SlideShare a Scribd company logo
1 of 12
Download to read offline
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org
ISSN (e): 2250-3021, ISSN (p): 2278-8719
Vol. 04, Issue 11 (November. 2014), ||VI|| PP 01-12
International organization of Scientific Research 1 | P a g e
Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban
Wind Speed for Heights Equal and Less than 10 Meters
Yasser Maklad1
1
(University of New England, Armidale NSW 2351 NSW Australia– School of Environmental & Rural Science -
email: ymaklad@myune.edu.au)
Abstract: - Wind has a very intermittent nature, its behaviour and speed are directly affected by several factors,
specifically the nature of the environment and the height that wind blows at. Wind behaviour at urban large city
areas and urban suburban areas is completely different than such behaviour at open terrain and flat unobstructed
areas, wind turns to be more disturbed and turbulent and wind speed is reduced due to the existence of several
obstructions, mostly buildings either single storey or medium rise or high rise buildings in addition to trees. As
well, the height at which wind is blowing, the lower height the more disturbed wind the less wind speed, such
effect is maximised in urban areas and near to the ground level. This paper aims to estimate and generate, in urban
Armidale NSW, Australia, an annual typical daily wind speed for heights equal and less than 10m. A numerical
method is applied to calculate such wind speed at urban Armidale at various heights (10, 9, 8, 7, 6, 5 & 4) m
utilising an already previously generated typical wind speed reference year (TRY) of Armidale based on historical
meteorological wind speed records measured at 10m height at Armidale’s Tree Group Nursery Weather Station
over a period of 23 years (1991 to 2013). This station is situated typically in valley of Armidale’s lowest altitude,
thus such data would represent the pessimistic scenario of urban wind speed in Armidale. Achieving such a
database of typical reference year of daily wind speed at heights equal and less than 10 meters in (m/s) is an added
value to the micro-scale wind energy generation systems, ranges from 0.5 kW to 10 kW, as such systems involves
micro-scale wind turbines would be operating at heights considered at this study.
Keywords: - Armidale Valley, NSW, test meteorological year, test reference year, wind speed, micro-scale energy
generation, micro-wind turbines
I. INTRODUCTION
When wind flows over an open area approaches the boundaries of the built-up area, it encounters a high
roughness of the surface, created by the buildings. The increased resistance resulting from this roughness reduces
the wind flow at the level of the urban canopy. In this way a transitional zone is created between the ground and
the undisturbed wind flow above the urban air dome, which is called “urban boundary layer”. The “undisturbed
flow” is called the “gradient wind” and its velocity is called the gradient velocity. Near the ground, wind
experiences friction. Its speed is reduced more steeply and its turbulence increases. [1, 2 &3].
The main urban design elements which can modify the wind conditions are: the overall density of the urban area,
size and height of the individual buildings; existence of high-rise buildings, orientation of the streets, availability,
size distribution, and design details of open spaces and green shelter belts. [4, 5 & 6].
The wind field is characterized by two parameters: the vertical profile of the mean wind speed and the turbulence
spectrum. Both are affected and modified by the profile of the terrain and, in an urban setup, by the urban structure
[4, 5, 6 & 7].
Micro-scale energy generation ranges from [0.5 to 10] kW which suits domestic/residential, educational and small
commercial applications. , wind is one of the renewable inexhaustible energy sources for this scale of energy
generation. Thus it most likely that micro scale wind turbines would operate at level higher than a house or a
school or shop building.
This study focuses on the generation of wind speed at urban Armidale NSW, Australia at heights (10, 9, 8, 7, 6,
5 & 4)] meters. This scope is selected mainly to provide micro-scale wind energy generation systems’ designers
an annual realistic mean daily speed such heights of micro-wind turbines’ possible installations.
II. DATA AND LOCATION
A previously meteorological wind speed TRY at 10m height was developed [8]. That TRY was generated
based on the daily mean wind speed recorded during the period 1991–2010 recorded at Armidale’s Tree Group
Nursery Weather Station. That TYR was generated utilising Finkelstein-Schafer (FS) statistics [9].
In Australia, meteorological observations are recorded by the Australian Bureau of Meteorology (BOM) weather
stations are widely spreader in lots of cities and towns around Australia. In this study, the global wind speed data
recorded by Armidale’s Tree Group Nursery manual weather station and published on the BOM’s website where
Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and
Less than 10 Meters
International organization of Scientific Research 2 | P a g e
it was collected. The missing and invalid measurements account for 0.001% of the whole database of mean wind
speed; those were replaced with the values of preceding or subsequent days by interpolation. During the
calculations process, any year found with more than ten days in any month observations not available was
excluded. “Table 1” provides geographical information for Armidale town and the periods of the relevant mean
wind speed data and “figure 1” shows Armidale’s location in NSW, Australia.
Table 1 Geographical and mean wind speed database information of Armidale’s Tree Group Nursery Weather
Station
Longitude ( †E) Latitude( †S) Elevation (m) Mean Daily Wind Speed
Period Total years
Armidale 151.67 30.52 987 1991—2013 23
Figure1 Armidale NSW, Australia location
III. METHODOLOGY
To estimate the wind speed in urban areas, a reference measured wind speed is required which is usually
the wind speeds measured and recorded by meteorological stations at a specified height. Such height is usually
ten meters from ground level. Although, meteorological stations give all needed data but the problem is that the
terrain of the station area and the height of the wind anemometer, are different from the design site [10]
The information of wind data in meteorology stations is gotten in the height of 10 meters above the ground and in
a flat and completely open area. In lower levels the wind speed will be reduced because of the friction of the earth
surfaces. The amount of the wind speed reduction depends on the terrain conditions. Reduction of the wind speed
on the large area of water surface is the least and in the compressed urban area with low and high rise buildings
is the most (Table 2). So the data of the wind speed reported by the meteorology station is not enough to estimate
the wind speed in urban areas [10].
A numerical method is presented, in modelling the urban effect on the wind speed, the vertical profile of the wind,
from the gradient wind level down to the ground is used. The simple equation developed by Davenport in 1960
[5] - shows the profile of the wind speed in different height of an area. It shows that the wind speed vary with
height according to a power low [11].
:
𝑽 𝒁̅̅̅̅
𝑽 𝑮̅̅̅̅
= [
𝒁
𝒁 𝑮
]
−𝜶
(1)
Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and
Less than 10 Meters
International organization of Scientific Research 3 | P a g e
Where:
𝑉𝑍
̅̅̅ = mean wind speed at height Z in the study site (m/s)
𝑉𝐺
̅̅̅ = mean wind speed at height 𝑍 𝐺 (“gradient” height) at top of the boundary layer of the study site, above
which the speed is assumed to be constant, (m/s)
Z = the height for which the wind speed z V is computed (m)
𝑍 𝐺 = the height at which “gradient velocity” 𝑉𝐺
̅̅̅is first observed (layer thickness) in the same terrain (m)
α = an empirical exponent which depends on the surface roughness, stability and temperature gradient
“Table 2” shows the typical values of 𝑍 𝐺 and α for mean wind speeds over four types of terrain.
Table 2 Suggested Values of 𝑍 𝐺 and α for Various Terrain Conditions
Terrain
Category
Description Exponent α
Layer Thickness
𝑍 𝐺m
1
Large city centers, in which at least 50%
of buildings are higher than 21 m, over a
distance of at least 2000 meters upwind.
0.33 460
2
Urban, suburban, wooded areas, and
other areas with closely spaced
obstructions compared to or larger than
single-family dwellings (over a distance
of at least 2000meters upwind).
0.22 370
3
Open terrain with scattered obstacles
generally less than 10 meters height.
0.14 270
4
Flat, unobstructed areas exposed to wind
flowing over a large water body (no more
than 500 meters inland).
0.1 210
Equation (1) will be developed to equation (2) which helps to calculate wind speed in the same terrain for every
study height.
𝑉 𝑍̅̅̅̅
𝑉 𝑍10̅̅̅̅̅̅̅
= [
𝑍
𝑍10
]
𝛼
(2)
Where:
𝑉𝑍10
̅̅̅̅̅̅ = mean wind speed at the height of 10 meters in the study terrain (m/s)
Z= the study height above the ground in the same terrain (m)
𝑍10 = the height of 10 meters in the same terrain (m)
To estimate the wind speed in different urban areas with different density and terrain roughness, equation (3) is
introduced:
𝑉 𝑚𝑒𝑡10̅̅̅̅̅̅̅̅̅̅
𝑉 𝑍10̅̅̅̅̅̅̅
=
[
𝑚𝑒𝑡10
𝑚𝑒𝑡 𝐺
]
𝛼 𝑚𝑒𝑡
[
𝑍10
𝑍 𝐺
]
𝛼 (3)
where:
𝑉 𝑚𝑒𝑡10
̅̅̅̅̅̅̅̅ = mean wind speed at height of 10 meters in the meteorology station (m/s)
𝑚𝑒𝑡101 = the standard observation height of 10 meters in the meteorology station (m)
𝑍 𝐺 = gradient height at the top of the boundary layer of the study terrain
IV. GENERATION OF TYPICAL WIND SPEED YEAR
“Table 3” shows the meteorological TRY for wind speed measured at 10 meter height in (m/s)
Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and
Less than 10 Meters
International organization of Scientific Research 4 | P a g e
Applying the above methodology for all the months in the database, the meteorological Test Reference Year for
daily wind speed data was formed for Armidale. “ Tables 4, 5, 6, 7, 8, 9 & 10 “ shows the calculated urban daily
wind speed values obtained from Test Reference Year data for Armidale NSW, Australia at heights (10, 9, 8, 7, 6,
5 &4) respectively in (m/s).
Table 3 Meteorological daily wind speed values obtained from Test Reference Year data for Armidale’s Valley
(Tree Group Nursery Weather Station) at 10 m height in (m/s)
Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 4.86 5.66 5.23 4.55 4.63 4.36 5.62 4.95 4.62 5.38 4.9 4.73
2 5.65 6.07 5.16 4.74 4.78 4.98 4.94 5.16 4.42 5.07 5.1 5.1
3 4.86 5.35 5.16 4.3 4.37 4.28 4.85 6.02 5.52 4.8 5.25 5.07
4 5.68 4.91 5.38 4.33 4.85 3.9 5.3 5.38 5.05 4.41 4.62 5.38
5 5.1 4.54 5.57 5.12 4.06 4.83 5.3 5.75 5.4 4.3 4.38 5.78
6 5.13 4.87 5.59 5.21 4.46 4.79 5.11 5.5 5.44 5.53 4.78 5.56
7 5.65 5.84 5.02 5.5 4.63 4.62 4.4 5.75 4.96 5.22 4.78 5.29
8 5.71 5.07 4.52 5.19 3.97 5.12 4.85 6.02 5.32 5.65 5.1 4.81
9 5.95 5.5 5.04 4.4 3.97 5.51 5.75 5.38 5.38 5.5 4.86 4.66
10 5.32 4.94 4.95 4.71 4.26 5.22 5.52 5.44 4.78 4.94 4.9 5.29
11 5.51 4.69 5.02 4.33 4.35 5.04 5.52 5.38 5.23 4.73 4.78 4.94
12 5.17 5.13 4.88 5 4.37 4.59 4.19 5.81 4.83 4.94 4.9 4.61
13 4.9 5.41 4.74 4.49 4.57 5.08 4.32 5.1 4.99 5.16 5.32 4.94
14 4.9 5.72 4.47 3.89 4.63 5.9 5.62 5.71 4.53 5.56 4.53 5.22
15 5.17 5.44 3.88 3.95 3.78 5.38 5.3 5.32 4.53 4.8 5.05 4.89
16 5.17 4.85 4.31 4.23 4.57 4.95 4.19 5.75 7.7 5.84 5.32 4.52
17 5.17 4.94 4.52 4.51 4.66 4.98 4.32 5.44 5.52 5.6 5.17 4.61
18 5.17 5.5 5.14 4.23 4.37 4.49 4.94 5.86 4.62 5.01 4.78 5.16
19 5.59 4.98 4.71 3.82 5.22 5.27 5.3 4.95 4.59 5.07 4.32 5.01
20 5.32 5.13 4.58 3.95 4.63 4.92 5.01 5.38 4.69 4.8 4.62 5.29
21 5.17 5 4.31 3.82 4.98 5.9 6.14 5.59 4.42 4.01 4.83 4.8
22 4.74 5.22 4.74 4.01 4.44 5.8 4.78 6.02 3.78 5.01 5.32 4.85
23 4.56 5.44 4.71 4.01 4.06 5.61 5.01 5.16 5.05 5.5 5.17 4.94
24 5.44 5.35 4.58 4.4 4.19 4.88 4.72 5.81 4.96 4.8 4.62 5.22
25 5.59 5.22 4.61 4.83 4.26 4.36 4.94 5.5 5.32 4.8 4.44 4.8
26 5.23 4.63 4.44 4.96 4.69 4.98 6.04 5.44 5.25 5.47 4.42 4.81
27 5.32 4.28 3.97 4.83 4.35 5.04 5.45 5.38 5.44 5.56 5.52 4.85
28 5.17 4.5 4.25 5.03 4.31 6.27 5.68 5.46 5.32 4.57 5.17 4.64
29 4.99 5 4.04 4.77 4.94 6.5 5.24 5.29 5.99 5.32 4.74 4.89
30 4.78 4.04 4.59 4.22 5.74 5.11 6.51 4.69 4.89 4.83 5.2
31 5.44 4.4 4.41 5.11 5.84 5.44 5.07
Table 4 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 10 m
height in (m/s)
Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and
Less than 10 Meters
International organization of Scientific Research 5 | P a g e
Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 3.49 4.06 3.75 3.26 3.31 3.13 4.03 3.56 3.31 3.85 3.51 3.39
2 4.05 4.35 3.7 3.39 3.43 3.57 3.54 3.7 3.17 3.64 3.65 3.66
3 3.49 3.83 3.7 3.08 3.13 3.07 3.47 4.31 3.96 3.44 3.77 3.64
4 4.07 3.52 3.85 3.1 3.47 2.79 3.8 3.85 3.62 3.17 3.31 3.85
5 3.65 3.25 4 3.68 2.91 3.46 3.8 4.12 3.87 3.08 3.14 4.14
6 3.68 3.49 4 3.74 3.2 3.43 3.66 3.94 3.9 3.96 3.43 3.99
7 4.05 4.19 3.6 3.94 3.31 3.31 3.15 4.12 3.56 3.74 3.43 3.79
8 4.09 3.64 3.24 3.72 2.84 3.67 3.47 4.31 3.81 4.05 3.65 3.45
9 4.26 3.94 3.62 3.15 2.84 3.95 4.12 3.85 3.85 3.94 3.49 3.35
10 3.81 3.55 3.56 3.38 3.05 3.74 3.96 3.9 3.43 3.54 3.51 3.79
11 3.95 3.36 3.6 3.1 3.11 3.62 3.96 3.85 3.75 3.39 3.43 3.54
12 3.71 3.68 3.5 3.59 3.13 3.29 3 4.16 3.46 3.54 3.51 3.3
13 3.51 3.88 3.4 3.21 3.28 3.64 3.1 3.66 3.58 3.7 3.81 3.54
14 3.51 4.1 3.2 2.79 3.31 4.23 4.03 4.09 3.25 3.99 3.25 3.74
15 3.71 3.9 2.78 2.83 2.71 3.86 3.8 3.81 3.25 3.44 3.62 3.51
16 3.71 3.47 3.09 3.03 3.28 3.54 3 4.12 5.52 4.18 3.81 3.24
17 3.71 3.55 3.24 3.24 3.34 3.57 3.1 3.9 3.96 4.01 3.71 3.3
18 3.71 3.94 3.69 3.03 3.13 3.22 3.54 4.2 3.31 3.6 3.43 3.7
19 4.01 3.56 3.37 2.74 3.74 3.78 3.8 3.56 3.29 3.64 3.1 3.6
20 3.81 3.68 3.28 2.83 3.31 3.52 3.59 3.85 3.36 3.44 3.31 3.79
21 3.71 3.58 3.09 2.74 3.56 4.23 4.4 4 3.17 2.87 3.46 3.44
22 3.4 3.74 3.4 2.88 3.18 4.16 3.42 4.31 2.71 3.6 3.81 3.48
23 3.27 3.9 3.37 2.88 2.91 4.02 3.59 3.7 3.62 3.94 3.71 3.54
24 3.9 3.83 3.28 3.15 3 3.5 3.39 4.16 3.56 3.44 3.31 3.74
25 4.01 3.74 3.31 3.47 3.05 3.13 3.54 3.94 3.81 3.44 3.18 3.44
26 3.75 3.31 3.18 3.56 3.36 3.57 4.32 3.9 3.77 3.92 3.17 3.45
27 3.81 3.07 2.84 3.47 3.11 3.62 3.91 3.85 3.9 3.99 3.96 3.48
28 3.71 3.22 3.04 3.6 3.09 4.49 4.07 3.92 3.81 3.28 3.71 3.32
29 3.58 3.58 2.9 3.42 3.55 4.66 3.76 3.79 4.29 3.82 3.4 3.51
30 3.43 2.9 3.29 3.02 4.11 3.66 4.66 3.36 3.51 3.46 3.73
31 3.9 3.15 3.16 3.66 4.19 3.9 3.64
Table 5 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 9 m
height in (m/s)
Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and
Less than 10 Meters
International organization of Scientific Research 6 | P a g e
Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 3.41 3.97 3.66 3.19 3.24 3.05 3.93 3.48 3.24 3.76 3.44 3.31
2 3.95 4.25 3.61 3.31 3.35 3.49 3.46 3.61 3.1 3.56 3.57 3.58
3 3.41 3.74 3.61 3.01 3.06 3 3.39 4.22 3.87 3.36 3.68 3.56
4 3.98 3.44 3.77 3.03 3.39 2.73 3.72 3.77 3.53 3.1 3.24 3.76
5 3.57 3.18 3.91 3.59 2.84 3.38 3.72 4.02 3.78 3.01 3.07 4.04
6 3.59 3.41 3.92 3.66 3.13 3.35 3.58 3.85 3.81 3.87 3.35 3.9
7 3.95 4.09 3.52 3.85 3.24 3.23 3.08 4.02 3.48 3.65 3.35 3.7
8 3.99 3.56 3.17 3.64 2.78 3.58 3.39 4.22 3.72 3.96 3.57 3.37
9 4.17 3.85 3.54 3.08 2.78 3.86 4.03 3.77 3.77 3.85 3.41 3.27
10 3.72 3.47 3.48 3.29 2.98 3.66 3.87 3.81 3.35 3.46 3.44 3.7
11 3.86 3.28 3.52 3.03 3.04 3.53 3.87 3.77 3.66 3.31 3.35 3.46
12 3.62 3.6 3.42 3.5 3.06 3.21 2.94 4.07 3.38 3.46 3.44 3.22
13 3.44 3.79 3.32 3.14 3.2 3.55 3.02 3.57 3.5 3.61 3.72 3.46
14 3.44 4.01 3.13 2.73 3.24 4.13 3.93 4 3.17 3.9 3.17 3.65
15 3.62 3.81 2.72 2.77 2.65 3.77 3.72 3.72 3.17 3.36 3.53 3.43
16 3.62 3.39 3.02 2.96 3.2 3.46 2.94 4.02 5.39 4.09 3.72 3.17
17 3.62 3.47 3.17 3.17 3.26 3.49 3.02 3.81 3.87 3.92 3.62 3.22
18 3.62 3.85 3.6 2.96 3.06 3.14 3.46 4.1 3.24 3.52 3.35 3.61
19 3.92 3.48 3.29 2.68 3.65 3.7 3.72 3.48 3.21 3.56 3.03 3.52
20 3.72 3.6 3.2 2.77 3.24 3.44 3.51 3.77 3.28 3.36 3.24 3.7
21 3.62 3.5 3.02 2.68 3.48 4.13 4.3 3.92 3.1 2.81 3.38 3.36
22 3.32 3.65 3.32 2.81 3.11 4.07 3.35 4.22 2.64 3.52 3.72 3.4
23 3.19 3.81 3.29 2.81 2.84 3.92 3.51 3.61 3.53 3.85 3.62 3.46
24 3.81 3.74 3.2 3.08 2.93 3.42 3.31 4.07 3.48 3.36 3.24 3.65
25 3.92 3.65 3.23 3.39 2.98 3.05 3.46 3.85 3.72 3.36 3.11 3.36
26 3.66 3.24 3.11 3.48 3.28 3.49 4.22 3.81 3.68 3.84 3.1 3.37
27 3.72 3 2.78 3.39 3.04 3.53 3.81 3.77 3.81 3.9 3.87 3.4
28 3.62 3.15 2.97 3.52 3.02 4.39 3.98 3.83 3.72 3.2 3.62 3.24
29 3.5 3.5 2.82 3.34 3.47 4.55 3.67 3.7 4.19 3.73 3.32 3.43
30 3.35 2.82 3.21 2.95 4.02 3.58 4.56 3.28 3.43 3.38 3.64
31 3.81 3.08 3.09 3.58 4.09 3.81 3.56
Table 6 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 8 m
height in (m/s)
Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and
Less than 10 Meters
International organization of Scientific Research 7 | P a g e
Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 3.32 3.86 3.57 3.1 3.15 2.97 3.83 3.39 3.16 3.67 3.35 3.23
2 3.85 4.14 3.52 3.23 3.27 3.4 3.38 3.52 3.02 3.46 3.48 3.48
3 3.32 3.65 3.52 2.94 2.98 2.93 3.3 4.11 3.77 3.28 3.58 3.46
4 3.88 3.35 3.67 2.96 3.31 2.66 3.62 3.67 3.45 3.02 3.16 3.67
5 3.48 3.1 3.8 3.5 2.77 3.3 3.62 3.92 3.69 2.93 2.99 3.94
6 3.51 3.32 3.81 3.56 3.05 3.27 3.49 3.76 3.71 3.77 3.26 3.8
7 3.85 3.99 3.42 3.75 3.15 3.14 3 3.92 3.38 3.56 3.26 3.61
8 3.89 3.47 3.08 3.54 2.71 3.5 3.3 4.11 3.63 3.85 3.48 3.28
9 4.06 3.75 3.44 2.99 2.71 3.76 3.92 3.67 3.67 3.76 3.32 3.19
10 3.63 3.38 3.39 3.21 2.91 3.56 3.78 3.71 3.26 3.37 3.35 3.61
11 3.76 3.2 3.42 2.96 2.96 3.45 3.78 3.67 3.57 3.23 3.26 3.37
12 3.53 3.5 3.34 3.41 2.98 3.13 2.86 3.96 3.3 3.37 3.35 3.14
13 3.35 3.69 3.24 3.06 3.12 3.47 2.95 3.48 3.4 3.52 3.63 3.37
14 3.35 3.9 3.05 2.66 3.15 4.03 3.83 3.9 3.09 3.8 3.09 3.56
15 3.53 3.71 2.65 2.69 2.58 3.68 3.62 3.63 3.09 3.28 3.45 3.34
16 3.53 3.31 2.94 2.88 3.12 3.37 2.86 3.92 5.25 3.98 3.63 3.09
17 3.53 3.38 3.08 3.08 3.18 3.4 2.95 3.71 3.77 3.82 3.53 3.14
18 3.53 3.75 3.51 2.88 2.98 3.07 3.38 4 3.16 3.43 3.26 3.52
19 3.82 3.39 3.21 2.61 3.56 3.6 3.62 3.39 3.13 3.46 2.95 3.43
20 3.63 3.5 3.12 2.69 3.15 3.35 3.42 3.67 3.2 3.28 3.16 3.61
21 3.53 3.41 2.94 2.61 3.39 4.03 4.19 3.81 3.02 2.74 3.3 3.28
22 3.24 3.56 3.24 2.74 3.02 3.96 3.26 4.11 2.58 3.43 3.63 3.31
23 3.11 3.71 3.21 2.74 2.77 3.83 3.42 3.52 3.45 3.76 3.53 3.37
24 3.71 3.65 3.12 2.99 2.85 3.33 3.23 3.96 3.38 3.28 3.16 3.56
25 3.82 3.56 3.15 3.3 2.91 2.97 3.38 3.76 3.63 3.28 3.03 3.28
26 3.57 3.15 3.03 3.39 3.2 3.4 4.12 3.71 3.58 3.74 3.02 3.28
27 3.63 2.93 2.71 3.3 2.96 3.45 3.72 3.67 3.71 3.8 3.77 3.31
28 3.53 3.07 2.9 3.43 2.94 4.28 3.88 3.73 3.63 3.12 3.53 3.16
29 3.4 3.41 2.75 3.26 3.38 4.44 3.58 3.61 4.08 3.63 3.24 3.34
30 3.26 2.75 3.13 2.88 3.91 3.49 4.44 3.2 3.34 3.3 3.55
31 3.71 3 3.01 3.49 3.99 3.71 3.46
Table 7 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 7 m
height in (m/s)
Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and
Less than 10 Meters
International organization of Scientific Research 8 | P a g e
Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 3.23 3.75 3.47 3.01 3.06 2.89 3.72 3.29 3.06 3.56 3.25 3.13
2 3.74 4.02 3.41 3.14 3.17 3.31 3.27 3.41 2.93 3.36 3.38 3.38
3 3.23 3.55 3.41 2.85 2.9 2.84 3.21 3.99 3.66 3.18 3.48 3.36
4 3.77 3.25 3.56 2.87 3.21 2.58 3.52 3.56 3.35 2.93 3.06 3.56
5 3.38 3.01 3.7 3.4 2.69 3.2 3.52 3.81 3.58 2.85 2.91 3.83
6 3.4 3.23 3.7 3.46 2.96 3.17 3.39 3.64 3.6 3.66 3.17 3.68
7 3.74 3.87 3.33 3.64 3.06 3.06 2.91 3.81 3.29 3.45 3.17 3.51
8 3.78 3.37 2.99 3.44 2.63 3.39 3.21 3.99 3.52 3.75 3.38 3.2
9 3.94 3.65 3.34 2.91 2.63 3.66 3.81 3.56 3.57 3.65 3.23 3.1
10 3.52 3.28 3.29 3.12 2.82 3.46 3.66 3.61 3.17 3.28 3.25 3.51
11 3.65 3.11 3.33 2.87 2.88 3.34 3.66 3.56 3.46 3.13 3.17 3.28
12 3.43 3.4 3.24 3.31 2.9 3.04 2.78 3.85 3.2 3.28 3.25 3.05
13 3.25 3.58 3.14 2.97 3.03 3.36 2.86 3.39 3.31 3.43 3.52 3.28
14 3.25 3.79 2.97 2.58 3.06 3.9 3.72 3.78 3 3.68 3 3.45
15 3.43 3.6 2.57 2.62 2.5 3.56 3.52 3.52 3 3.18 3.35 3.24
16 3.43 3.21 2.86 2.8 3.03 3.28 2.78 3.81 5.1 3.87 3.52 3
17 3.43 3.28 2.99 2.99 3.09 3.31 2.86 3.61 3.66 3.71 3.43 3.05
18 3.43 3.65 3.41 2.8 2.9 2.97 3.27 3.88 3.06 3.33 3.17 3.43
19 3.71 3.29 3.12 2.53 3.47 3.5 3.52 3.29 3.04 3.36 2.86 3.33
20 3.52 3.4 3.04 2.62 3.06 3.26 3.32 3.56 3.11 3.18 3.06 3.51
21 3.43 3.31 2.86 2.53 3.29 3.9 4.06 3.7 2.93 2.66 3.2 3.18
22 3.14 3.47 3.14 2.66 2.93 3.85 3.16 3.99 2.51 3.33 3.52 3.21
23 3.03 3.6 3.12 2.66 2.69 3.71 3.32 3.41 3.35 3.65 3.43 3.28
24 3.6 3.55 3.04 2.91 2.77 3.23 3.13 3.85 3.29 3.18 3.06 3.45
25 3.71 3.47 3.06 3.2 2.82 2.89 3.27 3.64 3.52 3.18 2.94 3.18
26 3.46 3.06 2.94 3.29 3.11 3.31 4 3.61 3.48 3.63 2.93 3.2
27 3.52 2.84 2.63 3.2 2.88 3.34 3.61 3.56 3.6 3.68 3.66 3.21
28 3.43 2.98 2.82 3.33 2.85 4.15 3.77 3.62 3.52 3.03 3.43 3.07
29 3.31 3.31 2.68 3.17 3.28 4.3 3.48 3.5 3.97 3.53 3.14 3.24
30 3.17 2.68 3.04 2.8 3.8 3.39 4.31 3.11 3.24 3.2 3.44
31 3.6 2.91 2.93 3.39 3.87 3.6 3.36
Table 8 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 6 m
height in (m/s)
Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and
Less than 10 Meters
International organization of Scientific Research 9 | P a g e
Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 3.11 3.63 3.35 2.92 2.96 2.79 3.6 3.18 2.97 3.44 3.14 3.03
2 3.62 3.89 3.3 3.04 3.07 3.19 3.17 3.3 2.83 3.26 3.26 3.27
3 3.11 3.43 3.3 2.77 2.8 2.75 3.1 3.85 3.54 3.07 3.37 3.26
4 3.64 3.14 3.44 2.79 3.11 2.5 3.4 3.44 3.24 2.83 2.97 3.44
5 3.26 2.91 3.57 3.3 2.6 3.09 3.4 3.68 3.46 2.75 2.81 3.7
6 3.29 3.12 3.58 3.35 2.86 3.07 3.27 3.52 3.48 3.54 3.06 3.56
7 3.62 3.74 3.22 3.54 2.96 2.95 2.82 3.68 3.18 3.34 3.06 3.39
8 3.65 3.25 2.9 3.35 2.54 3.28 3.1 3.85 3.4 3.62 3.26 3.09
9 3.81 3.52 3.23 2.82 2.54 3.53 3.68 3.44 3.45 3.52 3.11 2.99
10 3.4 3.17 3.18 3.03 2.73 3.34 3.54 3.48 3.06 3.17 3.14 3.39
11 3.53 3 3.22 2.79 2.78 3.24 3.54 3.44 3.35 3.03 3.06 3.17
12 3.31 3.29 3.13 3.22 2.8 2.94 2.69 3.72 3.1 3.17 3.14 2.95
13 3.14 3.47 3.04 2.88 2.93 3.25 2.77 3.27 3.19 3.31 3.4 3.17
14 3.14 3.66 2.86 2.5 2.96 3.78 3.6 3.66 2.9 3.56 2.9 3.34
15 3.31 3.48 2.48 2.54 2.42 3.45 3.4 3.41 2.9 3.07 3.24 3.13
16 3.31 3.11 2.76 2.72 2.93 3.16 2.69 3.68 4.93 3.74 3.4 2.89
17 3.31 3.17 2.9 2.91 2.99 3.19 2.77 3.48 3.54 3.59 3.31 2.95
18 3.31 3.52 3.29 2.72 2.8 2.88 3.17 3.75 2.97 3.21 3.06 3.31
19 3.58 3.19 3.01 2.46 3.35 3.38 3.4 3.18 2.94 3.26 2.77 3.21
20 3.4 3.29 2.93 2.54 2.96 3.15 3.21 3.44 3 3.07 2.97 3.39
21 3.31 3.2 2.76 2.46 3.19 3.78 3.93 3.58 2.83 2.57 3.1 3.07
22 3.04 3.35 3.04 2.58 2.84 3.71 3.06 3.85 2.42 3.21 3.4 3.11
23 2.92 3.48 3.01 2.58 2.6 3.59 3.21 3.3 3.24 3.52 3.31 3.17
24 3.48 3.43 2.93 2.82 2.68 3.13 3.02 3.72 3.18 3.07 2.97 3.34
25 3.58 3.35 2.96 3.12 2.73 2.79 3.17 3.52 3.4 3.07 2.84 3.07
26 3.35 2.96 2.84 3.19 3 3.19 3.87 3.48 3.37 3.51 2.83 3.09
27 3.4 2.75 2.54 3.12 2.78 3.24 3.49 3.44 3.48 3.56 3.54 3.11
28 3.31 2.88 2.72 3.24 2.76 4.02 3.64 3.5 3.4 2.93 3.31 2.96
29 3.19 3.2 2.59 3.07 3.17 4.16 3.36 3.39 3.84 3.41 3.04 3.13
30 3.06 2.59 2.95 2.7 3.68 3.27 4.17 3 3.13 3.1 3.33
31 3.48 2.82 2.83 3.27 3.74 3.48 3.26
Table 9 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 5 m
height in (m/s)
Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and
Less than 10 Meters
International organization of Scientific Research 10 | P a g e
Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 3.44 3.87 3.66 3.07 3.16 2.82 3.72 3.47 3.27 3.72 3.47 3.27
2 3.99 4.15 3.61 3.2 3.27 3.23 3.27 3.61 3.13 3.51 3.61 3.53
3 3.44 3.66 3.61 2.91 2.99 2.77 3.2 4.21 3.91 3.31 3.72 3.51
4 4.02 3.36 3.76 2.93 3.31 2.52 3.51 3.76 3.57 3.06 3.27 3.72
5 3.61 3.1 3.9 3.47 2.77 3.13 3.51 4.02 3.82 2.97 3.1 3.99
6 3.63 3.33 3.91 3.53 3.06 3.1 3.38 3.85 3.85 3.82 3.38 3.85
7 3.99 3.99 3.51 3.72 3.16 2.99 2.91 4.02 3.51 3.61 3.38 3.66
8 4.04 3.47 3.16 3.51 2.71 3.31 3.2 4.21 3.76 3.91 3.61 3.33
9 4.21 3.76 3.53 2.97 2.71 3.57 3.8 3.76 3.8 3.8 3.44 3.23
10 3.76 3.38 3.47 3.19 2.91 3.38 3.66 3.8 3.38 3.42 3.47 3.66
11 3.9 3.2 3.51 2.93 2.97 3.27 3.66 3.76 3.7 3.27 3.38 3.42
12 3.66 3.51 3.42 3.38 2.99 2.97 2.77 4.06 3.42 3.42 3.47 3.19
13 3.47 3.7 3.31 3.03 3.13 3.29 2.86 3.57 3.53 3.57 3.76 3.42
14 3.47 3.91 3.13 2.64 3.16 3.82 3.72 3.99 3.2 3.85 3.2 3.61
15 3.66 3.72 2.71 2.67 2.58 3.49 3.51 3.72 3.2 3.31 3.57 3.38
16 3.66 3.31 3.01 2.86 3.13 3.2 2.77 4.02 5.44 4.04 3.76 3.13
17 3.66 3.38 3.16 3.06 3.19 3.23 2.86 3.8 3.91 3.87 3.66 3.19
18 3.66 3.76 3.6 2.86 2.99 2.91 3.27 4.1 3.27 3.47 3.38 3.57
19 3.96 3.4 3.29 2.58 3.57 3.42 3.51 3.47 3.25 3.51 3.06 3.47
20 3.76 3.51 3.2 2.67 3.16 3.19 3.31 3.76 3.31 3.31 3.27 3.66
21 3.66 3.42 3.01 2.58 3.4 3.82 4.06 3.91 3.13 2.77 3.42 3.31
22 3.36 3.57 3.31 2.71 3.03 3.76 3.16 4.21 2.67 3.47 3.76 3.36
23 3.23 3.72 3.29 2.71 2.77 3.63 3.31 3.61 3.57 3.8 3.66 3.42
24 3.85 3.66 3.2 2.97 2.86 3.16 3.13 4.06 3.51 3.31 3.27 3.61
25 3.96 3.57 3.23 3.27 2.91 2.82 3.27 3.85 3.76 3.31 3.14 3.31
26 3.7 3.16 3.1 3.36 3.2 3.23 3.99 3.8 3.72 3.79 3.13 3.33
27 3.76 2.93 2.77 3.27 2.97 3.27 3.61 3.76 3.85 3.85 3.91 3.36
28 3.66 3.07 2.97 3.4 2.94 4.06 3.76 3.82 3.76 3.16 3.66 3.2
29 3.53 3.42 2.82 3.23 3.38 4.21 3.47 3.7 4.23 3.68 3.36 3.38
30 3.38 2.82 3.1 2.88 3.72 3.38 4.55 3.31 3.38 3.42 3.6
31 3.85 3.07 3.01 3.38 4.09 3.76 3.51
Table 10 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 4 m
height in (m/s)
Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and
Less than 10 Meters
International organization of Scientific Research 11 | P a g e
Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 2.85 3.32 3.06 2.67 2.71 2.56 3.29 2.9 2.71 3.15 2.87 2.77
2 3.31 3.56 3.02 2.78 2.8 2.92 2.89 3.02 2.59 2.97 2.98 2.99
3 2.85 3.13 3.02 2.52 2.56 2.51 2.84 3.53 3.24 2.81 3.08 2.97
4 3.33 2.88 3.15 2.54 2.84 2.28 3.11 3.15 2.96 2.59 2.71 3.15
5 2.98 2.66 3.26 3 2.38 2.83 3.11 3.37 3.17 2.52 2.57 3.38
6 3.01 2.85 3.27 3.06 2.62 2.8 2.99 3.22 3.18 3.24 2.8 3.26
7 3.31 3.42 2.94 3.22 2.71 2.7 2.58 3.37 2.91 3.05 2.8 3.1
8 3.34 2.97 2.65 3.04 2.32 3 2.84 3.53 3.11 3.31 2.98 2.82
9 3.49 3.22 2.96 2.58 2.32 3.23 3.37 3.15 3.15 3.22 2.85 2.73
10 3.11 2.9 2.9 2.76 2.49 3.06 3.24 3.19 2.8 2.89 2.87 3.1
11 3.23 2.75 2.94 2.54 2.55 2.95 3.24 3.15 3.06 2.77 2.8 2.89
12 3.03 3.01 2.86 2.93 2.56 2.69 2.46 3.41 2.83 2.89 2.87 2.7
13 2.87 3.17 2.78 2.63 2.68 2.97 2.53 2.99 2.92 3.03 3.11 2.89
14 2.87 3.35 2.62 2.28 2.71 3.46 3.29 3.34 2.65 3.26 2.65 3.05
15 3.03 3.19 2.27 2.31 2.21 3.15 3.11 3.12 2.65 2.81 2.96 2.87
16 3.03 2.84 2.53 2.48 2.68 2.9 2.46 3.37 4.51 3.42 3.11 2.65
17 3.03 2.9 2.65 2.65 2.73 2.92 2.53 3.19 3.24 3.28 3.03 2.7
18 3.03 3.22 3.02 2.48 2.56 2.63 2.89 3.43 2.71 2.94 2.8 3.03
19 3.28 2.92 2.75 2.24 3.06 3.09 3.11 2.9 2.69 2.97 2.53 2.94
20 3.11 3.01 2.68 2.31 2.71 2.88 2.94 3.15 2.75 2.81 2.71 3.1
21 3.03 2.93 2.53 2.24 2.92 3.46 3.6 3.27 2.59 2.35 2.83 2.81
22 2.78 3.06 2.78 2.35 2.6 3.4 2.8 3.53 2.21 2.94 3.11 2.85
23 2.67 3.19 2.75 2.35 2.38 3.29 2.94 3.02 2.96 3.22 3.03 2.89
24 3.18 3.13 2.68 2.58 2.45 2.86 2.77 3.41 2.91 2.81 2.71 3.05
25 3.28 3.06 2.7 2.83 2.49 2.56 2.89 3.22 3.11 2.81 2.6 2.81
26 3.06 2.71 2.6 2.91 2.75 2.92 3.53 3.19 3.08 3.2 2.59 2.82
27 3.11 2.51 2.32 2.83 2.55 2.95 3.19 3.15 3.18 3.26 3.24 2.85
28 3.03 2.64 2.49 2.95 2.52 3.68 3.33 3.2 3.11 2.68 3.03 2.71
29 2.92 2.93 2.37 2.79 2.9 3.81 3.07 3.1 3.51 3.12 2.78 2.87
30 2.8 2.37 2.68 2.48 3.36 2.99 3.81 2.75 2.87 2.83 3.05
31 3.18 2.58 2.58 2.99 3.42 3.19 2.97
V. CONCLUSION AND RECOMMENDATIONS
Urban typical wind speed data is very essential for calculations concerning micro-scale wind energy
generation systems and for buildings’ energy calculation modelling and analysis. In this study, test reference years
for mean daily wind speed for urban Armidale town NSW, Australia are generated using 23 years of the
meteorologically measured data. The daily wind speed at 10 meter height for Armidale for heights [101, 9, 8, , 6,
5 & 4] meter are calculated based on a numerical method utilised a previously developed meteorological test
reference year annual mean daily wind speed at 10 meter height in (m/s). Those heights’ TRY wind speed are
presented on daily basis in a tabular form in (m/s). Results shows that urban wind speeds are relatively less than
meteorological wind speeds due to the fact that there are no obstructions at meteorological weather stations.
This study provided reliable and realistic wind speed for the lowest altitude in Armidale’s valley at heights range
which covers the expected possible installation’s heights in Armidale, this represented the lowest speed ever
scenario could occur in Armidale overall. For the reader’s information, there was an earlier study represented the
height speed ever could occur, which was based on meteorological data measured at Armidale’s Airport
Automatic Weather Station [12], as the station’s location implies there is no obstacles there, so wind speed is the
Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and
Less than 10 Meters
International organization of Scientific Research 12 | P a g e
highest.
It is highly recommended to base any wind energy calculations or modelling on urban wind speeds. This would
reflect the real picture of urban wind potential and would save any disappointment of not reaching the expected
energy generation which is usually misled by overestimation of wind speed due to the dependence on
meteorological wind speed.
REFERENCES
[1] Arens, E. A., 1981, Designing for an Acceptable Wind Speed, Transportation Engineering Journal 107,
127-141.
[2] Ansley, R. M.; W. Melbourne & B. J. Vickery, 1977, Architectural Aerodynamics, London, applied science
publishers Ltd.
[3] ASREA Handbook, 1997, Fundamentals, Chapter 15.
[4] Gandemer, 1977, Wind Environment around Buildings: Aerodynamic Concepts, Pro. Wind Effects on
Buildings & Structures, Cambridge University Press. 423-433.
[5] Givoni, Baruch, Climate Considerations in Building and Urban Design, New York, Van Nostrand
Reinhold, 1998.
[6] Hunt, J. C. R., E. C. Poulton, J. C. Mumford, 1976, The Effect on Wind on People; New Criteria Based on
Wind Tunnel Experiments, Building and Environment, Vol. 11, Pergamon Press, UK, pp. 15-28.
[7] Isomov, N., 1977, the Ground Level Wind Environment in Built-up Areas, Pro. Wind Effects on Buildings
& Structures, Cambridge University Press. 403-421
[8] Maklad, Y. Generation of an Annual Typical Meteorological Wind Speed for Armidale NSW, Australia.
IOSR Journal of Engineering (IOSRJEN) 4(7), 2014, 9-14.
[9] J.M. Finkelstein and R.E. Schafer. Improved goodness of fit tests. Biometrika 58(3), 1971, 641–645.
[10] Tahbaz, M. The Estimation of the Wind Speed in Urban Areas. School of Architecture and Urban Planning,
Shahid Beheshti University, Tehran, Iran.
[11] Penwarden, A. D. and A. F. E. Wise, Wind Environment around Buildings, London, Building Research
Establishment Report, 1975.
[12] Maklad, Y. Generation of an Annual Typical Daily Wind Speed for Heights Equal and Less than 10 meters
for Urban Armidale NSW, Australia. IOSR Journal of Engineering (IOSRJEN) 4(8), 2014, 31-42.

More Related Content

What's hot

Simulating Weather: Numerical Weather Prediction as Computational Simulation
Simulating Weather: Numerical Weather Prediction as Computational SimulationSimulating Weather: Numerical Weather Prediction as Computational Simulation
Simulating Weather: Numerical Weather Prediction as Computational SimulationTing-Shuo Yo
 
Comparison of Latent Heat Flux Using Aerodynamic Methods and Using the Penman...
Comparison of Latent Heat Flux Using Aerodynamic Methods and Using the Penman...Comparison of Latent Heat Flux Using Aerodynamic Methods and Using the Penman...
Comparison of Latent Heat Flux Using Aerodynamic Methods and Using the Penman...Ramesh Dhungel
 
Review of a Shrouded Wind Turbine for Low Wind Speeds
Review of a Shrouded Wind Turbine for Low Wind SpeedsReview of a Shrouded Wind Turbine for Low Wind Speeds
Review of a Shrouded Wind Turbine for Low Wind Speedsdbpublications
 
EVALUATION OF VERTICAL REFRACTIVITY PROFILE OVER MICROWAVE LINK IN MOWE, NIGERIA
EVALUATION OF VERTICAL REFRACTIVITY PROFILE OVER MICROWAVE LINK IN MOWE, NIGERIAEVALUATION OF VERTICAL REFRACTIVITY PROFILE OVER MICROWAVE LINK IN MOWE, NIGERIA
EVALUATION OF VERTICAL REFRACTIVITY PROFILE OVER MICROWAVE LINK IN MOWE, NIGERIAjmicro
 
Suitable Wind Turbine Selection using Evaluation of Wind Energy Potential in ...
Suitable Wind Turbine Selection using Evaluation of Wind Energy Potential in ...Suitable Wind Turbine Selection using Evaluation of Wind Energy Potential in ...
Suitable Wind Turbine Selection using Evaluation of Wind Energy Potential in ...IJCI JOURNAL
 
Numerical Weather Prediction
Numerical Weather PredictionNumerical Weather Prediction
Numerical Weather PredictionSourav Kumar Mund
 
Quantifying the Stability of Summer Temperatures for Different Thermal Climat...
Quantifying the Stability of Summer Temperatures for Different Thermal Climat...Quantifying the Stability of Summer Temperatures for Different Thermal Climat...
Quantifying the Stability of Summer Temperatures for Different Thermal Climat...Manat Srivanit
 
FR3.TO5.3.ppt
FR3.TO5.3.pptFR3.TO5.3.ppt
FR3.TO5.3.pptgrssieee
 
Development of an Integrated Urban Heat Island Simulation Tool
Development of an Integrated Urban Heat Island Simulation  ToolDevelopment of an Integrated Urban Heat Island Simulation  Tool
Development of an Integrated Urban Heat Island Simulation ToolSryahwa Publications
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...India UK Water Centre (IUKWC)
 
The effect of dust storms on some meteorological elements over Baghdad , Iraq...
The effect of dust storms on some meteorological elements over Baghdad , Iraq...The effect of dust storms on some meteorological elements over Baghdad , Iraq...
The effect of dust storms on some meteorological elements over Baghdad , Iraq...iosrjce
 
Global Warming and the Sudan: Variation of Air Temperature over Sudan and So...
Global Warming and the Sudan: Variation of Air Temperature  over Sudan and So...Global Warming and the Sudan: Variation of Air Temperature  over Sudan and So...
Global Warming and the Sudan: Variation of Air Temperature over Sudan and So...Sryahwa Publications
 
Assessment of Urban Green Space Structures and Its Effect on Land Surface Tem...
Assessment of Urban Green Space Structures and Its Effect on Land Surface Tem...Assessment of Urban Green Space Structures and Its Effect on Land Surface Tem...
Assessment of Urban Green Space Structures and Its Effect on Land Surface Tem...Manat Srivanit
 
Effect of Wind Direction through Double Storied Building Model Configurations...
Effect of Wind Direction through Double Storied Building Model Configurations...Effect of Wind Direction through Double Storied Building Model Configurations...
Effect of Wind Direction through Double Storied Building Model Configurations...inventionjournals
 
SIMULATION OF VAPOR AND HEAT FLUXES OVER WET AND DRY REGIME IN PADDY FIELD EN...
SIMULATION OF VAPOR AND HEAT FLUXES OVER WET AND DRY REGIME IN PADDY FIELD EN...SIMULATION OF VAPOR AND HEAT FLUXES OVER WET AND DRY REGIME IN PADDY FIELD EN...
SIMULATION OF VAPOR AND HEAT FLUXES OVER WET AND DRY REGIME IN PADDY FIELD EN...IAEME Publication
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...India UK Water Centre (IUKWC)
 

What's hot (20)

Simulating Weather: Numerical Weather Prediction as Computational Simulation
Simulating Weather: Numerical Weather Prediction as Computational SimulationSimulating Weather: Numerical Weather Prediction as Computational Simulation
Simulating Weather: Numerical Weather Prediction as Computational Simulation
 
Comparison of Latent Heat Flux Using Aerodynamic Methods and Using the Penman...
Comparison of Latent Heat Flux Using Aerodynamic Methods and Using the Penman...Comparison of Latent Heat Flux Using Aerodynamic Methods and Using the Penman...
Comparison of Latent Heat Flux Using Aerodynamic Methods and Using the Penman...
 
Review of a Shrouded Wind Turbine for Low Wind Speeds
Review of a Shrouded Wind Turbine for Low Wind SpeedsReview of a Shrouded Wind Turbine for Low Wind Speeds
Review of a Shrouded Wind Turbine for Low Wind Speeds
 
EVALUATION OF VERTICAL REFRACTIVITY PROFILE OVER MICROWAVE LINK IN MOWE, NIGERIA
EVALUATION OF VERTICAL REFRACTIVITY PROFILE OVER MICROWAVE LINK IN MOWE, NIGERIAEVALUATION OF VERTICAL REFRACTIVITY PROFILE OVER MICROWAVE LINK IN MOWE, NIGERIA
EVALUATION OF VERTICAL REFRACTIVITY PROFILE OVER MICROWAVE LINK IN MOWE, NIGERIA
 
Suitable Wind Turbine Selection using Evaluation of Wind Energy Potential in ...
Suitable Wind Turbine Selection using Evaluation of Wind Energy Potential in ...Suitable Wind Turbine Selection using Evaluation of Wind Energy Potential in ...
Suitable Wind Turbine Selection using Evaluation of Wind Energy Potential in ...
 
Numerical Weather Prediction
Numerical Weather PredictionNumerical Weather Prediction
Numerical Weather Prediction
 
Climate Modelling for Ireland -Dr Ray McGrath, Met Eireann
Climate Modelling for Ireland -Dr Ray McGrath, Met EireannClimate Modelling for Ireland -Dr Ray McGrath, Met Eireann
Climate Modelling for Ireland -Dr Ray McGrath, Met Eireann
 
Quantifying the Stability of Summer Temperatures for Different Thermal Climat...
Quantifying the Stability of Summer Temperatures for Different Thermal Climat...Quantifying the Stability of Summer Temperatures for Different Thermal Climat...
Quantifying the Stability of Summer Temperatures for Different Thermal Climat...
 
FR3.TO5.3.ppt
FR3.TO5.3.pptFR3.TO5.3.ppt
FR3.TO5.3.ppt
 
30120140505021
3012014050502130120140505021
30120140505021
 
Mallick_et_al_WRR_2015
Mallick_et_al_WRR_2015Mallick_et_al_WRR_2015
Mallick_et_al_WRR_2015
 
Development of an Integrated Urban Heat Island Simulation Tool
Development of an Integrated Urban Heat Island Simulation  ToolDevelopment of an Integrated Urban Heat Island Simulation  Tool
Development of an Integrated Urban Heat Island Simulation Tool
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
 
The effect of dust storms on some meteorological elements over Baghdad , Iraq...
The effect of dust storms on some meteorological elements over Baghdad , Iraq...The effect of dust storms on some meteorological elements over Baghdad , Iraq...
The effect of dust storms on some meteorological elements over Baghdad , Iraq...
 
Global Warming and the Sudan: Variation of Air Temperature over Sudan and So...
Global Warming and the Sudan: Variation of Air Temperature  over Sudan and So...Global Warming and the Sudan: Variation of Air Temperature  over Sudan and So...
Global Warming and the Sudan: Variation of Air Temperature over Sudan and So...
 
D04722440
D04722440D04722440
D04722440
 
Assessment of Urban Green Space Structures and Its Effect on Land Surface Tem...
Assessment of Urban Green Space Structures and Its Effect on Land Surface Tem...Assessment of Urban Green Space Structures and Its Effect on Land Surface Tem...
Assessment of Urban Green Space Structures and Its Effect on Land Surface Tem...
 
Effect of Wind Direction through Double Storied Building Model Configurations...
Effect of Wind Direction through Double Storied Building Model Configurations...Effect of Wind Direction through Double Storied Building Model Configurations...
Effect of Wind Direction through Double Storied Building Model Configurations...
 
SIMULATION OF VAPOR AND HEAT FLUXES OVER WET AND DRY REGIME IN PADDY FIELD EN...
SIMULATION OF VAPOR AND HEAT FLUXES OVER WET AND DRY REGIME IN PADDY FIELD EN...SIMULATION OF VAPOR AND HEAT FLUXES OVER WET AND DRY REGIME IN PADDY FIELD EN...
SIMULATION OF VAPOR AND HEAT FLUXES OVER WET AND DRY REGIME IN PADDY FIELD EN...
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
 

Viewers also liked

2010 5 d4d393f6
2010 5 d4d393f62010 5 d4d393f6
2010 5 d4d393f6Y YU
 
2007 01 23_communique_de_presse_-_caravane_va
2007 01 23_communique_de_presse_-_caravane_va2007 01 23_communique_de_presse_-_caravane_va
2007 01 23_communique_de_presse_-_caravane_vaAssoib Rachid
 
D041114862
D041114862D041114862
D041114862IOSR-JEN
 
Cross-platform Mobile Development using Portable Class Libraries
Cross-platform Mobile Development using Portable Class LibrariesCross-platform Mobile Development using Portable Class Libraries
Cross-platform Mobile Development using Portable Class LibrariesVagif Abilov
 
Mark956 creating & marketing new products final oct 2013
Mark956   creating & marketing new products final oct 2013Mark956   creating & marketing new products final oct 2013
Mark956 creating & marketing new products final oct 2013Design Lab
 
Double page comparrisons upload to blog
Double page comparrisons upload to blogDouble page comparrisons upload to blog
Double page comparrisons upload to blogAmelia Cranstoun
 
الوصف الببليوجرافي للمخطوط
الوصف الببليوجرافي للمخطوطالوصف الببليوجرافي للمخطوط
الوصف الببليوجرافي للمخطوطismail rizk
 
Arquitetura QueFilme
Arquitetura QueFilmeArquitetura QueFilme
Arquitetura QueFilmevcr2
 
trabajo de excel de Erik Tomas Villada del curso 705
trabajo de excel de Erik Tomas Villada del curso 705 trabajo de excel de Erik Tomas Villada del curso 705
trabajo de excel de Erik Tomas Villada del curso 705 eriktomasvilladagiraldo
 
أهداف وحدة مستحدثات تكنولوجيا التعليم الجزء الأول والثاني
أهداف وحدة مستحدثات تكنولوجيا التعليم الجزء الأول والثانيأهداف وحدة مستحدثات تكنولوجيا التعليم الجزء الأول والثاني
أهداف وحدة مستحدثات تكنولوجيا التعليم الجزء الأول والثانيamalasa
 
Tsunami-Torn South Coast of Samoa(pacificeyewitness.org
Tsunami-Torn South Coast of Samoa(pacificeyewitness.orgTsunami-Torn South Coast of Samoa(pacificeyewitness.org
Tsunami-Torn South Coast of Samoa(pacificeyewitness.orgPacificEyeWitness.org
 
7401103 6 cont
7401103 6 cont7401103 6 cont
7401103 6 cont0arij0
 
Dc vs marvel vol.01 - 02 de 04
Dc vs marvel   vol.01 - 02 de 04Dc vs marvel   vol.01 - 02 de 04
Dc vs marvel vol.01 - 02 de 04Marcos Donato
 
Visioss 2012
Visioss 2012Visioss 2012
Visioss 2012VISIOSS
 
Respuestas al Ier parcial de Bioestadistica
Respuestas al Ier parcial de BioestadisticaRespuestas al Ier parcial de Bioestadistica
Respuestas al Ier parcial de Bioestadisticaerikanarino
 

Viewers also liked (20)

2010 5 d4d393f6
2010 5 d4d393f62010 5 d4d393f6
2010 5 d4d393f6
 
2007 01 23_communique_de_presse_-_caravane_va
2007 01 23_communique_de_presse_-_caravane_va2007 01 23_communique_de_presse_-_caravane_va
2007 01 23_communique_de_presse_-_caravane_va
 
D041114862
D041114862D041114862
D041114862
 
Cross-platform Mobile Development using Portable Class Libraries
Cross-platform Mobile Development using Portable Class LibrariesCross-platform Mobile Development using Portable Class Libraries
Cross-platform Mobile Development using Portable Class Libraries
 
Mark956 creating & marketing new products final oct 2013
Mark956   creating & marketing new products final oct 2013Mark956   creating & marketing new products final oct 2013
Mark956 creating & marketing new products final oct 2013
 
Double page comparrisons upload to blog
Double page comparrisons upload to blogDouble page comparrisons upload to blog
Double page comparrisons upload to blog
 
الوصف الببليوجرافي للمخطوط
الوصف الببليوجرافي للمخطوطالوصف الببليوجرافي للمخطوط
الوصف الببليوجرافي للمخطوط
 
Arquitetura QueFilme
Arquitetura QueFilmeArquitetura QueFilme
Arquitetura QueFilme
 
trabajo de excel de Erik Tomas Villada del curso 705
trabajo de excel de Erik Tomas Villada del curso 705 trabajo de excel de Erik Tomas Villada del curso 705
trabajo de excel de Erik Tomas Villada del curso 705
 
أهداف وحدة مستحدثات تكنولوجيا التعليم الجزء الأول والثاني
أهداف وحدة مستحدثات تكنولوجيا التعليم الجزء الأول والثانيأهداف وحدة مستحدثات تكنولوجيا التعليم الجزء الأول والثاني
أهداف وحدة مستحدثات تكنولوجيا التعليم الجزء الأول والثاني
 
Tsunami-Torn South Coast of Samoa(pacificeyewitness.org
Tsunami-Torn South Coast of Samoa(pacificeyewitness.orgTsunami-Torn South Coast of Samoa(pacificeyewitness.org
Tsunami-Torn South Coast of Samoa(pacificeyewitness.org
 
Family History yeah!!!
Family History yeah!!!Family History yeah!!!
Family History yeah!!!
 
Contact sheets
Contact sheetsContact sheets
Contact sheets
 
Abstract
AbstractAbstract
Abstract
 
7401103 6 cont
7401103 6 cont7401103 6 cont
7401103 6 cont
 
WSS And Share Point For Developers
WSS And Share Point For DevelopersWSS And Share Point For Developers
WSS And Share Point For Developers
 
Hamad
HamadHamad
Hamad
 
Dc vs marvel vol.01 - 02 de 04
Dc vs marvel   vol.01 - 02 de 04Dc vs marvel   vol.01 - 02 de 04
Dc vs marvel vol.01 - 02 de 04
 
Visioss 2012
Visioss 2012Visioss 2012
Visioss 2012
 
Respuestas al Ier parcial de Bioestadistica
Respuestas al Ier parcial de BioestadisticaRespuestas al Ier parcial de Bioestadistica
Respuestas al Ier parcial de Bioestadistica
 

Similar to A041110112

Simulation of Wind Power Dynamic for Electricity Production in Nassiriyah Dis...
Simulation of Wind Power Dynamic for Electricity Production in Nassiriyah Dis...Simulation of Wind Power Dynamic for Electricity Production in Nassiriyah Dis...
Simulation of Wind Power Dynamic for Electricity Production in Nassiriyah Dis...IOSR Journals
 
Laminar Flow And Turbulence Modeling For Domestic Scale Wind Turbine Siting
Laminar Flow And Turbulence Modeling  For Domestic Scale Wind Turbine SitingLaminar Flow And Turbulence Modeling  For Domestic Scale Wind Turbine Siting
Laminar Flow And Turbulence Modeling For Domestic Scale Wind Turbine Sitingchittaranjang
 
10 n18 ijeset0702917-v7-is2-631-640
10 n18 ijeset0702917-v7-is2-631-64010 n18 ijeset0702917-v7-is2-631-640
10 n18 ijeset0702917-v7-is2-631-640Songpol Charuvisit
 
Assessment of wind resource and
Assessment of wind resource andAssessment of wind resource and
Assessment of wind resource andijcsa
 
IRJET Wind Data Estimation of Kolhapur District using Improved Hybrid Opt...
IRJET  	  Wind Data Estimation of Kolhapur District using Improved Hybrid Opt...IRJET  	  Wind Data Estimation of Kolhapur District using Improved Hybrid Opt...
IRJET Wind Data Estimation of Kolhapur District using Improved Hybrid Opt...IRJET Journal
 
Wind Power Density Analysis for Micro-Scale Wind Turbines
Wind Power Density Analysis for Micro-Scale Wind TurbinesWind Power Density Analysis for Micro-Scale Wind Turbines
Wind Power Density Analysis for Micro-Scale Wind Turbinestheijes
 
WindResourceAndSiteAssessment.pdf
WindResourceAndSiteAssessment.pdfWindResourceAndSiteAssessment.pdf
WindResourceAndSiteAssessment.pdfSAKTHI NIVASHAN.S
 
Wind energy forecasting using radial basis function neural networks
Wind energy forecasting using radial basis function neural networksWind energy forecasting using radial basis function neural networks
Wind energy forecasting using radial basis function neural networkseSAT Journals
 
An Experimental Study of Weibull and Rayleigh Distribution Functions of Wind ...
An Experimental Study of Weibull and Rayleigh Distribution Functions of Wind ...An Experimental Study of Weibull and Rayleigh Distribution Functions of Wind ...
An Experimental Study of Weibull and Rayleigh Distribution Functions of Wind ...TELKOMNIKA JOURNAL
 
Delineation of Mahanadi River Basin by Using GIS and ArcSWAT
Delineation of Mahanadi River Basin by Using GIS and ArcSWATDelineation of Mahanadi River Basin by Using GIS and ArcSWAT
Delineation of Mahanadi River Basin by Using GIS and ArcSWATinventionjournals
 
Evaluation of Wind Power for Electrical Energy Generation in the Mediterranea...
Evaluation of Wind Power for Electrical Energy Generation in the Mediterranea...Evaluation of Wind Power for Electrical Energy Generation in the Mediterranea...
Evaluation of Wind Power for Electrical Energy Generation in the Mediterranea...IJECEIAES
 
FEASIBILITY OF USING WIND ENERGY FOR IRRIGATION IN IRAQ
FEASIBILITY OF USING WIND ENERGY FOR IRRIGATION IN IRAQ FEASIBILITY OF USING WIND ENERGY FOR IRRIGATION IN IRAQ
FEASIBILITY OF USING WIND ENERGY FOR IRRIGATION IN IRAQ IAEME Publication
 
An Overview of Wind Power Generation and Design Aspects in India
An Overview of Wind Power Generation and Design Aspects in IndiaAn Overview of Wind Power Generation and Design Aspects in India
An Overview of Wind Power Generation and Design Aspects in Indiaijiert bestjournal
 
Wind characteristics, wind speed and energy
Wind characteristics, wind speed and energyWind characteristics, wind speed and energy
Wind characteristics, wind speed and energysanthosh kumar
 
45 investigation paper id 0008 edit septian
45 investigation paper id 0008 edit septian45 investigation paper id 0008 edit septian
45 investigation paper id 0008 edit septianIAESIJEECS
 

Similar to A041110112 (20)

Simulation of Wind Power Dynamic for Electricity Production in Nassiriyah Dis...
Simulation of Wind Power Dynamic for Electricity Production in Nassiriyah Dis...Simulation of Wind Power Dynamic for Electricity Production in Nassiriyah Dis...
Simulation of Wind Power Dynamic for Electricity Production in Nassiriyah Dis...
 
Laminar Flow And Turbulence Modeling For Domestic Scale Wind Turbine Siting
Laminar Flow And Turbulence Modeling  For Domestic Scale Wind Turbine SitingLaminar Flow And Turbulence Modeling  For Domestic Scale Wind Turbine Siting
Laminar Flow And Turbulence Modeling For Domestic Scale Wind Turbine Siting
 
10 n18 ijeset0702917-v7-is2-631-640
10 n18 ijeset0702917-v7-is2-631-64010 n18 ijeset0702917-v7-is2-631-640
10 n18 ijeset0702917-v7-is2-631-640
 
Assessment of wind resource and
Assessment of wind resource andAssessment of wind resource and
Assessment of wind resource and
 
IRJET Wind Data Estimation of Kolhapur District using Improved Hybrid Opt...
IRJET  	  Wind Data Estimation of Kolhapur District using Improved Hybrid Opt...IRJET  	  Wind Data Estimation of Kolhapur District using Improved Hybrid Opt...
IRJET Wind Data Estimation of Kolhapur District using Improved Hybrid Opt...
 
Wind Power Density Analysis for Micro-Scale Wind Turbines
Wind Power Density Analysis for Micro-Scale Wind TurbinesWind Power Density Analysis for Micro-Scale Wind Turbines
Wind Power Density Analysis for Micro-Scale Wind Turbines
 
Impact of field roughness and power losses, turbulence intensity on electrici...
Impact of field roughness and power losses, turbulence intensity on electrici...Impact of field roughness and power losses, turbulence intensity on electrici...
Impact of field roughness and power losses, turbulence intensity on electrici...
 
WindResourceAndSiteAssessment.pdf
WindResourceAndSiteAssessment.pdfWindResourceAndSiteAssessment.pdf
WindResourceAndSiteAssessment.pdf
 
Wind energy forecasting using radial basis function neural networks
Wind energy forecasting using radial basis function neural networksWind energy forecasting using radial basis function neural networks
Wind energy forecasting using radial basis function neural networks
 
An Experimental Study of Weibull and Rayleigh Distribution Functions of Wind ...
An Experimental Study of Weibull and Rayleigh Distribution Functions of Wind ...An Experimental Study of Weibull and Rayleigh Distribution Functions of Wind ...
An Experimental Study of Weibull and Rayleigh Distribution Functions of Wind ...
 
Delineation of Mahanadi River Basin by Using GIS and ArcSWAT
Delineation of Mahanadi River Basin by Using GIS and ArcSWATDelineation of Mahanadi River Basin by Using GIS and ArcSWAT
Delineation of Mahanadi River Basin by Using GIS and ArcSWAT
 
Evaluation of Wind Power for Electrical Energy Generation in the Mediterranea...
Evaluation of Wind Power for Electrical Energy Generation in the Mediterranea...Evaluation of Wind Power for Electrical Energy Generation in the Mediterranea...
Evaluation of Wind Power for Electrical Energy Generation in the Mediterranea...
 
jeas_0116_3445
jeas_0116_3445jeas_0116_3445
jeas_0116_3445
 
30120140505006
3012014050500630120140505006
30120140505006
 
30120140505006
3012014050500630120140505006
30120140505006
 
FEASIBILITY OF USING WIND ENERGY FOR IRRIGATION IN IRAQ
FEASIBILITY OF USING WIND ENERGY FOR IRRIGATION IN IRAQ FEASIBILITY OF USING WIND ENERGY FOR IRRIGATION IN IRAQ
FEASIBILITY OF USING WIND ENERGY FOR IRRIGATION IN IRAQ
 
30120140505006
3012014050500630120140505006
30120140505006
 
An Overview of Wind Power Generation and Design Aspects in India
An Overview of Wind Power Generation and Design Aspects in IndiaAn Overview of Wind Power Generation and Design Aspects in India
An Overview of Wind Power Generation and Design Aspects in India
 
Wind characteristics, wind speed and energy
Wind characteristics, wind speed and energyWind characteristics, wind speed and energy
Wind characteristics, wind speed and energy
 
45 investigation paper id 0008 edit septian
45 investigation paper id 0008 edit septian45 investigation paper id 0008 edit septian
45 investigation paper id 0008 edit septian
 

More from IOSR-JEN

More from IOSR-JEN (20)

C05921721
C05921721C05921721
C05921721
 
B05921016
B05921016B05921016
B05921016
 
A05920109
A05920109A05920109
A05920109
 
J05915457
J05915457J05915457
J05915457
 
I05914153
I05914153I05914153
I05914153
 
H05913540
H05913540H05913540
H05913540
 
G05913234
G05913234G05913234
G05913234
 
F05912731
F05912731F05912731
F05912731
 
E05912226
E05912226E05912226
E05912226
 
D05911621
D05911621D05911621
D05911621
 
C05911315
C05911315C05911315
C05911315
 
B05910712
B05910712B05910712
B05910712
 
A05910106
A05910106A05910106
A05910106
 
B05840510
B05840510B05840510
B05840510
 
I05844759
I05844759I05844759
I05844759
 
H05844346
H05844346H05844346
H05844346
 
G05843942
G05843942G05843942
G05843942
 
F05843238
F05843238F05843238
F05843238
 
E05842831
E05842831E05842831
E05842831
 
D05842227
D05842227D05842227
D05842227
 

Recently uploaded

Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 

Recently uploaded (20)

Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 

A041110112

  • 1. IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 11 (November. 2014), ||VI|| PP 01-12 International organization of Scientific Research 1 | P a g e Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and Less than 10 Meters Yasser Maklad1 1 (University of New England, Armidale NSW 2351 NSW Australia– School of Environmental & Rural Science - email: ymaklad@myune.edu.au) Abstract: - Wind has a very intermittent nature, its behaviour and speed are directly affected by several factors, specifically the nature of the environment and the height that wind blows at. Wind behaviour at urban large city areas and urban suburban areas is completely different than such behaviour at open terrain and flat unobstructed areas, wind turns to be more disturbed and turbulent and wind speed is reduced due to the existence of several obstructions, mostly buildings either single storey or medium rise or high rise buildings in addition to trees. As well, the height at which wind is blowing, the lower height the more disturbed wind the less wind speed, such effect is maximised in urban areas and near to the ground level. This paper aims to estimate and generate, in urban Armidale NSW, Australia, an annual typical daily wind speed for heights equal and less than 10m. A numerical method is applied to calculate such wind speed at urban Armidale at various heights (10, 9, 8, 7, 6, 5 & 4) m utilising an already previously generated typical wind speed reference year (TRY) of Armidale based on historical meteorological wind speed records measured at 10m height at Armidale’s Tree Group Nursery Weather Station over a period of 23 years (1991 to 2013). This station is situated typically in valley of Armidale’s lowest altitude, thus such data would represent the pessimistic scenario of urban wind speed in Armidale. Achieving such a database of typical reference year of daily wind speed at heights equal and less than 10 meters in (m/s) is an added value to the micro-scale wind energy generation systems, ranges from 0.5 kW to 10 kW, as such systems involves micro-scale wind turbines would be operating at heights considered at this study. Keywords: - Armidale Valley, NSW, test meteorological year, test reference year, wind speed, micro-scale energy generation, micro-wind turbines I. INTRODUCTION When wind flows over an open area approaches the boundaries of the built-up area, it encounters a high roughness of the surface, created by the buildings. The increased resistance resulting from this roughness reduces the wind flow at the level of the urban canopy. In this way a transitional zone is created between the ground and the undisturbed wind flow above the urban air dome, which is called “urban boundary layer”. The “undisturbed flow” is called the “gradient wind” and its velocity is called the gradient velocity. Near the ground, wind experiences friction. Its speed is reduced more steeply and its turbulence increases. [1, 2 &3]. The main urban design elements which can modify the wind conditions are: the overall density of the urban area, size and height of the individual buildings; existence of high-rise buildings, orientation of the streets, availability, size distribution, and design details of open spaces and green shelter belts. [4, 5 & 6]. The wind field is characterized by two parameters: the vertical profile of the mean wind speed and the turbulence spectrum. Both are affected and modified by the profile of the terrain and, in an urban setup, by the urban structure [4, 5, 6 & 7]. Micro-scale energy generation ranges from [0.5 to 10] kW which suits domestic/residential, educational and small commercial applications. , wind is one of the renewable inexhaustible energy sources for this scale of energy generation. Thus it most likely that micro scale wind turbines would operate at level higher than a house or a school or shop building. This study focuses on the generation of wind speed at urban Armidale NSW, Australia at heights (10, 9, 8, 7, 6, 5 & 4)] meters. This scope is selected mainly to provide micro-scale wind energy generation systems’ designers an annual realistic mean daily speed such heights of micro-wind turbines’ possible installations. II. DATA AND LOCATION A previously meteorological wind speed TRY at 10m height was developed [8]. That TRY was generated based on the daily mean wind speed recorded during the period 1991–2010 recorded at Armidale’s Tree Group Nursery Weather Station. That TYR was generated utilising Finkelstein-Schafer (FS) statistics [9]. In Australia, meteorological observations are recorded by the Australian Bureau of Meteorology (BOM) weather stations are widely spreader in lots of cities and towns around Australia. In this study, the global wind speed data recorded by Armidale’s Tree Group Nursery manual weather station and published on the BOM’s website where
  • 2. Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and Less than 10 Meters International organization of Scientific Research 2 | P a g e it was collected. The missing and invalid measurements account for 0.001% of the whole database of mean wind speed; those were replaced with the values of preceding or subsequent days by interpolation. During the calculations process, any year found with more than ten days in any month observations not available was excluded. “Table 1” provides geographical information for Armidale town and the periods of the relevant mean wind speed data and “figure 1” shows Armidale’s location in NSW, Australia. Table 1 Geographical and mean wind speed database information of Armidale’s Tree Group Nursery Weather Station Longitude ( †E) Latitude( †S) Elevation (m) Mean Daily Wind Speed Period Total years Armidale 151.67 30.52 987 1991—2013 23 Figure1 Armidale NSW, Australia location III. METHODOLOGY To estimate the wind speed in urban areas, a reference measured wind speed is required which is usually the wind speeds measured and recorded by meteorological stations at a specified height. Such height is usually ten meters from ground level. Although, meteorological stations give all needed data but the problem is that the terrain of the station area and the height of the wind anemometer, are different from the design site [10] The information of wind data in meteorology stations is gotten in the height of 10 meters above the ground and in a flat and completely open area. In lower levels the wind speed will be reduced because of the friction of the earth surfaces. The amount of the wind speed reduction depends on the terrain conditions. Reduction of the wind speed on the large area of water surface is the least and in the compressed urban area with low and high rise buildings is the most (Table 2). So the data of the wind speed reported by the meteorology station is not enough to estimate the wind speed in urban areas [10]. A numerical method is presented, in modelling the urban effect on the wind speed, the vertical profile of the wind, from the gradient wind level down to the ground is used. The simple equation developed by Davenport in 1960 [5] - shows the profile of the wind speed in different height of an area. It shows that the wind speed vary with height according to a power low [11]. : 𝑽 𝒁̅̅̅̅ 𝑽 𝑮̅̅̅̅ = [ 𝒁 𝒁 𝑮 ] −𝜶 (1)
  • 3. Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and Less than 10 Meters International organization of Scientific Research 3 | P a g e Where: 𝑉𝑍 ̅̅̅ = mean wind speed at height Z in the study site (m/s) 𝑉𝐺 ̅̅̅ = mean wind speed at height 𝑍 𝐺 (“gradient” height) at top of the boundary layer of the study site, above which the speed is assumed to be constant, (m/s) Z = the height for which the wind speed z V is computed (m) 𝑍 𝐺 = the height at which “gradient velocity” 𝑉𝐺 ̅̅̅is first observed (layer thickness) in the same terrain (m) α = an empirical exponent which depends on the surface roughness, stability and temperature gradient “Table 2” shows the typical values of 𝑍 𝐺 and α for mean wind speeds over four types of terrain. Table 2 Suggested Values of 𝑍 𝐺 and α for Various Terrain Conditions Terrain Category Description Exponent α Layer Thickness 𝑍 𝐺m 1 Large city centers, in which at least 50% of buildings are higher than 21 m, over a distance of at least 2000 meters upwind. 0.33 460 2 Urban, suburban, wooded areas, and other areas with closely spaced obstructions compared to or larger than single-family dwellings (over a distance of at least 2000meters upwind). 0.22 370 3 Open terrain with scattered obstacles generally less than 10 meters height. 0.14 270 4 Flat, unobstructed areas exposed to wind flowing over a large water body (no more than 500 meters inland). 0.1 210 Equation (1) will be developed to equation (2) which helps to calculate wind speed in the same terrain for every study height. 𝑉 𝑍̅̅̅̅ 𝑉 𝑍10̅̅̅̅̅̅̅ = [ 𝑍 𝑍10 ] 𝛼 (2) Where: 𝑉𝑍10 ̅̅̅̅̅̅ = mean wind speed at the height of 10 meters in the study terrain (m/s) Z= the study height above the ground in the same terrain (m) 𝑍10 = the height of 10 meters in the same terrain (m) To estimate the wind speed in different urban areas with different density and terrain roughness, equation (3) is introduced: 𝑉 𝑚𝑒𝑡10̅̅̅̅̅̅̅̅̅̅ 𝑉 𝑍10̅̅̅̅̅̅̅ = [ 𝑚𝑒𝑡10 𝑚𝑒𝑡 𝐺 ] 𝛼 𝑚𝑒𝑡 [ 𝑍10 𝑍 𝐺 ] 𝛼 (3) where: 𝑉 𝑚𝑒𝑡10 ̅̅̅̅̅̅̅̅ = mean wind speed at height of 10 meters in the meteorology station (m/s) 𝑚𝑒𝑡101 = the standard observation height of 10 meters in the meteorology station (m) 𝑍 𝐺 = gradient height at the top of the boundary layer of the study terrain IV. GENERATION OF TYPICAL WIND SPEED YEAR “Table 3” shows the meteorological TRY for wind speed measured at 10 meter height in (m/s)
  • 4. Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and Less than 10 Meters International organization of Scientific Research 4 | P a g e Applying the above methodology for all the months in the database, the meteorological Test Reference Year for daily wind speed data was formed for Armidale. “ Tables 4, 5, 6, 7, 8, 9 & 10 “ shows the calculated urban daily wind speed values obtained from Test Reference Year data for Armidale NSW, Australia at heights (10, 9, 8, 7, 6, 5 &4) respectively in (m/s). Table 3 Meteorological daily wind speed values obtained from Test Reference Year data for Armidale’s Valley (Tree Group Nursery Weather Station) at 10 m height in (m/s) Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 4.86 5.66 5.23 4.55 4.63 4.36 5.62 4.95 4.62 5.38 4.9 4.73 2 5.65 6.07 5.16 4.74 4.78 4.98 4.94 5.16 4.42 5.07 5.1 5.1 3 4.86 5.35 5.16 4.3 4.37 4.28 4.85 6.02 5.52 4.8 5.25 5.07 4 5.68 4.91 5.38 4.33 4.85 3.9 5.3 5.38 5.05 4.41 4.62 5.38 5 5.1 4.54 5.57 5.12 4.06 4.83 5.3 5.75 5.4 4.3 4.38 5.78 6 5.13 4.87 5.59 5.21 4.46 4.79 5.11 5.5 5.44 5.53 4.78 5.56 7 5.65 5.84 5.02 5.5 4.63 4.62 4.4 5.75 4.96 5.22 4.78 5.29 8 5.71 5.07 4.52 5.19 3.97 5.12 4.85 6.02 5.32 5.65 5.1 4.81 9 5.95 5.5 5.04 4.4 3.97 5.51 5.75 5.38 5.38 5.5 4.86 4.66 10 5.32 4.94 4.95 4.71 4.26 5.22 5.52 5.44 4.78 4.94 4.9 5.29 11 5.51 4.69 5.02 4.33 4.35 5.04 5.52 5.38 5.23 4.73 4.78 4.94 12 5.17 5.13 4.88 5 4.37 4.59 4.19 5.81 4.83 4.94 4.9 4.61 13 4.9 5.41 4.74 4.49 4.57 5.08 4.32 5.1 4.99 5.16 5.32 4.94 14 4.9 5.72 4.47 3.89 4.63 5.9 5.62 5.71 4.53 5.56 4.53 5.22 15 5.17 5.44 3.88 3.95 3.78 5.38 5.3 5.32 4.53 4.8 5.05 4.89 16 5.17 4.85 4.31 4.23 4.57 4.95 4.19 5.75 7.7 5.84 5.32 4.52 17 5.17 4.94 4.52 4.51 4.66 4.98 4.32 5.44 5.52 5.6 5.17 4.61 18 5.17 5.5 5.14 4.23 4.37 4.49 4.94 5.86 4.62 5.01 4.78 5.16 19 5.59 4.98 4.71 3.82 5.22 5.27 5.3 4.95 4.59 5.07 4.32 5.01 20 5.32 5.13 4.58 3.95 4.63 4.92 5.01 5.38 4.69 4.8 4.62 5.29 21 5.17 5 4.31 3.82 4.98 5.9 6.14 5.59 4.42 4.01 4.83 4.8 22 4.74 5.22 4.74 4.01 4.44 5.8 4.78 6.02 3.78 5.01 5.32 4.85 23 4.56 5.44 4.71 4.01 4.06 5.61 5.01 5.16 5.05 5.5 5.17 4.94 24 5.44 5.35 4.58 4.4 4.19 4.88 4.72 5.81 4.96 4.8 4.62 5.22 25 5.59 5.22 4.61 4.83 4.26 4.36 4.94 5.5 5.32 4.8 4.44 4.8 26 5.23 4.63 4.44 4.96 4.69 4.98 6.04 5.44 5.25 5.47 4.42 4.81 27 5.32 4.28 3.97 4.83 4.35 5.04 5.45 5.38 5.44 5.56 5.52 4.85 28 5.17 4.5 4.25 5.03 4.31 6.27 5.68 5.46 5.32 4.57 5.17 4.64 29 4.99 5 4.04 4.77 4.94 6.5 5.24 5.29 5.99 5.32 4.74 4.89 30 4.78 4.04 4.59 4.22 5.74 5.11 6.51 4.69 4.89 4.83 5.2 31 5.44 4.4 4.41 5.11 5.84 5.44 5.07 Table 4 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 10 m height in (m/s)
  • 5. Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and Less than 10 Meters International organization of Scientific Research 5 | P a g e Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 3.49 4.06 3.75 3.26 3.31 3.13 4.03 3.56 3.31 3.85 3.51 3.39 2 4.05 4.35 3.7 3.39 3.43 3.57 3.54 3.7 3.17 3.64 3.65 3.66 3 3.49 3.83 3.7 3.08 3.13 3.07 3.47 4.31 3.96 3.44 3.77 3.64 4 4.07 3.52 3.85 3.1 3.47 2.79 3.8 3.85 3.62 3.17 3.31 3.85 5 3.65 3.25 4 3.68 2.91 3.46 3.8 4.12 3.87 3.08 3.14 4.14 6 3.68 3.49 4 3.74 3.2 3.43 3.66 3.94 3.9 3.96 3.43 3.99 7 4.05 4.19 3.6 3.94 3.31 3.31 3.15 4.12 3.56 3.74 3.43 3.79 8 4.09 3.64 3.24 3.72 2.84 3.67 3.47 4.31 3.81 4.05 3.65 3.45 9 4.26 3.94 3.62 3.15 2.84 3.95 4.12 3.85 3.85 3.94 3.49 3.35 10 3.81 3.55 3.56 3.38 3.05 3.74 3.96 3.9 3.43 3.54 3.51 3.79 11 3.95 3.36 3.6 3.1 3.11 3.62 3.96 3.85 3.75 3.39 3.43 3.54 12 3.71 3.68 3.5 3.59 3.13 3.29 3 4.16 3.46 3.54 3.51 3.3 13 3.51 3.88 3.4 3.21 3.28 3.64 3.1 3.66 3.58 3.7 3.81 3.54 14 3.51 4.1 3.2 2.79 3.31 4.23 4.03 4.09 3.25 3.99 3.25 3.74 15 3.71 3.9 2.78 2.83 2.71 3.86 3.8 3.81 3.25 3.44 3.62 3.51 16 3.71 3.47 3.09 3.03 3.28 3.54 3 4.12 5.52 4.18 3.81 3.24 17 3.71 3.55 3.24 3.24 3.34 3.57 3.1 3.9 3.96 4.01 3.71 3.3 18 3.71 3.94 3.69 3.03 3.13 3.22 3.54 4.2 3.31 3.6 3.43 3.7 19 4.01 3.56 3.37 2.74 3.74 3.78 3.8 3.56 3.29 3.64 3.1 3.6 20 3.81 3.68 3.28 2.83 3.31 3.52 3.59 3.85 3.36 3.44 3.31 3.79 21 3.71 3.58 3.09 2.74 3.56 4.23 4.4 4 3.17 2.87 3.46 3.44 22 3.4 3.74 3.4 2.88 3.18 4.16 3.42 4.31 2.71 3.6 3.81 3.48 23 3.27 3.9 3.37 2.88 2.91 4.02 3.59 3.7 3.62 3.94 3.71 3.54 24 3.9 3.83 3.28 3.15 3 3.5 3.39 4.16 3.56 3.44 3.31 3.74 25 4.01 3.74 3.31 3.47 3.05 3.13 3.54 3.94 3.81 3.44 3.18 3.44 26 3.75 3.31 3.18 3.56 3.36 3.57 4.32 3.9 3.77 3.92 3.17 3.45 27 3.81 3.07 2.84 3.47 3.11 3.62 3.91 3.85 3.9 3.99 3.96 3.48 28 3.71 3.22 3.04 3.6 3.09 4.49 4.07 3.92 3.81 3.28 3.71 3.32 29 3.58 3.58 2.9 3.42 3.55 4.66 3.76 3.79 4.29 3.82 3.4 3.51 30 3.43 2.9 3.29 3.02 4.11 3.66 4.66 3.36 3.51 3.46 3.73 31 3.9 3.15 3.16 3.66 4.19 3.9 3.64 Table 5 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 9 m height in (m/s)
  • 6. Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and Less than 10 Meters International organization of Scientific Research 6 | P a g e Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 3.41 3.97 3.66 3.19 3.24 3.05 3.93 3.48 3.24 3.76 3.44 3.31 2 3.95 4.25 3.61 3.31 3.35 3.49 3.46 3.61 3.1 3.56 3.57 3.58 3 3.41 3.74 3.61 3.01 3.06 3 3.39 4.22 3.87 3.36 3.68 3.56 4 3.98 3.44 3.77 3.03 3.39 2.73 3.72 3.77 3.53 3.1 3.24 3.76 5 3.57 3.18 3.91 3.59 2.84 3.38 3.72 4.02 3.78 3.01 3.07 4.04 6 3.59 3.41 3.92 3.66 3.13 3.35 3.58 3.85 3.81 3.87 3.35 3.9 7 3.95 4.09 3.52 3.85 3.24 3.23 3.08 4.02 3.48 3.65 3.35 3.7 8 3.99 3.56 3.17 3.64 2.78 3.58 3.39 4.22 3.72 3.96 3.57 3.37 9 4.17 3.85 3.54 3.08 2.78 3.86 4.03 3.77 3.77 3.85 3.41 3.27 10 3.72 3.47 3.48 3.29 2.98 3.66 3.87 3.81 3.35 3.46 3.44 3.7 11 3.86 3.28 3.52 3.03 3.04 3.53 3.87 3.77 3.66 3.31 3.35 3.46 12 3.62 3.6 3.42 3.5 3.06 3.21 2.94 4.07 3.38 3.46 3.44 3.22 13 3.44 3.79 3.32 3.14 3.2 3.55 3.02 3.57 3.5 3.61 3.72 3.46 14 3.44 4.01 3.13 2.73 3.24 4.13 3.93 4 3.17 3.9 3.17 3.65 15 3.62 3.81 2.72 2.77 2.65 3.77 3.72 3.72 3.17 3.36 3.53 3.43 16 3.62 3.39 3.02 2.96 3.2 3.46 2.94 4.02 5.39 4.09 3.72 3.17 17 3.62 3.47 3.17 3.17 3.26 3.49 3.02 3.81 3.87 3.92 3.62 3.22 18 3.62 3.85 3.6 2.96 3.06 3.14 3.46 4.1 3.24 3.52 3.35 3.61 19 3.92 3.48 3.29 2.68 3.65 3.7 3.72 3.48 3.21 3.56 3.03 3.52 20 3.72 3.6 3.2 2.77 3.24 3.44 3.51 3.77 3.28 3.36 3.24 3.7 21 3.62 3.5 3.02 2.68 3.48 4.13 4.3 3.92 3.1 2.81 3.38 3.36 22 3.32 3.65 3.32 2.81 3.11 4.07 3.35 4.22 2.64 3.52 3.72 3.4 23 3.19 3.81 3.29 2.81 2.84 3.92 3.51 3.61 3.53 3.85 3.62 3.46 24 3.81 3.74 3.2 3.08 2.93 3.42 3.31 4.07 3.48 3.36 3.24 3.65 25 3.92 3.65 3.23 3.39 2.98 3.05 3.46 3.85 3.72 3.36 3.11 3.36 26 3.66 3.24 3.11 3.48 3.28 3.49 4.22 3.81 3.68 3.84 3.1 3.37 27 3.72 3 2.78 3.39 3.04 3.53 3.81 3.77 3.81 3.9 3.87 3.4 28 3.62 3.15 2.97 3.52 3.02 4.39 3.98 3.83 3.72 3.2 3.62 3.24 29 3.5 3.5 2.82 3.34 3.47 4.55 3.67 3.7 4.19 3.73 3.32 3.43 30 3.35 2.82 3.21 2.95 4.02 3.58 4.56 3.28 3.43 3.38 3.64 31 3.81 3.08 3.09 3.58 4.09 3.81 3.56 Table 6 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 8 m height in (m/s)
  • 7. Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and Less than 10 Meters International organization of Scientific Research 7 | P a g e Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 3.32 3.86 3.57 3.1 3.15 2.97 3.83 3.39 3.16 3.67 3.35 3.23 2 3.85 4.14 3.52 3.23 3.27 3.4 3.38 3.52 3.02 3.46 3.48 3.48 3 3.32 3.65 3.52 2.94 2.98 2.93 3.3 4.11 3.77 3.28 3.58 3.46 4 3.88 3.35 3.67 2.96 3.31 2.66 3.62 3.67 3.45 3.02 3.16 3.67 5 3.48 3.1 3.8 3.5 2.77 3.3 3.62 3.92 3.69 2.93 2.99 3.94 6 3.51 3.32 3.81 3.56 3.05 3.27 3.49 3.76 3.71 3.77 3.26 3.8 7 3.85 3.99 3.42 3.75 3.15 3.14 3 3.92 3.38 3.56 3.26 3.61 8 3.89 3.47 3.08 3.54 2.71 3.5 3.3 4.11 3.63 3.85 3.48 3.28 9 4.06 3.75 3.44 2.99 2.71 3.76 3.92 3.67 3.67 3.76 3.32 3.19 10 3.63 3.38 3.39 3.21 2.91 3.56 3.78 3.71 3.26 3.37 3.35 3.61 11 3.76 3.2 3.42 2.96 2.96 3.45 3.78 3.67 3.57 3.23 3.26 3.37 12 3.53 3.5 3.34 3.41 2.98 3.13 2.86 3.96 3.3 3.37 3.35 3.14 13 3.35 3.69 3.24 3.06 3.12 3.47 2.95 3.48 3.4 3.52 3.63 3.37 14 3.35 3.9 3.05 2.66 3.15 4.03 3.83 3.9 3.09 3.8 3.09 3.56 15 3.53 3.71 2.65 2.69 2.58 3.68 3.62 3.63 3.09 3.28 3.45 3.34 16 3.53 3.31 2.94 2.88 3.12 3.37 2.86 3.92 5.25 3.98 3.63 3.09 17 3.53 3.38 3.08 3.08 3.18 3.4 2.95 3.71 3.77 3.82 3.53 3.14 18 3.53 3.75 3.51 2.88 2.98 3.07 3.38 4 3.16 3.43 3.26 3.52 19 3.82 3.39 3.21 2.61 3.56 3.6 3.62 3.39 3.13 3.46 2.95 3.43 20 3.63 3.5 3.12 2.69 3.15 3.35 3.42 3.67 3.2 3.28 3.16 3.61 21 3.53 3.41 2.94 2.61 3.39 4.03 4.19 3.81 3.02 2.74 3.3 3.28 22 3.24 3.56 3.24 2.74 3.02 3.96 3.26 4.11 2.58 3.43 3.63 3.31 23 3.11 3.71 3.21 2.74 2.77 3.83 3.42 3.52 3.45 3.76 3.53 3.37 24 3.71 3.65 3.12 2.99 2.85 3.33 3.23 3.96 3.38 3.28 3.16 3.56 25 3.82 3.56 3.15 3.3 2.91 2.97 3.38 3.76 3.63 3.28 3.03 3.28 26 3.57 3.15 3.03 3.39 3.2 3.4 4.12 3.71 3.58 3.74 3.02 3.28 27 3.63 2.93 2.71 3.3 2.96 3.45 3.72 3.67 3.71 3.8 3.77 3.31 28 3.53 3.07 2.9 3.43 2.94 4.28 3.88 3.73 3.63 3.12 3.53 3.16 29 3.4 3.41 2.75 3.26 3.38 4.44 3.58 3.61 4.08 3.63 3.24 3.34 30 3.26 2.75 3.13 2.88 3.91 3.49 4.44 3.2 3.34 3.3 3.55 31 3.71 3 3.01 3.49 3.99 3.71 3.46 Table 7 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 7 m height in (m/s)
  • 8. Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and Less than 10 Meters International organization of Scientific Research 8 | P a g e Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 3.23 3.75 3.47 3.01 3.06 2.89 3.72 3.29 3.06 3.56 3.25 3.13 2 3.74 4.02 3.41 3.14 3.17 3.31 3.27 3.41 2.93 3.36 3.38 3.38 3 3.23 3.55 3.41 2.85 2.9 2.84 3.21 3.99 3.66 3.18 3.48 3.36 4 3.77 3.25 3.56 2.87 3.21 2.58 3.52 3.56 3.35 2.93 3.06 3.56 5 3.38 3.01 3.7 3.4 2.69 3.2 3.52 3.81 3.58 2.85 2.91 3.83 6 3.4 3.23 3.7 3.46 2.96 3.17 3.39 3.64 3.6 3.66 3.17 3.68 7 3.74 3.87 3.33 3.64 3.06 3.06 2.91 3.81 3.29 3.45 3.17 3.51 8 3.78 3.37 2.99 3.44 2.63 3.39 3.21 3.99 3.52 3.75 3.38 3.2 9 3.94 3.65 3.34 2.91 2.63 3.66 3.81 3.56 3.57 3.65 3.23 3.1 10 3.52 3.28 3.29 3.12 2.82 3.46 3.66 3.61 3.17 3.28 3.25 3.51 11 3.65 3.11 3.33 2.87 2.88 3.34 3.66 3.56 3.46 3.13 3.17 3.28 12 3.43 3.4 3.24 3.31 2.9 3.04 2.78 3.85 3.2 3.28 3.25 3.05 13 3.25 3.58 3.14 2.97 3.03 3.36 2.86 3.39 3.31 3.43 3.52 3.28 14 3.25 3.79 2.97 2.58 3.06 3.9 3.72 3.78 3 3.68 3 3.45 15 3.43 3.6 2.57 2.62 2.5 3.56 3.52 3.52 3 3.18 3.35 3.24 16 3.43 3.21 2.86 2.8 3.03 3.28 2.78 3.81 5.1 3.87 3.52 3 17 3.43 3.28 2.99 2.99 3.09 3.31 2.86 3.61 3.66 3.71 3.43 3.05 18 3.43 3.65 3.41 2.8 2.9 2.97 3.27 3.88 3.06 3.33 3.17 3.43 19 3.71 3.29 3.12 2.53 3.47 3.5 3.52 3.29 3.04 3.36 2.86 3.33 20 3.52 3.4 3.04 2.62 3.06 3.26 3.32 3.56 3.11 3.18 3.06 3.51 21 3.43 3.31 2.86 2.53 3.29 3.9 4.06 3.7 2.93 2.66 3.2 3.18 22 3.14 3.47 3.14 2.66 2.93 3.85 3.16 3.99 2.51 3.33 3.52 3.21 23 3.03 3.6 3.12 2.66 2.69 3.71 3.32 3.41 3.35 3.65 3.43 3.28 24 3.6 3.55 3.04 2.91 2.77 3.23 3.13 3.85 3.29 3.18 3.06 3.45 25 3.71 3.47 3.06 3.2 2.82 2.89 3.27 3.64 3.52 3.18 2.94 3.18 26 3.46 3.06 2.94 3.29 3.11 3.31 4 3.61 3.48 3.63 2.93 3.2 27 3.52 2.84 2.63 3.2 2.88 3.34 3.61 3.56 3.6 3.68 3.66 3.21 28 3.43 2.98 2.82 3.33 2.85 4.15 3.77 3.62 3.52 3.03 3.43 3.07 29 3.31 3.31 2.68 3.17 3.28 4.3 3.48 3.5 3.97 3.53 3.14 3.24 30 3.17 2.68 3.04 2.8 3.8 3.39 4.31 3.11 3.24 3.2 3.44 31 3.6 2.91 2.93 3.39 3.87 3.6 3.36 Table 8 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 6 m height in (m/s)
  • 9. Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and Less than 10 Meters International organization of Scientific Research 9 | P a g e Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 3.11 3.63 3.35 2.92 2.96 2.79 3.6 3.18 2.97 3.44 3.14 3.03 2 3.62 3.89 3.3 3.04 3.07 3.19 3.17 3.3 2.83 3.26 3.26 3.27 3 3.11 3.43 3.3 2.77 2.8 2.75 3.1 3.85 3.54 3.07 3.37 3.26 4 3.64 3.14 3.44 2.79 3.11 2.5 3.4 3.44 3.24 2.83 2.97 3.44 5 3.26 2.91 3.57 3.3 2.6 3.09 3.4 3.68 3.46 2.75 2.81 3.7 6 3.29 3.12 3.58 3.35 2.86 3.07 3.27 3.52 3.48 3.54 3.06 3.56 7 3.62 3.74 3.22 3.54 2.96 2.95 2.82 3.68 3.18 3.34 3.06 3.39 8 3.65 3.25 2.9 3.35 2.54 3.28 3.1 3.85 3.4 3.62 3.26 3.09 9 3.81 3.52 3.23 2.82 2.54 3.53 3.68 3.44 3.45 3.52 3.11 2.99 10 3.4 3.17 3.18 3.03 2.73 3.34 3.54 3.48 3.06 3.17 3.14 3.39 11 3.53 3 3.22 2.79 2.78 3.24 3.54 3.44 3.35 3.03 3.06 3.17 12 3.31 3.29 3.13 3.22 2.8 2.94 2.69 3.72 3.1 3.17 3.14 2.95 13 3.14 3.47 3.04 2.88 2.93 3.25 2.77 3.27 3.19 3.31 3.4 3.17 14 3.14 3.66 2.86 2.5 2.96 3.78 3.6 3.66 2.9 3.56 2.9 3.34 15 3.31 3.48 2.48 2.54 2.42 3.45 3.4 3.41 2.9 3.07 3.24 3.13 16 3.31 3.11 2.76 2.72 2.93 3.16 2.69 3.68 4.93 3.74 3.4 2.89 17 3.31 3.17 2.9 2.91 2.99 3.19 2.77 3.48 3.54 3.59 3.31 2.95 18 3.31 3.52 3.29 2.72 2.8 2.88 3.17 3.75 2.97 3.21 3.06 3.31 19 3.58 3.19 3.01 2.46 3.35 3.38 3.4 3.18 2.94 3.26 2.77 3.21 20 3.4 3.29 2.93 2.54 2.96 3.15 3.21 3.44 3 3.07 2.97 3.39 21 3.31 3.2 2.76 2.46 3.19 3.78 3.93 3.58 2.83 2.57 3.1 3.07 22 3.04 3.35 3.04 2.58 2.84 3.71 3.06 3.85 2.42 3.21 3.4 3.11 23 2.92 3.48 3.01 2.58 2.6 3.59 3.21 3.3 3.24 3.52 3.31 3.17 24 3.48 3.43 2.93 2.82 2.68 3.13 3.02 3.72 3.18 3.07 2.97 3.34 25 3.58 3.35 2.96 3.12 2.73 2.79 3.17 3.52 3.4 3.07 2.84 3.07 26 3.35 2.96 2.84 3.19 3 3.19 3.87 3.48 3.37 3.51 2.83 3.09 27 3.4 2.75 2.54 3.12 2.78 3.24 3.49 3.44 3.48 3.56 3.54 3.11 28 3.31 2.88 2.72 3.24 2.76 4.02 3.64 3.5 3.4 2.93 3.31 2.96 29 3.19 3.2 2.59 3.07 3.17 4.16 3.36 3.39 3.84 3.41 3.04 3.13 30 3.06 2.59 2.95 2.7 3.68 3.27 4.17 3 3.13 3.1 3.33 31 3.48 2.82 2.83 3.27 3.74 3.48 3.26 Table 9 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 5 m height in (m/s)
  • 10. Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and Less than 10 Meters International organization of Scientific Research 10 | P a g e Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 3.44 3.87 3.66 3.07 3.16 2.82 3.72 3.47 3.27 3.72 3.47 3.27 2 3.99 4.15 3.61 3.2 3.27 3.23 3.27 3.61 3.13 3.51 3.61 3.53 3 3.44 3.66 3.61 2.91 2.99 2.77 3.2 4.21 3.91 3.31 3.72 3.51 4 4.02 3.36 3.76 2.93 3.31 2.52 3.51 3.76 3.57 3.06 3.27 3.72 5 3.61 3.1 3.9 3.47 2.77 3.13 3.51 4.02 3.82 2.97 3.1 3.99 6 3.63 3.33 3.91 3.53 3.06 3.1 3.38 3.85 3.85 3.82 3.38 3.85 7 3.99 3.99 3.51 3.72 3.16 2.99 2.91 4.02 3.51 3.61 3.38 3.66 8 4.04 3.47 3.16 3.51 2.71 3.31 3.2 4.21 3.76 3.91 3.61 3.33 9 4.21 3.76 3.53 2.97 2.71 3.57 3.8 3.76 3.8 3.8 3.44 3.23 10 3.76 3.38 3.47 3.19 2.91 3.38 3.66 3.8 3.38 3.42 3.47 3.66 11 3.9 3.2 3.51 2.93 2.97 3.27 3.66 3.76 3.7 3.27 3.38 3.42 12 3.66 3.51 3.42 3.38 2.99 2.97 2.77 4.06 3.42 3.42 3.47 3.19 13 3.47 3.7 3.31 3.03 3.13 3.29 2.86 3.57 3.53 3.57 3.76 3.42 14 3.47 3.91 3.13 2.64 3.16 3.82 3.72 3.99 3.2 3.85 3.2 3.61 15 3.66 3.72 2.71 2.67 2.58 3.49 3.51 3.72 3.2 3.31 3.57 3.38 16 3.66 3.31 3.01 2.86 3.13 3.2 2.77 4.02 5.44 4.04 3.76 3.13 17 3.66 3.38 3.16 3.06 3.19 3.23 2.86 3.8 3.91 3.87 3.66 3.19 18 3.66 3.76 3.6 2.86 2.99 2.91 3.27 4.1 3.27 3.47 3.38 3.57 19 3.96 3.4 3.29 2.58 3.57 3.42 3.51 3.47 3.25 3.51 3.06 3.47 20 3.76 3.51 3.2 2.67 3.16 3.19 3.31 3.76 3.31 3.31 3.27 3.66 21 3.66 3.42 3.01 2.58 3.4 3.82 4.06 3.91 3.13 2.77 3.42 3.31 22 3.36 3.57 3.31 2.71 3.03 3.76 3.16 4.21 2.67 3.47 3.76 3.36 23 3.23 3.72 3.29 2.71 2.77 3.63 3.31 3.61 3.57 3.8 3.66 3.42 24 3.85 3.66 3.2 2.97 2.86 3.16 3.13 4.06 3.51 3.31 3.27 3.61 25 3.96 3.57 3.23 3.27 2.91 2.82 3.27 3.85 3.76 3.31 3.14 3.31 26 3.7 3.16 3.1 3.36 3.2 3.23 3.99 3.8 3.72 3.79 3.13 3.33 27 3.76 2.93 2.77 3.27 2.97 3.27 3.61 3.76 3.85 3.85 3.91 3.36 28 3.66 3.07 2.97 3.4 2.94 4.06 3.76 3.82 3.76 3.16 3.66 3.2 29 3.53 3.42 2.82 3.23 3.38 4.21 3.47 3.7 4.23 3.68 3.36 3.38 30 3.38 2.82 3.1 2.88 3.72 3.38 4.55 3.31 3.38 3.42 3.6 31 3.85 3.07 3.01 3.38 4.09 3.76 3.51 Table 10 Urban daily wind speed values obtained from Test Reference Year data for Armidale’s Valley at 4 m height in (m/s)
  • 11. Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and Less than 10 Meters International organization of Scientific Research 11 | P a g e Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 2.85 3.32 3.06 2.67 2.71 2.56 3.29 2.9 2.71 3.15 2.87 2.77 2 3.31 3.56 3.02 2.78 2.8 2.92 2.89 3.02 2.59 2.97 2.98 2.99 3 2.85 3.13 3.02 2.52 2.56 2.51 2.84 3.53 3.24 2.81 3.08 2.97 4 3.33 2.88 3.15 2.54 2.84 2.28 3.11 3.15 2.96 2.59 2.71 3.15 5 2.98 2.66 3.26 3 2.38 2.83 3.11 3.37 3.17 2.52 2.57 3.38 6 3.01 2.85 3.27 3.06 2.62 2.8 2.99 3.22 3.18 3.24 2.8 3.26 7 3.31 3.42 2.94 3.22 2.71 2.7 2.58 3.37 2.91 3.05 2.8 3.1 8 3.34 2.97 2.65 3.04 2.32 3 2.84 3.53 3.11 3.31 2.98 2.82 9 3.49 3.22 2.96 2.58 2.32 3.23 3.37 3.15 3.15 3.22 2.85 2.73 10 3.11 2.9 2.9 2.76 2.49 3.06 3.24 3.19 2.8 2.89 2.87 3.1 11 3.23 2.75 2.94 2.54 2.55 2.95 3.24 3.15 3.06 2.77 2.8 2.89 12 3.03 3.01 2.86 2.93 2.56 2.69 2.46 3.41 2.83 2.89 2.87 2.7 13 2.87 3.17 2.78 2.63 2.68 2.97 2.53 2.99 2.92 3.03 3.11 2.89 14 2.87 3.35 2.62 2.28 2.71 3.46 3.29 3.34 2.65 3.26 2.65 3.05 15 3.03 3.19 2.27 2.31 2.21 3.15 3.11 3.12 2.65 2.81 2.96 2.87 16 3.03 2.84 2.53 2.48 2.68 2.9 2.46 3.37 4.51 3.42 3.11 2.65 17 3.03 2.9 2.65 2.65 2.73 2.92 2.53 3.19 3.24 3.28 3.03 2.7 18 3.03 3.22 3.02 2.48 2.56 2.63 2.89 3.43 2.71 2.94 2.8 3.03 19 3.28 2.92 2.75 2.24 3.06 3.09 3.11 2.9 2.69 2.97 2.53 2.94 20 3.11 3.01 2.68 2.31 2.71 2.88 2.94 3.15 2.75 2.81 2.71 3.1 21 3.03 2.93 2.53 2.24 2.92 3.46 3.6 3.27 2.59 2.35 2.83 2.81 22 2.78 3.06 2.78 2.35 2.6 3.4 2.8 3.53 2.21 2.94 3.11 2.85 23 2.67 3.19 2.75 2.35 2.38 3.29 2.94 3.02 2.96 3.22 3.03 2.89 24 3.18 3.13 2.68 2.58 2.45 2.86 2.77 3.41 2.91 2.81 2.71 3.05 25 3.28 3.06 2.7 2.83 2.49 2.56 2.89 3.22 3.11 2.81 2.6 2.81 26 3.06 2.71 2.6 2.91 2.75 2.92 3.53 3.19 3.08 3.2 2.59 2.82 27 3.11 2.51 2.32 2.83 2.55 2.95 3.19 3.15 3.18 3.26 3.24 2.85 28 3.03 2.64 2.49 2.95 2.52 3.68 3.33 3.2 3.11 2.68 3.03 2.71 29 2.92 2.93 2.37 2.79 2.9 3.81 3.07 3.1 3.51 3.12 2.78 2.87 30 2.8 2.37 2.68 2.48 3.36 2.99 3.81 2.75 2.87 2.83 3.05 31 3.18 2.58 2.58 2.99 3.42 3.19 2.97 V. CONCLUSION AND RECOMMENDATIONS Urban typical wind speed data is very essential for calculations concerning micro-scale wind energy generation systems and for buildings’ energy calculation modelling and analysis. In this study, test reference years for mean daily wind speed for urban Armidale town NSW, Australia are generated using 23 years of the meteorologically measured data. The daily wind speed at 10 meter height for Armidale for heights [101, 9, 8, , 6, 5 & 4] meter are calculated based on a numerical method utilised a previously developed meteorological test reference year annual mean daily wind speed at 10 meter height in (m/s). Those heights’ TRY wind speed are presented on daily basis in a tabular form in (m/s). Results shows that urban wind speeds are relatively less than meteorological wind speeds due to the fact that there are no obstructions at meteorological weather stations. This study provided reliable and realistic wind speed for the lowest altitude in Armidale’s valley at heights range which covers the expected possible installation’s heights in Armidale, this represented the lowest speed ever scenario could occur in Armidale overall. For the reader’s information, there was an earlier study represented the height speed ever could occur, which was based on meteorological data measured at Armidale’s Airport Automatic Weather Station [12], as the station’s location implies there is no obstacles there, so wind speed is the
  • 12. Armidale’s Valley, NSW, Australia: Annual Typical Daily Urban Wind Speed for Heights Equal and Less than 10 Meters International organization of Scientific Research 12 | P a g e highest. It is highly recommended to base any wind energy calculations or modelling on urban wind speeds. This would reflect the real picture of urban wind potential and would save any disappointment of not reaching the expected energy generation which is usually misled by overestimation of wind speed due to the dependence on meteorological wind speed. REFERENCES [1] Arens, E. A., 1981, Designing for an Acceptable Wind Speed, Transportation Engineering Journal 107, 127-141. [2] Ansley, R. M.; W. Melbourne & B. J. Vickery, 1977, Architectural Aerodynamics, London, applied science publishers Ltd. [3] ASREA Handbook, 1997, Fundamentals, Chapter 15. [4] Gandemer, 1977, Wind Environment around Buildings: Aerodynamic Concepts, Pro. Wind Effects on Buildings & Structures, Cambridge University Press. 423-433. [5] Givoni, Baruch, Climate Considerations in Building and Urban Design, New York, Van Nostrand Reinhold, 1998. [6] Hunt, J. C. R., E. C. Poulton, J. C. Mumford, 1976, The Effect on Wind on People; New Criteria Based on Wind Tunnel Experiments, Building and Environment, Vol. 11, Pergamon Press, UK, pp. 15-28. [7] Isomov, N., 1977, the Ground Level Wind Environment in Built-up Areas, Pro. Wind Effects on Buildings & Structures, Cambridge University Press. 403-421 [8] Maklad, Y. Generation of an Annual Typical Meteorological Wind Speed for Armidale NSW, Australia. IOSR Journal of Engineering (IOSRJEN) 4(7), 2014, 9-14. [9] J.M. Finkelstein and R.E. Schafer. Improved goodness of fit tests. Biometrika 58(3), 1971, 641–645. [10] Tahbaz, M. The Estimation of the Wind Speed in Urban Areas. School of Architecture and Urban Planning, Shahid Beheshti University, Tehran, Iran. [11] Penwarden, A. D. and A. F. E. Wise, Wind Environment around Buildings, London, Building Research Establishment Report, 1975. [12] Maklad, Y. Generation of an Annual Typical Daily Wind Speed for Heights Equal and Less than 10 meters for Urban Armidale NSW, Australia. IOSR Journal of Engineering (IOSRJEN) 4(8), 2014, 31-42.