SlideShare a Scribd company logo
1 of 6
Download to read offline
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org 
ISSN (e): 2250-3021, ISSN (p): 2278-8719 
Vol. 04, Issue 09 (September. 2014), ||V4|| PP 32-37 
International organization of Scientific Research 32 | P a g e 
A Quarter-Symmetric Non-Metric Connection In A Lorentzian νœ·βˆ’Kenmotsu Manifold Shyam Kishor1, Prerna Kanaujia2, Satya Prakash Yadav3 1&2Department of Mathematics & Astronomy University of Lucknow-226007, India , 3SIET, Allahabad Abstract:- In this paper we study quarter- symmetric non-metric connection in a Lorentzian ν›½βˆ’ kenmotsu manifold and the first Bianchi identity for the curvature tensor is found. Ricci tensor and the scalar curvature with respect to quarter-symmetric non-metric connection in Lorentzian ν›½βˆ’Kenmotsu manifold are obtained. Finally some identities for torsion tensor have been explored. Keywords- Hayden connection, Levi-Civita connection, Lorentzian ν›½βˆ’kenmotsu manifold, quarter- symmetric metric connection, quarter symmetric non-metric connection. MSC 2010: 53B20, 53B15, 53C15. 
1. INTRODUCTION 
Let ν‘€ be an ν‘›βˆ’dimensional differentiable manifold equipped with a linear connection βˆ‡ . The torsion tensor 푇 of βˆ‡ is given by 푇 ν‘‹,ν‘Œ =ν›» ν‘‹ν‘Œβˆ’ν›» ν‘Œν‘‹βˆ’[ν‘‹,ν‘Œ] ν‘… ν‘‹,ν‘Œ 푍=ν›» ν‘‹ν›» ν‘Œν‘βˆ’ν›» ν‘Œν›» ν‘‹ν‘βˆ’ν›» [ν‘‹,ν‘Œ}푍. The connection βˆ‡ is symmetric if its torsion tensor 푇 vanishes, otherwise it is non-symmetric. If there is a Riemannian metric ν‘” in ν‘€ such that ν›» Μƒν‘” = 0, the connection βˆ‡ is a metric connection, otherwise it is non- metric. It is well known that a linear connection is symmetric and metric if and only if it is the Levi-Civita connection. Hayden [24] introduced a metric connection βˆ‡ with non-zero torsion on a Riemannian manifold. Such a connection is called a Hayden connection. On the other hand, in a Riemannian manifold given a 1βˆ’form νœ”, the Weyl connection βˆ‡ constructed with  and its associated vector 퐡 (Folland 1970, [1]) is a symmetric non-metric connection. In fact, the Riemannian metric of the manifold is recurrent with respect to the Weyl connection with the recurrence 1βˆ’form , that is,βˆ‡ g=g. Another symmetric non-metric connection is projectively related to the Levi-Civita connection (cf. Yano [19], Smaranda [25]). Friedmann and Schouten ([2], [20]) introduced the idea of a semi-symmetric linear connection in a differentiable manifold. A linear connection is said to be a semi-symmetric connection if its torsion tensor 푇 is of the form 푇 (ν‘‹,ν‘Œ)=ν‘’(ν‘Œ)ν‘‹βˆ’ν‘’(ν‘‹)ν‘Œ (1.1) where ν‘’ is a 1βˆ’form. A Hayden connection with the torsion tensor of the form (1.1) is a semi-symmetric metric connection. In 1970, Yano [3] considered a semi-symmetric metric connection and studied some of its properties. Some different kinds of semi-symmetric connections are studied in [4], [5], [6] and [7].In 1975, S. Golab [8] defined and studied quarter-symmetric linear connections in differentiable manifolds. A linear connection is said to be a quarter-symmetric connection if its torsion tensor 푇 is of the form 푇 ν‘‹,ν‘Œ =ν‘’ ν‘Œ νœ‘ν‘‹βˆ’ν‘’ ν‘‹ νœ‘ν‘Œ ,ν‘‹,ν‘Œ οƒŽ 푇푀 (1.2) where ν‘’ is a 1βˆ’form and νœ‘ is a tensor of type (1,1). Note that a quarter-symmetric metric connection is a Hayden connection with the torsion tensor of the form (1.2). Studies of various types of quarter-symmetric metric connections and their properties include [9], [10], [11] and [12] among others. On the other hand, there is well known class of almost contact metric manifolds introduced by K. Kenmotsu, which is now known as Kenmotsu manifolds [10]. An almost contact metric structure on a manifold ν‘€ is called a trans-Sasakian structure if the product manifold ν‘€ ο‚΄ ν‘… belongs to the class ν‘Š4. The class 퐢6οƒ… 퐢5 ([13], [26]) coincides with the class of the trans-Sasakian structures of type (,). In fact, in [13], local nature of the two subclasses, namely, 퐢5 and 퐢6 structures of trans-Sasakian structures are characterized completely. We note that trans-Sasakian structures of type (0,0), (0,) and (,0) are cosymplectic [21], ο’βˆ’Kenmotsu [14] and ο‘βˆ’Sasakian [14] respectively. The paper is organized as follows: 
Section 2, deals with some preliminary results about quarter-symmetric non-metric connection. In this section the curvature tensor of the Riemannian manifold with respect to the defined quarter-symmetric non- metric connection is also found. In the last of this section first Bianchi identity for the curvature tensor of the Riemannian manifold with respect to the given quarter-symmetric non-metric connection is found. In section 3, we study this quarter-symmetric non-metric connection in Lorentzian ο’βˆ’Kenmotsu manifold. We have given
A Quarter-Symmetric Non-Metric Connection In A Lorentzian ν›½ βˆ’Kenmotsu Manifold 
International organization of Scientific Research 33 | P a g e 
the covariant derivative of a 1βˆ’form and the torsion tensor. We also get the curvature tensor of the Lorentzian ο’βˆ’Kenmotsu manifold with respect to the defined quarter-symmetric non-metric connection and find first Bianchi identity. Finally we have calculated Ricci tensor, scalar curvature and torsion tensor of the Lorentzian ο’βˆ’ Kenmotsu manifold with respect to the defined quarter-symmetric non-metric connection. 
2. A Quarter-Symmetric Connection 
In this section existence of quarter-symmetric non-metric connection has been discussed. Theorem-1 Let ν‘€ be an ν‘›-dimensional Riemannian manifold equipped with the Levi-Civita connection βˆ‡ of its Riemannian metric ν‘”. Let  be a 1-form and νœ‘, a (1,1) tensor field in ν‘€ such that  ν‘‹ =ν‘” ,ν‘‹ , (2.1) ν‘” νœ‘ν‘‹,ν‘Œ = βˆ’ν‘” ν‘‹,νœ‘ν‘Œ (2.2) for all ν‘‹,ν‘ŒοƒŽν‘‡ν‘€. Then there exists a unique quarter- symmetric non-metric connection βˆ‡ in ν‘€ given by ν›» ν‘‹ν‘Œ= βˆ‡ν‘‹ν‘Œβˆ’ο¨ ν‘‹ νœ‘ν‘Œβˆ’ν‘” ν‘‹,ν‘Œ  , (2.3) That satisfies 푇 ν‘‹,ν‘Œ =  ν‘Œ νœ‘ν‘‹βˆ’ο¨ ν‘‹ νœ‘ν‘Œ, (2.4) 
and ν›» ν‘‹ν‘” ν‘Œ,푍 = ν‘Œ ν‘” ν‘‹,푍 + 푍 ν‘” ν‘‹,ν‘Œ (2.5) where 푇 is the torsion tensor of ν›» . Proof: The equation (2.4) of [15] is ν›» ν‘‹ν‘Œ = βˆ‡ν‘‹ν‘Œ+ν‘’(ν‘Œ)νœ‘1ν‘‹βˆ’ν‘’(ν‘‹)νœ‘2ν‘Œβˆ’ν‘”(νœ‘1ν‘‹,ν‘Œ)ν‘ˆ βˆ’ν‘“1{ν‘’1 ν‘‹ ν‘Œ+ν‘’1 ν‘Œ ν‘‹βˆ’ν‘” ν‘‹,ν‘Œ ν‘ˆ1}βˆ’ν‘“β‚‚ν‘”(ν‘‹,ν‘Œ)ν‘ˆβ‚‚ Taking νœ‘1=0,νœ‘2=νœ‘,ν‘’=ν‘’1=,ν‘“1=0,ν‘“2=1,ν‘ˆ2=, (2.6) in above equation, we get (2.3). The equations (2.5) and (2.6) of [15] are 푇 ν‘‹,ν‘Œ = ν‘’ ν‘Œ νœ‘ν‘‹βˆ’ν‘’ ν‘‹ νœ‘ν‘Œ, ν›» ν‘‹ν‘” ν‘Œ,푍 =2ν‘“1ν‘’1 ν‘‹ ν‘” ν‘Œ,푍 +ν‘“2 ν‘’2 ν‘Œ ν‘” ν‘‹,푍 +ν‘’2 푍 ν‘” ν‘‹,ν‘Œ Using (2.6) in above equations, we get respectively (2.4) and (2.5). Conversely, a connection defined by (2.3) satisfies the condition (2.4) and (2.5). Proposition 1. Let ν‘€ be an ν‘›-dimensional Riemannian manifold. For the quarter-symmetric connection defined by (2.3), the covariant derivatives of the torsion tensor 푇 and any 1-form νœ‹ are given respectively by (ν›» 푋푇 )(ν‘Œ,푍) = ((ν›» ν‘‹νœ‚)푍)νœ‘ν‘Œβˆ’(ν›» ν‘‹νœ‚)ν‘Œ)νœ‘ν‘ +νœ‚ 푍 ν›» ν‘‹νœ‘ ν‘Œβˆ’νœ‚ ν‘Œ ν›» ν‘‹νœ‘ 푍, (2.7) and ν›» ν‘‹νœ‹ ν‘Œ= βˆ‡ν‘‹νœ‹ ν‘Œ+ ν‘‹ νœ‹ νœ‘ν‘Œ +ν‘” ν‘‹,ν‘Œ νœ‹  (2.8) for all ν‘‹,ν‘Œ,푍 οƒŽν‘‡ ν‘€. Using (2.8) & (2.3) in ν›» 푋푇 ν‘Œ,푍 =ν›» 푋푇 ν‘Œ,푍 βˆ’ν‘‡ ν›» ν‘‹ν‘Œ,푍 βˆ’ν‘‡ (ν‘Œ,ν›» 푋푍) We obtain (2.7). Similarly, using (2.3) with ν›» ν‘‹νœ‹ ν‘Œ=ν›» ν‘‹νœ‹ν‘Œβˆ’νœ‹(ν›» ν‘‹ν‘Œ) (2.8) can be obtained. In an ν‘›-dimensional Riemannian manifold ν‘€, for the quarter-symmetric connection defined by (2.3), let us write 푇 ν‘‹,ν‘Œ,푍 =ν‘” 푇 ν‘‹,ν‘Œ ,푍 , ν‘‹,ν‘Œ,ν‘νœ–ν‘‡ν‘€. (2.9) Proposition 2. Let ν‘€ be an ν‘›-dimensional Riemannian manifold. Then 푇 ν‘‹,ν‘Œ,푍 +푇 ν‘Œ,푍,ν‘‹ +푇 푍,ν‘‹,ν‘Œ =2 ν‘‹ ν‘” ν‘Œ,νœ‘ν‘ +2 ν‘Œ ν‘” 푍,νœ‘ν‘‹ +2 푍 ν‘” ν‘‹,νœ‘ν‘Œ (2.10) Proof: In view of (2.7) and (2.9) we have the proposition. Theorem 2. Let ν‘€ be an ν‘›-dimensional Riemannian manifold equipped with the Levi-Civita connection βˆ‡ of its Riemannian metric ν‘”. Then the curvature tensor ν‘… of the quarter-symmetric connection defined by (2.3) is given by ν‘… ν‘‹,ν‘Œ,푍 =ν‘… ν‘‹,ν‘Œ,푍 βˆ’ν‘‡ ν‘‹,ν‘Œ,푍 οΈβˆ’2푑 ν‘‹,ν‘Œ νœ‘ν‘
A Quarter-Symmetric Non-Metric Connection In A Lorentzian ν›½ βˆ’Kenmotsu Manifold 
International organization of Scientific Research 34 | P a g e 
+ ν‘‹ βˆ‡ν‘Œνœ‘ ν‘βˆ’ο¨ ν‘Œ ν›»ν‘‹νœ‘ 푍 +ν‘” ν‘Œ,푍  ν‘‹ οΈβˆ’βˆ‡ν‘‹οΈ+ ν‘‹ νœ‘οΈ βˆ’ ν‘” ν‘‹,푍  ν‘Œ οΈβˆ’βˆ‡ν‘ŒοΈ+ ν‘Œ νœ‘οΈ (2.11) for all ν‘‹,ν‘Œ,ν‘οƒŽν‘‡ν‘€, where ν‘… is the curvature of Levi-Civita connection. Proof: In view of (2.3), (2.2), (2.4) and (2.9) we get (2.11). Theorem 3. In an ν‘›-dimensional Riemannian manifold the first Bianchi identity for the curvature tensor of the Riemannian manifold with respect to the quarter-symmetric connection defined by (2.3) is ν‘… ν‘‹,ν‘Œ,푍 +ν‘… ν‘Œ,푍,ν‘‹ +ν‘… 푍,ν‘‹,ν‘Œ =βˆ’ 푇 ν‘‹,ν‘Œ,푍 +푇 ν‘Œ,푍,ν‘‹ +푇 푍,ν‘‹,ν‘Œ  + ν‘‹ 퐡 ν‘Œ,푍 + ν‘Œ 퐡 푍,ν‘‹ + 푍 퐡 ν‘‹,ν‘Œ βˆ’2푑 ν‘‹,ν‘Œ νœ‘ν‘βˆ’2푑 ν‘Œ,푍 νœ‘ν‘‹βˆ’2푑 푍,ν‘‹ νœ‘ν‘Œ (2.12) for all ν‘‹,ν‘Œ,푍 οƒŽν‘‡ν‘€, where 퐡 ν‘‹,ν‘Œ = βˆ‡ν‘‹νœ‘ ν‘Œβˆ’ βˆ‡ν‘Œνœ‘ ν‘‹. (2.13) Proof: From (2.11), we get ν‘… ν‘‹,ν‘Œ,푍 +ν‘… ν‘Œ,푍,ν‘‹ +ν‘… 푍,ν‘‹,ν‘Œ =2 ν‘‹ ν‘” νœ‘ν‘Œ,푍 +2 ν‘Œ ν‘” νœ‘ν‘,ν‘‹ +2 푍 ν‘” νœ‘ν‘‹,ν‘Œ  + ν‘‹ βˆ‡ν‘Œνœ‘ ν‘βˆ’ο¨ ν‘‹ ν›»ν‘νœ‘ ν‘Œ+ ν‘Œ ν›»ν‘νœ‘ ν‘‹ βˆ’ο¨ ν‘Œ ν›»ν‘‹νœ‘ 푍+ 푍 ν›»ν‘‹νœ‘ ν‘Œβˆ’ο¨ 푍 ν›»ν‘Œνœ‘ ν‘‹ βˆ’ 훻푋 ν‘Œ νœ‘ν‘+ ν›»ν‘Œο¨ ν‘‹ νœ‘ν‘βˆ’ ν›»ν‘Œο¨ 푍 νœ‘ν‘‹ + 훻푍 ν‘Œ νœ‘ν‘‹βˆ’ 훻푍 ν‘‹ νœ‘ν‘Œ+ 훻푋 푍 νœ‘ν‘Œ. Using (2.13) and (2.10) in the previous equation we get (2.12). Let us write the curvature tensor 푇 as a (0,4) tensor by ν‘… ν‘‹,ν‘Œ,푍,ν‘Š =ν‘” ν‘… ν‘‹,ν‘Œ 푍,ν‘Š , ν‘‹,ν‘Œ,푍,ν‘ŠοƒŽν‘‡ν‘€. (2.14) Then we have the following: Theorem 4.Let ν‘€ be a Riemannian manifold. Then ν‘… ν‘‹,ν‘Œ,푍,ν‘Š +ν‘… ν‘Œ,ν‘‹,푍,ν‘Š =0, (2.15) for all ν‘‹,ν‘Œ,푍,ν‘ŠοƒŽν‘‡ν‘€. Proof: Using (3.25) in (2.14), we get ν‘… ν‘‹,ν‘Œ,푍,ν‘Š =ν‘… ν‘‹,ν‘Œ,푍,ν‘Š βˆ’ο¨ 푍 ν‘” 푇 ν‘‹,ν‘Œ ,ν‘Š +ν‘” ν‘Œ,푍 ν‘” ν‘‹,ν‘Š βˆ’ν‘” ν‘‹,푍 ν‘” ν‘Œ,ν‘Š . (2.16) Interchanging ν‘‹ and ν‘Œ in the previous equation and adding the resultant equation in (3.28) and using (2.4) we get (2.15). 
3. QUARTER-SYMMETRIC NON-METRIC CONNECTION IN A LORENTZIAN  βˆ’KENMOTSU MANIFOLD 
A differentiable manifold ν‘€ of dimension ν‘› is called Lorentzian Kenmotsu manifold if it admits a (1,1)βˆ’tensor νœ‘, a contravariant vector field , a covariant vector field  and Lorentzian metric ν‘” which satisfy νœ‘2ν‘‹=ν‘‹+ ν‘‹ ,   =βˆ’1, νœ‘οΈ=0, νœ‘ν‘‹ =0 (3.1) ν‘” νœ‘ν‘‹,νœ‘ν‘Œ =ν‘” ν‘‹,ν‘Œ + ν‘‹  ν‘Œ (3.2) ν‘” νœ‘ν‘‹,ν‘Œ =ν‘” ν‘‹,νœ‘ν‘Œ , ν‘” ν‘‹, =(ν‘‹) (3.3) for all X,YοƒŽTM. Also if Lorentzian Kenmotsu manifold ν‘€ satisfies βˆ‡ν‘‹νœ‘ ν‘Œ = ν‘” νœ‘ν‘‹,ν‘Œ οΈβˆ’ο¨ ν‘Œ νœ‘ν‘‹ , ν‘‹,ν‘ŒοƒŽν‘‡ν‘€ (3.4) Where  denotes the operator of covariant differentiation with respect to the Lorentzian metric ν‘”, then ν‘€ is called Lorentzian -Kenmotsu manifold. From the above equation it follows that βˆ‡ν‘‹οΈ= ν‘‹βˆ’ο¨ ν‘‹  (3.5) (βˆ‡ν‘‹ο¨) ν‘Œ = ν‘” ν‘‹,ν‘Œ βˆ’ο¨ ν‘‹  ν‘Œ (3.6) and consequently 푑=0 (3.7) Where
A Quarter-Symmetric Non-Metric Connection In A Lorentzian ν›½ βˆ’Kenmotsu Manifold 
International organization of Scientific Research 35 | P a g e 
푑 ν‘‹,ν‘Œ = 12 (훻푋 ν‘Œ βˆ’(ν›»ν‘Œο¨) ν‘‹ , ν‘‹,ν‘ŒοƒŽν‘‡ν‘€ (3.8) Furthur, on a Lorentzian -Kenmotsu manifold ν‘€, the following relations hold ([3], [16])  ν‘… ν‘‹,ν‘Œ 푍 =2 ν‘” ν‘‹,푍  ν‘Œ βˆ’ν‘” ν‘Œ,푍  ν‘‹ (3.9) ν‘… ν‘‹,ν‘Œ =2  ν‘‹ ν‘Œβˆ’ο¨ ν‘Œ ν‘‹ (3.10) 푆 ν‘‹, =βˆ’ ν‘›βˆ’1 2 ν‘‹ (3.11) 푄 =βˆ’ ν‘›βˆ’1 2 3.12 푆 , = ν‘›βˆ’1 2 (3.13) The equation (3.9) is equivalent to ν‘… ,ν‘‹ ν‘Œ=2  ν‘Œ ν‘‹βˆ’ν‘” ν‘‹,ν‘Œ  (3.14) which implies that ν‘… ,ν‘‹ =2 ν‘‹βˆ’ο¨ ν‘‹  (3.15) From (3.9) and (3.14), we have  ν‘… ν‘‹,ν‘Œ  =0 (3.16)  ν‘… ,ν‘‹ ν‘Œ =2  ν‘Œ  ν‘‹ βˆ’ν‘” ν‘‹,ν‘Œ . (3.17) Theorem 5. Let ν‘€ be a Lorentzian ο’βˆ’Kenmotsu manifold. Then for the quarter-symmetric connection defined by (2.3), we have ν›» ν‘‹νœ‹ ν‘Œ= βˆ‡ν‘‹νœ‹ ν‘Œ+ ν‘‹ νœ‹ νœ‘ν‘Œ +ν‘” ν‘‹,ν‘Œ νœ‹  . (3.18) In particular, (ν›» ν‘‹νœ‚)ν‘Œ= ο’βˆ’1 ν‘” ν‘‹,ν‘Œ βˆ’ο’νœ‚ ν‘‹ νœ‚ ν‘Œ (3.19) and ν‘‘ =0 (3.20) where ν‘‘  ν‘‹,ν‘Œ = 12 ν›» 푋 ν‘Œ βˆ’ ν›» ν‘Œο¨ ν‘‹ , ν‘‹,ν‘ŒοƒŽν‘‡ν‘€ (3.21) Proof: From equation (2.3), we get (3.18). Now replacing νœ‹ by  in (3.18) and using (3.1) and (3.6) we get (3.19). Equation (3.20) follows immediately from (3.19). Theorem 6. Let ν‘€ be a Lorentzian -Kenmotsu manifold. Then ν›» ν‘‹νœ‘ ν‘Œ= +1 ν‘” νœ‘ν‘‹,ν‘Œ οΈβˆ’ο’ο¨ ν‘Œ νœ‘ν‘‹ (3.22) which implies 푇 ν‘‹,ν‘Œ = 1  βˆ’ ν›» ν‘‹νœ‘ ν‘Œ+ ν›» ν‘Œνœ‘ ν‘‹ + (+1)  ν‘” νœ‘ν‘‹,ν‘Œ οΈβˆ’ν‘” νœ‘ν‘Œ,ν‘‹  (3.23) and ν›» 푋=ο’ν‘‹βˆ’ +1  ν‘‹  (3.24) For all X,YοƒŽ TM. Proof: From Equations (2.3) and (3.1), we get ν›» ν‘‹νœ‘ ν‘Œ= βˆ‡ν‘‹νœ‘ ν‘Œ+ν‘” ν‘‹,νœ‘ν‘Œ , Which in view of (3.4) gives (3.22). From (3.22) and (2.4), we get (3.23). Now in view of equations (2.3), (3.5), (3.1) and (3.3), we get (3.24). Theorem 7. Let ν‘€ be a Lorentzian ν›½-Kenmotsu manifold. Then ν›» 푋푇 ν‘Œ,푍 = ν›½+1 [ν‘” ν‘‹,푍 νœ‘ν‘Œβˆ’ν‘” ν‘‹,ν‘Œ νœ‘ν‘+ 푍 ν‘” νœ‘ν‘‹,ν‘Œ οΈβˆ’ο¨ ν‘Œ ν‘” νœ‘ν‘‹,푍 ] βˆ’ν›½ο¨ ν‘‹ 푇 ν‘Œ,푍 (3.25) Consequently, ν›» 푋푇 ν‘Œ,푍 +ν›» ν‘Œν‘‡ 푍,ν‘‹ +ν›» 푍푇 ν‘‹,ν‘Œ =0 (3.26) for all X,Y,Z,W∈TM. Proof: Using equations (3.19), (3.22) and (2.4) in (2.7) we obtain (3.25). Equation (3.26) follows from (3.25) and (2.4). Theorem 8. The curvature tensor ν‘… of the quarter-symmetric connection in a Lorentzian ν›½-kenmotsu manifold is as follows ν‘… ν‘‹,ν‘Œ 푍=ν‘… ν‘‹,ν‘Œ 푍+ ν›½+1 [ ν‘‹ ν‘” νœ‘ν‘Œ,푍 
A Quarter-Symmetric Non-Metric Connection In A Lorentzian ν›½ βˆ’Kenmotsu Manifold 
International organization of Scientific Research 36 | P a g e 
βˆ’ο¨ ν‘Œ ν‘” νœ‘ν‘‹,푍 +ν‘” ν‘Œ,푍  ν‘‹ οΈβˆ’ν‘” ν‘‹,푍  ν‘Œ ] +ν›½  푍 푇 ν‘‹,ν‘Œ βˆ’ν‘” ν‘Œ,푍 ν‘‹+ν‘” ν‘‹,푍 ν‘Œ (3.27) Proof: Using (3.1), (3.3), (2.9) and (2.4) in (2.11), we get ν‘… ν‘‹,ν‘Œ 푍=ν‘… ν‘‹,ν‘Œ ν‘βˆ’νœ‚ ν‘Œ βˆ‡ν‘‹νœ‘ 푍+νœ‚ ν‘‹ βˆ‡ν‘Œνœ‘ 푍 + (ν›»ν‘Œο¨ ν‘‹)νœ‘ν‘βˆ’((훻푋)ν‘Œ)νœ‘ν‘ +ν‘” ν‘Œ,푍 βˆ’βˆ‡ν‘‹οΈ+ νœ‚ ν‘‹  βˆ’ν‘” ν‘‹,푍 βˆ’βˆ‡ν‘ŒοΈ+ νœ‚ ν‘Œ  βˆ’νœ‚ ν‘Œ ν‘” νœ‘ν‘‹,푍 +βˆ’νœ‚ ν‘‹ ν‘” νœ‘ν‘Œ,푍 . Now using (3.4), (3.7), (3.5) and (3.1) in the above equation we obtain (3.27). Now for the curvature tensor ν‘… of the quarter-symmetric non-metric connection of the Lorentzian ν›½-Kenmotsu manifold we have following theorems. Theorem 9. Let ν‘€ be a Lorentzian ν›½-Kenmotsu manifold. Then ν‘… ν‘‹,ν‘Œ,푍,ν‘Š +ν‘… ν‘‹,ν‘Œ,ν‘Š,푍 =ν›½ νœ‚ 푍 ν‘” 푇 ν‘‹,ν‘Œ ,ν‘Š +νœ‚ ν‘Š ν‘” 푇 ν‘‹,ν‘Œ ,푍 +(ν›½+1)[{νœ‚ ν‘‹ ν‘” νœ‘ν‘Œ,푍 βˆ’νœ‚ ν‘Œ ν‘” νœ‘ν‘‹,푍 +ν‘”(ν‘Œ,푍)νœ‚(ν‘‹)βˆ’ν‘”(ν‘‹,푍)νœ‚(ν‘Œ)}νœ‚(ν‘Š) +{νœ‚ ν‘‹ ν‘” νœ‘ν‘Œ,ν‘Š βˆ’νœ‚ ν‘Œ ν‘” νœ‘ν‘‹,ν‘Š +ν‘”(ν‘Œ,ν‘Š)νœ‚(ν‘‹)βˆ’ν‘”(ν‘‹,ν‘Š)νœ‚(ν‘Œ)}νœ‚(푍)] (3.28) and ν‘… ν‘‹,ν‘Œ,푍,ν‘Š βˆ’ν‘… 푍,ν‘Š,ν‘‹,ν‘Œ =ν›½ νœ‚ 푍 ν‘” 푇 ν‘‹,ν‘Œ ,ν‘Š βˆ’νœ‚ ν‘‹ ν‘” 푇 푍,ν‘Š ,ν‘Œ +(ν›½+1)[νœ‚ ν‘‹ νœ‚ ν‘Š ν‘” νœ‘ν‘Œ,푍 +ν‘” ν‘Œ,푍 βˆ’νœ‚(ν‘Œ)νœ‚(푍){ν‘”(νœ‘ν‘Š,ν‘‹)+ν‘”(ν‘Š,ν‘‹)}] (3.29) for all ν‘‹,ν‘Œ,푍,ν‘Šβˆˆν‘‡ν‘€. Proof: From (3.27) equation (2.14) reduces to ν‘… ν‘‹,ν‘Œ,푍,ν‘Š =ν‘…(ν‘‹,ν‘Œ,푍,ν‘Š)+ν›½[νœ‚ 푍 ν‘” 푇 ν‘‹,ν‘Œ ,ν‘Š βˆ’ν‘”(ν‘Œ,푍)ν‘”(ν‘‹,ν‘Š)+ν‘”(ν‘‹,푍)ν‘”(ν‘Œ,ν‘Š)] +(ν›½+1)[νœ‚(ν‘Š){νœ‚ ν‘‹ ν‘” νœ‘ν‘Œ,푍 βˆ’νœ‚ ν‘Œ ν‘” νœ‘ν‘‹,푍 +ν‘”(ν‘Œ,푍)νœ‚(ν‘‹)βˆ’ν‘”(ν‘‹,푍)νœ‚(ν‘Œ)}] (3.30) Interchanging ν‘‹ and ν‘Œ in the above equation and adding the resultant equation in it and then using (2.4) we get (2.15). Now interchanging 푍 and ν‘Š in (3.30) and adding the resultant equation to (3.30) we obtain (3.28). In the last the equation (3.29) can be obtained by interchanging ν‘‹ and 푍 & ν‘Œ and ν‘Š in (3.30) and substracting the resultant equation from (3.30) and using (2.4). Theorem 10: The first Bianchi identity for the curvature tensor of the Lorentzian ν›½βˆ’Kenmotsu manifold with respect to the connection defined in the equation (2.3) is as given below ν‘… ν‘‹,ν‘Œ 푍+ν‘… ν‘Œ,푍 ν‘‹+ν‘… 푍,ν‘‹ ν‘Œ=0 (3.31) for all ν‘‹,ν‘Œ,ν‘βˆˆν‘‡ν‘€. Proof: In view of equations (3.27) and (2.4), we get (3.31). Theorem 11. In an ν‘›-dimensional Lorentzian ν›½-Kenmotsu manifold ν‘€, the Ricci tensor and the scalar curvature with respect to the connection defined by the equation (2.3) are given by 푆 ν‘Œ,푍 =푆 ν‘Œ,푍 βˆ’ν›½ ν‘›βˆ’1 ν‘” ν‘Œ,푍 + ν›½+1 ν‘” νœ‘ν‘Œ,푍 β€“νœ‚ ν‘Œ ν‘” νœ‘ν‘,νœ‰ βˆ’νœ‚ ν‘Œ νœ‚ 푍 (3.32) where ν‘‹,ν‘Œβˆˆν‘‡ν‘€ and ν‘ŸΜƒ =ν‘Ÿβˆ’ν›½ν‘› ν‘›βˆ’1 βˆ’ ν›½+1 (3.33) respectively. Where 푆 is the Ricci tensor and ν‘Ÿ is the scalar curvature of ν‘€. Proof: Let {e₁, eβ‚‚,……., en} be a basis of ν‘€, then 푆(ν‘Œ,푍)=Ξ£ν‘”(ν‘… (ν‘’ν‘–,ν‘Œ)푍,ν‘’ν‘–) Now using (3.27) and trace(Ο†)=0 in the above equation, we obtain (3.32) and (3.32) gives (3.33). Theorem 12. The torsion tensor 푇 satisfies the following condition 푇 푇 ν‘‹,ν‘Œ 푍 +푇 푇 ν‘Œ,푍 ν‘‹ +푇 푇 푍,ν‘‹ ν‘Œ =0 (3.34) for all X,Y,Z∈TM Proof: Using (2.4) and (3.1) we get (3.34).
A Quarter-Symmetric Non-Metric Connection In A Lorentzian ν›½ βˆ’Kenmotsu Manifold 
International organization of Scientific Research 37 | P a g e 
REFERENCES 
[1]. G. B. Folland, Weyl manifolds, J. Di . Geometry 4(1970), 145-153. 
[2]. A. Friedmann, and J. A. Schouten, Uber die geometrie der halbsymmetrischen ubertragung, Math. Zeitschr. 21(1924), 211-223. 
[3]. K.Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl. 15(1970), 1579-1586. MR0275321(431078). 
[4]. N. S. Agashe, and M. R. Chae, A semi-symmetric non-metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 23(1992), 399-409. 
[5]. O. C. Andonie, and D.Smaranda, Certaines connexions semi-symetriques, Tensor 31(1977), 8-12. 
[6]. Y. Liang, On semi-symmetric recurrent-metric connection, Tensor 55(1994), 107-112. 
[7]. J. Sengupta, U. C. De, and T. Q. Binh, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 31(12)(2000), 1659-1670. 
[8]. S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor 29(1975), 249-254. MR 52 # 4156. 
[9]. R. S. Mishra, and, S. N. Pandey, On quarter-symmetric metric F-connections, Tensor 34(1980), 1-7. 
[10]. S. C. Rastogi, On quarter-symmetric metric connection, C. R. Acad. Bulg. Sci. 31(1978), no. 8, 811-814. MR 80f : 53015. 
[11]. S. C. Rastogi, On quarter-symmetric metric connections, Tensor 44(1987), 133-141. 
[12]. K. Yano, and T. Imai, Quarter-symmetric metric connections and their curvature tensors, Tensor 38(1982), 13-18. 
[13]. J.C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl., 162(4) (1992), 77- 86. 
[14]. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24(1972), no. 1, 93-103. 
[15]. M. M. Tripathi, A new connection in Riemannian manifolds, Internat. Electr. J. Geom. 1(2008), no.1, 15- 24. 
[16]. D.G. Prakasha , C.S. Bagewadi and N.S. Basavarajappa, On Lorentzian Ξ²-Kenmotsu manifolds, Int.Journal of Math., 2(19)(2008), 919-927. 
[17]. S. Tanno , The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J. 21 (1969), no. 1, 21-38. 
[18]. C.S. Bagewadi and E. Girish Kumar, Note on Trans-Sasakian manifolds, Tensor.N.S., 65(1)(2004), 80- 88. 
[19]. K.Yano, Integral formulas in Riemannian geometry, Marcel Dekker Inc., 1970. MR0284950(442174). 
[20]. J. A. Schouten , Ricci calculus, Springer, 1954. 
[21]. D.E. Blair, Contact manifolds in Riemannian geometry, Lectures Notes in Mathematics, Springer-Verlag, Berlin, 509(1976), 146. 
[22]. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, MA, 2002. 
[23]. R. S. Mishra , Structures on a differentiable manifold and their applications, Chandrama Prakashan, Allahabad, India, 1984. 
[24]. H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34(1932), 27-50. 
[25]. D. Smaranda, On projective transformations of symmetric connections with a recurrent projective tensor eld, Proc. Nat. Coll. on Geometry and Topology (Bu steni, 1981), 323-329, Univ. Bucare sti, Bucharest, 1983. 
[26]. J.C. Marrero and D. Chinea, On trans-Sasakian manifolds, Proceedings of the XIVth Spanish-Portuguese Conference on Mathematics, Vol. I-III(Spanish)(Puerto de la Cruz, 1989), 655-659, Univ. La Laguna, La Laguna, 1990.

More Related Content

What's hot

Compatibility equation and Airy's stress function of theory of elasticity
Compatibility equation and Airy's stress function of theory of elasticityCompatibility equation and Airy's stress function of theory of elasticity
Compatibility equation and Airy's stress function of theory of elasticitysmchaudhary07
Β 
Tensor algebra and tensor analysis for engineers
Tensor algebra and tensor analysis for engineersTensor algebra and tensor analysis for engineers
Tensor algebra and tensor analysis for engineersSpringer
Β 
Staircases_in_Fluid_Dynamics_JacobGreenhalgh
Staircases_in_Fluid_Dynamics_JacobGreenhalghStaircases_in_Fluid_Dynamics_JacobGreenhalgh
Staircases_in_Fluid_Dynamics_JacobGreenhalghJacob Greenhalgh
Β 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxHassaan Saleem
Β 
03 tensors
03 tensors03 tensors
03 tensorsTino Lc
Β 
Tensor 1
Tensor  1Tensor  1
Tensor 1BAIJU V
Β 
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...QUESTJOURNAL
Β 
J05715060
J05715060J05715060
J05715060IOSR-JEN
Β 
Fundamental Of Physics Measurement
Fundamental Of Physics MeasurementFundamental Of Physics Measurement
Fundamental Of Physics MeasurementMuhammad Faizan Musa
Β 
PART I.5 - Physical Mathematics
PART I.5 - Physical MathematicsPART I.5 - Physical Mathematics
PART I.5 - Physical MathematicsMaurice R. TREMBLAY
Β 
S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...
S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...
S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...Steven Duplij (Stepan Douplii)
Β 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)PhysicsLover
Β 
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...Steven Duplij (Stepan Douplii)
Β 
Free Ebooks Download ! Edhole.com
Free Ebooks Download ! Edhole.comFree Ebooks Download ! Edhole.com
Free Ebooks Download ! Edhole.comEdhole.com
Β 
Kinematic relationship of a object in space
Kinematic relationship of a object in spaceKinematic relationship of a object in space
Kinematic relationship of a object in spaceHitesh Mohapatra
Β 
Neil Lambert - From D-branes to M-branes
Neil Lambert - From D-branes to M-branesNeil Lambert - From D-branes to M-branes
Neil Lambert - From D-branes to M-branesSEENET-MTP
Β 
Hx3513811385
Hx3513811385Hx3513811385
Hx3513811385IJERA Editor
Β 

What's hot (20)

Compatibility equation and Airy's stress function of theory of elasticity
Compatibility equation and Airy's stress function of theory of elasticityCompatibility equation and Airy's stress function of theory of elasticity
Compatibility equation and Airy's stress function of theory of elasticity
Β 
Tensor algebra and tensor analysis for engineers
Tensor algebra and tensor analysis for engineersTensor algebra and tensor analysis for engineers
Tensor algebra and tensor analysis for engineers
Β 
Staircases_in_Fluid_Dynamics_JacobGreenhalgh
Staircases_in_Fluid_Dynamics_JacobGreenhalghStaircases_in_Fluid_Dynamics_JacobGreenhalgh
Staircases_in_Fluid_Dynamics_JacobGreenhalgh
Β 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptx
Β 
03 tensors
03 tensors03 tensors
03 tensors
Β 
Tensor 1
Tensor  1Tensor  1
Tensor 1
Β 
report #1
report #1report #1
report #1
Β 
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Β 
J05715060
J05715060J05715060
J05715060
Β 
Fundamental Of Physics Measurement
Fundamental Of Physics MeasurementFundamental Of Physics Measurement
Fundamental Of Physics Measurement
Β 
Dimensions and Dimensional Analysis
Dimensions and Dimensional AnalysisDimensions and Dimensional Analysis
Dimensions and Dimensional Analysis
Β 
PART I.5 - Physical Mathematics
PART I.5 - Physical MathematicsPART I.5 - Physical Mathematics
PART I.5 - Physical Mathematics
Β 
Constraints
ConstraintsConstraints
Constraints
Β 
S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...
S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...
S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...
Β 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
Β 
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
Β 
Free Ebooks Download ! Edhole.com
Free Ebooks Download ! Edhole.comFree Ebooks Download ! Edhole.com
Free Ebooks Download ! Edhole.com
Β 
Kinematic relationship of a object in space
Kinematic relationship of a object in spaceKinematic relationship of a object in space
Kinematic relationship of a object in space
Β 
Neil Lambert - From D-branes to M-branes
Neil Lambert - From D-branes to M-branesNeil Lambert - From D-branes to M-branes
Neil Lambert - From D-branes to M-branes
Β 
Hx3513811385
Hx3513811385Hx3513811385
Hx3513811385
Β 

Similar to E04943237

On Semi-Invariant Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold with ...
On Semi-Invariant Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold with ...On Semi-Invariant Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold with ...
On Semi-Invariant Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold with ...IJERA Editor
Β 
Certain Generalized Birecurrent Tensors In 퐊
Certain Generalized Birecurrent Tensors In 퐊 Certain Generalized Birecurrent Tensors In 퐊
Certain Generalized Birecurrent Tensors In 퐊 inventionjournals
Β 
On a Generalized νœ·ν‘Ή βˆ’ Birecurrent Affinely Connected Space
On a Generalized νœ·ν‘Ή βˆ’ Birecurrent Affinely Connected SpaceOn a Generalized νœ·ν‘Ή βˆ’ Birecurrent Affinely Connected Space
On a Generalized νœ·ν‘Ή βˆ’ Birecurrent Affinely Connected Spaceinventionjournals
Β 
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDSABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDSijrap
Β 
About Modelling of the Gravitational Fields
About Modelling of the Gravitational FieldsAbout Modelling of the Gravitational Fields
About Modelling of the Gravitational Fieldsijrap
Β 
CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...
CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...
CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...iosrjce
Β 
2207.00057.pdf
2207.00057.pdf2207.00057.pdf
2207.00057.pdfJasonMerik
Β 
Second Order Parallel Tensors and Ricci Solitons in S-space form
Second Order Parallel Tensors and Ricci Solitons in S-space formSecond Order Parallel Tensors and Ricci Solitons in S-space form
Second Order Parallel Tensors and Ricci Solitons in S-space forminventionjournals
Β 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
Β 
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...IOSRJM
Β 
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic ManifoldCR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic ManifoldIOSR Journals
Β 
47032417.pdf
47032417.pdf47032417.pdf
47032417.pdfRismanYusuf1
Β 
m - projective curvature tensor on a Lorentzian para – Sasakian manifolds
m - projective curvature tensor on a Lorentzian para – Sasakian manifoldsm - projective curvature tensor on a Lorentzian para – Sasakian manifolds
m - projective curvature tensor on a Lorentzian para – Sasakian manifoldsIOSR Journals
Β 
Some Properties of M-projective Curvature Tensor on Generalized Sasakian-Spac...
Some Properties of M-projective Curvature Tensor on Generalized Sasakian-Spac...Some Properties of M-projective Curvature Tensor on Generalized Sasakian-Spac...
Some Properties of M-projective Curvature Tensor on Generalized Sasakian-Spac...inventionjournals
Β 

Similar to E04943237 (20)

On Semi-Invariant Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold with ...
On Semi-Invariant Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold with ...On Semi-Invariant Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold with ...
On Semi-Invariant Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold with ...
Β 
Certain Generalized Birecurrent Tensors In 퐊
Certain Generalized Birecurrent Tensors In 퐊 Certain Generalized Birecurrent Tensors In 퐊
Certain Generalized Birecurrent Tensors In 퐊
Β 
On a Generalized νœ·ν‘Ή βˆ’ Birecurrent Affinely Connected Space
On a Generalized νœ·ν‘Ή βˆ’ Birecurrent Affinely Connected SpaceOn a Generalized νœ·ν‘Ή βˆ’ Birecurrent Affinely Connected Space
On a Generalized νœ·ν‘Ή βˆ’ Birecurrent Affinely Connected Space
Β 
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDSABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
Β 
About Modelling of the Gravitational Fields
About Modelling of the Gravitational FieldsAbout Modelling of the Gravitational Fields
About Modelling of the Gravitational Fields
Β 
CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...
CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...
CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...
Β 
2207.00057.pdf
2207.00057.pdf2207.00057.pdf
2207.00057.pdf
Β 
4. Zeki Kasap.pdf
4. Zeki Kasap.pdf4. Zeki Kasap.pdf
4. Zeki Kasap.pdf
Β 
4. Zeki Kasap.pdf
4. Zeki Kasap.pdf4. Zeki Kasap.pdf
4. Zeki Kasap.pdf
Β 
Second Order Parallel Tensors and Ricci Solitons in S-space form
Second Order Parallel Tensors and Ricci Solitons in S-space formSecond Order Parallel Tensors and Ricci Solitons in S-space form
Second Order Parallel Tensors and Ricci Solitons in S-space form
Β 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
Β 
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Β 
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic ManifoldCR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
Β 
47032417.pdf
47032417.pdf47032417.pdf
47032417.pdf
Β 
G023073077
G023073077G023073077
G023073077
Β 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
Β 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
Β 
D0611923
D0611923D0611923
D0611923
Β 
m - projective curvature tensor on a Lorentzian para – Sasakian manifolds
m - projective curvature tensor on a Lorentzian para – Sasakian manifoldsm - projective curvature tensor on a Lorentzian para – Sasakian manifolds
m - projective curvature tensor on a Lorentzian para – Sasakian manifolds
Β 
Some Properties of M-projective Curvature Tensor on Generalized Sasakian-Spac...
Some Properties of M-projective Curvature Tensor on Generalized Sasakian-Spac...Some Properties of M-projective Curvature Tensor on Generalized Sasakian-Spac...
Some Properties of M-projective Curvature Tensor on Generalized Sasakian-Spac...
Β 

More from IOSR-JEN

C05921721
C05921721C05921721
C05921721IOSR-JEN
Β 
B05921016
B05921016B05921016
B05921016IOSR-JEN
Β 
A05920109
A05920109A05920109
A05920109IOSR-JEN
Β 
J05915457
J05915457J05915457
J05915457IOSR-JEN
Β 
I05914153
I05914153I05914153
I05914153IOSR-JEN
Β 
H05913540
H05913540H05913540
H05913540IOSR-JEN
Β 
G05913234
G05913234G05913234
G05913234IOSR-JEN
Β 
F05912731
F05912731F05912731
F05912731IOSR-JEN
Β 
E05912226
E05912226E05912226
E05912226IOSR-JEN
Β 
D05911621
D05911621D05911621
D05911621IOSR-JEN
Β 
C05911315
C05911315C05911315
C05911315IOSR-JEN
Β 
B05910712
B05910712B05910712
B05910712IOSR-JEN
Β 
A05910106
A05910106A05910106
A05910106IOSR-JEN
Β 
B05840510
B05840510B05840510
B05840510IOSR-JEN
Β 
I05844759
I05844759I05844759
I05844759IOSR-JEN
Β 
H05844346
H05844346H05844346
H05844346IOSR-JEN
Β 
G05843942
G05843942G05843942
G05843942IOSR-JEN
Β 
F05843238
F05843238F05843238
F05843238IOSR-JEN
Β 
E05842831
E05842831E05842831
E05842831IOSR-JEN
Β 
D05842227
D05842227D05842227
D05842227IOSR-JEN
Β 

More from IOSR-JEN (20)

C05921721
C05921721C05921721
C05921721
Β 
B05921016
B05921016B05921016
B05921016
Β 
A05920109
A05920109A05920109
A05920109
Β 
J05915457
J05915457J05915457
J05915457
Β 
I05914153
I05914153I05914153
I05914153
Β 
H05913540
H05913540H05913540
H05913540
Β 
G05913234
G05913234G05913234
G05913234
Β 
F05912731
F05912731F05912731
F05912731
Β 
E05912226
E05912226E05912226
E05912226
Β 
D05911621
D05911621D05911621
D05911621
Β 
C05911315
C05911315C05911315
C05911315
Β 
B05910712
B05910712B05910712
B05910712
Β 
A05910106
A05910106A05910106
A05910106
Β 
B05840510
B05840510B05840510
B05840510
Β 
I05844759
I05844759I05844759
I05844759
Β 
H05844346
H05844346H05844346
H05844346
Β 
G05843942
G05843942G05843942
G05843942
Β 
F05843238
F05843238F05843238
F05843238
Β 
E05842831
E05842831E05842831
E05842831
Β 
D05842227
D05842227D05842227
D05842227
Β 

Recently uploaded

The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
Β 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
Β 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
Β 
FULL ENJOY πŸ” 8264348440 πŸ” Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY πŸ” 8264348440 πŸ” Call Girls in Diplomatic Enclave | DelhiFULL ENJOY πŸ” 8264348440 πŸ” Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY πŸ” 8264348440 πŸ” Call Girls in Diplomatic Enclave | Delhisoniya singh
Β 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
Β 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
Β 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
Β 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
Β 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
Β 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
Β 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
Β 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
Β 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
Β 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
Β 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
Β 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
Β 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
Β 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
Β 

Recently uploaded (20)

The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
Β 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
Β 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Β 
FULL ENJOY πŸ” 8264348440 πŸ” Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY πŸ” 8264348440 πŸ” Call Girls in Diplomatic Enclave | DelhiFULL ENJOY πŸ” 8264348440 πŸ” Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY πŸ” 8264348440 πŸ” Call Girls in Diplomatic Enclave | Delhi
Β 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
Β 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Β 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
Β 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
Β 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Β 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Β 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
Β 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
Β 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
Β 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
Β 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
Β 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
Β 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
Β 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
Β 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
Β 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
Β 

E04943237

  • 1. IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 09 (September. 2014), ||V4|| PP 32-37 International organization of Scientific Research 32 | P a g e A Quarter-Symmetric Non-Metric Connection In A Lorentzian νœ·βˆ’Kenmotsu Manifold Shyam Kishor1, Prerna Kanaujia2, Satya Prakash Yadav3 1&2Department of Mathematics & Astronomy University of Lucknow-226007, India , 3SIET, Allahabad Abstract:- In this paper we study quarter- symmetric non-metric connection in a Lorentzian ν›½βˆ’ kenmotsu manifold and the first Bianchi identity for the curvature tensor is found. Ricci tensor and the scalar curvature with respect to quarter-symmetric non-metric connection in Lorentzian ν›½βˆ’Kenmotsu manifold are obtained. Finally some identities for torsion tensor have been explored. Keywords- Hayden connection, Levi-Civita connection, Lorentzian ν›½βˆ’kenmotsu manifold, quarter- symmetric metric connection, quarter symmetric non-metric connection. MSC 2010: 53B20, 53B15, 53C15. 1. INTRODUCTION Let ν‘€ be an ν‘›βˆ’dimensional differentiable manifold equipped with a linear connection βˆ‡ . The torsion tensor 푇 of βˆ‡ is given by 푇 ν‘‹,ν‘Œ =ν›» ν‘‹ν‘Œβˆ’ν›» ν‘Œν‘‹βˆ’[ν‘‹,ν‘Œ] ν‘… ν‘‹,ν‘Œ 푍=ν›» ν‘‹ν›» ν‘Œν‘βˆ’ν›» ν‘Œν›» ν‘‹ν‘βˆ’ν›» [ν‘‹,ν‘Œ}푍. The connection βˆ‡ is symmetric if its torsion tensor 푇 vanishes, otherwise it is non-symmetric. If there is a Riemannian metric ν‘” in ν‘€ such that ν›» Μƒν‘” = 0, the connection βˆ‡ is a metric connection, otherwise it is non- metric. It is well known that a linear connection is symmetric and metric if and only if it is the Levi-Civita connection. Hayden [24] introduced a metric connection βˆ‡ with non-zero torsion on a Riemannian manifold. Such a connection is called a Hayden connection. On the other hand, in a Riemannian manifold given a 1βˆ’form νœ”, the Weyl connection βˆ‡ constructed with  and its associated vector 퐡 (Folland 1970, [1]) is a symmetric non-metric connection. In fact, the Riemannian metric of the manifold is recurrent with respect to the Weyl connection with the recurrence 1βˆ’form , that is,βˆ‡ g=g. Another symmetric non-metric connection is projectively related to the Levi-Civita connection (cf. Yano [19], Smaranda [25]). Friedmann and Schouten ([2], [20]) introduced the idea of a semi-symmetric linear connection in a differentiable manifold. A linear connection is said to be a semi-symmetric connection if its torsion tensor 푇 is of the form 푇 (ν‘‹,ν‘Œ)=ν‘’(ν‘Œ)ν‘‹βˆ’ν‘’(ν‘‹)ν‘Œ (1.1) where ν‘’ is a 1βˆ’form. A Hayden connection with the torsion tensor of the form (1.1) is a semi-symmetric metric connection. In 1970, Yano [3] considered a semi-symmetric metric connection and studied some of its properties. Some different kinds of semi-symmetric connections are studied in [4], [5], [6] and [7].In 1975, S. Golab [8] defined and studied quarter-symmetric linear connections in differentiable manifolds. A linear connection is said to be a quarter-symmetric connection if its torsion tensor 푇 is of the form 푇 ν‘‹,ν‘Œ =ν‘’ ν‘Œ νœ‘ν‘‹βˆ’ν‘’ ν‘‹ νœ‘ν‘Œ ,ν‘‹,ν‘Œ οƒŽ 푇푀 (1.2) where ν‘’ is a 1βˆ’form and νœ‘ is a tensor of type (1,1). Note that a quarter-symmetric metric connection is a Hayden connection with the torsion tensor of the form (1.2). Studies of various types of quarter-symmetric metric connections and their properties include [9], [10], [11] and [12] among others. On the other hand, there is well known class of almost contact metric manifolds introduced by K. Kenmotsu, which is now known as Kenmotsu manifolds [10]. An almost contact metric structure on a manifold ν‘€ is called a trans-Sasakian structure if the product manifold ν‘€ ο‚΄ ν‘… belongs to the class ν‘Š4. The class 퐢6οƒ… 퐢5 ([13], [26]) coincides with the class of the trans-Sasakian structures of type (,). In fact, in [13], local nature of the two subclasses, namely, 퐢5 and 퐢6 structures of trans-Sasakian structures are characterized completely. We note that trans-Sasakian structures of type (0,0), (0,) and (,0) are cosymplectic [21], ο’βˆ’Kenmotsu [14] and ο‘βˆ’Sasakian [14] respectively. The paper is organized as follows: Section 2, deals with some preliminary results about quarter-symmetric non-metric connection. In this section the curvature tensor of the Riemannian manifold with respect to the defined quarter-symmetric non- metric connection is also found. In the last of this section first Bianchi identity for the curvature tensor of the Riemannian manifold with respect to the given quarter-symmetric non-metric connection is found. In section 3, we study this quarter-symmetric non-metric connection in Lorentzian ο’βˆ’Kenmotsu manifold. We have given
  • 2. A Quarter-Symmetric Non-Metric Connection In A Lorentzian ν›½ βˆ’Kenmotsu Manifold International organization of Scientific Research 33 | P a g e the covariant derivative of a 1βˆ’form and the torsion tensor. We also get the curvature tensor of the Lorentzian ο’βˆ’Kenmotsu manifold with respect to the defined quarter-symmetric non-metric connection and find first Bianchi identity. Finally we have calculated Ricci tensor, scalar curvature and torsion tensor of the Lorentzian ο’βˆ’ Kenmotsu manifold with respect to the defined quarter-symmetric non-metric connection. 2. A Quarter-Symmetric Connection In this section existence of quarter-symmetric non-metric connection has been discussed. Theorem-1 Let ν‘€ be an ν‘›-dimensional Riemannian manifold equipped with the Levi-Civita connection βˆ‡ of its Riemannian metric ν‘”. Let  be a 1-form and νœ‘, a (1,1) tensor field in ν‘€ such that  ν‘‹ =ν‘” ,ν‘‹ , (2.1) ν‘” νœ‘ν‘‹,ν‘Œ = βˆ’ν‘” ν‘‹,νœ‘ν‘Œ (2.2) for all ν‘‹,ν‘ŒοƒŽν‘‡ν‘€. Then there exists a unique quarter- symmetric non-metric connection βˆ‡ in ν‘€ given by ν›» ν‘‹ν‘Œ= βˆ‡ν‘‹ν‘Œβˆ’ο¨ ν‘‹ νœ‘ν‘Œβˆ’ν‘” ν‘‹,ν‘Œ  , (2.3) That satisfies 푇 ν‘‹,ν‘Œ =  ν‘Œ νœ‘ν‘‹βˆ’ο¨ ν‘‹ νœ‘ν‘Œ, (2.4) and ν›» ν‘‹ν‘” ν‘Œ,푍 = ν‘Œ ν‘” ν‘‹,푍 + 푍 ν‘” ν‘‹,ν‘Œ (2.5) where 푇 is the torsion tensor of ν›» . Proof: The equation (2.4) of [15] is ν›» ν‘‹ν‘Œ = βˆ‡ν‘‹ν‘Œ+ν‘’(ν‘Œ)νœ‘1ν‘‹βˆ’ν‘’(ν‘‹)νœ‘2ν‘Œβˆ’ν‘”(νœ‘1ν‘‹,ν‘Œ)ν‘ˆ βˆ’ν‘“1{ν‘’1 ν‘‹ ν‘Œ+ν‘’1 ν‘Œ ν‘‹βˆ’ν‘” ν‘‹,ν‘Œ ν‘ˆ1}βˆ’ν‘“β‚‚ν‘”(ν‘‹,ν‘Œ)ν‘ˆβ‚‚ Taking νœ‘1=0,νœ‘2=νœ‘,ν‘’=ν‘’1=,ν‘“1=0,ν‘“2=1,ν‘ˆ2=, (2.6) in above equation, we get (2.3). The equations (2.5) and (2.6) of [15] are 푇 ν‘‹,ν‘Œ = ν‘’ ν‘Œ νœ‘ν‘‹βˆ’ν‘’ ν‘‹ νœ‘ν‘Œ, ν›» ν‘‹ν‘” ν‘Œ,푍 =2ν‘“1ν‘’1 ν‘‹ ν‘” ν‘Œ,푍 +ν‘“2 ν‘’2 ν‘Œ ν‘” ν‘‹,푍 +ν‘’2 푍 ν‘” ν‘‹,ν‘Œ Using (2.6) in above equations, we get respectively (2.4) and (2.5). Conversely, a connection defined by (2.3) satisfies the condition (2.4) and (2.5). Proposition 1. Let ν‘€ be an ν‘›-dimensional Riemannian manifold. For the quarter-symmetric connection defined by (2.3), the covariant derivatives of the torsion tensor 푇 and any 1-form νœ‹ are given respectively by (ν›» 푋푇 )(ν‘Œ,푍) = ((ν›» ν‘‹νœ‚)푍)νœ‘ν‘Œβˆ’(ν›» ν‘‹νœ‚)ν‘Œ)νœ‘ν‘ +νœ‚ 푍 ν›» ν‘‹νœ‘ ν‘Œβˆ’νœ‚ ν‘Œ ν›» ν‘‹νœ‘ 푍, (2.7) and ν›» ν‘‹νœ‹ ν‘Œ= βˆ‡ν‘‹νœ‹ ν‘Œ+ ν‘‹ νœ‹ νœ‘ν‘Œ +ν‘” ν‘‹,ν‘Œ νœ‹  (2.8) for all ν‘‹,ν‘Œ,푍 οƒŽν‘‡ ν‘€. Using (2.8) & (2.3) in ν›» 푋푇 ν‘Œ,푍 =ν›» 푋푇 ν‘Œ,푍 βˆ’ν‘‡ ν›» ν‘‹ν‘Œ,푍 βˆ’ν‘‡ (ν‘Œ,ν›» 푋푍) We obtain (2.7). Similarly, using (2.3) with ν›» ν‘‹νœ‹ ν‘Œ=ν›» ν‘‹νœ‹ν‘Œβˆ’νœ‹(ν›» ν‘‹ν‘Œ) (2.8) can be obtained. In an ν‘›-dimensional Riemannian manifold ν‘€, for the quarter-symmetric connection defined by (2.3), let us write 푇 ν‘‹,ν‘Œ,푍 =ν‘” 푇 ν‘‹,ν‘Œ ,푍 , ν‘‹,ν‘Œ,ν‘νœ–ν‘‡ν‘€. (2.9) Proposition 2. Let ν‘€ be an ν‘›-dimensional Riemannian manifold. Then 푇 ν‘‹,ν‘Œ,푍 +푇 ν‘Œ,푍,ν‘‹ +푇 푍,ν‘‹,ν‘Œ =2 ν‘‹ ν‘” ν‘Œ,νœ‘ν‘ +2 ν‘Œ ν‘” 푍,νœ‘ν‘‹ +2 푍 ν‘” ν‘‹,νœ‘ν‘Œ (2.10) Proof: In view of (2.7) and (2.9) we have the proposition. Theorem 2. Let ν‘€ be an ν‘›-dimensional Riemannian manifold equipped with the Levi-Civita connection βˆ‡ of its Riemannian metric ν‘”. Then the curvature tensor ν‘… of the quarter-symmetric connection defined by (2.3) is given by ν‘… ν‘‹,ν‘Œ,푍 =ν‘… ν‘‹,ν‘Œ,푍 βˆ’ν‘‡ ν‘‹,ν‘Œ,푍 οΈβˆ’2푑 ν‘‹,ν‘Œ νœ‘ν‘
  • 3. A Quarter-Symmetric Non-Metric Connection In A Lorentzian ν›½ βˆ’Kenmotsu Manifold International organization of Scientific Research 34 | P a g e + ν‘‹ βˆ‡ν‘Œνœ‘ ν‘βˆ’ο¨ ν‘Œ ν›»ν‘‹νœ‘ 푍 +ν‘” ν‘Œ,푍  ν‘‹ οΈβˆ’βˆ‡ν‘‹οΈ+ ν‘‹ νœ‘οΈ βˆ’ ν‘” ν‘‹,푍  ν‘Œ οΈβˆ’βˆ‡ν‘ŒοΈ+ ν‘Œ νœ‘οΈ (2.11) for all ν‘‹,ν‘Œ,ν‘οƒŽν‘‡ν‘€, where ν‘… is the curvature of Levi-Civita connection. Proof: In view of (2.3), (2.2), (2.4) and (2.9) we get (2.11). Theorem 3. In an ν‘›-dimensional Riemannian manifold the first Bianchi identity for the curvature tensor of the Riemannian manifold with respect to the quarter-symmetric connection defined by (2.3) is ν‘… ν‘‹,ν‘Œ,푍 +ν‘… ν‘Œ,푍,ν‘‹ +ν‘… 푍,ν‘‹,ν‘Œ =βˆ’ 푇 ν‘‹,ν‘Œ,푍 +푇 ν‘Œ,푍,ν‘‹ +푇 푍,ν‘‹,ν‘Œ  + ν‘‹ 퐡 ν‘Œ,푍 + ν‘Œ 퐡 푍,ν‘‹ + 푍 퐡 ν‘‹,ν‘Œ βˆ’2푑 ν‘‹,ν‘Œ νœ‘ν‘βˆ’2푑 ν‘Œ,푍 νœ‘ν‘‹βˆ’2푑 푍,ν‘‹ νœ‘ν‘Œ (2.12) for all ν‘‹,ν‘Œ,푍 οƒŽν‘‡ν‘€, where 퐡 ν‘‹,ν‘Œ = βˆ‡ν‘‹νœ‘ ν‘Œβˆ’ βˆ‡ν‘Œνœ‘ ν‘‹. (2.13) Proof: From (2.11), we get ν‘… ν‘‹,ν‘Œ,푍 +ν‘… ν‘Œ,푍,ν‘‹ +ν‘… 푍,ν‘‹,ν‘Œ =2 ν‘‹ ν‘” νœ‘ν‘Œ,푍 +2 ν‘Œ ν‘” νœ‘ν‘,ν‘‹ +2 푍 ν‘” νœ‘ν‘‹,ν‘Œ  + ν‘‹ βˆ‡ν‘Œνœ‘ ν‘βˆ’ο¨ ν‘‹ ν›»ν‘νœ‘ ν‘Œ+ ν‘Œ ν›»ν‘νœ‘ ν‘‹ βˆ’ο¨ ν‘Œ ν›»ν‘‹νœ‘ 푍+ 푍 ν›»ν‘‹νœ‘ ν‘Œβˆ’ο¨ 푍 ν›»ν‘Œνœ‘ ν‘‹ βˆ’ 훻푋 ν‘Œ νœ‘ν‘+ ν›»ν‘Œο¨ ν‘‹ νœ‘ν‘βˆ’ ν›»ν‘Œο¨ 푍 νœ‘ν‘‹ + 훻푍 ν‘Œ νœ‘ν‘‹βˆ’ 훻푍 ν‘‹ νœ‘ν‘Œ+ 훻푋 푍 νœ‘ν‘Œ. Using (2.13) and (2.10) in the previous equation we get (2.12). Let us write the curvature tensor 푇 as a (0,4) tensor by ν‘… ν‘‹,ν‘Œ,푍,ν‘Š =ν‘” ν‘… ν‘‹,ν‘Œ 푍,ν‘Š , ν‘‹,ν‘Œ,푍,ν‘ŠοƒŽν‘‡ν‘€. (2.14) Then we have the following: Theorem 4.Let ν‘€ be a Riemannian manifold. Then ν‘… ν‘‹,ν‘Œ,푍,ν‘Š +ν‘… ν‘Œ,ν‘‹,푍,ν‘Š =0, (2.15) for all ν‘‹,ν‘Œ,푍,ν‘ŠοƒŽν‘‡ν‘€. Proof: Using (3.25) in (2.14), we get ν‘… ν‘‹,ν‘Œ,푍,ν‘Š =ν‘… ν‘‹,ν‘Œ,푍,ν‘Š βˆ’ο¨ 푍 ν‘” 푇 ν‘‹,ν‘Œ ,ν‘Š +ν‘” ν‘Œ,푍 ν‘” ν‘‹,ν‘Š βˆ’ν‘” ν‘‹,푍 ν‘” ν‘Œ,ν‘Š . (2.16) Interchanging ν‘‹ and ν‘Œ in the previous equation and adding the resultant equation in (3.28) and using (2.4) we get (2.15). 3. QUARTER-SYMMETRIC NON-METRIC CONNECTION IN A LORENTZIAN  βˆ’KENMOTSU MANIFOLD A differentiable manifold ν‘€ of dimension ν‘› is called Lorentzian Kenmotsu manifold if it admits a (1,1)βˆ’tensor νœ‘, a contravariant vector field , a covariant vector field  and Lorentzian metric ν‘” which satisfy νœ‘2ν‘‹=ν‘‹+ ν‘‹ ,   =βˆ’1, νœ‘οΈ=0, νœ‘ν‘‹ =0 (3.1) ν‘” νœ‘ν‘‹,νœ‘ν‘Œ =ν‘” ν‘‹,ν‘Œ + ν‘‹  ν‘Œ (3.2) ν‘” νœ‘ν‘‹,ν‘Œ =ν‘” ν‘‹,νœ‘ν‘Œ , ν‘” ν‘‹, =(ν‘‹) (3.3) for all X,YοƒŽTM. Also if Lorentzian Kenmotsu manifold ν‘€ satisfies βˆ‡ν‘‹νœ‘ ν‘Œ = ν‘” νœ‘ν‘‹,ν‘Œ οΈβˆ’ο¨ ν‘Œ νœ‘ν‘‹ , ν‘‹,ν‘ŒοƒŽν‘‡ν‘€ (3.4) Where  denotes the operator of covariant differentiation with respect to the Lorentzian metric ν‘”, then ν‘€ is called Lorentzian -Kenmotsu manifold. From the above equation it follows that βˆ‡ν‘‹οΈ= ν‘‹βˆ’ο¨ ν‘‹  (3.5) (βˆ‡ν‘‹ο¨) ν‘Œ = ν‘” ν‘‹,ν‘Œ βˆ’ο¨ ν‘‹  ν‘Œ (3.6) and consequently 푑=0 (3.7) Where
  • 4. A Quarter-Symmetric Non-Metric Connection In A Lorentzian ν›½ βˆ’Kenmotsu Manifold International organization of Scientific Research 35 | P a g e 푑 ν‘‹,ν‘Œ = 12 (훻푋 ν‘Œ βˆ’(ν›»ν‘Œο¨) ν‘‹ , ν‘‹,ν‘ŒοƒŽν‘‡ν‘€ (3.8) Furthur, on a Lorentzian -Kenmotsu manifold ν‘€, the following relations hold ([3], [16])  ν‘… ν‘‹,ν‘Œ 푍 =2 ν‘” ν‘‹,푍  ν‘Œ βˆ’ν‘” ν‘Œ,푍  ν‘‹ (3.9) ν‘… ν‘‹,ν‘Œ =2  ν‘‹ ν‘Œβˆ’ο¨ ν‘Œ ν‘‹ (3.10) 푆 ν‘‹, =βˆ’ ν‘›βˆ’1 2 ν‘‹ (3.11) 푄 =βˆ’ ν‘›βˆ’1 2 3.12 푆 , = ν‘›βˆ’1 2 (3.13) The equation (3.9) is equivalent to ν‘… ,ν‘‹ ν‘Œ=2  ν‘Œ ν‘‹βˆ’ν‘” ν‘‹,ν‘Œ  (3.14) which implies that ν‘… ,ν‘‹ =2 ν‘‹βˆ’ο¨ ν‘‹  (3.15) From (3.9) and (3.14), we have  ν‘… ν‘‹,ν‘Œ  =0 (3.16)  ν‘… ,ν‘‹ ν‘Œ =2  ν‘Œ  ν‘‹ βˆ’ν‘” ν‘‹,ν‘Œ . (3.17) Theorem 5. Let ν‘€ be a Lorentzian ο’βˆ’Kenmotsu manifold. Then for the quarter-symmetric connection defined by (2.3), we have ν›» ν‘‹νœ‹ ν‘Œ= βˆ‡ν‘‹νœ‹ ν‘Œ+ ν‘‹ νœ‹ νœ‘ν‘Œ +ν‘” ν‘‹,ν‘Œ νœ‹  . (3.18) In particular, (ν›» ν‘‹νœ‚)ν‘Œ= ο’βˆ’1 ν‘” ν‘‹,ν‘Œ βˆ’ο’νœ‚ ν‘‹ νœ‚ ν‘Œ (3.19) and ν‘‘ =0 (3.20) where ν‘‘  ν‘‹,ν‘Œ = 12 ν›» 푋 ν‘Œ βˆ’ ν›» ν‘Œο¨ ν‘‹ , ν‘‹,ν‘ŒοƒŽν‘‡ν‘€ (3.21) Proof: From equation (2.3), we get (3.18). Now replacing νœ‹ by  in (3.18) and using (3.1) and (3.6) we get (3.19). Equation (3.20) follows immediately from (3.19). Theorem 6. Let ν‘€ be a Lorentzian -Kenmotsu manifold. Then ν›» ν‘‹νœ‘ ν‘Œ= +1 ν‘” νœ‘ν‘‹,ν‘Œ οΈβˆ’ο’ο¨ ν‘Œ νœ‘ν‘‹ (3.22) which implies 푇 ν‘‹,ν‘Œ = 1  βˆ’ ν›» ν‘‹νœ‘ ν‘Œ+ ν›» ν‘Œνœ‘ ν‘‹ + (+1)  ν‘” νœ‘ν‘‹,ν‘Œ οΈβˆ’ν‘” νœ‘ν‘Œ,ν‘‹  (3.23) and ν›» 푋=ο’ν‘‹βˆ’ +1  ν‘‹  (3.24) For all X,YοƒŽ TM. Proof: From Equations (2.3) and (3.1), we get ν›» ν‘‹νœ‘ ν‘Œ= βˆ‡ν‘‹νœ‘ ν‘Œ+ν‘” ν‘‹,νœ‘ν‘Œ , Which in view of (3.4) gives (3.22). From (3.22) and (2.4), we get (3.23). Now in view of equations (2.3), (3.5), (3.1) and (3.3), we get (3.24). Theorem 7. Let ν‘€ be a Lorentzian ν›½-Kenmotsu manifold. Then ν›» 푋푇 ν‘Œ,푍 = ν›½+1 [ν‘” ν‘‹,푍 νœ‘ν‘Œβˆ’ν‘” ν‘‹,ν‘Œ νœ‘ν‘+ 푍 ν‘” νœ‘ν‘‹,ν‘Œ οΈβˆ’ο¨ ν‘Œ ν‘” νœ‘ν‘‹,푍 ] βˆ’ν›½ο¨ ν‘‹ 푇 ν‘Œ,푍 (3.25) Consequently, ν›» 푋푇 ν‘Œ,푍 +ν›» ν‘Œν‘‡ 푍,ν‘‹ +ν›» 푍푇 ν‘‹,ν‘Œ =0 (3.26) for all X,Y,Z,W∈TM. Proof: Using equations (3.19), (3.22) and (2.4) in (2.7) we obtain (3.25). Equation (3.26) follows from (3.25) and (2.4). Theorem 8. The curvature tensor ν‘… of the quarter-symmetric connection in a Lorentzian ν›½-kenmotsu manifold is as follows ν‘… ν‘‹,ν‘Œ 푍=ν‘… ν‘‹,ν‘Œ 푍+ ν›½+1 [ ν‘‹ ν‘” νœ‘ν‘Œ,푍 
  • 5. A Quarter-Symmetric Non-Metric Connection In A Lorentzian ν›½ βˆ’Kenmotsu Manifold International organization of Scientific Research 36 | P a g e βˆ’ο¨ ν‘Œ ν‘” νœ‘ν‘‹,푍 +ν‘” ν‘Œ,푍  ν‘‹ οΈβˆ’ν‘” ν‘‹,푍  ν‘Œ ] +ν›½  푍 푇 ν‘‹,ν‘Œ βˆ’ν‘” ν‘Œ,푍 ν‘‹+ν‘” ν‘‹,푍 ν‘Œ (3.27) Proof: Using (3.1), (3.3), (2.9) and (2.4) in (2.11), we get ν‘… ν‘‹,ν‘Œ 푍=ν‘… ν‘‹,ν‘Œ ν‘βˆ’νœ‚ ν‘Œ βˆ‡ν‘‹νœ‘ 푍+νœ‚ ν‘‹ βˆ‡ν‘Œνœ‘ 푍 + (ν›»ν‘Œο¨ ν‘‹)νœ‘ν‘βˆ’((훻푋)ν‘Œ)νœ‘ν‘ +ν‘” ν‘Œ,푍 βˆ’βˆ‡ν‘‹οΈ+ νœ‚ ν‘‹  βˆ’ν‘” ν‘‹,푍 βˆ’βˆ‡ν‘ŒοΈ+ νœ‚ ν‘Œ  βˆ’νœ‚ ν‘Œ ν‘” νœ‘ν‘‹,푍 +βˆ’νœ‚ ν‘‹ ν‘” νœ‘ν‘Œ,푍 . Now using (3.4), (3.7), (3.5) and (3.1) in the above equation we obtain (3.27). Now for the curvature tensor ν‘… of the quarter-symmetric non-metric connection of the Lorentzian ν›½-Kenmotsu manifold we have following theorems. Theorem 9. Let ν‘€ be a Lorentzian ν›½-Kenmotsu manifold. Then ν‘… ν‘‹,ν‘Œ,푍,ν‘Š +ν‘… ν‘‹,ν‘Œ,ν‘Š,푍 =ν›½ νœ‚ 푍 ν‘” 푇 ν‘‹,ν‘Œ ,ν‘Š +νœ‚ ν‘Š ν‘” 푇 ν‘‹,ν‘Œ ,푍 +(ν›½+1)[{νœ‚ ν‘‹ ν‘” νœ‘ν‘Œ,푍 βˆ’νœ‚ ν‘Œ ν‘” νœ‘ν‘‹,푍 +ν‘”(ν‘Œ,푍)νœ‚(ν‘‹)βˆ’ν‘”(ν‘‹,푍)νœ‚(ν‘Œ)}νœ‚(ν‘Š) +{νœ‚ ν‘‹ ν‘” νœ‘ν‘Œ,ν‘Š βˆ’νœ‚ ν‘Œ ν‘” νœ‘ν‘‹,ν‘Š +ν‘”(ν‘Œ,ν‘Š)νœ‚(ν‘‹)βˆ’ν‘”(ν‘‹,ν‘Š)νœ‚(ν‘Œ)}νœ‚(푍)] (3.28) and ν‘… ν‘‹,ν‘Œ,푍,ν‘Š βˆ’ν‘… 푍,ν‘Š,ν‘‹,ν‘Œ =ν›½ νœ‚ 푍 ν‘” 푇 ν‘‹,ν‘Œ ,ν‘Š βˆ’νœ‚ ν‘‹ ν‘” 푇 푍,ν‘Š ,ν‘Œ +(ν›½+1)[νœ‚ ν‘‹ νœ‚ ν‘Š ν‘” νœ‘ν‘Œ,푍 +ν‘” ν‘Œ,푍 βˆ’νœ‚(ν‘Œ)νœ‚(푍){ν‘”(νœ‘ν‘Š,ν‘‹)+ν‘”(ν‘Š,ν‘‹)}] (3.29) for all ν‘‹,ν‘Œ,푍,ν‘Šβˆˆν‘‡ν‘€. Proof: From (3.27) equation (2.14) reduces to ν‘… ν‘‹,ν‘Œ,푍,ν‘Š =ν‘…(ν‘‹,ν‘Œ,푍,ν‘Š)+ν›½[νœ‚ 푍 ν‘” 푇 ν‘‹,ν‘Œ ,ν‘Š βˆ’ν‘”(ν‘Œ,푍)ν‘”(ν‘‹,ν‘Š)+ν‘”(ν‘‹,푍)ν‘”(ν‘Œ,ν‘Š)] +(ν›½+1)[νœ‚(ν‘Š){νœ‚ ν‘‹ ν‘” νœ‘ν‘Œ,푍 βˆ’νœ‚ ν‘Œ ν‘” νœ‘ν‘‹,푍 +ν‘”(ν‘Œ,푍)νœ‚(ν‘‹)βˆ’ν‘”(ν‘‹,푍)νœ‚(ν‘Œ)}] (3.30) Interchanging ν‘‹ and ν‘Œ in the above equation and adding the resultant equation in it and then using (2.4) we get (2.15). Now interchanging 푍 and ν‘Š in (3.30) and adding the resultant equation to (3.30) we obtain (3.28). In the last the equation (3.29) can be obtained by interchanging ν‘‹ and 푍 & ν‘Œ and ν‘Š in (3.30) and substracting the resultant equation from (3.30) and using (2.4). Theorem 10: The first Bianchi identity for the curvature tensor of the Lorentzian ν›½βˆ’Kenmotsu manifold with respect to the connection defined in the equation (2.3) is as given below ν‘… ν‘‹,ν‘Œ 푍+ν‘… ν‘Œ,푍 ν‘‹+ν‘… 푍,ν‘‹ ν‘Œ=0 (3.31) for all ν‘‹,ν‘Œ,ν‘βˆˆν‘‡ν‘€. Proof: In view of equations (3.27) and (2.4), we get (3.31). Theorem 11. In an ν‘›-dimensional Lorentzian ν›½-Kenmotsu manifold ν‘€, the Ricci tensor and the scalar curvature with respect to the connection defined by the equation (2.3) are given by 푆 ν‘Œ,푍 =푆 ν‘Œ,푍 βˆ’ν›½ ν‘›βˆ’1 ν‘” ν‘Œ,푍 + ν›½+1 ν‘” νœ‘ν‘Œ,푍 β€“νœ‚ ν‘Œ ν‘” νœ‘ν‘,νœ‰ βˆ’νœ‚ ν‘Œ νœ‚ 푍 (3.32) where ν‘‹,ν‘Œβˆˆν‘‡ν‘€ and ν‘ŸΜƒ =ν‘Ÿβˆ’ν›½ν‘› ν‘›βˆ’1 βˆ’ ν›½+1 (3.33) respectively. Where 푆 is the Ricci tensor and ν‘Ÿ is the scalar curvature of ν‘€. Proof: Let {e₁, eβ‚‚,……., en} be a basis of ν‘€, then 푆(ν‘Œ,푍)=Ξ£ν‘”(ν‘… (ν‘’ν‘–,ν‘Œ)푍,ν‘’ν‘–) Now using (3.27) and trace(Ο†)=0 in the above equation, we obtain (3.32) and (3.32) gives (3.33). Theorem 12. The torsion tensor 푇 satisfies the following condition 푇 푇 ν‘‹,ν‘Œ 푍 +푇 푇 ν‘Œ,푍 ν‘‹ +푇 푇 푍,ν‘‹ ν‘Œ =0 (3.34) for all X,Y,Z∈TM Proof: Using (2.4) and (3.1) we get (3.34).
  • 6. A Quarter-Symmetric Non-Metric Connection In A Lorentzian ν›½ βˆ’Kenmotsu Manifold International organization of Scientific Research 37 | P a g e REFERENCES [1]. G. B. Folland, Weyl manifolds, J. Di . Geometry 4(1970), 145-153. [2]. A. Friedmann, and J. A. Schouten, Uber die geometrie der halbsymmetrischen ubertragung, Math. Zeitschr. 21(1924), 211-223. [3]. K.Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl. 15(1970), 1579-1586. MR0275321(431078). [4]. N. S. Agashe, and M. R. Chae, A semi-symmetric non-metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 23(1992), 399-409. [5]. O. C. Andonie, and D.Smaranda, Certaines connexions semi-symetriques, Tensor 31(1977), 8-12. [6]. Y. Liang, On semi-symmetric recurrent-metric connection, Tensor 55(1994), 107-112. [7]. J. Sengupta, U. C. De, and T. Q. Binh, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 31(12)(2000), 1659-1670. [8]. S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor 29(1975), 249-254. MR 52 # 4156. [9]. R. S. Mishra, and, S. N. Pandey, On quarter-symmetric metric F-connections, Tensor 34(1980), 1-7. [10]. S. C. Rastogi, On quarter-symmetric metric connection, C. R. Acad. Bulg. Sci. 31(1978), no. 8, 811-814. MR 80f : 53015. [11]. S. C. Rastogi, On quarter-symmetric metric connections, Tensor 44(1987), 133-141. [12]. K. Yano, and T. Imai, Quarter-symmetric metric connections and their curvature tensors, Tensor 38(1982), 13-18. [13]. J.C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl., 162(4) (1992), 77- 86. [14]. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24(1972), no. 1, 93-103. [15]. M. M. Tripathi, A new connection in Riemannian manifolds, Internat. Electr. J. Geom. 1(2008), no.1, 15- 24. [16]. D.G. Prakasha , C.S. Bagewadi and N.S. Basavarajappa, On Lorentzian Ξ²-Kenmotsu manifolds, Int.Journal of Math., 2(19)(2008), 919-927. [17]. S. Tanno , The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J. 21 (1969), no. 1, 21-38. [18]. C.S. Bagewadi and E. Girish Kumar, Note on Trans-Sasakian manifolds, Tensor.N.S., 65(1)(2004), 80- 88. [19]. K.Yano, Integral formulas in Riemannian geometry, Marcel Dekker Inc., 1970. MR0284950(442174). [20]. J. A. Schouten , Ricci calculus, Springer, 1954. [21]. D.E. Blair, Contact manifolds in Riemannian geometry, Lectures Notes in Mathematics, Springer-Verlag, Berlin, 509(1976), 146. [22]. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, MA, 2002. [23]. R. S. Mishra , Structures on a differentiable manifold and their applications, Chandrama Prakashan, Allahabad, India, 1984. [24]. H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34(1932), 27-50. [25]. D. Smaranda, On projective transformations of symmetric connections with a recurrent projective tensor eld, Proc. Nat. Coll. on Geometry and Topology (Bu steni, 1981), 323-329, Univ. Bucare sti, Bucharest, 1983. [26]. J.C. Marrero and D. Chinea, On trans-Sasakian manifolds, Proceedings of the XIVth Spanish-Portuguese Conference on Mathematics, Vol. I-III(Spanish)(Puerto de la Cruz, 1989), 655-659, Univ. La Laguna, La Laguna, 1990.