SlideShare a Scribd company logo
1 of 9
Y
X
X (X,2L)
E10
Ɵ
2l
X
E20
(L, L + Y)
y
(L+X,L)
X
E30
E40
y
(X,2L)
E 1.1.11. Una carga total Q<0 [C] se distribuye uniformemente entre los cuatro
alambres rectilíneos de longitud L
AB//CD//OE y BC//DE//OA. Calcule la magnitud y dirección del campo eléctrico en
el punto O. {2000/2}
I ) λ =
𝑄1
𝑙
=
𝑑𝑄1
𝑑𝑥
Q1 = Q2 = Q3=
𝑄
4
𝐸10 = 𝐾 ∫
𝑑𝑞 .^𝑟
𝑟3
𝐿
0
= 𝐸10 = 𝐾 ∫
λ dx (xi+2Lj)
[𝑋2+(2𝐿)2]
3
2
𝐿
0
𝐸10 = 𝐾𝜆 [∫
x dx
[ 𝑋2+(2𝐿)2]
3
2
𝐿
0
+ ∫
2L dx j
[ 𝑋2+(2𝐿)2]
3
2
𝐿
0
]
Tg Ɵ =
𝑋
2𝐿
x = 2LTg Ɵ
dx = 2L 𝑠𝑒𝑐2Ɵd Ɵ
𝑋2 = 4𝐿2 𝑇𝑔2Ɵ
𝐸10 = 𝐾𝜆 [∫
2LTgƟ .2𝐿𝑠𝑒𝑐2
ƟdƟ i
[4𝐿2
𝑇𝑔2
Ɵ + 4𝐿2]
3
2
26.56
0
+ ∫
2L .2L 𝑠𝑒𝑐2
Ɵd Ɵ
[4𝐿2
𝑇𝑔2
Ɵ+ 4𝐿2]
3
2
26.56
0
]
26.56
0
26.56
0
Ɵ
( L+y )
L
𝐸10 = 𝐾𝜆 [∫
4𝐿2
TgƟ . 𝑠𝑒𝑐2
ƟdƟ i
[4𝐿2
(1 + 𝑇𝑔2
)]
3
2
26.56
0
+ ∫
4𝐿2
𝑠𝑒𝑐2
Ɵd Ɵ
[4𝐿2
(𝑇𝑔2
Ɵ+ 1)]
3
2
26.56
0
]
𝐸10 = 𝐾𝜆 [∫
4𝐿2
TgƟ . 𝑠𝑒𝑐2
ƟdƟ i
8𝐿3. 𝑠𝑒𝑐3Ɵ
26.56
0
+ ∫
4𝐿2
𝑠𝑒𝑐2
Ɵd Ɵ
8𝐿3. 𝑠𝑒𝑐3 Ɵ
26.56
0
]
𝐸10 = 𝐾𝜆 [∫
TgƟ . dƟ i
2𝐿. 𝑠𝑒𝑐Ɵ
26.56
0
+ ∫
d Ɵ
2𝐿𝑠𝑒𝑐Ɵ
26.56
0
]
𝐸10 =
𝐾𝜆
2𝐿
[∫ 𝑠𝑒𝑛Ɵ dƟ i
26.56
0
+ ∫ 𝑐𝑜𝑠Ɵ dƟ
26.56
0
]
𝐸10 =
𝐾𝜆
2𝐿
[(−𝑐𝑜𝑠Ɵ )i + ( 𝑠𝑒𝑛Ɵ ) 𝑗 ]
𝐸10 =
𝐾𝜆
2𝐿
{[−cos(26.56) − (−cos0) 𝑖] + [ 𝑠𝑒𝑛(26.56)− 𝑠𝑒𝑛0 ] 𝑗}
𝐸10 =
𝐾𝜆
2𝐿
[0.105𝑖 + 0.447 𝑗]
𝐸10 =
𝐾𝜆
𝐿
[0.053𝑖 + 0.2236 𝑗]
II )
𝐿+𝑌
𝐿
= Tg Ɵ
L Tg Ɵ -L = y
dY = L 𝑠𝑒𝑐2Ɵd Ɵ
L
2L
L
2L
𝐸20 = 𝐾 ∫
𝑑𝑞 .^𝑟
𝑟3
2𝐿
𝐿
= 𝐸20 = 𝐾 ∫
λ dy (Li+(L+y)j)
[𝐿2+(𝐿+𝑦)2]
3
2
2𝐿
𝐿
𝐸20 = 𝐾λ [∫
dy (L)i
[𝐿2 + (𝐿 + 𝑦)2]
3
2
2𝐿
𝐿
+ ∫
(L+ y)dy j
[𝐿2 + (𝐿 + 𝑦)2]
3
2
]
2𝐿
𝐿
𝐸20 = 𝐾λ [∫
L.L 𝑠𝑒𝑐2
Ɵd Ɵ i
[𝐿2 + (𝐿 + L Tg Ɵ − L)2]
3
2
2𝐿
𝐿
+ ∫
(L + L Tg Ɵ − L) L 𝑠𝑒𝑐2
ƟdƟ j
[𝐿2 + (𝐿 + L Tg Ɵ − L)2]
3
2
]
2𝐿
𝐿
𝐸20 = 𝐾λ [∫
𝐿2
𝑠𝑒𝑐2
Ɵd Ɵ i
[𝐿2 + (L Tg Ɵ )2]
3
2
2𝐿
𝐿
+ ∫
𝐿2 (Tg Ɵ ) 𝑠𝑒𝑐2
ƟdƟ j
[𝐿2 + (L Tg Ɵ )2]
3
2
]
2𝐿
𝐿
𝐸20 = 𝐾λ [∫
𝐿2
𝑠𝑒𝑐2
Ɵd Ɵ i
[𝐿2(1 + 𝑡𝑔Ɵ2
)]
3
2
2𝐿
𝐿
+ ∫
𝐿2 (Tg Ɵ ) 𝑠𝑒𝑐2
ƟdƟ j
[𝐿2(1+ 𝑡𝑔Ɵ2
)]
3
2
]
2𝐿
𝐿
𝐸20 = 𝐾λ [∫
𝐿2
𝑠𝑒𝑐2
Ɵd Ɵ i
𝐿3. 𝑠𝑒𝑐3Ɵ
2𝐿
𝐿
+ ∫
𝐿2 (Tg Ɵ ) 𝑠𝑒𝑐2
ƟdƟj
𝐿3. 𝑠𝑒𝑐3Ɵ
]
2𝐿
𝐿
𝐸20 = 𝐾λ [∫
𝑐𝑜𝑠ƟdƟ
𝐿
2𝐿
𝐿
+ ∫
senƟ dƟj
𝐿
]
2𝐿
𝐿
𝐸20 =
𝐾λ
𝐿
[∫ 𝑐𝑜𝑠ƟdƟ i
2𝐿
𝐿
+ ∫ senƟ dƟ
2𝐿
𝐿
𝑗]
𝐸20 =
𝐾λ
𝐿
[ 𝑠𝑒𝑛Ɵ + −𝑐𝑜𝑠Ɵ ]
𝐸20 =
𝐾λ
𝐿
[
( 𝐿+𝑦) 𝑖
√(𝐿+𝑦)2+𝐿2
+
−𝐿𝑗
√(𝐿+𝑦)2+𝐿2
]
Ɵ
( L+X )
L
𝐸20 =
𝐾λ
𝐿
[ (
( 𝐿+2𝐿) 𝑖
√( 𝐿+2𝐿)2+𝐿2
−
( 𝐿+𝐿) 𝑖
√(𝐿+𝐿)2+𝐿2
+ (
−𝐿𝑗
√( 𝐿+2𝐿)2+𝐿
2
− −𝐿𝑗
√( 𝐿+𝐿)2+𝐿
2
]
𝐸20 =
𝐾λ
𝐿
[ (
(3𝐿) 𝑖
√10𝐿
−
(2𝐿) 𝑖
√5𝐿
+ (
−𝐿𝑗
√10𝐿
−−𝐿𝑗
√5𝐿
]
𝐸20 =
𝐾λ
𝐿
[ (
(3−2√2)𝑖
√10
+
(√2−1) 𝑗
√10𝐿
]
𝐸20 =
𝐾λ
𝐿
[ (
(3−2√2)𝑖
√10
+
(√2−1) 𝑗
√10𝐿
]
𝐸20 =
𝐾λ
𝐿
[ 0.0542i + 0.131 j]
III)
𝐿+𝑋
𝐿
= Tg Ɵ
L Tg Ɵ -L = X
dx = L 𝑠𝑒𝑐2Ɵd Ɵ
𝐸30 = 𝐾 ∫
𝑑𝑞 .^𝑟
𝑟3
2𝐿
𝐿
= 𝐸30 = 𝐾 ∫
λ dx ((L+x)i+Lj)
[𝐿2+(𝐿+𝑥)2]
3
2
2𝐿
𝐿
𝐸30 = 𝐾λ [∫
dx(L + x)i
[𝐿2 + (𝐿 + 𝑥)2]
3
2
2𝐿
𝐿
+ ∫
Ldx j
[𝐿2 + (𝐿 + 𝑥)2]
3
2
]
2𝐿
𝐿
𝐸30 = 𝐾λ [+ ∫
(L + L Tg Ɵ − L) L 𝑠𝑒𝑐2
ƟdƟi
[𝐿2 + (𝐿 + L Tg Ɵ − L)2]
3
2
+ ∫
L. L 𝑠𝑒𝑐2
Ɵd Ɵ j
[𝐿2 + (𝐿 + L Tg Ɵ − L)2]
3
2
2𝐿
𝐿
]
2𝐿
𝐿
L
2L
L
2L
𝐸30 = 𝐾λ [+ ∫
𝐿2 (Tg Ɵ ) 𝑠𝑒𝑐2
ƟdƟ i
[𝐿2 + (L Tg Ɵ )2]
3
2
+ ∫
𝐿2
𝑠𝑒𝑐2
Ɵd Ɵ j
[𝐿2 + (L Tg Ɵ )2]
3
2
2𝐿
𝐿
]
2𝐿
𝐿
𝐸30 = 𝐾λ [∫
𝐿2 (Tg Ɵ ) 𝑠𝑒𝑐2
ƟdƟi
[𝐿2(1 + 𝑡𝑔Ɵ2
)]
3
2
+ ∫
𝐿2
𝑠𝑒𝑐2
Ɵd Ɵ j
[𝐿2(1 + 𝑡𝑔Ɵ2
)]
3
2
2𝐿
𝐿
]
2𝐿
𝐿
𝐸30 = 𝐾λ [+ ∫
𝐿2 (Tg Ɵ ) 𝑠𝑒𝑐2
ƟdƟ i
𝐿3. 𝑠𝑒𝑐3Ɵ
+ ∫
𝐿2
𝑠𝑒𝑐2
Ɵd Ɵ j
𝐿3. 𝑠𝑒𝑐3Ɵ
2𝐿
𝐿
]
2𝐿
𝐿
𝐸30 = 𝐾λ [+ ∫
senƟ dƟ i
𝐿
+ ∫
𝑐𝑜𝑠ƟdƟ j
𝐿
2𝐿
𝐿
]
2𝐿
𝐿
𝐸30 =
𝐾λ
𝐿
[+ ∫ senƟ dƟ
2𝐿
𝐿
𝑖 + ∫ 𝑐𝑜𝑠ƟdƟ j
2𝐿
𝐿
]
𝐸30 =
𝐾λ
𝐿
[ −𝑐𝑜𝑠Ɵ + 𝑠𝑒𝑛Ɵ ]
𝐸30 =
𝐾λ
𝐿
[
−𝐿𝑖
√(𝐿+𝑥)2+𝐿2
+
( 𝐿+𝑥) 𝑗
√(𝐿+𝑥)2+𝐿2
]
𝐸30 =
𝐾λ
𝐿
[ (
−𝐿𝑖
√( 𝐿+2𝐿)2+𝐿2
−
−𝐿𝑗
√( 𝐿+𝐿)2+𝐿2
] + (
( 𝐿+2𝐿) 𝑖
√( 𝐿+2𝐿)2+𝐿2
−
( 𝐿+𝐿) 𝑖
√(𝐿+𝐿)2+𝐿2
)
𝐸30 =
𝐾λ
𝐿
[ (
−𝐿𝑖
√10𝐿
−
−𝐿𝑖
√5𝐿
] + [ (
(3𝐿) 𝑗
√10𝐿
−
(2𝐿) 𝑗
√5𝐿
]
𝐸30 =
𝐾λ
𝐿
[ (
(√2−1)𝑖
√10
+
(3−2√2) 𝑗
√10𝐿
]
𝐸30 =
𝐾λ
𝐿
[ 0.131i+ 0.0542 j]
Ɵ
2L
y
L
0
L
0
L
0
L
0
Iv ) I )
𝐸40 = 𝐾 ∫
𝑑𝑞 .^𝑟
𝑟3
𝐿
0
= 𝐸40 = 𝐾 ∫
λ dy (2Li+yj)
[𝑦2+(2𝐿)2]
3
2
𝐿
0
𝐸40 = 𝐾𝜆 [∫
2L dyi
[ 𝑦2+(2𝐿)2]
3
2
𝐿
0
+ ∫
y dy j
[ 𝑦2+(2𝐿)2]
3
2
𝐿
0
]
Tg Ɵ =
𝑦
2𝐿
y = 2LTg Ɵ
dy = 2L 𝑠𝑒𝑐2Ɵd Ɵ
𝑦2 = 4𝐿2 𝑇𝑔2Ɵ
𝐸40 = 𝐾𝜆 [∫
2L .2L 𝑠𝑒𝑐2
Ɵd Ɵi
[4𝐿2
𝑇𝑔2
Ɵ+ 4𝐿2]
3
2
+ ∫
2LTgƟ . 2𝐿𝑠𝑒𝑐2
ƟdƟ j
[4𝐿2
𝑇𝑔2
Ɵ+ 4𝐿2]
3
2
𝐿
0
𝐿
0
]
𝐸40 = 𝐾𝜆 [∫
(4𝐿2
𝑠𝑒𝑐2
Ɵd Ɵ)i
[4𝐿2
(𝑇𝑔2
Ɵ+ 1)]
3
2
+ ∫
(4𝐿2
TgƟ . 𝑠𝑒𝑐2
ƟdƟ)j
[4𝐿2
(1+ 𝑇𝑔2
)]
3
2
𝐿
0
𝐿
0
]
𝐸40 = 𝐾𝜆 [+∫
4𝐿2
𝑠𝑒𝑐2
Ɵd Ɵ
8𝐿3. 𝑠𝑒𝑐3Ɵ
𝐿
0
+ ∫
(4𝐿2
TgƟ . 𝑠𝑒𝑐2
ƟdƟ )
8𝐿3. 𝑠𝑒𝑐3Ɵ
𝐿
0
]
𝐸40 = 𝐾𝜆 [∫
d Ɵ i
2𝐿𝑠𝑒𝑐Ɵ
+ ∫
TgƟ .dƟ j
2𝐿. 𝑠𝑒𝑐Ɵ
𝐿
0
𝐿
0
]
𝐸40 =
𝐾𝜆
2𝐿
[∫ 𝑐𝑜𝑠Ɵ dƟ i
𝐿
0
+ ∫ 𝑠𝑒𝑛Ɵ dƟ
𝐿
0
]
𝐸40 =
𝐾𝜆
2𝐿
[( 𝑠𝑒𝑛Ɵ )i + ( −𝑐𝑜𝑠Ɵ ) 𝑗 ]
𝐸40 =
𝐾𝜆
2𝐿
[
𝑦 𝑖
√(2𝐿)2 + 𝑦2
+
−2𝐿 𝑗
√(2𝐿)2 + 𝑦2
𝐸40 =
𝐾𝜆
2𝐿
[
𝐿 𝑖
√(2𝐿)2 + 𝐿2
+
−2𝐿 𝑗
√(2𝐿)2 + 02
𝐸40 =
𝐾𝜆
2𝐿
[
𝐿 𝑖
√5𝐿
+ (
−2𝐿 𝑗
√5𝐿
+
2𝐿 𝑗
2𝐿
]
𝐸40 =
𝐾𝜆
𝐿
[
1 𝑖
2√5
+ (
−1 𝑗
√5
+ 0.5)𝑗]
𝐸40 =
𝐾𝜆
𝐿
[0.2236𝑖 + 0.053𝑗]
E total = E10 + E20 + E30 + E40 =
𝐸10 =
𝐾𝜆
𝐿
[0.053𝑖 + 0.2236 𝑗]
𝐸20 =
𝐾λ
𝐿
[ 0.0542i + 0.131 j]
𝐸30 =
𝐾λ
𝐿
[ 0.131i+ 0.0542 j]
𝐸40 =
𝐾𝜆
𝐿
[0.2236𝑖 + 0.053𝑗]
E TOTAL =
𝐾𝜆
𝐿
[0.4618𝑖 + 0.4618𝑗]
E TOTAL =
𝐾𝑄
4𝐿
[0.4618𝑖 + 0.4618𝑗]
E TOTAL =
𝑄
16𝜋𝜖0𝐿2
[0.4618𝑖 + 0.4618𝑗]
K =
1
4𝜋𝜖0
λ =
𝑄
4
arctgƟ =
0.4618
0.4618
Ɵ = 45 °
R
Q
43. Una esferauniformemente cargadade radioR esta centradaenel origencon unacarga Q.
Determine lafuerzaresultante que actúasobre unalíneauniformementecargada,orientada
radialmente yconuna carga total q con sus extremosenr= R y r = R + d
λ=
𝑄
𝑑
=
𝑑𝑄
𝑑𝑟
F =
𝐾.𝑄.𝜆 .𝑑 ^𝑟
𝑅.(𝑅+𝑑)
F =
.𝑄.𝜆 .𝑑 ^𝑟
4πϵ0𝑅.(𝑅+𝑑)
dF = E . dQ
F =(
𝐾.𝑄 .^𝑟
𝑟2
) . λ dr
F = ∫
𝐾.𝑄.^𝑟
𝑟2
𝑅+𝑑
𝑅
. λ dr
F = K.Q. λ ∫
𝑑𝑟.^𝑟
𝑟2
𝑅+𝑑
𝑅
.
[
−1
𝑟
)] . ^rF = K.Q. λ
r
R +d
R
Campo electrico

More Related Content

What's hot

KALKULUS IV - Persamaan Diferensial Linear
KALKULUS IV - Persamaan Diferensial LinearKALKULUS IV - Persamaan Diferensial Linear
KALKULUS IV - Persamaan Diferensial Linear
Mellya Silaban
 
Teoria control ejercicios oscarr
Teoria control ejercicios oscarrTeoria control ejercicios oscarr
Teoria control ejercicios oscarr
Jose Jose
 
Formulat trigonometrike 1 (2)
Formulat trigonometrike 1 (2)Formulat trigonometrike 1 (2)
Formulat trigonometrike 1 (2)
Arbenng
 

What's hot (20)

4-CAPITULO-III-T-LAPLACE-Resolucion-de-EDOs-FIAG.docx
4-CAPITULO-III-T-LAPLACE-Resolucion-de-EDOs-FIAG.docx4-CAPITULO-III-T-LAPLACE-Resolucion-de-EDOs-FIAG.docx
4-CAPITULO-III-T-LAPLACE-Resolucion-de-EDOs-FIAG.docx
 
Ralat fisika dasar 1 word
Ralat fisika dasar  1 wordRalat fisika dasar  1 word
Ralat fisika dasar 1 word
 
Integration method by parts
Integration method by parts Integration method by parts
Integration method by parts
 
Hidetomo Nagai
Hidetomo NagaiHidetomo Nagai
Hidetomo Nagai
 
Ejercicios de tranformada de laplace rafael marin
Ejercicios de tranformada de laplace rafael marinEjercicios de tranformada de laplace rafael marin
Ejercicios de tranformada de laplace rafael marin
 
KALKULUS IV - Persamaan Diferensial Linear
KALKULUS IV - Persamaan Diferensial LinearKALKULUS IV - Persamaan Diferensial Linear
KALKULUS IV - Persamaan Diferensial Linear
 
Indefinite Integrals 14
Indefinite Integrals 14Indefinite Integrals 14
Indefinite Integrals 14
 
Ejercicios de Calculo. Grupo 2.
Ejercicios de Calculo. Grupo 2.Ejercicios de Calculo. Grupo 2.
Ejercicios de Calculo. Grupo 2.
 
Teoria control ejercicios oscarr
Teoria control ejercicios oscarrTeoria control ejercicios oscarr
Teoria control ejercicios oscarr
 
Formulat trigonometrike 1 (2)
Formulat trigonometrike 1 (2)Formulat trigonometrike 1 (2)
Formulat trigonometrike 1 (2)
 
Libro1
Libro1Libro1
Libro1
 
Sort algorithms bubble sort
Sort algorithms bubble sortSort algorithms bubble sort
Sort algorithms bubble sort
 
Integrador calculo vectoria
Integrador calculo vectoriaIntegrador calculo vectoria
Integrador calculo vectoria
 
ejercicios matematica
ejercicios matematicaejercicios matematica
ejercicios matematica
 
Tugas matematika 2 (semester 2) - Polman Babel
Tugas matematika 2 (semester 2)  - Polman BabelTugas matematika 2 (semester 2)  - Polman Babel
Tugas matematika 2 (semester 2) - Polman Babel
 
Libro1
Libro1Libro1
Libro1
 
Tugas matematika kalkulus
Tugas matematika kalkulusTugas matematika kalkulus
Tugas matematika kalkulus
 
https://youtu.be/VhLUdtPtIz4
https://youtu.be/VhLUdtPtIz4https://youtu.be/VhLUdtPtIz4
https://youtu.be/VhLUdtPtIz4
 
クンマーの合同式とゼータ関数の左側 - 数学カフェ #mathcafe_height
クンマーの合同式とゼータ関数の左側 - 数学カフェ #mathcafe_height クンマーの合同式とゼータ関数の左側 - 数学カフェ #mathcafe_height
クンマーの合同式とゼータ関数の左側 - 数学カフェ #mathcafe_height
 
Rangkuman Matematika
Rangkuman MatematikaRangkuman Matematika
Rangkuman Matematika
 

Campo electrico

  • 1. Y X X (X,2L) E10 Ɵ 2l X E20 (L, L + Y) y (L+X,L) X E30 E40 y (X,2L) E 1.1.11. Una carga total Q<0 [C] se distribuye uniformemente entre los cuatro alambres rectilíneos de longitud L AB//CD//OE y BC//DE//OA. Calcule la magnitud y dirección del campo eléctrico en el punto O. {2000/2} I ) λ = 𝑄1 𝑙 = 𝑑𝑄1 𝑑𝑥 Q1 = Q2 = Q3= 𝑄 4 𝐸10 = 𝐾 ∫ 𝑑𝑞 .^𝑟 𝑟3 𝐿 0 = 𝐸10 = 𝐾 ∫ λ dx (xi+2Lj) [𝑋2+(2𝐿)2] 3 2 𝐿 0 𝐸10 = 𝐾𝜆 [∫ x dx [ 𝑋2+(2𝐿)2] 3 2 𝐿 0 + ∫ 2L dx j [ 𝑋2+(2𝐿)2] 3 2 𝐿 0 ] Tg Ɵ = 𝑋 2𝐿 x = 2LTg Ɵ dx = 2L 𝑠𝑒𝑐2Ɵd Ɵ 𝑋2 = 4𝐿2 𝑇𝑔2Ɵ 𝐸10 = 𝐾𝜆 [∫ 2LTgƟ .2𝐿𝑠𝑒𝑐2 ƟdƟ i [4𝐿2 𝑇𝑔2 Ɵ + 4𝐿2] 3 2 26.56 0 + ∫ 2L .2L 𝑠𝑒𝑐2 Ɵd Ɵ [4𝐿2 𝑇𝑔2 Ɵ+ 4𝐿2] 3 2 26.56 0 ]
  • 2. 26.56 0 26.56 0 Ɵ ( L+y ) L 𝐸10 = 𝐾𝜆 [∫ 4𝐿2 TgƟ . 𝑠𝑒𝑐2 ƟdƟ i [4𝐿2 (1 + 𝑇𝑔2 )] 3 2 26.56 0 + ∫ 4𝐿2 𝑠𝑒𝑐2 Ɵd Ɵ [4𝐿2 (𝑇𝑔2 Ɵ+ 1)] 3 2 26.56 0 ] 𝐸10 = 𝐾𝜆 [∫ 4𝐿2 TgƟ . 𝑠𝑒𝑐2 ƟdƟ i 8𝐿3. 𝑠𝑒𝑐3Ɵ 26.56 0 + ∫ 4𝐿2 𝑠𝑒𝑐2 Ɵd Ɵ 8𝐿3. 𝑠𝑒𝑐3 Ɵ 26.56 0 ] 𝐸10 = 𝐾𝜆 [∫ TgƟ . dƟ i 2𝐿. 𝑠𝑒𝑐Ɵ 26.56 0 + ∫ d Ɵ 2𝐿𝑠𝑒𝑐Ɵ 26.56 0 ] 𝐸10 = 𝐾𝜆 2𝐿 [∫ 𝑠𝑒𝑛Ɵ dƟ i 26.56 0 + ∫ 𝑐𝑜𝑠Ɵ dƟ 26.56 0 ] 𝐸10 = 𝐾𝜆 2𝐿 [(−𝑐𝑜𝑠Ɵ )i + ( 𝑠𝑒𝑛Ɵ ) 𝑗 ] 𝐸10 = 𝐾𝜆 2𝐿 {[−cos(26.56) − (−cos0) 𝑖] + [ 𝑠𝑒𝑛(26.56)− 𝑠𝑒𝑛0 ] 𝑗} 𝐸10 = 𝐾𝜆 2𝐿 [0.105𝑖 + 0.447 𝑗] 𝐸10 = 𝐾𝜆 𝐿 [0.053𝑖 + 0.2236 𝑗] II ) 𝐿+𝑌 𝐿 = Tg Ɵ L Tg Ɵ -L = y dY = L 𝑠𝑒𝑐2Ɵd Ɵ
  • 3. L 2L L 2L 𝐸20 = 𝐾 ∫ 𝑑𝑞 .^𝑟 𝑟3 2𝐿 𝐿 = 𝐸20 = 𝐾 ∫ λ dy (Li+(L+y)j) [𝐿2+(𝐿+𝑦)2] 3 2 2𝐿 𝐿 𝐸20 = 𝐾λ [∫ dy (L)i [𝐿2 + (𝐿 + 𝑦)2] 3 2 2𝐿 𝐿 + ∫ (L+ y)dy j [𝐿2 + (𝐿 + 𝑦)2] 3 2 ] 2𝐿 𝐿 𝐸20 = 𝐾λ [∫ L.L 𝑠𝑒𝑐2 Ɵd Ɵ i [𝐿2 + (𝐿 + L Tg Ɵ − L)2] 3 2 2𝐿 𝐿 + ∫ (L + L Tg Ɵ − L) L 𝑠𝑒𝑐2 ƟdƟ j [𝐿2 + (𝐿 + L Tg Ɵ − L)2] 3 2 ] 2𝐿 𝐿 𝐸20 = 𝐾λ [∫ 𝐿2 𝑠𝑒𝑐2 Ɵd Ɵ i [𝐿2 + (L Tg Ɵ )2] 3 2 2𝐿 𝐿 + ∫ 𝐿2 (Tg Ɵ ) 𝑠𝑒𝑐2 ƟdƟ j [𝐿2 + (L Tg Ɵ )2] 3 2 ] 2𝐿 𝐿 𝐸20 = 𝐾λ [∫ 𝐿2 𝑠𝑒𝑐2 Ɵd Ɵ i [𝐿2(1 + 𝑡𝑔Ɵ2 )] 3 2 2𝐿 𝐿 + ∫ 𝐿2 (Tg Ɵ ) 𝑠𝑒𝑐2 ƟdƟ j [𝐿2(1+ 𝑡𝑔Ɵ2 )] 3 2 ] 2𝐿 𝐿 𝐸20 = 𝐾λ [∫ 𝐿2 𝑠𝑒𝑐2 Ɵd Ɵ i 𝐿3. 𝑠𝑒𝑐3Ɵ 2𝐿 𝐿 + ∫ 𝐿2 (Tg Ɵ ) 𝑠𝑒𝑐2 ƟdƟj 𝐿3. 𝑠𝑒𝑐3Ɵ ] 2𝐿 𝐿 𝐸20 = 𝐾λ [∫ 𝑐𝑜𝑠ƟdƟ 𝐿 2𝐿 𝐿 + ∫ senƟ dƟj 𝐿 ] 2𝐿 𝐿 𝐸20 = 𝐾λ 𝐿 [∫ 𝑐𝑜𝑠ƟdƟ i 2𝐿 𝐿 + ∫ senƟ dƟ 2𝐿 𝐿 𝑗] 𝐸20 = 𝐾λ 𝐿 [ 𝑠𝑒𝑛Ɵ + −𝑐𝑜𝑠Ɵ ] 𝐸20 = 𝐾λ 𝐿 [ ( 𝐿+𝑦) 𝑖 √(𝐿+𝑦)2+𝐿2 + −𝐿𝑗 √(𝐿+𝑦)2+𝐿2 ]
  • 4. Ɵ ( L+X ) L 𝐸20 = 𝐾λ 𝐿 [ ( ( 𝐿+2𝐿) 𝑖 √( 𝐿+2𝐿)2+𝐿2 − ( 𝐿+𝐿) 𝑖 √(𝐿+𝐿)2+𝐿2 + ( −𝐿𝑗 √( 𝐿+2𝐿)2+𝐿 2 − −𝐿𝑗 √( 𝐿+𝐿)2+𝐿 2 ] 𝐸20 = 𝐾λ 𝐿 [ ( (3𝐿) 𝑖 √10𝐿 − (2𝐿) 𝑖 √5𝐿 + ( −𝐿𝑗 √10𝐿 −−𝐿𝑗 √5𝐿 ] 𝐸20 = 𝐾λ 𝐿 [ ( (3−2√2)𝑖 √10 + (√2−1) 𝑗 √10𝐿 ] 𝐸20 = 𝐾λ 𝐿 [ ( (3−2√2)𝑖 √10 + (√2−1) 𝑗 √10𝐿 ] 𝐸20 = 𝐾λ 𝐿 [ 0.0542i + 0.131 j] III) 𝐿+𝑋 𝐿 = Tg Ɵ L Tg Ɵ -L = X dx = L 𝑠𝑒𝑐2Ɵd Ɵ 𝐸30 = 𝐾 ∫ 𝑑𝑞 .^𝑟 𝑟3 2𝐿 𝐿 = 𝐸30 = 𝐾 ∫ λ dx ((L+x)i+Lj) [𝐿2+(𝐿+𝑥)2] 3 2 2𝐿 𝐿 𝐸30 = 𝐾λ [∫ dx(L + x)i [𝐿2 + (𝐿 + 𝑥)2] 3 2 2𝐿 𝐿 + ∫ Ldx j [𝐿2 + (𝐿 + 𝑥)2] 3 2 ] 2𝐿 𝐿 𝐸30 = 𝐾λ [+ ∫ (L + L Tg Ɵ − L) L 𝑠𝑒𝑐2 ƟdƟi [𝐿2 + (𝐿 + L Tg Ɵ − L)2] 3 2 + ∫ L. L 𝑠𝑒𝑐2 Ɵd Ɵ j [𝐿2 + (𝐿 + L Tg Ɵ − L)2] 3 2 2𝐿 𝐿 ] 2𝐿 𝐿
  • 5. L 2L L 2L 𝐸30 = 𝐾λ [+ ∫ 𝐿2 (Tg Ɵ ) 𝑠𝑒𝑐2 ƟdƟ i [𝐿2 + (L Tg Ɵ )2] 3 2 + ∫ 𝐿2 𝑠𝑒𝑐2 Ɵd Ɵ j [𝐿2 + (L Tg Ɵ )2] 3 2 2𝐿 𝐿 ] 2𝐿 𝐿 𝐸30 = 𝐾λ [∫ 𝐿2 (Tg Ɵ ) 𝑠𝑒𝑐2 ƟdƟi [𝐿2(1 + 𝑡𝑔Ɵ2 )] 3 2 + ∫ 𝐿2 𝑠𝑒𝑐2 Ɵd Ɵ j [𝐿2(1 + 𝑡𝑔Ɵ2 )] 3 2 2𝐿 𝐿 ] 2𝐿 𝐿 𝐸30 = 𝐾λ [+ ∫ 𝐿2 (Tg Ɵ ) 𝑠𝑒𝑐2 ƟdƟ i 𝐿3. 𝑠𝑒𝑐3Ɵ + ∫ 𝐿2 𝑠𝑒𝑐2 Ɵd Ɵ j 𝐿3. 𝑠𝑒𝑐3Ɵ 2𝐿 𝐿 ] 2𝐿 𝐿 𝐸30 = 𝐾λ [+ ∫ senƟ dƟ i 𝐿 + ∫ 𝑐𝑜𝑠ƟdƟ j 𝐿 2𝐿 𝐿 ] 2𝐿 𝐿 𝐸30 = 𝐾λ 𝐿 [+ ∫ senƟ dƟ 2𝐿 𝐿 𝑖 + ∫ 𝑐𝑜𝑠ƟdƟ j 2𝐿 𝐿 ] 𝐸30 = 𝐾λ 𝐿 [ −𝑐𝑜𝑠Ɵ + 𝑠𝑒𝑛Ɵ ] 𝐸30 = 𝐾λ 𝐿 [ −𝐿𝑖 √(𝐿+𝑥)2+𝐿2 + ( 𝐿+𝑥) 𝑗 √(𝐿+𝑥)2+𝐿2 ] 𝐸30 = 𝐾λ 𝐿 [ ( −𝐿𝑖 √( 𝐿+2𝐿)2+𝐿2 − −𝐿𝑗 √( 𝐿+𝐿)2+𝐿2 ] + ( ( 𝐿+2𝐿) 𝑖 √( 𝐿+2𝐿)2+𝐿2 − ( 𝐿+𝐿) 𝑖 √(𝐿+𝐿)2+𝐿2 ) 𝐸30 = 𝐾λ 𝐿 [ ( −𝐿𝑖 √10𝐿 − −𝐿𝑖 √5𝐿 ] + [ ( (3𝐿) 𝑗 √10𝐿 − (2𝐿) 𝑗 √5𝐿 ] 𝐸30 = 𝐾λ 𝐿 [ ( (√2−1)𝑖 √10 + (3−2√2) 𝑗 √10𝐿 ] 𝐸30 = 𝐾λ 𝐿 [ 0.131i+ 0.0542 j]
  • 6. Ɵ 2L y L 0 L 0 L 0 L 0 Iv ) I ) 𝐸40 = 𝐾 ∫ 𝑑𝑞 .^𝑟 𝑟3 𝐿 0 = 𝐸40 = 𝐾 ∫ λ dy (2Li+yj) [𝑦2+(2𝐿)2] 3 2 𝐿 0 𝐸40 = 𝐾𝜆 [∫ 2L dyi [ 𝑦2+(2𝐿)2] 3 2 𝐿 0 + ∫ y dy j [ 𝑦2+(2𝐿)2] 3 2 𝐿 0 ] Tg Ɵ = 𝑦 2𝐿 y = 2LTg Ɵ dy = 2L 𝑠𝑒𝑐2Ɵd Ɵ 𝑦2 = 4𝐿2 𝑇𝑔2Ɵ 𝐸40 = 𝐾𝜆 [∫ 2L .2L 𝑠𝑒𝑐2 Ɵd Ɵi [4𝐿2 𝑇𝑔2 Ɵ+ 4𝐿2] 3 2 + ∫ 2LTgƟ . 2𝐿𝑠𝑒𝑐2 ƟdƟ j [4𝐿2 𝑇𝑔2 Ɵ+ 4𝐿2] 3 2 𝐿 0 𝐿 0 ] 𝐸40 = 𝐾𝜆 [∫ (4𝐿2 𝑠𝑒𝑐2 Ɵd Ɵ)i [4𝐿2 (𝑇𝑔2 Ɵ+ 1)] 3 2 + ∫ (4𝐿2 TgƟ . 𝑠𝑒𝑐2 ƟdƟ)j [4𝐿2 (1+ 𝑇𝑔2 )] 3 2 𝐿 0 𝐿 0 ] 𝐸40 = 𝐾𝜆 [+∫ 4𝐿2 𝑠𝑒𝑐2 Ɵd Ɵ 8𝐿3. 𝑠𝑒𝑐3Ɵ 𝐿 0 + ∫ (4𝐿2 TgƟ . 𝑠𝑒𝑐2 ƟdƟ ) 8𝐿3. 𝑠𝑒𝑐3Ɵ 𝐿 0 ] 𝐸40 = 𝐾𝜆 [∫ d Ɵ i 2𝐿𝑠𝑒𝑐Ɵ + ∫ TgƟ .dƟ j 2𝐿. 𝑠𝑒𝑐Ɵ 𝐿 0 𝐿 0 ] 𝐸40 = 𝐾𝜆 2𝐿 [∫ 𝑐𝑜𝑠Ɵ dƟ i 𝐿 0 + ∫ 𝑠𝑒𝑛Ɵ dƟ 𝐿 0 ] 𝐸40 = 𝐾𝜆 2𝐿 [( 𝑠𝑒𝑛Ɵ )i + ( −𝑐𝑜𝑠Ɵ ) 𝑗 ] 𝐸40 = 𝐾𝜆 2𝐿 [ 𝑦 𝑖 √(2𝐿)2 + 𝑦2 + −2𝐿 𝑗 √(2𝐿)2 + 𝑦2
  • 7. 𝐸40 = 𝐾𝜆 2𝐿 [ 𝐿 𝑖 √(2𝐿)2 + 𝐿2 + −2𝐿 𝑗 √(2𝐿)2 + 02 𝐸40 = 𝐾𝜆 2𝐿 [ 𝐿 𝑖 √5𝐿 + ( −2𝐿 𝑗 √5𝐿 + 2𝐿 𝑗 2𝐿 ] 𝐸40 = 𝐾𝜆 𝐿 [ 1 𝑖 2√5 + ( −1 𝑗 √5 + 0.5)𝑗] 𝐸40 = 𝐾𝜆 𝐿 [0.2236𝑖 + 0.053𝑗] E total = E10 + E20 + E30 + E40 = 𝐸10 = 𝐾𝜆 𝐿 [0.053𝑖 + 0.2236 𝑗] 𝐸20 = 𝐾λ 𝐿 [ 0.0542i + 0.131 j] 𝐸30 = 𝐾λ 𝐿 [ 0.131i+ 0.0542 j] 𝐸40 = 𝐾𝜆 𝐿 [0.2236𝑖 + 0.053𝑗] E TOTAL = 𝐾𝜆 𝐿 [0.4618𝑖 + 0.4618𝑗] E TOTAL = 𝐾𝑄 4𝐿 [0.4618𝑖 + 0.4618𝑗] E TOTAL = 𝑄 16𝜋𝜖0𝐿2 [0.4618𝑖 + 0.4618𝑗] K = 1 4𝜋𝜖0 λ = 𝑄 4 arctgƟ = 0.4618 0.4618 Ɵ = 45 °
  • 8. R Q 43. Una esferauniformemente cargadade radioR esta centradaenel origencon unacarga Q. Determine lafuerzaresultante que actúasobre unalíneauniformementecargada,orientada radialmente yconuna carga total q con sus extremosenr= R y r = R + d λ= 𝑄 𝑑 = 𝑑𝑄 𝑑𝑟 F = 𝐾.𝑄.𝜆 .𝑑 ^𝑟 𝑅.(𝑅+𝑑) F = .𝑄.𝜆 .𝑑 ^𝑟 4πϵ0𝑅.(𝑅+𝑑) dF = E . dQ F =( 𝐾.𝑄 .^𝑟 𝑟2 ) . λ dr F = ∫ 𝐾.𝑄.^𝑟 𝑟2 𝑅+𝑑 𝑅 . λ dr F = K.Q. λ ∫ 𝑑𝑟.^𝑟 𝑟2 𝑅+𝑑 𝑅 . [ −1 𝑟 )] . ^rF = K.Q. λ r R +d R