Xi) (∑Y) ------------- n (∑Xi) (∑Xj) ------------- n (∑Y)2 ------- n
  • 77. 77 UJI KELINEARAN REGRESI LINEAR GANDA Gunakan rumus-rumus di hal 91. JK (Reg) = b1∑ x 1y + b2 ∑ x 2 y + ….. + bk ∑ x k y JK (S) = (Y )2 atau JK (S) = ∑ y2 JK(Reg) JK(Reg)/k Uji keberartian regresi F = ----------------- JK(S)/(n-k-1) Jika Fhitung > F tabel, maka regresi berarti. Dari perhit. hal 92, diperoleh: JK(Reg) = 348.73 dan JK(S) = 54.74. Karena k = 2 dan n = 30, maka diperoleh: 348.73/2 F = ------------ = 86.00 F (2,27; 0.05) = 3.35. 54.74/27 F hittung > F tabel, jadi Regresi = 24.70+ 0.343X1 + 0.270 X2 berarti (artinya dapat digunakan untuk membuat kesimpulan mengenai pertautan antara Y dengan X1 dab X2 ^ Y ^ Y
  • 78. 78 PENAFSIRAN REGRESI LINEAR GANDA Ambil contoh regresi Y (prestasi belajar) atas X1 (Ujian masuk) dan X2 (Kecerdasan). Jika Y dibahas secara serempak dengan prestasi kerja, X1 skor tes masuk mengenai kemampuan teoritis dan X2 skor masuk menganai ketrampilan. Karena regresi berarti maka prestasi kerja dapat diramalkan dari skor X1 dan X2. Untuk X1 = 90 dan X2 = 55, maka diperoleh = 21.02 Jadi kelompok pegawai yang pada saat masuk memperoleh skor X1 = 90 dan X2 = 55 diharapkan akan memperoleh skor prestasi kerja = 21.02. ^ Y ^ Y
  • 79. 79 REGRESI LINEAR GANDA DENGAN PEUBAH BONEKA Lihat Tabel III.4 hal 100. Gaya kepemipinan (Y) ditinjau dari sifat otoriter (X1), dogmatisme (X2) bagi pemimpin-pemimpin yang berasal dari kelas sosial tinggi dan menengah. Kelas sosial tinggi diberi sandi X3 = 1, dan kelas sosial menengahdiberi sandi X3 = 0. Dari perhitungan-perhitungan di hal.99 diperoleh: = 5.19 + 0.37 X1 + 0.49 X2 0.60 X3. Jika regresi itu berarti, maka kita dapat meramalkan skor gaya kepemimpinan atas dasar skor sifat otoriter dan dogmatismenya serta asal golongan sosialnya. Lihat hal 101. jelaskan maksud tabel di halaman tersebut. ^ Y
  • 80. 80 UJI KEBERARTIAN KOEFISIEN KORELASI GANDA Rumus: R2/k F = -------------------------- (1 – R2)/(n k 1) Kriteria : Fhitung > F tabel , koefisien korelasi berarti. Untuk contoh R= 0.9297, n = 30, k =2 diperoleh F = 85.98 (hal 108-109), koefisien korelasi berarti. Jika harga R dikuadratkan diperoleh R2 = 0.8642. Dari sini dapat dibuat kesimpulan bahwa 86 % variasi yang terjadi pada Y (prestasi kerja)dapat dijelaskan oleh X1(skor tes teori) dan X2(skor tes ketrampilan), melalui regresi = 24.70 + 0.343X1 + 0.270X2 ^ Y
  • 81. 81 KORELASI PARSIL DAN SEMI PARSIL Hubungan peubah bebas X1, X2, …..Xk dengan peubah terikat Y yang sudah dipelajari adalah regresi dan korelasi ganda. Bila dalam hubungan ini hanya dipelajari hubungan Y dengan salah satu X dan X lainnya tetap atau dikontrol maka hubungan ini disebut korelasi parsil. Contoh: korelasi antara hasil ujian masuk (X1) dan skor kecerdasan (X2) dengan Prestasi belajar (Y). Jika Prestasi belajar (Y) hanya ditinjau dari hasil tes masuk saja (X1) dan dalam hal ini X2 (kecerdasan) dikontrol. Dikontrol artinya dihilangkan pengaruhnya, dengan cara hanya mengambil yang memiliki IQ tertentu, misal yang IQ nya 100.
  • 82. 82 Bila selama proses belajar terjadi , kecerdasan(X2) diyakini berpengaruh terhadap prestasi belajar (Y), tetapi tidak berpengaruh terhadap hasil tes masuk maka tinjauan terhadap Y atas X1 di sini adalah korelasi semi parsil. Kecerdasan (X2) di sini bersifat tetap terhadap (X1) tetapi berubah terhadap prestasi belajar (Y). Rumus koef. Korelasi parsil: ry1 ry2r12 ry1.2 = ----------------------- √(1 r2 y2)(1 r2 12) ry2 ry1r12 ry2.1 = ----------------------- √(1 r2 y1)(1 r2 12) Jika rumus ini diterapkan ke data III.3 hal 73, diperoleh ry1.2 = 0.8201 dan ry2.1 = 0.5882
  • 83. 83 Rumus koef, korelasi semi parsil hal 132 dan 133: ry1 ry2r12 r1(y.2) = ----------------- √(1 r2 y2) ry2 ry1r12 r2(y.1) = -------------- √(1 r2 y1) Uji keberartian kof. Korelasi parsil dan semi parsil hal 130: ry1.2 √n 3 ry2.1 √n 3 t = ------------------- t = ------------------ √ 1 r2y1.2 √ 1 r2y2.1 Dari perhit. Hal 131, diperoleh t = 7.45 dan t = 3.78. Harga t tabel untuk dk = 27 dan α= 0.05 adalah 2.05 Jadi t hitung > t tabel, berarti koef korelasi parsil keduanya tak dapat diabaikan.
  • 84. 84 ANALISIS JALUR Korelasi dan regresi yang telah dipelajari tidak membicarakan hubungan kausal. Tidak ada teknik statistik yang dapat digunakan untuk menjelaskan arah hubungan kausal. Analisis jalur tidak digunakan untuk menentukan mana variabel penyebabnya. Analisis jalur digunakan untuk mencek model kausal yang sudah disusun oleh peneliti atas dasar teori-teori yang telah dipelajarinya. Jika data konsisten dengan model yang diusulkan bukan berarti teori telah dibuktikan, namun hanyalah bahwa data tersebut bersifat mendukung model yang diturunkan dari teori-teori yang digunakan.
  • 85. 85 DIAGRAM JALUR Secara grafis sangat membantu untuk melukiskan pola hubungan kausal antara peubah. Peubah eksogenus: peubah yang variabilitasnya diasumsikan terjadi oleh karena penyebab- penyebab di luar model kausal. Konsekwensinya penentuan peubah eksogenus tidak termasuk dalam model, tidak ada maksud peneliti untuk menjelaskan hubungan antara peubah eksogenus. Peubah endogenus: peubah yang variasinya terjelaskan oleh variabel eksogenus atau variabel endogenus lainnya dalam sistem.
  • 86. 86  X1 dan X2 merupakan peubah eksogenus Korelasi antara kedua eksogenus ini dilukiskan oleh busur beranak panah pada kedua ujungnya. Busur demikian memberi petunjuk bahwa peneliti tidak membayangkan peubah yang satu disebabkan atau penyebab peubah lain.
  • 87. 87 Peubah-peubah X3 dan X4 adalah peubah endogenus. Jalur berupa garis beranak panah tunggal pada ujungnya. Kedua jalur yang ditarik dari X1 dan X2 kepada X3 menyatakan bahwa X3 merupakan peubah tak bebas bagi peubah-peubah X1 dan X2 Sementara itu peubah X3 bersama-sama dengan peubah X1dan X2, nampak pula menjadi peubah bebas bagi peubah X4. Model dalam diagram jalur di atas disebut model rekursif; artinya adalah bahwa arus kausal dalam model bersifat eka-arah. Dikatakan dengan cara lain, berarti bahwa pada saat yang sama sebuah peubah tidak dapat menjadi penyebab bagi dan akibat dari peubah lain
  • 88. 88 Ada peubah residual, R1 dan R2 untuk menunjukkan peubah-peubah yang tidak masuk dalam model. Asumsi-asumsi dalam analisis jalur: Hubungan antara peubah-peubah dalam model adalah linear, aditif dan kausal Peubah-peubah residual dalam model tidak berkorelasi dengan peubah-peubah yang mendahuluinya Dalam sistem hanya terjadi arus kausal searah Peubah-peubah diukur dalam skala interval.
  • 89. 89 Koefisien jalur:  Koefisien jalur menunjukkan akibat langsung dari sebuah peubah yang diambil sebagai penyebab terhadap peubah lain yang diambil sebagai akibat.  Koef. Jalur disimbulkan Pij, dalam pengertian i menyatakan peubah tak bebas (terikat) dan j menyatakan peubah bebas. P32 artinya koefisien jalur dari X2 ke X3.  Koefien jalur dihitung dari harga-harga koef. Korelasi yang diketahui dari variabel-variabel yang dipelajari dan model yang disusun oleh peneliti
  • 90. 90 Misalkan elah dihitung koef korelasi r12 = 0.50 . r23 = 0.50 , r 13 = 0.25 , sehingga dapat dibuat matrik korelasi sbb: X1 X2 X3 X1 1 0.50 0.25 X2 1 0.50 X3 1 Contoh: Lihat sudjana Teknik Analisis ..2003:304. Seorang peneliti menyusun suatu model sbb: X2 X3 X1 P21 P31 P32 R 
  • 91. 91 Dari model dapat disusun persamaan-persamaan: r12 = P21 r13 = P31 + P32r12 r23 = P32+ P31r12 Jika harga-harga koef. Korelasi dimasukkan, diperoleh P21 = 0.50 ; P31= 0 ; P32 = 0.50 , karena P31= 0 , jalur langsung dari X1 ke X3 dapat dihilangkan sehingga diperoleh modelmodel yang lebih sederhana sbb: X2 X3 X1 Gb.XIII.4 P21 P
  • 92. 92 Dalam model ini tampak bahwa tidak ada efek langsung dari X1 ke X3 . Apakah dengan model ini telah dihasilkan matriks korelasi yang sama dengan: X1 X2 X3 X1 1 0.50 0.25 X2 1 0.50 X3 1 Dari model yang baru kita buat persamaan: r12 = P21 r13 = P32r12 r23 = P32+ P31r12 Dengan memasukkan koef jalur kita peroleh: r12 = 0.50 : r13 = (0.50)(0.50) = 0.25 ; r 23 = 0.50. Semua korelasi ini menghasilkan matrik yang sama dengan Jadi model sederhana tersebut didukung oleh data. R  R 
  • 93. 93 Adakah model lain yang bisa menjadi tandingan model yang sudah diambil? X2 X3 X1 P32 P21 Dari model XIII.5 tampak bahwa X2 merupakan penyebab baik bagi X2 maupun X3. Dari model ini dapat dibuat persamaan: r12 = P21 r13 = P32r12 r23 = P32 Jika harga-harga koef. Jalur dimasukkan maka r12 = 0.5 ; r13 = (0.5)(0.5) = 0.25; r23 = 0.5 Gb. XIII.5
  • 94. 94 Koefisien korelasi tersebut menghasilkan matriks yang sama dengan model sebelumnya. Mana model yang akan dipilih? Jika dua model atau lebih semuanya didukung oleh data, maka pilihan dikembalikan kepada teori-teori yang digunakan untuk menyusun model tersebut. Sudah tentu peneliti akan memilih model yang menurut keyakinannya paling sesuai dengan teori yang dianutnya. Contoh selanjutnya lihat hal 307-311.
  • 95. Mann-Whitney U-Test (Contoh Statistik Non Parametrik) Tes ini merupakan analisis non parametrik sebagai alternatif dari t test untuk dua sampel independen. Data untuk tes ini minimal ordinal. Data tidak berdistribusi normal dan variannya tidak homogen. Sangat berguna untuk sampel kecil yang pada umumnya persyaratan normal dan homogen sulit terpenuhi. Pengukuran terhadap dua sampel harus menggunakan instrumen yang sama.
  • 96. Contoh penggunaan Mann-Whitney U-Test: Dua sampel dari suatu polulasi tikus diberi perlakuan masing-masing diet A dan diet B. Data pertambahan berat yang diperoleh Sampel A: 1, 2, 3, 4, 4, 5, 5, 8, 9, 9 ; sampel B: 4, 6, 7, 7, 8, 8, 9, 10, 10, 11. Data ini tidak berdistribusi normal dan variannya tidak homogen Perhitungan lihat Roscoe,hal 177-179 Perhatikan penulisan ranking (all rank), 5a, 5b, 5c --- karena ada 3 buah angka 4. sedangkan 7.5a dan 7.5 b karena ada dua buah angka 5. Kriteria; tolak Ho jika U hitung ≤ U tabel. Kesimpulan : Data menyarankan bahwa diet B menunjukkan pertambahan berat yang lebih besar daripada diet A,
  • 97. Wilcoxon Mathed-pairs Sign – Rank Test Tes ini digunakan untuk dua sampel berpasangan, normalitas distribusi dan homogenitas varians tak terpenuhi. Cara ini merupaka alternatif untuk t-tes data berpasangan atau related sample Contoh lihat Roscoe hal 183. Penelitian menyimpulkan bahwa tak ada perbedaan yang signifikan hasil perlakuan dua metode. Kesimpulan ini sesuai dengan analisis mengunakan uji t (bila data berdistribusi normal dan homogen) Mana analisis yang sesuai sebenarnya harus diuji dulu normalitas distribusi data dan homogenitas variannya lebih dulu. Jika tidak berdistribusi normal dan variannya tak homogen maka tidak bisa menggunakan uji t.
  • 98. Chi-square Tests of Independence. Tes ini digunakan untuk menguji apakah dua data nominal (atau yang levelnya lebih tinggi) mempunyai hubungan (tidak independent). Contoh lihat Roscoe hal 199-200. Apakah respon terhadap pertanyaan tentang hakekat Tuhan berhubungan dengan jenis kelamin. Angka 18, 40 dst adalah jumlah responden yang memberi respon 1, 2 dst. Kesimpulan ada hubungan antara jenis kelamin dengan respon yang diberikan terhadap pertanyaan. Wanita lebih percaya terhadap Tuhan daripada laki-laki.
  • 99. Kolmogorov-Smirnov Two Sample Test (statistik non parametrik) Tes ini digunakan untuk dua sampel independen Lebih sesuai dari chi square bila digunakan untuk sampel yang lebih kecil. Contoh lihat Roscoe hal 216-217 Cf = cumulative frequency, Kp = perbedaan cf yang paling besar. Kesimpulan: terima Ho.Tak ada perbedaan yang signifikan pemberian diet A dan diet B., sedangkan t-test dan Mann-whitney u-tes memberikan perbedaan yang signifikan (untuk data yang sama).
  • 100. Kruskal-Wallis one way analysis of variance Tes ini digunakan jika berhadapan dengan uji beda rerata beberapa sampel, dimana syarat- berdistribusi normal dan varian homogen tak terpenuhi dan lebih dari dua perlakuan. Data minimal ordinal. Banyaknya sampel tiap kelompok perlakuan jika kurang dari 5 maka tes ini unsatisfactory Contoh lihat Wright, hal 445. Pelakuan terhadap ke 5 kelompok tersebut tidak berbeda hasilnya.
  • 101. 101