SlideShare a Scribd company logo
1 of 8
Download to read offline
International
OPEN ACCESS Journal
Of Modern Engineering Research (IJMER)
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 50 |
Design and Development of Fuzzy Processors and Controllers
Neelofer Afzal
*(Department Of Electronics and Communication Engineering, Jamia Millia Islamia, New Delhi-110025
I. INTRODUCTION
The concept of Fuzzy logic is given by Lotfi Zadeh [1-3] around four decades before. It has found
applications in almost all application domains from house hold to industry to military to space and has indeed
numerous applications every domain of science and technology. The fuzzy logic has been extensively used
control engineering, consumer electronics, house hold appliances, data processing, decision making systems,
expert and signal processing systems and so on. A biggest advantage of the fuzzy logic is the easy modelling of
human behaviour; it directly maps the human inference system to the fuzzy if – then rules, which are easily
understood by the human beings [4-6]. Fuzzy logic has been used extensively in the field of medical science [7-
8], Y. C. Yeh et al. [7] proposed a simple fuzzy system to study electrocardiogram (ECG) to determine heart
beats in human beings. The rapid growth in the applications of fuzzy systems has provided enough motivation to
researchers to design efficient fuzzy systems [8-12]. Earlier way to realize a fuzzy system is to use of software
approach, being easy and less expensive, however, such an approach is slowest among all [5-10]. Many ways
exist to increase the speed of the fuzzy systems and the prominent is to use fuzzy processors. Fuzzy processors
are faster and possess a best tradeoff between the speed and power consumption.
Herein, we present a review of the hardware implementations of fuzzy processors and controllers.
Fuzzy controllers are used to control consumer products, such as washing machines, video cameras, and rice
cookers, as well as industrial processes, such as cement kilns, underground trains, and robots. Fuzzy control
is a control method based on fuzzy logic. Just as fuzzy logic can be described simply as ‟‟computing with words
rather than numbers‟‟, fuzzy control can be described simply as ‟‟control with sentences rather than equations‟
‟A fuzzy controller can include empirical rules, and that is especially useful in operator controlled plants. The
first hardware realization of a fuzzy logic processor was done by Togai and Watanabe [11-12]. They proposed a
dynamically re-configurable and cascadable architecture for a fuzzy processor with improved performance.
Sasaki et al. [13] proposed a fuzzy processor using SIMD. An efficient, bit scalable architecture of fuzzy logic
processors is proposed by R. d‟ Amore [14]. Asim M. Murshid has designed and simulated a triangular
memberships based fuzzy processor [15-21], a trapezoid memberships based fuzzy processor and multi
membership based fuzzy processors. F. Sanchez and J. E. A. Cobo [22] has done the modelling and field
programmable gate array implementation of fuzzy processors. E. F. Martinez [23] has designed and simulated a
rule-driven based fuzzy processor. M. Hamzeh et al. [24] has developed a LEACH algorithm based power
efficient fuzzy processor. A novel Ant Colony based architecture has been designed and developed by C. W.
Tao et al. [25] .
ABSTRACT:Fuzzy logic has now found applications in alldomains of life, from house hold
appliances to hospitals to industry to space. The fuzzy processors and controllers are now most
important part of the all smart systems. In India, the upcoming smart cities are have fuzzy based control
in abundance. In this paper a reviewonthe various VLSI architectures of fuzzy logic based processors
and controllers is presented. The approach of this paper on the study of low power VLSI
implementation of fuzzy processors to result in reduced silicon area, high operating speed and the
adaptability to various application domains. The work reviews the design and implementation of
different components of a fuzzy logic processor, like fuzzifiers, defuzzifiers, inference engine and rule
base systems. It is been found that there is a huge scope for further improvement of these components
of fuzzy processor in terms of power, speed, area and complexity in these fuzzy processors. It has been
found that the researchers generally focus on the design and development of inference engine and
defuzzification units in a fuzzy processor due to their complex nature. The further optimization in
these blocks can result in a in a significant improvement in the overall performance of the fuzzy
processors.
Keywords:Fuzzy Logic, Smart systems, fuzzifiers, defuzzifiers, inference engine. .
Design and Development of Fuzzy Processors and Controllers
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 51 |
This paper is divided into five sections. After introduction, section III describes novel fuzzy
processors. The section IV describes various fuzzification methods. The section V discusses the defuzzification
methods. The inference engine is being discussed in section VI. Section VII concludes the paper.
II. FUZZY PROCESSORS AND CONTROLLERS
Fig. 1 shows a general block diagram of a fuzzy logic controller. The main components are the
fuzzification interface, knowledge base, decision making system and a defuzzification unit. The main focus of
the researchers have been on improving the quality of the fuzzy inference engine. Researchers have done a lot of
work in the design and development fuzzy processors and fuzzy controllers. A significant improvement in
power, area and speed have been achieved.
Fig. 1: Block diagram of a general fuzzy controller.
Asim M. Murshid [15-21] has done a wonderful work in this field by designing, simulating and
implanting some novel fuzzy logic processors. A Max-Min calculator along with a triangular membership
function based fuzzy inference processor has been designed and developed by Asim M. Murhid [15-17], as
shown in Fig. 1. The proposed architecture has been implemented on an FPGA. It has been observed that the
proposed one power and area efficient in comparison to the trapezoid membership function based fuzzy
processor. A Gaussian membership based fuzzy inference processor has been designed and simulated byAsim
M. Murhid [15-21], as shown in Fig. 2. The matching degree between the two Gaussian membership functions
has been computed by proposing a novel MAX-MIN calculator. The proposed architectures are area, power and
speed efficient in comparison to the existing state of the art processors, as they have reduced numbers of various
arithmetic operations.Asim M. Murshid [16] has proposed a novel multi membership function based fuzzy
inference processor. The processor is based on a novel architecture of a MAX-MIN calculator used for
calculating the MD between the fuzzified input and the antecedent MFs. The novelty of a MAX-MIN calculator
lies in calculating the MD between not only one type of MFs, but between Gaussian, Trapezoid and triangular
MFs together. It is a multi membership function (MMF) MAX-MIN calculator. This is the first time that a
MAX-MIN calculator with such flexibility has been designed and implemented. The proposed MMF based
MUX-MIN circuit consumes reduced hardware in comparison to the fuzzy processors employing these
membership functions separately. A significant reduction in power, pace and area has been observed in the
proposed circuitry.
Fig. 1’: (a) Triangular MF based MAX-MIN calculator (b) Proposed fuzzy inference processor [17-18].
Design and Development of Fuzzy Processors and Controllers
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 52 |
Fig. 2: (a) Trapezoid MF based MAX-MIN calculator (b) Proposed fuzzy inference processor [17-20].
Fig. 3. Various MMFs for MAX-MIN calculation [16-18].
Design and Development of Fuzzy Processors and Controllers
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 53 |
III. DESIGN OF FUZZIFIER CIRCUITS IN FUZZY CONTROLLERS
An important operation performed by a fuzzy processor is Fuzzification. A fuzzifier converts a crisp
value into a fuzzy value and actually incorporates a fuzziness, uncertainty, vagueness or ambiguity in the crisp
quantity. A lot of work has been done to improve the performance of the fuzzifier in fuzzy processor. A novel
fuzzifier has been designed by Hamed et al. [26] in an analog CMOS fuzzy logic controller. This fuzzifier
generates stable, ac-curate and precise membership functions, as shown in Fig. 5(a). A. Gabrielli et al. [27] have
designed a 4 input high speed fuzzy processor, with a novel fuzzifier block. The fuzzifier possesses four
memories which store four points of a trapezoidal membership function, as shown in Fig. 5(b).
e
Fig. 5: (a) Fuzzifier [26] (b) Fuzzifier [27]
P. M. E. Gomes et al. [15] proposed a novel bit scalable architecture for fuzzy processors, employing a
flexible fuzzification unit. The fuzzifier uses two comparators and the number of clock cycles does not increase
drastically. A pulse width-modulation (PDM) fuzzifier is being designed and simulated by P. Ansgar et al. [15],
as shown in Fig. 6(a). M. Y. Hassan and W. F. Sharif [28] designed a PID fuzzy controller. The Fuzzification is
being done is by two blocks, for each input variable. The fuzzifier constitutes three modules, memory, inverter
and incrementer, as shown in Fig. 6(b). M. Jacomet and R. Walti [29] and C. F. Juang and J. S. Chen [30] too
have designed high performance fuzzifiers.
Figure 6. (a) Fuzzifier for PDM-signals [28] and fuzzifier for PID controller [15, 29].
IV. DE-FUZZIFIER CIRCUITS FOR FUZZY CONTROLLERS
The conversion of fuzzy data into crisp one is defuzzification. This is an important part of fuzzy
processors as the fuzzy data directly is not suitable for the real time applications. The various defuzzification
methods include (a) Max-membership principle (b) Centroid method. (c) Weighted average method (c) Mean-
max membership (d) Centre of sums (E) Center of largest area. These methods have their own advantages,
limitations and applications. The various defuzzifiers designed are discussed in this section. J. M. Jou et al. [35]
designed a fuzzy logic controller. The defuzzifier designed by them is based on the center of gravity method, as
Design and Development of Fuzzy Processors and Controllers
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 54 |
shown in Fig. 7(a). R. d‟Amore et al. [14] designed bit scalable architecture for fuzzy processors. The de-
fuzzifier designed is unique and determining the output value according to a set of conclusions from evaluating
knowledge, as shown in Fig. 7(b).
Fig. 7. (a) De-Fuzzifier [31] and Defuzzifier of [14].
The defuzzifier designed in the rule driven fuzzy processor by G. Ascia et al. [32] is shown in Fig. 8(a).
The defuzzification is done in cooperation with the buffer circuit. A mixed signal A/D fuzzy logic controller
with continuous amplitude has been designed by S. Bouras etal. [33]. The defuzzifier designed in this fuzzy
processor is implemented using a multiplexer, a divider and three integrators, as shown in Fig. 8(b). G. Ascia et
al. [32] have designed fuzzy processor dealing with complex fuzzy inference systems. An efficient defuzzifier
has been designed as shown in Fig. 9(a), as given by Yager [34], as shown in Fig. 9(a). H. Peyravi et al. [26]
have designed an analog fuzzy logic controller chip and implemented it in a 1.2 µm CMOS technology, as
shown in Fig. 9(b). A novel defuzzifier has been designed in the proposed architecture using the center of the
area method without employing a division circuit.
Fig. 8. (a) Block diagrams of (a) De-Fuzzifier [32] and (b) Defuzzifier of [33]
.
Design and Development of Fuzzy Processors and Controllers
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 55 |
Fig. 9. (a) Defuzzifier block diagram [34] and (b) Complete schematic diagram of defuzzifier [26].
V. DESIGN OF FUZZY INFERENCE ENGINE
The fuzzy inference in a fuzzy processor means matching facts with rules, firing of the matched rules
and deriving some new results. It is also being called as rule base system, expert system and fuzzy associative
memory. It uses "if" . . ."then". . . statements and the connectors like "OR " or "AND" to make the required
decision rule. The two well known fuzzy inference methods are Mamdani‟s and Sugeno methods. The
Mamdani‟s fuzzy inference system uses fuzzy sets as a rule consequent where as the Sugeno system employs
linear function of input variables as a consequent [1-4]. Various researchers have developed a lot of fuzzy
inference engines with some unique properties and applications. A reconfigurable inference engine for fuzzy
processors has been developed by S. Guo et al. [35]. The proposed engine employs Mamdani inference
technique, as shown in Fig. 10(a). J. M. Jou etal. [36] has developed a novel inference processor for an
adaptivefuzzy logic controller is shown in Fig. 10(b).
Fig. 10. (a) A reconfigurable fuzzy inference engine [35] (b) The inference engine for one rule i [36].
The inference engine designed and developed for a bit scalable fuzzy architecture was developed by R.
d‟Amore [14], as shown in Fig. 11(a). The fuzzy inference engine is based on Mamdani approach. The
proposed architecture is compact and power efficient. Fig. 11(b) shows the inference engine developed by N. E.
Evmorfopoulos and J. N. Avaritsiotis [37] for an adaptive digital fuzzy processor is the Sugeno model. M.
Jacomet and R. Walti‟s [48] designed a parallel architecture for the inference machine. The proposed
architecture can easily use the center of area defuzzification method. K. Nakamura et al. [38] have designed a
fuzzy inference engine, as shown in Fig. 12. It consists of antecedents, consequents and a conventional
microprocessor.
Design and Development of Fuzzy Processors and Controllers
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 56 |
Fig. 11. (a) Inference engines [14] (b) Inference engine architecture [15].
Fig. 12. Fuzzy inference control system [38].
VI. CONCLUSIONS
In this paper, we presented a review fuzzy processors and controllers.A thorough discussion is being
made for the various blocks used in design and development a fuzzy processor and fuzzy controllers. The design
approaches followed to design of fuzzifiers, defuzzifiers, inference engines and full blown fuzzy processors
have been discussed. It has been found that a lot of work has been done to improve the performance of fuzzy
processors in general and fuzzy inference engine in particular. Asim. M. Murshid has designed some unique
fuzzy processors. It is the first time that a multi membership function based fuzzy processor has been designed
and developed. The review has shown that there is a scope for further improvement in these fuzzy systems and
their performance can be improved further by designing optimized architectures
REFERENCES
[1]. L. A. Zadeh, “Fuzzy logic,” IEEE Computer, vol. 1, no. 4, pp. 83-93, 1988.
[2]. L. A. Zadeh, “Fuzzy sets,” Information and Con-trol, vol. 8, no. 3, pp. 338-353, 1965.
[3]. M. Sugeno, “An introductory survey of fuzzy con-trol,” Inf. Sci., vol. 36, pp. 59-83, 1985.
[4]. E. H. Mamdani, “Applications of fuzzy algorithms for simple dynamic plant,” Proc. Inst. Elect. Eng., vol. 121, pp.
1585-1588, 1974.
[5]. C. C. Lee, “Fuzzy Logic in control systems: Fuzzy Logic Controller – part I,” IEEE Trans. Syst., Man.Cybern.,
vol. 20, no. 2, pp. 404-418, 1990.
[6]. T. J. Ross, “fuzzy logic with engineering applica-tions,” by john wiley &sons inc. 2005.
[7]. Y. C. Yeh, W. J. Wang, and C. W. Chiou, “Heart-beat Case Determination Using Fuzzy Logic Method on ECG
Signals,” Int. Journal of FuzzySystems, vol. 11, no. 4 pp. 250-261, Dec. 2009.
[8]. A. Lakdashti, M. S. Moin, and K. Badie, “ Reduc-ing the Semantic Gap of the MRI Image Retrieval Systems
Using a Fuzzy Rule Based Technique,” Int.Journal of Fuzzy Systems, vol. 11, no. 4 pp.232-249, Dec. 2009.
Design and Development of Fuzzy Processors and Controllers
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 57 |
[9]. L. Behera and I. Kar, “Intelligent Systems and con-trol principles and applications,” Oxford, 2009.
[10]. A. Costa, A. D. Gloria, F. Giudici, and Olivieri, “Fuzzy logia microcontroller,” IEEE Micro, pp. 66-74, 1997.
[11]. M. Togai and H. Watanabe, “Expert systems on a chip: An engine for real-time approximate reason-ing,” IEEE
Expert Syst. Mag., vol. 1, pp. 55-62, Aug. 1986.
[12]. H. Watanabe, W. Dettloff, and K. E. Yount, “A VLSI Fuzzy Logic Controller with Reconfigurable, a Cascadable
Architecture,” IEEE Journal ofSolid – State Circuits, vol. 25, no. 2, April, 1990.
[13]. M. Sasaki, F. Ueno, and T. Inoue, “7.5 MFLIPS fuzzy microprocessor using SIMD and Logic- in- memory
Structure,” In Second IEEE Int. Conf.on Fuzzy Systems, pp. 527-534, 1993.
[14]. R. d‟ Amore, “A Bit Scalable Architecture for Fuzzy Processors with Three Inputs and a Flexible Fuzzification
Unit,” IEEE Computer Society, Proc.of the 13th symp. on Integrated circuits and sys-tems design, pp. 29, Sept.
2000.
[15]. Asim. M. Murshid, Sajad A. Loan,Shuja A Abbasi and A. R. M. Alamoud, “VLSI Architecture of Fuzzy Logic
Processors: a Review” Springer‟s International Journal of Fuzzy systems, vol. 13, no.2, pp. 74-88, 2011,
[16]. Sajad A. Loan, Asim. M. Murshid, , et al, ”A Novel Multi Membership Function based VLSI Architecture of a
Fuzzy Inference Processor” Springer‟s International Journal of Fuzzy Systems, in press, 2014.
[17]. Sajad A. Loan, Asim. M. Murshid, Shuja A Abbasi and A. R. M. Alamoud, ”A Novel VLSI Architecture for a
Fuzzy Inference Processor using Gaussian-Shaped MF” Journal of Intelligent and Fuzzy systems, vol.24, pp.5-19,
2013.
[18]. Asim. M. Murshid, Sajad A. Loan, Shuja A Abbasi and A. R. M. Alamoud, ”A Novel VLSI Architecture for a
Fuzzy Inference Processor using Triangular-Shaped Membership Function” Springer‟s International Journal of
Fuzzy Systems, Vol. 14, No. 3,pp. 345-360, September 2012.
[19]. Sajad A. Loan et.al., ”A Novel VLSI architecture of a weighted average defuzzifier unit for a fuzzy inference
processor” in proceedings of IAENG-IMECS Hong Kong, 2014
[20]. Sajad A. Loan and Asim. M. Murshid, ”A Novel VLSI architecture of a defuzzifier unit for a fuzzy inference
processor” in proceedings of IEEE ICAES Pilani, pp. 138-141, 2013.
[21]. Sajad A. Loan and Asim. M. Murshid, ”A Novel VLSI architecture of multi membership function based MAX-
MIN calculator circuit” in proc. of IEEE ICAES Pilani, pp. 74-78, 2013
[22]. F. Sanchez and J.E.A. Cobo, “Design of High Complexity Fuzzy Controllers using Generic VHDL for Appliance
Applications,” VIII Int.Workshop Iberchip IWS2002. Guadalajara, Mexico,April 2002.
[23]. E. F. Martinez, “Design of a Lukasiewicz rule – driven fuzzy processor,” Soft Computing, vol. 7, pp. 65-71, 2002.
[24]. M. Hamzeh, S. Arab1, S. M. Fakhraie1, and C. Lucas2, “An Improvement on LEACH Algorithm with a Fuzzy
Processor,” Proc. of APCC2008, Oct. 2008.
[25]. C. W. Tao, J.-S. Taur, J.-T. Jeng, and W.,-Y. Wang, “A novel fuzzy ant colony system for parameter determination
of fuzzy controllers,” Int. Journal ofFuzzy Systems, vol. 11, no. 4, pp. 298-307, Dec.2009.
[26]. H. peyravi, A. khoei, and K. Hadidi, “Design Of an analog CMOS fuzzy logic controller chip,” FuzzySets and
Systems, vol. 132, pp. 245-260, 2002.
[27]. A. Gabrielli, E. Gandolfi, M. Masetti, and M. R. Roch, “VLSI Design and Realisation of a 4 Input High Speed
Fuzzy Processor,” 6th
IEEE Int. Conf.on Fuzzy Systems, vol. 2, pp. 779-785, July 1997.
[28]. M. Y. Hassan and W. F. Sharif, “Design of FPGA based PID – like Fuzzy Controller for Industrial Applications,”
IAENG Int. Journal of ComputerScience, vol. 34, no. 2.
[29]. M. Jacomet and R. Walti, “A VLSI Fuzzy Proces-sor with Parallel Rule Execution,‟ Proc. IEEE Int.Conf. on
Fuzzy Systems, pp. 1-5, 1994.
[30]. C. F. Juang and J. S. Chen, “Water Bat Temperature Control by a Recurrent Fuzzy Controller and Its FPGA
Implementation,‟ IEEE Trans. on IndustrialElectronics, vol. 53, no. 3, June 2006.
[31]. J. M. Jou, P. Y. Chen, and S. F. Yang, “An Adaptive Fuzzy Logic Controller: Its VLSI Architecture and
Applications,” IEEE Trans. on very large scale in-tegration (VLSI) systems, vol. 8, no. 1, Feb. 2000.
[32]. G. Ascia, V. Catania, G. Ficili, S. Palazzo, and D. Panno, “A VLSI Fuzzy Expert System for Real – Time Traffic
Control in ATM Networks,‟ IEEETrans. on Fuzzy Systems, vol. 5, no. 1, Feb. 1997.
[33]. S. Bouras, M. Kotronakis, K. Suyama, and Y. Tsividis, “Mixed Analog - Digital Fuzzy Logic Controller with
Continuous - Amplitude Fuzzy In-ferences and Defuzzification,” IEEE Trans. onFuzzy Systems, vol. 6, no. 2, May
1998.
[34]. R. R. Yager and D. P. Filev, “On the issue of de-fuzzification and selection based on a fuzzy set,” Fuzzy Sets
Syst., pp. 255-271, 1993.
[35]. S. Guo and L. Peters, “A New Hardware Imple-mentation of the Centre of Gravity defuzzification Method,” in
Vortrage der 3. GI/ITG/GMEFachtagung: Rechnergestutzter Entwurf„ und Architektur mikroelektronischer
Systeme. Germany: Oberwiesenthal, pp. 145-150, 1994.
[36]. J. M. Jou, P. Y. Chen, and S. F. Yang, “An Adaptive Fuzzy Logic Controller: Its VLSI Architecture and
Applications,” IEEE Trans. on very large scale in-tegration (VLSI) systems, vol. 8, no. 1, Feb. 2000.
[37]. N. E. Evmorfopoulos and J. N. Avaritsiotis, “An adaptive digital fuzzy architecture for applica-tion-specific
integrated circuits,” Active and Pas-sive Elec. Comp., vol. 25, pp. 289-306, 2002.
[38]. K. Nakamura, N. Sakashita, Y. Nitta, K. Shimo-mura, and T. Tokuda, “Fuzzy Inference and Fuzzy-Inference
Processor,” IEEE Micro, vol. 13, no. 5, 37-48, Oct. 1993

More Related Content

Similar to Design and Development of Fuzzy Processors and Controllers

ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...
ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...
ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...
IAEME Publication
 
FPGA BASED ADAPTIVE NEURO FUZZY INFERENCE CONTROLLER FOR FULL VEHICLE NONLINE...
FPGA BASED ADAPTIVE NEURO FUZZY INFERENCE CONTROLLER FOR FULL VEHICLE NONLINE...FPGA BASED ADAPTIVE NEURO FUZZY INFERENCE CONTROLLER FOR FULL VEHICLE NONLINE...
FPGA BASED ADAPTIVE NEURO FUZZY INFERENCE CONTROLLER FOR FULL VEHICLE NONLINE...
gerogepatton
 
Top 10 Supercomputers With Descriptive Information & Analysis
Top 10 Supercomputers With Descriptive Information & AnalysisTop 10 Supercomputers With Descriptive Information & Analysis
Top 10 Supercomputers With Descriptive Information & Analysis
NomanSiddiqui41
 

Similar to Design and Development of Fuzzy Processors and Controllers (20)

HOMOGENEOUS MULTISTAGE ARCHITECTURE FOR REAL-TIME IMAGE PROCESSING
HOMOGENEOUS MULTISTAGE ARCHITECTURE FOR REAL-TIME IMAGE PROCESSINGHOMOGENEOUS MULTISTAGE ARCHITECTURE FOR REAL-TIME IMAGE PROCESSING
HOMOGENEOUS MULTISTAGE ARCHITECTURE FOR REAL-TIME IMAGE PROCESSING
 
An fpga implementation of the lms adaptive filter
An fpga implementation of the lms adaptive filter An fpga implementation of the lms adaptive filter
An fpga implementation of the lms adaptive filter
 
An fpga implementation of the lms adaptive filter
An fpga implementation of the lms adaptive filterAn fpga implementation of the lms adaptive filter
An fpga implementation of the lms adaptive filter
 
Fuzzy logic multi-agent system
Fuzzy logic multi-agent systemFuzzy logic multi-agent system
Fuzzy logic multi-agent system
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
F1074145
F1074145F1074145
F1074145
 
Area Efficient and high-speed fir filter implementation using divided LUT method
Area Efficient and high-speed fir filter implementation using divided LUT methodArea Efficient and high-speed fir filter implementation using divided LUT method
Area Efficient and high-speed fir filter implementation using divided LUT method
 
Content
ContentContent
Content
 
ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...
ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...
ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...
 
Design of Fuzzy PID controller to control DC motor with zero overshoot
Design of Fuzzy PID controller to control DC motor with zero overshootDesign of Fuzzy PID controller to control DC motor with zero overshoot
Design of Fuzzy PID controller to control DC motor with zero overshoot
 
SYSTEM ON PROGRAMMABLE CHIP FOR PERFOMANCE ESTIMATION OF LOOM MACHINE
SYSTEM ON PROGRAMMABLE CHIP FOR PERFOMANCE ESTIMATION OF LOOM MACHINESYSTEM ON PROGRAMMABLE CHIP FOR PERFOMANCE ESTIMATION OF LOOM MACHINE
SYSTEM ON PROGRAMMABLE CHIP FOR PERFOMANCE ESTIMATION OF LOOM MACHINE
 
HARDWARE ACCELERATION OF THE GIPPS MODEL FOR REAL-TIME TRAFFIC SIMULATION
HARDWARE ACCELERATION OF THE GIPPS MODEL FOR REAL-TIME TRAFFIC SIMULATIONHARDWARE ACCELERATION OF THE GIPPS MODEL FOR REAL-TIME TRAFFIC SIMULATION
HARDWARE ACCELERATION OF THE GIPPS MODEL FOR REAL-TIME TRAFFIC SIMULATION
 
FPGA BASED ADAPTIVE NEURO FUZZY INFERENCE CONTROLLER FOR FULL VEHICLE NONLINE...
FPGA BASED ADAPTIVE NEURO FUZZY INFERENCE CONTROLLER FOR FULL VEHICLE NONLINE...FPGA BASED ADAPTIVE NEURO FUZZY INFERENCE CONTROLLER FOR FULL VEHICLE NONLINE...
FPGA BASED ADAPTIVE NEURO FUZZY INFERENCE CONTROLLER FOR FULL VEHICLE NONLINE...
 
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSA METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
 
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSA METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
 
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSA METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
 
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSA METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
 
Top 10 Supercomputers With Descriptive Information & Analysis
Top 10 Supercomputers With Descriptive Information & AnalysisTop 10 Supercomputers With Descriptive Information & Analysis
Top 10 Supercomputers With Descriptive Information & Analysis
 
Face detection on_embedded_systems
Face detection on_embedded_systemsFace detection on_embedded_systems
Face detection on_embedded_systems
 
Interpretive Structural Modeling of the Prospects of Ict Enabled Process Cont...
Interpretive Structural Modeling of the Prospects of Ict Enabled Process Cont...Interpretive Structural Modeling of the Prospects of Ict Enabled Process Cont...
Interpretive Structural Modeling of the Prospects of Ict Enabled Process Cont...
 

More from IJMERJOURNAL

Application of Customer Relationship Management (Crm) Dimensions: A Critical ...
Application of Customer Relationship Management (Crm) Dimensions: A Critical ...Application of Customer Relationship Management (Crm) Dimensions: A Critical ...
Application of Customer Relationship Management (Crm) Dimensions: A Critical ...
IJMERJOURNAL
 
Investigating The Performance of A Steam Power Plant
Investigating The Performance of A Steam Power PlantInvestigating The Performance of A Steam Power Plant
Investigating The Performance of A Steam Power Plant
IJMERJOURNAL
 

More from IJMERJOURNAL (20)

Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...
Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...
Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...
 
Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...
Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...
Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...
 
A New Two-Dimensional Analytical Model of Small Geometry GaAs MESFET
A New Two-Dimensional Analytical Model of Small Geometry GaAs MESFETA New Two-Dimensional Analytical Model of Small Geometry GaAs MESFET
A New Two-Dimensional Analytical Model of Small Geometry GaAs MESFET
 
Design a WSN Control System for Filter Backwashing Process
Design a WSN Control System for Filter Backwashing ProcessDesign a WSN Control System for Filter Backwashing Process
Design a WSN Control System for Filter Backwashing Process
 
Application of Customer Relationship Management (Crm) Dimensions: A Critical ...
Application of Customer Relationship Management (Crm) Dimensions: A Critical ...Application of Customer Relationship Management (Crm) Dimensions: A Critical ...
Application of Customer Relationship Management (Crm) Dimensions: A Critical ...
 
Comparisons of Shallow Foundations in Different Soil Condition
Comparisons of Shallow Foundations in Different Soil ConditionComparisons of Shallow Foundations in Different Soil Condition
Comparisons of Shallow Foundations in Different Soil Condition
 
Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...
Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...
Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...
 
Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...
Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...
Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...
 
Investigating The Performance of A Steam Power Plant
Investigating The Performance of A Steam Power PlantInvestigating The Performance of A Steam Power Plant
Investigating The Performance of A Steam Power Plant
 
Study of Time Reduction in Manufacturing of Screws Used in Twin Screw Pump
Study of Time Reduction in Manufacturing of Screws Used in Twin Screw PumpStudy of Time Reduction in Manufacturing of Screws Used in Twin Screw Pump
Study of Time Reduction in Manufacturing of Screws Used in Twin Screw Pump
 
Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc
Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using IupqcMitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc
Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc
 
Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...
Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...
Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...
 
Analytical Solutions of simultaneous Linear Differential Equations in Chemica...
Analytical Solutions of simultaneous Linear Differential Equations in Chemica...Analytical Solutions of simultaneous Linear Differential Equations in Chemica...
Analytical Solutions of simultaneous Linear Differential Equations in Chemica...
 
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
 
Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...
Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...
Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...
 
An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...
An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...
An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...
 
Nigerian Economy and the Impact of Alternative Energy.
Nigerian Economy and the Impact of Alternative Energy.Nigerian Economy and the Impact of Alternative Energy.
Nigerian Economy and the Impact of Alternative Energy.
 
CASE STUDY
CASE STUDYCASE STUDY
CASE STUDY
 
Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...
Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...
Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...
 
li-fi: the future of wireless communication
li-fi: the future of wireless communicationli-fi: the future of wireless communication
li-fi: the future of wireless communication
 

Recently uploaded

VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
rknatarajan
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
 

Recently uploaded (20)

VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 

Design and Development of Fuzzy Processors and Controllers

  • 1. International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 50 | Design and Development of Fuzzy Processors and Controllers Neelofer Afzal *(Department Of Electronics and Communication Engineering, Jamia Millia Islamia, New Delhi-110025 I. INTRODUCTION The concept of Fuzzy logic is given by Lotfi Zadeh [1-3] around four decades before. It has found applications in almost all application domains from house hold to industry to military to space and has indeed numerous applications every domain of science and technology. The fuzzy logic has been extensively used control engineering, consumer electronics, house hold appliances, data processing, decision making systems, expert and signal processing systems and so on. A biggest advantage of the fuzzy logic is the easy modelling of human behaviour; it directly maps the human inference system to the fuzzy if – then rules, which are easily understood by the human beings [4-6]. Fuzzy logic has been used extensively in the field of medical science [7- 8], Y. C. Yeh et al. [7] proposed a simple fuzzy system to study electrocardiogram (ECG) to determine heart beats in human beings. The rapid growth in the applications of fuzzy systems has provided enough motivation to researchers to design efficient fuzzy systems [8-12]. Earlier way to realize a fuzzy system is to use of software approach, being easy and less expensive, however, such an approach is slowest among all [5-10]. Many ways exist to increase the speed of the fuzzy systems and the prominent is to use fuzzy processors. Fuzzy processors are faster and possess a best tradeoff between the speed and power consumption. Herein, we present a review of the hardware implementations of fuzzy processors and controllers. Fuzzy controllers are used to control consumer products, such as washing machines, video cameras, and rice cookers, as well as industrial processes, such as cement kilns, underground trains, and robots. Fuzzy control is a control method based on fuzzy logic. Just as fuzzy logic can be described simply as ‟‟computing with words rather than numbers‟‟, fuzzy control can be described simply as ‟‟control with sentences rather than equations‟ ‟A fuzzy controller can include empirical rules, and that is especially useful in operator controlled plants. The first hardware realization of a fuzzy logic processor was done by Togai and Watanabe [11-12]. They proposed a dynamically re-configurable and cascadable architecture for a fuzzy processor with improved performance. Sasaki et al. [13] proposed a fuzzy processor using SIMD. An efficient, bit scalable architecture of fuzzy logic processors is proposed by R. d‟ Amore [14]. Asim M. Murshid has designed and simulated a triangular memberships based fuzzy processor [15-21], a trapezoid memberships based fuzzy processor and multi membership based fuzzy processors. F. Sanchez and J. E. A. Cobo [22] has done the modelling and field programmable gate array implementation of fuzzy processors. E. F. Martinez [23] has designed and simulated a rule-driven based fuzzy processor. M. Hamzeh et al. [24] has developed a LEACH algorithm based power efficient fuzzy processor. A novel Ant Colony based architecture has been designed and developed by C. W. Tao et al. [25] . ABSTRACT:Fuzzy logic has now found applications in alldomains of life, from house hold appliances to hospitals to industry to space. The fuzzy processors and controllers are now most important part of the all smart systems. In India, the upcoming smart cities are have fuzzy based control in abundance. In this paper a reviewonthe various VLSI architectures of fuzzy logic based processors and controllers is presented. The approach of this paper on the study of low power VLSI implementation of fuzzy processors to result in reduced silicon area, high operating speed and the adaptability to various application domains. The work reviews the design and implementation of different components of a fuzzy logic processor, like fuzzifiers, defuzzifiers, inference engine and rule base systems. It is been found that there is a huge scope for further improvement of these components of fuzzy processor in terms of power, speed, area and complexity in these fuzzy processors. It has been found that the researchers generally focus on the design and development of inference engine and defuzzification units in a fuzzy processor due to their complex nature. The further optimization in these blocks can result in a in a significant improvement in the overall performance of the fuzzy processors. Keywords:Fuzzy Logic, Smart systems, fuzzifiers, defuzzifiers, inference engine. .
  • 2. Design and Development of Fuzzy Processors and Controllers | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 51 | This paper is divided into five sections. After introduction, section III describes novel fuzzy processors. The section IV describes various fuzzification methods. The section V discusses the defuzzification methods. The inference engine is being discussed in section VI. Section VII concludes the paper. II. FUZZY PROCESSORS AND CONTROLLERS Fig. 1 shows a general block diagram of a fuzzy logic controller. The main components are the fuzzification interface, knowledge base, decision making system and a defuzzification unit. The main focus of the researchers have been on improving the quality of the fuzzy inference engine. Researchers have done a lot of work in the design and development fuzzy processors and fuzzy controllers. A significant improvement in power, area and speed have been achieved. Fig. 1: Block diagram of a general fuzzy controller. Asim M. Murshid [15-21] has done a wonderful work in this field by designing, simulating and implanting some novel fuzzy logic processors. A Max-Min calculator along with a triangular membership function based fuzzy inference processor has been designed and developed by Asim M. Murhid [15-17], as shown in Fig. 1. The proposed architecture has been implemented on an FPGA. It has been observed that the proposed one power and area efficient in comparison to the trapezoid membership function based fuzzy processor. A Gaussian membership based fuzzy inference processor has been designed and simulated byAsim M. Murhid [15-21], as shown in Fig. 2. The matching degree between the two Gaussian membership functions has been computed by proposing a novel MAX-MIN calculator. The proposed architectures are area, power and speed efficient in comparison to the existing state of the art processors, as they have reduced numbers of various arithmetic operations.Asim M. Murshid [16] has proposed a novel multi membership function based fuzzy inference processor. The processor is based on a novel architecture of a MAX-MIN calculator used for calculating the MD between the fuzzified input and the antecedent MFs. The novelty of a MAX-MIN calculator lies in calculating the MD between not only one type of MFs, but between Gaussian, Trapezoid and triangular MFs together. It is a multi membership function (MMF) MAX-MIN calculator. This is the first time that a MAX-MIN calculator with such flexibility has been designed and implemented. The proposed MMF based MUX-MIN circuit consumes reduced hardware in comparison to the fuzzy processors employing these membership functions separately. A significant reduction in power, pace and area has been observed in the proposed circuitry. Fig. 1’: (a) Triangular MF based MAX-MIN calculator (b) Proposed fuzzy inference processor [17-18].
  • 3. Design and Development of Fuzzy Processors and Controllers | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 52 | Fig. 2: (a) Trapezoid MF based MAX-MIN calculator (b) Proposed fuzzy inference processor [17-20]. Fig. 3. Various MMFs for MAX-MIN calculation [16-18].
  • 4. Design and Development of Fuzzy Processors and Controllers | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 53 | III. DESIGN OF FUZZIFIER CIRCUITS IN FUZZY CONTROLLERS An important operation performed by a fuzzy processor is Fuzzification. A fuzzifier converts a crisp value into a fuzzy value and actually incorporates a fuzziness, uncertainty, vagueness or ambiguity in the crisp quantity. A lot of work has been done to improve the performance of the fuzzifier in fuzzy processor. A novel fuzzifier has been designed by Hamed et al. [26] in an analog CMOS fuzzy logic controller. This fuzzifier generates stable, ac-curate and precise membership functions, as shown in Fig. 5(a). A. Gabrielli et al. [27] have designed a 4 input high speed fuzzy processor, with a novel fuzzifier block. The fuzzifier possesses four memories which store four points of a trapezoidal membership function, as shown in Fig. 5(b). e Fig. 5: (a) Fuzzifier [26] (b) Fuzzifier [27] P. M. E. Gomes et al. [15] proposed a novel bit scalable architecture for fuzzy processors, employing a flexible fuzzification unit. The fuzzifier uses two comparators and the number of clock cycles does not increase drastically. A pulse width-modulation (PDM) fuzzifier is being designed and simulated by P. Ansgar et al. [15], as shown in Fig. 6(a). M. Y. Hassan and W. F. Sharif [28] designed a PID fuzzy controller. The Fuzzification is being done is by two blocks, for each input variable. The fuzzifier constitutes three modules, memory, inverter and incrementer, as shown in Fig. 6(b). M. Jacomet and R. Walti [29] and C. F. Juang and J. S. Chen [30] too have designed high performance fuzzifiers. Figure 6. (a) Fuzzifier for PDM-signals [28] and fuzzifier for PID controller [15, 29]. IV. DE-FUZZIFIER CIRCUITS FOR FUZZY CONTROLLERS The conversion of fuzzy data into crisp one is defuzzification. This is an important part of fuzzy processors as the fuzzy data directly is not suitable for the real time applications. The various defuzzification methods include (a) Max-membership principle (b) Centroid method. (c) Weighted average method (c) Mean- max membership (d) Centre of sums (E) Center of largest area. These methods have their own advantages, limitations and applications. The various defuzzifiers designed are discussed in this section. J. M. Jou et al. [35] designed a fuzzy logic controller. The defuzzifier designed by them is based on the center of gravity method, as
  • 5. Design and Development of Fuzzy Processors and Controllers | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 54 | shown in Fig. 7(a). R. d‟Amore et al. [14] designed bit scalable architecture for fuzzy processors. The de- fuzzifier designed is unique and determining the output value according to a set of conclusions from evaluating knowledge, as shown in Fig. 7(b). Fig. 7. (a) De-Fuzzifier [31] and Defuzzifier of [14]. The defuzzifier designed in the rule driven fuzzy processor by G. Ascia et al. [32] is shown in Fig. 8(a). The defuzzification is done in cooperation with the buffer circuit. A mixed signal A/D fuzzy logic controller with continuous amplitude has been designed by S. Bouras etal. [33]. The defuzzifier designed in this fuzzy processor is implemented using a multiplexer, a divider and three integrators, as shown in Fig. 8(b). G. Ascia et al. [32] have designed fuzzy processor dealing with complex fuzzy inference systems. An efficient defuzzifier has been designed as shown in Fig. 9(a), as given by Yager [34], as shown in Fig. 9(a). H. Peyravi et al. [26] have designed an analog fuzzy logic controller chip and implemented it in a 1.2 µm CMOS technology, as shown in Fig. 9(b). A novel defuzzifier has been designed in the proposed architecture using the center of the area method without employing a division circuit. Fig. 8. (a) Block diagrams of (a) De-Fuzzifier [32] and (b) Defuzzifier of [33] .
  • 6. Design and Development of Fuzzy Processors and Controllers | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 55 | Fig. 9. (a) Defuzzifier block diagram [34] and (b) Complete schematic diagram of defuzzifier [26]. V. DESIGN OF FUZZY INFERENCE ENGINE The fuzzy inference in a fuzzy processor means matching facts with rules, firing of the matched rules and deriving some new results. It is also being called as rule base system, expert system and fuzzy associative memory. It uses "if" . . ."then". . . statements and the connectors like "OR " or "AND" to make the required decision rule. The two well known fuzzy inference methods are Mamdani‟s and Sugeno methods. The Mamdani‟s fuzzy inference system uses fuzzy sets as a rule consequent where as the Sugeno system employs linear function of input variables as a consequent [1-4]. Various researchers have developed a lot of fuzzy inference engines with some unique properties and applications. A reconfigurable inference engine for fuzzy processors has been developed by S. Guo et al. [35]. The proposed engine employs Mamdani inference technique, as shown in Fig. 10(a). J. M. Jou etal. [36] has developed a novel inference processor for an adaptivefuzzy logic controller is shown in Fig. 10(b). Fig. 10. (a) A reconfigurable fuzzy inference engine [35] (b) The inference engine for one rule i [36]. The inference engine designed and developed for a bit scalable fuzzy architecture was developed by R. d‟Amore [14], as shown in Fig. 11(a). The fuzzy inference engine is based on Mamdani approach. The proposed architecture is compact and power efficient. Fig. 11(b) shows the inference engine developed by N. E. Evmorfopoulos and J. N. Avaritsiotis [37] for an adaptive digital fuzzy processor is the Sugeno model. M. Jacomet and R. Walti‟s [48] designed a parallel architecture for the inference machine. The proposed architecture can easily use the center of area defuzzification method. K. Nakamura et al. [38] have designed a fuzzy inference engine, as shown in Fig. 12. It consists of antecedents, consequents and a conventional microprocessor.
  • 7. Design and Development of Fuzzy Processors and Controllers | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 56 | Fig. 11. (a) Inference engines [14] (b) Inference engine architecture [15]. Fig. 12. Fuzzy inference control system [38]. VI. CONCLUSIONS In this paper, we presented a review fuzzy processors and controllers.A thorough discussion is being made for the various blocks used in design and development a fuzzy processor and fuzzy controllers. The design approaches followed to design of fuzzifiers, defuzzifiers, inference engines and full blown fuzzy processors have been discussed. It has been found that a lot of work has been done to improve the performance of fuzzy processors in general and fuzzy inference engine in particular. Asim. M. Murshid has designed some unique fuzzy processors. It is the first time that a multi membership function based fuzzy processor has been designed and developed. The review has shown that there is a scope for further improvement in these fuzzy systems and their performance can be improved further by designing optimized architectures REFERENCES [1]. L. A. Zadeh, “Fuzzy logic,” IEEE Computer, vol. 1, no. 4, pp. 83-93, 1988. [2]. L. A. Zadeh, “Fuzzy sets,” Information and Con-trol, vol. 8, no. 3, pp. 338-353, 1965. [3]. M. Sugeno, “An introductory survey of fuzzy con-trol,” Inf. Sci., vol. 36, pp. 59-83, 1985. [4]. E. H. Mamdani, “Applications of fuzzy algorithms for simple dynamic plant,” Proc. Inst. Elect. Eng., vol. 121, pp. 1585-1588, 1974. [5]. C. C. Lee, “Fuzzy Logic in control systems: Fuzzy Logic Controller – part I,” IEEE Trans. Syst., Man.Cybern., vol. 20, no. 2, pp. 404-418, 1990. [6]. T. J. Ross, “fuzzy logic with engineering applica-tions,” by john wiley &sons inc. 2005. [7]. Y. C. Yeh, W. J. Wang, and C. W. Chiou, “Heart-beat Case Determination Using Fuzzy Logic Method on ECG Signals,” Int. Journal of FuzzySystems, vol. 11, no. 4 pp. 250-261, Dec. 2009. [8]. A. Lakdashti, M. S. Moin, and K. Badie, “ Reduc-ing the Semantic Gap of the MRI Image Retrieval Systems Using a Fuzzy Rule Based Technique,” Int.Journal of Fuzzy Systems, vol. 11, no. 4 pp.232-249, Dec. 2009.
  • 8. Design and Development of Fuzzy Processors and Controllers | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 7 | Iss. 2 | Feb. 2017 | 57 | [9]. L. Behera and I. Kar, “Intelligent Systems and con-trol principles and applications,” Oxford, 2009. [10]. A. Costa, A. D. Gloria, F. Giudici, and Olivieri, “Fuzzy logia microcontroller,” IEEE Micro, pp. 66-74, 1997. [11]. M. Togai and H. Watanabe, “Expert systems on a chip: An engine for real-time approximate reason-ing,” IEEE Expert Syst. Mag., vol. 1, pp. 55-62, Aug. 1986. [12]. H. Watanabe, W. Dettloff, and K. E. Yount, “A VLSI Fuzzy Logic Controller with Reconfigurable, a Cascadable Architecture,” IEEE Journal ofSolid – State Circuits, vol. 25, no. 2, April, 1990. [13]. M. Sasaki, F. Ueno, and T. Inoue, “7.5 MFLIPS fuzzy microprocessor using SIMD and Logic- in- memory Structure,” In Second IEEE Int. Conf.on Fuzzy Systems, pp. 527-534, 1993. [14]. R. d‟ Amore, “A Bit Scalable Architecture for Fuzzy Processors with Three Inputs and a Flexible Fuzzification Unit,” IEEE Computer Society, Proc.of the 13th symp. on Integrated circuits and sys-tems design, pp. 29, Sept. 2000. [15]. Asim. M. Murshid, Sajad A. Loan,Shuja A Abbasi and A. R. M. Alamoud, “VLSI Architecture of Fuzzy Logic Processors: a Review” Springer‟s International Journal of Fuzzy systems, vol. 13, no.2, pp. 74-88, 2011, [16]. Sajad A. Loan, Asim. M. Murshid, , et al, ”A Novel Multi Membership Function based VLSI Architecture of a Fuzzy Inference Processor” Springer‟s International Journal of Fuzzy Systems, in press, 2014. [17]. Sajad A. Loan, Asim. M. Murshid, Shuja A Abbasi and A. R. M. Alamoud, ”A Novel VLSI Architecture for a Fuzzy Inference Processor using Gaussian-Shaped MF” Journal of Intelligent and Fuzzy systems, vol.24, pp.5-19, 2013. [18]. Asim. M. Murshid, Sajad A. Loan, Shuja A Abbasi and A. R. M. Alamoud, ”A Novel VLSI Architecture for a Fuzzy Inference Processor using Triangular-Shaped Membership Function” Springer‟s International Journal of Fuzzy Systems, Vol. 14, No. 3,pp. 345-360, September 2012. [19]. Sajad A. Loan et.al., ”A Novel VLSI architecture of a weighted average defuzzifier unit for a fuzzy inference processor” in proceedings of IAENG-IMECS Hong Kong, 2014 [20]. Sajad A. Loan and Asim. M. Murshid, ”A Novel VLSI architecture of a defuzzifier unit for a fuzzy inference processor” in proceedings of IEEE ICAES Pilani, pp. 138-141, 2013. [21]. Sajad A. Loan and Asim. M. Murshid, ”A Novel VLSI architecture of multi membership function based MAX- MIN calculator circuit” in proc. of IEEE ICAES Pilani, pp. 74-78, 2013 [22]. F. Sanchez and J.E.A. Cobo, “Design of High Complexity Fuzzy Controllers using Generic VHDL for Appliance Applications,” VIII Int.Workshop Iberchip IWS2002. Guadalajara, Mexico,April 2002. [23]. E. F. Martinez, “Design of a Lukasiewicz rule – driven fuzzy processor,” Soft Computing, vol. 7, pp. 65-71, 2002. [24]. M. Hamzeh, S. Arab1, S. M. Fakhraie1, and C. Lucas2, “An Improvement on LEACH Algorithm with a Fuzzy Processor,” Proc. of APCC2008, Oct. 2008. [25]. C. W. Tao, J.-S. Taur, J.-T. Jeng, and W.,-Y. Wang, “A novel fuzzy ant colony system for parameter determination of fuzzy controllers,” Int. Journal ofFuzzy Systems, vol. 11, no. 4, pp. 298-307, Dec.2009. [26]. H. peyravi, A. khoei, and K. Hadidi, “Design Of an analog CMOS fuzzy logic controller chip,” FuzzySets and Systems, vol. 132, pp. 245-260, 2002. [27]. A. Gabrielli, E. Gandolfi, M. Masetti, and M. R. Roch, “VLSI Design and Realisation of a 4 Input High Speed Fuzzy Processor,” 6th IEEE Int. Conf.on Fuzzy Systems, vol. 2, pp. 779-785, July 1997. [28]. M. Y. Hassan and W. F. Sharif, “Design of FPGA based PID – like Fuzzy Controller for Industrial Applications,” IAENG Int. Journal of ComputerScience, vol. 34, no. 2. [29]. M. Jacomet and R. Walti, “A VLSI Fuzzy Proces-sor with Parallel Rule Execution,‟ Proc. IEEE Int.Conf. on Fuzzy Systems, pp. 1-5, 1994. [30]. C. F. Juang and J. S. Chen, “Water Bat Temperature Control by a Recurrent Fuzzy Controller and Its FPGA Implementation,‟ IEEE Trans. on IndustrialElectronics, vol. 53, no. 3, June 2006. [31]. J. M. Jou, P. Y. Chen, and S. F. Yang, “An Adaptive Fuzzy Logic Controller: Its VLSI Architecture and Applications,” IEEE Trans. on very large scale in-tegration (VLSI) systems, vol. 8, no. 1, Feb. 2000. [32]. G. Ascia, V. Catania, G. Ficili, S. Palazzo, and D. Panno, “A VLSI Fuzzy Expert System for Real – Time Traffic Control in ATM Networks,‟ IEEETrans. on Fuzzy Systems, vol. 5, no. 1, Feb. 1997. [33]. S. Bouras, M. Kotronakis, K. Suyama, and Y. Tsividis, “Mixed Analog - Digital Fuzzy Logic Controller with Continuous - Amplitude Fuzzy In-ferences and Defuzzification,” IEEE Trans. onFuzzy Systems, vol. 6, no. 2, May 1998. [34]. R. R. Yager and D. P. Filev, “On the issue of de-fuzzification and selection based on a fuzzy set,” Fuzzy Sets Syst., pp. 255-271, 1993. [35]. S. Guo and L. Peters, “A New Hardware Imple-mentation of the Centre of Gravity defuzzification Method,” in Vortrage der 3. GI/ITG/GMEFachtagung: Rechnergestutzter Entwurf„ und Architektur mikroelektronischer Systeme. Germany: Oberwiesenthal, pp. 145-150, 1994. [36]. J. M. Jou, P. Y. Chen, and S. F. Yang, “An Adaptive Fuzzy Logic Controller: Its VLSI Architecture and Applications,” IEEE Trans. on very large scale in-tegration (VLSI) systems, vol. 8, no. 1, Feb. 2000. [37]. N. E. Evmorfopoulos and J. N. Avaritsiotis, “An adaptive digital fuzzy architecture for applica-tion-specific integrated circuits,” Active and Pas-sive Elec. Comp., vol. 25, pp. 289-306, 2002. [38]. K. Nakamura, N. Sakashita, Y. Nitta, K. Shimo-mura, and T. Tokuda, “Fuzzy Inference and Fuzzy-Inference Processor,” IEEE Micro, vol. 13, no. 5, 37-48, Oct. 1993