SlideShare a Scribd company logo
1 of 4
Download to read offline
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 8, No. 3, December 2017, pp. 726 ~ 729
DOI: 10.11591/ijeecs.v8.i3.pp726-729  726
Received August 7, 2017; Revised October 29, 2017; Accepted November 16, 2017
New Technique Based Peasant Multiplication for
Effcient Signal Processing Applications
Mahendra Sharma*, Dr Santhosh Kumar Singh
Department of Information Technology, AMET University, Chennai
Abstract
The Direct Form FIR channel is utilized for DSP application where the channel request is settled.
For the most part this channel devours more range and power. To defeat this issue Multiplier Control
Signal Decision window (MCSD) plans is joined into Direct Form FIR channel to powerfully change the
channel arrange. MCSD structures comprise of Control flag Generator (CG) and Amplitude Detection (AD)
rationale circuits. Advertisement rationale is utilized to disavow the correct duplication process and screen
the amplitudes of information tests. CG is utilized to control the channel operation through inside counter.
Traditional reconfigurable FIR channel is planned utilizing Vedic Multiplier that devours more territory and
deferral. In this paper, changed reconfigurable FIR filer is intended to additionally decrease the APT (Area,
Power and Timing) item. The proposed Reconfigurable FIR filer, Vedic Multiplier is supplanted by Russian
Peasant Multiplication procedure. Subsequently adjusted Reconfigurable FIR channel with Russian
Peasant Multiplier expends less region, postponement and power than all analyzed techniques.
Keywords: Finite Impulse Response (FIR), Digital signal processing (DSP), Multiplier Control Signal
Decision Window (MCSD), Control signal generator (CG), Amplitude detection (AD), Russian Peasant
Multiplication (RPM)
Copyright © 2017 Institute of Advanced Engineering and Science. All rights reserved.
1. Introduction
The flimsy development in convenient sight and sound and versatile registering
applications has extended the interest for low power Digital signal processing (DSP) frameworks
and Wireless Communication. A standout amongst the most widely utilized capacities executed
in DSP is Finite Impulse Response (FIR) separating. In a few applications, keeping in mind the
end goal to achieve high phantom concealment and commotion decrease, FIR channels with
respectably enormous number of taps are basic. A great deal of earlier endeavours for
diminishing force utilization of FIR channel typically concentrate on the scaling down of the
channel coefficients while keeping up a settled channel arrange. FIR channel structures are
improved to limiting the quantity of options/subtractions and include and move operations.
However, one of the issues experienced is that one time the channel engineering is resolved,
the coefficients can't be changed; thusly, those are not fitting to FIR channel with programmable
coefficients. Genuinely precise flag preparing frameworks are additionally utilized for the outline
of low power advanced channels. An efficient approach for the removal of bipolar impulse noise
using median filter is described in [6]. Synthesis, surface morphological and electrical properties
as well as structural features of Pr6O11–MgO nano-composite is studied briefly in [7].
2. Finite Impulse Response Filter
An FIR filter is also called as Recursive filter. The word recursive literally means
“running back”, and refers to the fact that previously-calculated output values go back into the
calculation of the latest output. The FIR filter uses, previous output values with input values in
every stage, hence it is called as the recursive filter. These, like previous input values are stored
in the processor’s memory.
IJEECS ISSN: 2502-4752 
New Technique Based Peasant Multiplication for Effcient… (Mahendra Sharma)
727
Figure 1. Direct form FIR Filter structure
3. Proposed Russian Peasant Multiplication
The architecture for Russian Peasant Multiplier consists of Shifters, 2:1 Multiplexers
and adder units to perform multiplication. This architecture is quite simple and easy to design.
Figure 2. Architecture of Russian Peasant Multiplier
The Figure 2 shows the 8 bit Russian Peasant Multiplier architecture. Similarly, 16-bit
Russian Peasant Multiplier can be extended from figure 4.1. Here, two shifters namely, Right
shifters and Left shifters are used to shift the Multiplicand and Multiplier values respectively in
each stage. In each stage, Least Significant Bit (LSB) value of Right shifter generates the
control signal for 2:1 Multiplexers. The effective Carry Save Adder (CSA) is used to addition part
of Russian Peasant Multiplier. The proposed multiplier is performed efficiently compare than the
booth multiplier.
 ISSN: 2502-4752
IJEECS Vol. 8, No. 3, December 2017 : 726 – 729
728
4. Simulation Results
The proposed Russian peasant multiplication technique is implemented by using Verilog HDL
language. The proposed multiplication technique is mainly proposed for the efficient
Multiplication and accumulation (MAC) unit in the filters applications. The proposed multiplier is
perform efficiently compare than the conventional booth multiplier unit. Proposed MAC unit is
implemented in terms of the VLSI design environment. The simulation result of the proposed
multiplier as illustrated in Figure 3.
Figure 3. Simulation output of the proposed multiplier unit
5. Synthesis Results
The proposed multiplier is performed efficiently in terms of the area, delay and power.
These synthesis results are evaluated by using Xilinx ISE as tabulated as Table 1. And
graphically represented in Figure 4.
Table 1. Synthesis results of the conventional and proposed multiplier
DESCRIPTION
AREA
DELAY POWER
LUT SLICES
BOOTH
MULTIPLIER
704 325 38.984 ns 0.392 W
RUSSIAN
PEASANT
MULTIPLIER
648 368 36.768 ns 0.305 W
Figure 4. Graphical representation of the synthesis results
IJEECS ISSN: 2502-4752 
New Technique Based Peasant Multiplication for Effcient… (Mahendra Sharma)
729
6. Conclusion
In this work, the ADP (Area, Delay and Power) efficient Russian peasant multiplication
is implemented by using Verilog HDL. The proposed multiplier consumes 56 Look-up-tables
compared than the booth multiplier. The computation time of the proposed multiplier is 2.216 ns
low compare than the existing method and also the power utilization is efficient so the proposed
multiplier is applicable for the low power applications. In future, the proposed Russian peasant
technique is applied in FIR filters and also in image processing application for sampling process.
References
[1] Akhilesh Tyagi. A Reduced Area Scheme for Carry- Select Adders. IEEE transaction on computer.
1993; 42: 1163 – 1170.
[2] Bedrij OJ. Carry Select Adder. IRE Transaction Electronics Computer. 1962; 11: 340- 344.
[3] Chang TY and Hsiao MJ. Carry Select Adder using Single Ripple Carry Adder. Electronics Letters.
1998; 34: 2101 – 2103.
[4] Chyn Wey I, Cheng Chen, Yi Sheng Lin and Chin Chang pengl. An Area- Efficient CSLA Design by
Sharing the Common Boolean Logic Term. International Multi conference of Engineers and Computer
Scientists. 2012; 2: 14 -16.
[5] He Y, Chang CH and Gu J. An Area Efficient 64-bit Square Root Carry Select Adder for Low power
Application. IEEE International Symposium Circuits Systems. 2005; 4: 4082 – 4085.
[6] Kadali KS and Rajaji L. An efficient approach for the removal of bipolar impulse noise using median
filter. Indian Journal of Science and Technology. 2015; 8(13).
[7] Selvi KT, Alamelumangai K, Priya M, Rathnakumari M, Kumar PS and Sagadevan S. Studies on
synthesis, structural, surface morphological and electrical properties of Pr6O11–MgO
nanocomposite. Journal of Materials Science: Materials in Electronics. 2016; 27(6): 6457-6463.

More Related Content

What's hot

FOLDED ARCHITECTURE FOR NON CANONICAL LEAST MEAN SQUARE ADAPTIVE DIGITAL FILT...
FOLDED ARCHITECTURE FOR NON CANONICAL LEAST MEAN SQUARE ADAPTIVE DIGITAL FILT...FOLDED ARCHITECTURE FOR NON CANONICAL LEAST MEAN SQUARE ADAPTIVE DIGITAL FILT...
FOLDED ARCHITECTURE FOR NON CANONICAL LEAST MEAN SQUARE ADAPTIVE DIGITAL FILT...VLSICS Design
 
Negative image amplifier technique for performance enhancement of ultra wideb...
Negative image amplifier technique for performance enhancement of ultra wideb...Negative image amplifier technique for performance enhancement of ultra wideb...
Negative image amplifier technique for performance enhancement of ultra wideb...IJECEIAES
 
IRJET- FPGA Implementation of Efficient Muf Gate based Multipliers
IRJET-  	  FPGA Implementation of Efficient Muf Gate based MultipliersIRJET-  	  FPGA Implementation of Efficient Muf Gate based Multipliers
IRJET- FPGA Implementation of Efficient Muf Gate based MultipliersIRJET Journal
 
“FIELD PROGRAMMABLE DSP ARRAYS” - A NOVEL RECONFIGURABLE ARCHITECTURE FOR EFF...
“FIELD PROGRAMMABLE DSP ARRAYS” - A NOVEL RECONFIGURABLE ARCHITECTURE FOR EFF...“FIELD PROGRAMMABLE DSP ARRAYS” - A NOVEL RECONFIGURABLE ARCHITECTURE FOR EFF...
“FIELD PROGRAMMABLE DSP ARRAYS” - A NOVEL RECONFIGURABLE ARCHITECTURE FOR EFF...sipij
 
Performance analysis of transmission of 5 users based on model b using gf (5)...
Performance analysis of transmission of 5 users based on model b using gf (5)...Performance analysis of transmission of 5 users based on model b using gf (5)...
Performance analysis of transmission of 5 users based on model b using gf (5)...csandit
 
Fixed Width Replica Redundancy Block Multiplier
Fixed Width Replica Redundancy Block MultiplierFixed Width Replica Redundancy Block Multiplier
Fixed Width Replica Redundancy Block MultiplierIRJET Journal
 
FPGA based Efficient Interpolator design using DALUT Algorithm
FPGA based Efficient Interpolator design using DALUT AlgorithmFPGA based Efficient Interpolator design using DALUT Algorithm
FPGA based Efficient Interpolator design using DALUT Algorithmcscpconf
 
IRJET- Image and Signal Filtering using Fir Filter Made using Approximate Hyb...
IRJET- Image and Signal Filtering using Fir Filter Made using Approximate Hyb...IRJET- Image and Signal Filtering using Fir Filter Made using Approximate Hyb...
IRJET- Image and Signal Filtering using Fir Filter Made using Approximate Hyb...IRJET Journal
 
IRJET- The RTL Model of a Reconfigurable Pipelined MCM
IRJET- The RTL Model of a Reconfigurable Pipelined MCMIRJET- The RTL Model of a Reconfigurable Pipelined MCM
IRJET- The RTL Model of a Reconfigurable Pipelined MCMIRJET Journal
 
Efficient implementation of bit parallel finite
Efficient implementation of bit parallel finite Efficient implementation of bit parallel finite
Efficient implementation of bit parallel finite eSAT Journals
 
Efficient implementation of bit parallel finite field multipliers
Efficient implementation of bit parallel finite field multipliersEfficient implementation of bit parallel finite field multipliers
Efficient implementation of bit parallel finite field multiplierseSAT Publishing House
 
Analysis of Phase Noise and Gaussian Noise in terms of Average BER for DP 16-...
Analysis of Phase Noise and Gaussian Noise in terms of Average BER for DP 16-...Analysis of Phase Noise and Gaussian Noise in terms of Average BER for DP 16-...
Analysis of Phase Noise and Gaussian Noise in terms of Average BER for DP 16-...IRJET Journal
 
Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...
Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...
Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...VLSICS Design
 

What's hot (17)

FOLDED ARCHITECTURE FOR NON CANONICAL LEAST MEAN SQUARE ADAPTIVE DIGITAL FILT...
FOLDED ARCHITECTURE FOR NON CANONICAL LEAST MEAN SQUARE ADAPTIVE DIGITAL FILT...FOLDED ARCHITECTURE FOR NON CANONICAL LEAST MEAN SQUARE ADAPTIVE DIGITAL FILT...
FOLDED ARCHITECTURE FOR NON CANONICAL LEAST MEAN SQUARE ADAPTIVE DIGITAL FILT...
 
Negative image amplifier technique for performance enhancement of ultra wideb...
Negative image amplifier technique for performance enhancement of ultra wideb...Negative image amplifier technique for performance enhancement of ultra wideb...
Negative image amplifier technique for performance enhancement of ultra wideb...
 
IRJET- FPGA Implementation of Efficient Muf Gate based Multipliers
IRJET-  	  FPGA Implementation of Efficient Muf Gate based MultipliersIRJET-  	  FPGA Implementation of Efficient Muf Gate based Multipliers
IRJET- FPGA Implementation of Efficient Muf Gate based Multipliers
 
“FIELD PROGRAMMABLE DSP ARRAYS” - A NOVEL RECONFIGURABLE ARCHITECTURE FOR EFF...
“FIELD PROGRAMMABLE DSP ARRAYS” - A NOVEL RECONFIGURABLE ARCHITECTURE FOR EFF...“FIELD PROGRAMMABLE DSP ARRAYS” - A NOVEL RECONFIGURABLE ARCHITECTURE FOR EFF...
“FIELD PROGRAMMABLE DSP ARRAYS” - A NOVEL RECONFIGURABLE ARCHITECTURE FOR EFF...
 
A05410105
A05410105A05410105
A05410105
 
Performance analysis of transmission of 5 users based on model b using gf (5)...
Performance analysis of transmission of 5 users based on model b using gf (5)...Performance analysis of transmission of 5 users based on model b using gf (5)...
Performance analysis of transmission of 5 users based on model b using gf (5)...
 
Fixed Width Replica Redundancy Block Multiplier
Fixed Width Replica Redundancy Block MultiplierFixed Width Replica Redundancy Block Multiplier
Fixed Width Replica Redundancy Block Multiplier
 
FPGA based Efficient Interpolator design using DALUT Algorithm
FPGA based Efficient Interpolator design using DALUT AlgorithmFPGA based Efficient Interpolator design using DALUT Algorithm
FPGA based Efficient Interpolator design using DALUT Algorithm
 
IRJET- Image and Signal Filtering using Fir Filter Made using Approximate Hyb...
IRJET- Image and Signal Filtering using Fir Filter Made using Approximate Hyb...IRJET- Image and Signal Filtering using Fir Filter Made using Approximate Hyb...
IRJET- Image and Signal Filtering using Fir Filter Made using Approximate Hyb...
 
IRJET- The RTL Model of a Reconfigurable Pipelined MCM
IRJET- The RTL Model of a Reconfigurable Pipelined MCMIRJET- The RTL Model of a Reconfigurable Pipelined MCM
IRJET- The RTL Model of a Reconfigurable Pipelined MCM
 
B046050711
B046050711B046050711
B046050711
 
Efficient implementation of bit parallel finite
Efficient implementation of bit parallel finite Efficient implementation of bit parallel finite
Efficient implementation of bit parallel finite
 
Efficient implementation of bit parallel finite field multipliers
Efficient implementation of bit parallel finite field multipliersEfficient implementation of bit parallel finite field multipliers
Efficient implementation of bit parallel finite field multipliers
 
Analysis of Phase Noise and Gaussian Noise in terms of Average BER for DP 16-...
Analysis of Phase Noise and Gaussian Noise in terms of Average BER for DP 16-...Analysis of Phase Noise and Gaussian Noise in terms of Average BER for DP 16-...
Analysis of Phase Noise and Gaussian Noise in terms of Average BER for DP 16-...
 
wcnc05
wcnc05wcnc05
wcnc05
 
Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...
Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...
Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...
 
Resume
ResumeResume
Resume
 

Similar to 37 9144 new technique based peasant multiplication (edit lafi)

11 an-efficient-vlsi-architecture-of-a-reconfigurable-pulse-shaping-fir-inter...
11 an-efficient-vlsi-architecture-of-a-reconfigurable-pulse-shaping-fir-inter...11 an-efficient-vlsi-architecture-of-a-reconfigurable-pulse-shaping-fir-inter...
11 an-efficient-vlsi-architecture-of-a-reconfigurable-pulse-shaping-fir-inter...Pvrtechnologies Nellore
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
CANONIC SIGNED DIGIT BASED DESIGN OF MULTIPLIER-LESS FIR FILTER USING SELFORG...
CANONIC SIGNED DIGIT BASED DESIGN OF MULTIPLIER-LESS FIR FILTER USING SELFORG...CANONIC SIGNED DIGIT BASED DESIGN OF MULTIPLIER-LESS FIR FILTER USING SELFORG...
CANONIC SIGNED DIGIT BASED DESIGN OF MULTIPLIER-LESS FIR FILTER USING SELFORG...ijaia
 
Design of Area Efficient Digital FIR Filter using MAC
Design of Area Efficient Digital FIR Filter using MACDesign of Area Efficient Digital FIR Filter using MAC
Design of Area Efficient Digital FIR Filter using MACIRJET Journal
 
Performance evaluation of efficient structure for fir decimation filters usin...
Performance evaluation of efficient structure for fir decimation filters usin...Performance evaluation of efficient structure for fir decimation filters usin...
Performance evaluation of efficient structure for fir decimation filters usin...IAEME Publication
 
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSA METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSVLSICS Design
 
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSA METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSVLSICS Design
 
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSA METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSVLSICS Design
 
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSA METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSVLSICS Design
 
Design of Multiplier Less 32 Tap FIR Filter using VHDL
Design of Multiplier Less 32 Tap FIR Filter using VHDLDesign of Multiplier Less 32 Tap FIR Filter using VHDL
Design of Multiplier Less 32 Tap FIR Filter using VHDLIJMER
 
Design and implementation of DA FIR filter for bio-inspired computing archite...
Design and implementation of DA FIR filter for bio-inspired computing archite...Design and implementation of DA FIR filter for bio-inspired computing archite...
Design and implementation of DA FIR filter for bio-inspired computing archite...IJECEIAES
 
Design of Optimized FIR Filter Using FCSD Representation
Design  of  Optimized  FIR  Filter  Using  FCSD Representation Design  of  Optimized  FIR  Filter  Using  FCSD Representation
Design of Optimized FIR Filter Using FCSD Representation IJEEE
 
Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...
Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...
Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...IRJET Journal
 
Memory Based Hardware Efficient Implementation of FIR Filters
Memory Based Hardware Efficient Implementation of FIR FiltersMemory Based Hardware Efficient Implementation of FIR Filters
Memory Based Hardware Efficient Implementation of FIR FiltersDr.SHANTHI K.G
 
Design and testing of systolic array multiplier using fault injecting schemes
Design and testing of systolic array multiplier using fault injecting schemesDesign and testing of systolic array multiplier using fault injecting schemes
Design and testing of systolic array multiplier using fault injecting schemesCSITiaesprime
 
Implementation of Radix-4 Booth Multiplier by VHDL
Implementation of Radix-4 Booth Multiplier by VHDLImplementation of Radix-4 Booth Multiplier by VHDL
Implementation of Radix-4 Booth Multiplier by VHDLpaperpublications3
 
FPGA based Efficient Interpolator design using DALUT Algorithm
FPGA based Efficient Interpolator design using DALUT AlgorithmFPGA based Efficient Interpolator design using DALUT Algorithm
FPGA based Efficient Interpolator design using DALUT Algorithmcscpconf
 
Parallel Processing Technique for Time Efficient Matrix Multiplication
Parallel Processing Technique for Time Efficient Matrix MultiplicationParallel Processing Technique for Time Efficient Matrix Multiplication
Parallel Processing Technique for Time Efficient Matrix MultiplicationIJERA Editor
 

Similar to 37 9144 new technique based peasant multiplication (edit lafi) (20)

11 an-efficient-vlsi-architecture-of-a-reconfigurable-pulse-shaping-fir-inter...
11 an-efficient-vlsi-architecture-of-a-reconfigurable-pulse-shaping-fir-inter...11 an-efficient-vlsi-architecture-of-a-reconfigurable-pulse-shaping-fir-inter...
11 an-efficient-vlsi-architecture-of-a-reconfigurable-pulse-shaping-fir-inter...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
CANONIC SIGNED DIGIT BASED DESIGN OF MULTIPLIER-LESS FIR FILTER USING SELFORG...
CANONIC SIGNED DIGIT BASED DESIGN OF MULTIPLIER-LESS FIR FILTER USING SELFORG...CANONIC SIGNED DIGIT BASED DESIGN OF MULTIPLIER-LESS FIR FILTER USING SELFORG...
CANONIC SIGNED DIGIT BASED DESIGN OF MULTIPLIER-LESS FIR FILTER USING SELFORG...
 
Design of Area Efficient Digital FIR Filter using MAC
Design of Area Efficient Digital FIR Filter using MACDesign of Area Efficient Digital FIR Filter using MAC
Design of Area Efficient Digital FIR Filter using MAC
 
Performance evaluation of efficient structure for fir decimation filters usin...
Performance evaluation of efficient structure for fir decimation filters usin...Performance evaluation of efficient structure for fir decimation filters usin...
Performance evaluation of efficient structure for fir decimation filters usin...
 
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSA METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
 
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSA METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
 
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSA METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
 
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONSA METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
A METHODOLOGY FOR IMPROVEMENT OF ROBA MULTIPLIER FOR ELECTRONIC APPLICATIONS
 
FPGA Implementation of High Speed FIR Filters and less power consumption stru...
FPGA Implementation of High Speed FIR Filters and less power consumption stru...FPGA Implementation of High Speed FIR Filters and less power consumption stru...
FPGA Implementation of High Speed FIR Filters and less power consumption stru...
 
Design of Multiplier Less 32 Tap FIR Filter using VHDL
Design of Multiplier Less 32 Tap FIR Filter using VHDLDesign of Multiplier Less 32 Tap FIR Filter using VHDL
Design of Multiplier Less 32 Tap FIR Filter using VHDL
 
Design and implementation of DA FIR filter for bio-inspired computing archite...
Design and implementation of DA FIR filter for bio-inspired computing archite...Design and implementation of DA FIR filter for bio-inspired computing archite...
Design and implementation of DA FIR filter for bio-inspired computing archite...
 
Design of Optimized FIR Filter Using FCSD Representation
Design  of  Optimized  FIR  Filter  Using  FCSD Representation Design  of  Optimized  FIR  Filter  Using  FCSD Representation
Design of Optimized FIR Filter Using FCSD Representation
 
Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...
Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...
Design of a Novel Multiplier and Accumulator using Modified Booth Algorithm w...
 
Memory Based Hardware Efficient Implementation of FIR Filters
Memory Based Hardware Efficient Implementation of FIR FiltersMemory Based Hardware Efficient Implementation of FIR Filters
Memory Based Hardware Efficient Implementation of FIR Filters
 
Design and testing of systolic array multiplier using fault injecting schemes
Design and testing of systolic array multiplier using fault injecting schemesDesign and testing of systolic array multiplier using fault injecting schemes
Design and testing of systolic array multiplier using fault injecting schemes
 
Implementation of Radix-4 Booth Multiplier by VHDL
Implementation of Radix-4 Booth Multiplier by VHDLImplementation of Radix-4 Booth Multiplier by VHDL
Implementation of Radix-4 Booth Multiplier by VHDL
 
FPGA based Efficient Interpolator design using DALUT Algorithm
FPGA based Efficient Interpolator design using DALUT AlgorithmFPGA based Efficient Interpolator design using DALUT Algorithm
FPGA based Efficient Interpolator design using DALUT Algorithm
 
Parallel Processing Technique for Time Efficient Matrix Multiplication
Parallel Processing Technique for Time Efficient Matrix MultiplicationParallel Processing Technique for Time Efficient Matrix Multiplication
Parallel Processing Technique for Time Efficient Matrix Multiplication
 

More from IAESIJEECS

08 20314 electronic doorbell...
08 20314 electronic doorbell...08 20314 electronic doorbell...
08 20314 electronic doorbell...IAESIJEECS
 
07 20278 augmented reality...
07 20278 augmented reality...07 20278 augmented reality...
07 20278 augmented reality...IAESIJEECS
 
06 17443 an neuro fuzzy...
06 17443 an neuro fuzzy...06 17443 an neuro fuzzy...
06 17443 an neuro fuzzy...IAESIJEECS
 
05 20275 computational solution...
05 20275 computational solution...05 20275 computational solution...
05 20275 computational solution...IAESIJEECS
 
04 20268 power loss reduction ...
04 20268 power loss reduction ...04 20268 power loss reduction ...
04 20268 power loss reduction ...IAESIJEECS
 
03 20237 arduino based gas-
03 20237 arduino based gas-03 20237 arduino based gas-
03 20237 arduino based gas-IAESIJEECS
 
02 20274 improved ichi square...
02 20274 improved ichi square...02 20274 improved ichi square...
02 20274 improved ichi square...IAESIJEECS
 
01 20264 diminution of real power...
01 20264 diminution of real power...01 20264 diminution of real power...
01 20264 diminution of real power...IAESIJEECS
 
08 20272 academic insight on application
08 20272 academic insight on application08 20272 academic insight on application
08 20272 academic insight on applicationIAESIJEECS
 
07 20252 cloud computing survey
07 20252 cloud computing survey07 20252 cloud computing survey
07 20252 cloud computing surveyIAESIJEECS
 
06 20273 37746-1-ed
06 20273 37746-1-ed06 20273 37746-1-ed
06 20273 37746-1-edIAESIJEECS
 
05 20261 real power loss reduction
05 20261 real power loss reduction05 20261 real power loss reduction
05 20261 real power loss reductionIAESIJEECS
 
04 20259 real power loss
04 20259 real power loss04 20259 real power loss
04 20259 real power lossIAESIJEECS
 
03 20270 true power loss reduction
03 20270 true power loss reduction03 20270 true power loss reduction
03 20270 true power loss reductionIAESIJEECS
 
02 15034 neural network
02 15034 neural network02 15034 neural network
02 15034 neural networkIAESIJEECS
 
01 8445 speech enhancement
01 8445 speech enhancement01 8445 speech enhancement
01 8445 speech enhancementIAESIJEECS
 
08 17079 ijict
08 17079 ijict08 17079 ijict
08 17079 ijictIAESIJEECS
 
07 20269 ijict
07 20269 ijict07 20269 ijict
07 20269 ijictIAESIJEECS
 
06 10154 ijict
06 10154 ijict06 10154 ijict
06 10154 ijictIAESIJEECS
 
05 20255 ijict
05 20255 ijict05 20255 ijict
05 20255 ijictIAESIJEECS
 

More from IAESIJEECS (20)

08 20314 electronic doorbell...
08 20314 electronic doorbell...08 20314 electronic doorbell...
08 20314 electronic doorbell...
 
07 20278 augmented reality...
07 20278 augmented reality...07 20278 augmented reality...
07 20278 augmented reality...
 
06 17443 an neuro fuzzy...
06 17443 an neuro fuzzy...06 17443 an neuro fuzzy...
06 17443 an neuro fuzzy...
 
05 20275 computational solution...
05 20275 computational solution...05 20275 computational solution...
05 20275 computational solution...
 
04 20268 power loss reduction ...
04 20268 power loss reduction ...04 20268 power loss reduction ...
04 20268 power loss reduction ...
 
03 20237 arduino based gas-
03 20237 arduino based gas-03 20237 arduino based gas-
03 20237 arduino based gas-
 
02 20274 improved ichi square...
02 20274 improved ichi square...02 20274 improved ichi square...
02 20274 improved ichi square...
 
01 20264 diminution of real power...
01 20264 diminution of real power...01 20264 diminution of real power...
01 20264 diminution of real power...
 
08 20272 academic insight on application
08 20272 academic insight on application08 20272 academic insight on application
08 20272 academic insight on application
 
07 20252 cloud computing survey
07 20252 cloud computing survey07 20252 cloud computing survey
07 20252 cloud computing survey
 
06 20273 37746-1-ed
06 20273 37746-1-ed06 20273 37746-1-ed
06 20273 37746-1-ed
 
05 20261 real power loss reduction
05 20261 real power loss reduction05 20261 real power loss reduction
05 20261 real power loss reduction
 
04 20259 real power loss
04 20259 real power loss04 20259 real power loss
04 20259 real power loss
 
03 20270 true power loss reduction
03 20270 true power loss reduction03 20270 true power loss reduction
03 20270 true power loss reduction
 
02 15034 neural network
02 15034 neural network02 15034 neural network
02 15034 neural network
 
01 8445 speech enhancement
01 8445 speech enhancement01 8445 speech enhancement
01 8445 speech enhancement
 
08 17079 ijict
08 17079 ijict08 17079 ijict
08 17079 ijict
 
07 20269 ijict
07 20269 ijict07 20269 ijict
07 20269 ijict
 
06 10154 ijict
06 10154 ijict06 10154 ijict
06 10154 ijict
 
05 20255 ijict
05 20255 ijict05 20255 ijict
05 20255 ijict
 

Recently uploaded

Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 

Recently uploaded (20)

Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 

37 9144 new technique based peasant multiplication (edit lafi)

  • 1. Indonesian Journal of Electrical Engineering and Computer Science Vol. 8, No. 3, December 2017, pp. 726 ~ 729 DOI: 10.11591/ijeecs.v8.i3.pp726-729  726 Received August 7, 2017; Revised October 29, 2017; Accepted November 16, 2017 New Technique Based Peasant Multiplication for Effcient Signal Processing Applications Mahendra Sharma*, Dr Santhosh Kumar Singh Department of Information Technology, AMET University, Chennai Abstract The Direct Form FIR channel is utilized for DSP application where the channel request is settled. For the most part this channel devours more range and power. To defeat this issue Multiplier Control Signal Decision window (MCSD) plans is joined into Direct Form FIR channel to powerfully change the channel arrange. MCSD structures comprise of Control flag Generator (CG) and Amplitude Detection (AD) rationale circuits. Advertisement rationale is utilized to disavow the correct duplication process and screen the amplitudes of information tests. CG is utilized to control the channel operation through inside counter. Traditional reconfigurable FIR channel is planned utilizing Vedic Multiplier that devours more territory and deferral. In this paper, changed reconfigurable FIR filer is intended to additionally decrease the APT (Area, Power and Timing) item. The proposed Reconfigurable FIR filer, Vedic Multiplier is supplanted by Russian Peasant Multiplication procedure. Subsequently adjusted Reconfigurable FIR channel with Russian Peasant Multiplier expends less region, postponement and power than all analyzed techniques. Keywords: Finite Impulse Response (FIR), Digital signal processing (DSP), Multiplier Control Signal Decision Window (MCSD), Control signal generator (CG), Amplitude detection (AD), Russian Peasant Multiplication (RPM) Copyright © 2017 Institute of Advanced Engineering and Science. All rights reserved. 1. Introduction The flimsy development in convenient sight and sound and versatile registering applications has extended the interest for low power Digital signal processing (DSP) frameworks and Wireless Communication. A standout amongst the most widely utilized capacities executed in DSP is Finite Impulse Response (FIR) separating. In a few applications, keeping in mind the end goal to achieve high phantom concealment and commotion decrease, FIR channels with respectably enormous number of taps are basic. A great deal of earlier endeavours for diminishing force utilization of FIR channel typically concentrate on the scaling down of the channel coefficients while keeping up a settled channel arrange. FIR channel structures are improved to limiting the quantity of options/subtractions and include and move operations. However, one of the issues experienced is that one time the channel engineering is resolved, the coefficients can't be changed; thusly, those are not fitting to FIR channel with programmable coefficients. Genuinely precise flag preparing frameworks are additionally utilized for the outline of low power advanced channels. An efficient approach for the removal of bipolar impulse noise using median filter is described in [6]. Synthesis, surface morphological and electrical properties as well as structural features of Pr6O11–MgO nano-composite is studied briefly in [7]. 2. Finite Impulse Response Filter An FIR filter is also called as Recursive filter. The word recursive literally means “running back”, and refers to the fact that previously-calculated output values go back into the calculation of the latest output. The FIR filter uses, previous output values with input values in every stage, hence it is called as the recursive filter. These, like previous input values are stored in the processor’s memory.
  • 2. IJEECS ISSN: 2502-4752  New Technique Based Peasant Multiplication for Effcient… (Mahendra Sharma) 727 Figure 1. Direct form FIR Filter structure 3. Proposed Russian Peasant Multiplication The architecture for Russian Peasant Multiplier consists of Shifters, 2:1 Multiplexers and adder units to perform multiplication. This architecture is quite simple and easy to design. Figure 2. Architecture of Russian Peasant Multiplier The Figure 2 shows the 8 bit Russian Peasant Multiplier architecture. Similarly, 16-bit Russian Peasant Multiplier can be extended from figure 4.1. Here, two shifters namely, Right shifters and Left shifters are used to shift the Multiplicand and Multiplier values respectively in each stage. In each stage, Least Significant Bit (LSB) value of Right shifter generates the control signal for 2:1 Multiplexers. The effective Carry Save Adder (CSA) is used to addition part of Russian Peasant Multiplier. The proposed multiplier is performed efficiently compare than the booth multiplier.
  • 3.  ISSN: 2502-4752 IJEECS Vol. 8, No. 3, December 2017 : 726 – 729 728 4. Simulation Results The proposed Russian peasant multiplication technique is implemented by using Verilog HDL language. The proposed multiplication technique is mainly proposed for the efficient Multiplication and accumulation (MAC) unit in the filters applications. The proposed multiplier is perform efficiently compare than the conventional booth multiplier unit. Proposed MAC unit is implemented in terms of the VLSI design environment. The simulation result of the proposed multiplier as illustrated in Figure 3. Figure 3. Simulation output of the proposed multiplier unit 5. Synthesis Results The proposed multiplier is performed efficiently in terms of the area, delay and power. These synthesis results are evaluated by using Xilinx ISE as tabulated as Table 1. And graphically represented in Figure 4. Table 1. Synthesis results of the conventional and proposed multiplier DESCRIPTION AREA DELAY POWER LUT SLICES BOOTH MULTIPLIER 704 325 38.984 ns 0.392 W RUSSIAN PEASANT MULTIPLIER 648 368 36.768 ns 0.305 W Figure 4. Graphical representation of the synthesis results
  • 4. IJEECS ISSN: 2502-4752  New Technique Based Peasant Multiplication for Effcient… (Mahendra Sharma) 729 6. Conclusion In this work, the ADP (Area, Delay and Power) efficient Russian peasant multiplication is implemented by using Verilog HDL. The proposed multiplier consumes 56 Look-up-tables compared than the booth multiplier. The computation time of the proposed multiplier is 2.216 ns low compare than the existing method and also the power utilization is efficient so the proposed multiplier is applicable for the low power applications. In future, the proposed Russian peasant technique is applied in FIR filters and also in image processing application for sampling process. References [1] Akhilesh Tyagi. A Reduced Area Scheme for Carry- Select Adders. IEEE transaction on computer. 1993; 42: 1163 – 1170. [2] Bedrij OJ. Carry Select Adder. IRE Transaction Electronics Computer. 1962; 11: 340- 344. [3] Chang TY and Hsiao MJ. Carry Select Adder using Single Ripple Carry Adder. Electronics Letters. 1998; 34: 2101 – 2103. [4] Chyn Wey I, Cheng Chen, Yi Sheng Lin and Chin Chang pengl. An Area- Efficient CSLA Design by Sharing the Common Boolean Logic Term. International Multi conference of Engineers and Computer Scientists. 2012; 2: 14 -16. [5] He Y, Chang CH and Gu J. An Area Efficient 64-bit Square Root Carry Select Adder for Low power Application. IEEE International Symposium Circuits Systems. 2005; 4: 4082 – 4085. [6] Kadali KS and Rajaji L. An efficient approach for the removal of bipolar impulse noise using median filter. Indian Journal of Science and Technology. 2015; 8(13). [7] Selvi KT, Alamelumangai K, Priya M, Rathnakumari M, Kumar PS and Sagadevan S. Studies on synthesis, structural, surface morphological and electrical properties of Pr6O11–MgO nanocomposite. Journal of Materials Science: Materials in Electronics. 2016; 27(6): 6457-6463.